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Single Carrier Modulation With
Nonlinear Frequency Domain
Equalization: An Idea Whose
Time Has ComeVAgain
In high-speed single-carrier digital communication systems,

processing blocks of signals using Fast Fourier Transforms is an efficient way to

equalize (compensate) for interference between transmitted symbols.

By Nevio Benvenuto, Senior Member IEEE, Rui Dinis, Member IEEE,

David Falconer, Life Fellow IEEE, and Stefano Tomasin, Member IEEE

ABSTRACT | In recent years single carriermodulation (SCM) has

again become an interesting and complementary alternative to

multicarrier modulations such as orthogonal frequency division

multiplexing (OFDM). This has been largely due to the use of

nonlinear equalizer structures implemented in part in the

frequency domain by means of fast Fourier transforms,

bringing the complexity close to that of OFDM. Here a nonlinear

equalizer is formed with a linear filter to remove part of

intersymbol interference, followed by a canceler of remaining

interference by using previous detected data. Moreover, the

capacity of SCM is similar to that of OFDM in highly dispersive

channels only if a nonlinear equalizer is adopted at the receiver.

Indeed, the study of efficient nonlinear frequency domain

equalization techniques has further pushed the adoption of

SCM in various standards. This tutorial paper aims at providing

an overview of nonlinear equalization methods as a key

ingredient in receivers of SCM for wideband transmission. We

review both hybrid (with filters implemented both in time and

frequency domain) and all-frequency-domain iterative struc-

tures. Application of nonlinear frequency domain equalizers to

a multiple input multiple output scenario is also investigated,

with a comparison of two architectures for interference

reduction. We also present methods for channel estimation

and alternatives for pilot insertion. The impact on SCM

transmission of impairments such as phase noise, frequency

offset and saturation due to high power amplifiers is also

assessed. The comparison among the considered frequency

domain equalization techniques is based both on complexity

and performance, in terms of bit error rate or throughput.

KEYWORDS | Decision-feedback equalizers; digital modulation;

discrete Fourier transforms; multiple antennas

I . INTRODUCTION

EqualizationVthe compensation of the linear distortion

caused by channel frequency selectivityVis an essential

component of digital communications systems whose data

symbol rate is higher than the coherence bandwidth of

typically encountered channels. Intersymbol interference

that afflicts serial data transmission has traditionally been

mitigated by equalization implemented in the time domain
with linear filtering, usually with a transversal structure,

hence the designation linear equalizer [1]. Due to the

tradeoff between equalization of the channel impulse re-

sponse to remove intersymbol interference (both pre-

cursors and postcursors) and noise enhancement at the

decision point, a linear equalizer yields less than ideal

performance in terms of bit error rate, especially in
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(Faculdade de Ciências e Técnologia da Universidade Nova de Lisboa), Lisbon, Portugal

(e-mail: rdinis@ist.utl.pt).

D. Falconer is with the Department of Systems and Computer Engineering,

Carleton University, Ottawa, Canada (e-mail: ddf@sce.carleton.ca).

Digital Object Identifier: 10.1109/JPROC.2009.2031562

Vol. 98, No. 1, January 2010 | Proceedings of the IEEE 690018-9219/$26.00 �2010 IEEE

Authorized licensed use limited to: Oulu University. Downloaded on January 14, 2010 at 08:18 from IEEE Xplore.  Restrictions apply. 



dispersive channels. Other types of equalizers have there-
fore been proposed, especially ones with a nonlinear

structure denoted as decision feedback equalizer (DFE),

where, after a first transversal filter aiming at reducing the

precursors of the equivalent pulse at the detection point, a

linear feedback filter, whose input is the sequence of past

detected data symbols, removes by cancellation the inter-

symbol interference due to postcursors. Hence, the struc-

ture is nonlinear with respect to the received signal.
Indeed, due to the feedback of detected data symbols, the

DFE is hard to analyze. However in general, its perfor-

mance is much better than that of a linear equalizer and

can come close to that of an optimum sequence detector,

e.g., implemented by the Viterbi algorithm, for a much

lower complexity [2].

The signal processing complexity (number of arithme-

tic operations per data symbol) in time domain equaliza-
tion, exemplified by the number of transversal filter tap

coefficients, increases at least linearly with the number of

data symbol intervals spanned by the channel impulse

response. Frequency domain processing of blocks of signals,

using discrete Fourier transforms (DFT), provides lower

complexity per data symbol, and has therefore recently

emerged as the preferred mitigation approach to channel

frequency selectivity, for next-generation broadband wire-
less systems with bit rates of tens or hundreds of megabits/s.

In this overview paper, we survey frequency domain equal-

ization structures, mostly based on the DFE principle, for

single carrier wireless digital transmissions.

Serial or single carrier modulation (SCM), in which

data symbols are transmitted in serial fashion, has been

the traditional digital communications format since the

early days of telegraphy. An alternative is multicarrier
transmission, where multiple data streams, each modu-

lating a narrowband waveform, or tone, are transmitted in

parallel, thus allowing each tone to be separately equalized

by a simple gain and phase factor. Multicarrier transmis-

sion has become popular and widely used within the last

two decades, due mainly to its excellent complexity/

performance tradeoff for data symbol rates far above

coherence bandwidths, and also for its flexible link
adaptation ability [3]–[5]. Among the first military and

commercial multicarrier systems were the Collins Kineplex

and General Atronics KATHRYN HF radio systems [6], [7]

of the 1950s and 1960s. The KATHRYN system used DFT

signal processing at the transmitter and receiver. With the

realization that the eigenvectors of a linear system are

sinusoids, multicarrier transmission was recognized as an

optimal format for frequency selective channels in the early
1960s [8], [9]. Generation and block processing of

multicarrier signals in the frequency domain, are enor-

mously simplified by implementing the DFTs by fast

Fourier transforms (FFTs), as was recognized by Weinstein

and Ebert in 1971 [10], yielding a signal processing

complexity that grows only logarithmically with the channel

impulse response length. This realization, and the ever-

growing demand for higher data rates on wireless and wired
systems propelled the application of multicarrier transmis-

sion to i) digital subscriber line transmission standards,

where it is generally known as discrete multitone transmission,

ii) IEEE 802.11a wireless LAN and iii) digital audio and video

broadcast standards, where it is known as orthogonal
frequency division multiplexing (OFDM), or orthogonal
frequency division multiple access (OFDMA). The early

success of OFDM in standards after more then twenty years
since the pioneering implementations, has been marked by

Bingham in his landmark paper: Multicarrier modulation for
data transmission: an idea whose time has come, [3].

A related development in the early 1970s was the

realization that frequency domain processing techniques

could also be used to facilitate and simplify equalization of

SCM systems [11]. More recently, as an alternative to the

first OFDM applications in wireless standards, Sari et al.
[12]–[14] pointed out that traditional SCM could enjoy an

implementation simplicity/performance tradeoff similar to

that of OFDM for highly frequency selective channels with

the inverse DFT moved at the receiver. (A simpler struc-

ture, with applications to diversity reception, was proposed

by Clark [15] a few years later.) Indeed, this is true only for

a nonlinear frequency domain equalizer. In fact, only the

performance of a DFE can come close to or even exceed
that of OFDM [16]. SCM waveforms have the additional

advantage that for a given signal power their range of

amplitude, measured by the peak-to-average ratio, is signif-

icantly less than that of multicarrier signals. As a result,

their transmitted spectra and performance are less affected

by transmitter power amplifier nonlinearities. This allows

cheaper and more efficient high power amplifiers to be

used for transmitting SCM signals. A further benefit of
SCM is its greater robustness to frequency offset and phase

noise than that of OFDM [17] (see also [18]).

These features of robustness to radio frequency hard-

ware impairments make single carrier with frequency

domain equalization an attractive alternative to OFDM,

especially for cost- and power consumption-sensitive next-

generation wireless user terminals which transmit uplink

to base stations [19]. Thus frequency domain implementa-
tions of SCM receivers can be said to be an idea whose time

has come again after a hiatus of about 20 years. However

the status of SCM now is not that of a potential replacement
of OFDM, but rather of a complement to it. As we will see,

traditional SCM can morph to a special form of multicarrier

transmission, which can be called DFT-precoded OFDM. As

such, it is a form of generalized multicarrier transmission

[20] (see also [21] and [22]).
SCM in the form of DFT-precoded OFDM has been pro-

posed by the European 6th framework program Wireless
INitiative NEw Radio (WINNER) project as the uplink trans-

mission format for wide area cellular scenarios, mainly on

the basis of its radio frequency impairment robustness

properties. WINNER downlink and local area uplink trans-

missions rely on OFDMA, mainly because of its flexibility
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and transmission channel adaptability properties [23]. The
Third Generation Partnership ProjectVLong Term Evolution
(3GPP-LTE) and now LTE-Advanced standards group also

propose DFT-precoded OFDM, which they call single carrier
frequency division multiple access for the uplink of next-

generation wide area cellular broadband wireless systems,

again with OFDMA used in the downlink [24], [25]. These

initiatives and standards activities are contributing to the

International Mobile Telecommunications Advanced (IMT-
Advanced) initiative of the International Telecommunica-

tions Union. The 802.16m Task Group of the IEEE 802.16

Wireless metropolitan area network standards group has

recently been formed to contribute to IMT-Advanced. At the

time of writing, its proposed standard has not been finalized,

but versions of single carrier frequency domain equalization,

as well as OFDM, have been considered for uplinks. The

earlier 802.16a standard, which led to the WiMAX wireless
metropolitan area concept, has three transmission modes:

two based on versions of OFDM and one based on SCM.

The rest of the paper is organized as follows. In Section II

we provide the basic principles and signal structure of SCM

frequency domain nonlinear equalization. In Section III, we

present various nonlinear equalization techniques imple-

mented in the frequency domain for a single antenna system

and using the direct knowledge of the channel frequency
response. These structures will be extended to the case of

transmitters and receivers with multiple antennas in

Section IV, where we also describe an iterative equalizer

fully implemented in the frequency domain. Channel

estimation methods for the proposed structures are investi-

gated in Section V. Impacts of phase noise and other

disturbances on implementations of the nonlinear frequency

domain equalizers are considered in Section VI. Section VII
compares SCM with OFDM, with a focus of the considered

nonlinear frequency domain equalization structures. Lastly,

conclusions are outlined in Section VIII.

Notation: � denotes the complex conjugate, T denotes

the transpose, H denotes the Hermitian (transpose and

complex conjugate) operator. The DFT of sequence fsng,
n ¼ 0; 1; . . . ; P� 1, is

Sp ¼
XP�1

n¼0

sne�j2�
np
P ; p ¼ 0; 1; . . . ; P� 1: (1)

The inverse DFT (IDFT) of sequence fSpg, p ¼ 0;
1; . . . ; P� 1, is

sn ¼
1

P

XP�1

p¼0

Spej2�
np
P ; n ¼ 0; 1; . . . ; P� 1: (2)

IN denotes the N � N identity matrix. Circular convolution

among signals x and y is denoted as ðx� yÞ.

II . SYSTEM DEFINITIONS AND THE
FINGERPRINT OF SINGLE CARRIER
FREQUENCY DOMAIN EQUALIZER:
TRANSMISSION FORMAT

A wireless mobile transmission is characterized by a slowly

time-varying multipath channel between each pair of

transmit and receive antennas in a multiple input-multiple

output (MIMO) scenario. For a system with NT transmit

and NR receive antennas, we denote the impulse response

of the time-invariant channel from antenna i to antenna j
as h

ðj;iÞ
Ch ð�Þ, i ¼ 1; 2; . . . ;NT, j ¼ 1; 2; . . . ;NR. Upon trans-

mission of signal �s ðiÞðtÞ from antenna i, the received signal

at antenna j can be written as (baseband equivalent model)

�rðjÞðtÞ ¼
XNT

i¼1

Z
h
ðj;iÞ
Ch ð�Þ�s

ðiÞðt� �Þ d� þ wðjÞðtÞ (3)

where �wðjÞðtÞ is the noise term, which we assume to be

complex Gaussian with zero mean and power spectral

density N0.

Traditionally, a SCM signal is generated as a

sequential stream of data symbols, at regular time instants

nT, for n ¼ . . . ; 0; 1; 2; . . ., where T is the data symbol

interval, and 1=T is the symbol rate. Although generally

receivers perform oversampling, for the sake of a simpler
notation, we assume also that the received signal is

filtered and sampled with rate 1=T. Hence we describe the

transmission system by an equivalent discrete-time model

where the channel is characterized by the impulse

response h
ðj;iÞ
‘ , ‘ ¼ 0; 1; . . . ;Nh � 1, obtained by sampling

the cascade of the transmit filter, the channel and the

receive filter. By indicating with sðiÞn the symbol transmit-

ted from the ith antenna, the received signal after samp-
ling can be written as

rðjÞn ¼
XNT

i¼1

XNh�1

‘¼0

h
ðj;iÞ
‘ s

ðiÞ
n�‘ þ wðjÞn (4)

where wðjÞn is the noise term with variance �2
w.

In order to allow frequency domain block equalization
of the received signal, the convolutions in (4) must be

circular and this can be achieved in different ways.

As we will first consider the single input-single output

case, we drop the antenna index for sake of a simpler

notation. The MIMO case is considered in Section IV.

A. Circular and Linear Convolution
The transmitted signal fsng depends on the informa-

tion signal fdng but, in general, the two may not coincide.

We examine conditions such that each linear convolution

in (4) appears as a circular convolution between the
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channel impulse response and the information data
signals dn.

Let us consider the sequence of data symbols in blocks

of M, fdng, n ¼ 0; 1; . . . ;M� 1; and the Nh-size sequence

fhng, n ¼ 0; 1; . . . ;Nh � 1, with M > Nh. We define the

periodic signals of period P, drepP;n ¼ dðn mod PÞ, and

hrepP;n ¼ hðn mod PÞ, n ¼ 0; 1; . . . ; P� 1, where in order to

avoid time aliasing, P � M and P � Nh.

Now, the circular convolution between fdng and fhng
is a periodic sequence of period P defined as

xðcircÞ
n ¼ ðh� dÞn ¼

XP�1

‘¼0

hrepP;n�‘drepP;‘: (5)

Then, if we indicate with fDpg, fHpg and fXðcircÞ
p g,

p ¼ 0; 1; . . . ; P� 1, the P-point DFT of sequences fdng,
n ¼ 0; 1; . . . ; P� 1, fhng, and fxðcircÞ

n g, n ¼ 0; 1; . . . ; P� 1,

respectively, we obtain

XðcircÞ
p ¼ HpDp; p ¼ 0; 1; . . . ; P� 1: (6)

The linear convolution with support n ¼ 0; 1; . . . ; Mþ
Nh � 2 is

xðlinÞn ¼
XNh�1

‘¼0

h‘dn�‘: (7)

By comparing (7) with (5), it is easy to see that only if

P � Mþ Nh � 1, then

xðlinÞn ¼ xðcircÞ
n ; n ¼ 0; 1; . . . ; P� 1: (8)

To compute the convolution between the two finite-length

sequences fdng and fhng, (8) requires that both sequences

be completed with zeros (zero padding) to get a length of

P ¼ Mþ Nh � 1 samples. Then, taking the P-point DFT of
the two sequences, performing the product (6), and taking

the inverse transform of the result, one obtains the desired

linear convolution.

However, there are other conditions, some of which are

listed below, that yield a partial equivalence between the

circular convolution fxðcircÞ
n g and the linear convolution

xn ¼
XNh�1

‘¼0

h‘sn�‘; (9)

where fsng depends on fdng.

Overlap and Save: We consider as the transmitted signal
sn ¼ dn, n ¼ 0; 1; . . . ;M� 1 and assume P ¼ M. We verify

that (9) coincides with (5) only for the instants n¼Nh�1,

Nh; . . . ;M� 1, [26]. In other words, the equivalence

between the linear and the circular convolution holds

always on a subset of the computed points.

Cyclic Prefix: An alternative to overlap and save is to

consider, instead of the transmission of the data sequence
fdng, an extended sequence fsng that is obtained by

partially repeating fdng with a cyclic prefix of L � Nh � 1

samples, [26]:

sn ¼
dn n ¼ 0; 1; . . . ;M� 1

dMþn n ¼ �L; . . . ;�2;�1.

�
(10)

Moreover, assume P ¼ M. It is easy to prove that (9)

coincides with (5) for n ¼ 0; 1; . . . ;M� 1. Moreover, the

equivalence (6) in the frequency domain holds for DFTs of
size P ¼ M, the data block size. This arrangement is used

also in multicarrier communications [11].

Pseudo Noise (PN) Extension: Consider a sequence fsng,
obtained by fdng with the addition of a fixed sequence pn,

n ¼ 0; 1; . . . ; L� 1, of L � Nh � 1 samples, i.e.,

sn ¼
dn n ¼ 0; 1; . . . ;M� 1

pn�M n ¼ M; . . . ;Mþ L� 1.

�
(11)

The first data block is also preceded by the sequence fpng.
Moreover, now P ¼ Mþ L. The sequence fpng can contain

any symbol sequence, including all zeros (zero padding)

[27], [28], or a PN symbol sequence, denoted PN extension

or unique word. The choice of the extension is also influ-

enced by other factors, such as channel estimation [29]. It

can be easily proved, that (9) coincides with ðh� sÞn for

n ¼ 0; 1; . . . ; P� 1, where now the circular convolution is
on sn instead of dn.

With reference to the noisy MIMO scenario (4), we can

organize the transmitted signal fsng into blocks of size P,

each obtained by extending with a PN sequence a data block

of size M. Moreover, at the beginning a PN sequence is

transmitted first. Let fsnþkPg, n ¼ 0; 1; . . . ; P� 1 be the kth

block and let fHðj;iÞp g be the P-size DFT of the channel

impulse response fhðj;iÞ‘ g. Then we obtain

RðjÞp ðkÞ ¼
XNT

i¼1

Hðj;iÞp SðiÞp ðkÞ þWðjÞp ðkÞ;

p ¼ 0; 1; . . . ; P� 1 (12)

where WðjÞp ðkÞ is the noise term in the frequency domain,

which according to the hypothesis on fwng is i.i.d. with
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variance �2
W ¼ P�2

w. Note that in this arrangement the
DFTs are of size P ¼ Mþ L instead of size M as in the cyclic

prefix arrangement. Moreover, in this arrangement, an

additional PN extension is required before the first data

block. Among the advantages of this format are a simple

channel estimation, by using the PN sequence [29], and the

possibility of implementing an efficient frequency domain

(FD) nonlinear equalizer, as detailed in Section III. Gen-

erally, the PN extension yields a reduced bit error rate with
respect to the cyclic prefix, since in the latter case data

detection errors affect both the information data and the

cyclic prefix, thus reducing the intersymbol interference

cancellation capabilities of the nonlinear equalizer. In the

following we will consider operations on a single data block

and we will drop the index k from FD signals.

B. Signal Generation
As described in the previous section, the data symbol

sequence may be organized into DFT blocks, which may

include PN extensions, or to which cyclic prefixes are
appended, thus facilitating DFT processing and FD

equalization at the receiver. The resulting data sequences,

with or without extensions and prefixes, are low pass

filtered for bandlimiting and spectrum-shaping purposes,

before being up-converted to the carrier frequency.

Fig. 1 shows a generalized multicarrier transmitter archi-

tecture [19], [20], [22], which can be adapted to generate a

wide variety of signals, including SCM signals, as well as
OFDM, OFDMA, multicarrier code division multiple access

(CDMA), etc. Because its processing occurs in the FD, it is

easy to generate signals with arbitrary spectra, and to insert

FD pilot tones for channel estimation (see Section V). Com-

plexity is not a major issue since processing is done with

DFTs and IDFTs, implemented by FFTs. In the figure, the

IDFT block is preceded by a general pre-matrix operation,

which may include a DFT, spreading, a selection mechanism
and/or an allocation to multiple transmitting antennas in a

MIMO or space-time code. Recognition of this generalized

structure can also be found in [30]–[32].

Generation of a SCM signal block proceeds as follows.

After coding and serial to parallel (S/P) conversion, blocks

of N coded data symbols are mapped to the FD by a N-point
DFT. The resulting FD data components are mapped by the

pre-matrix time-frequency-space selector to a set of M � N
data-carrying subcarriers, and then processed by a

M–point inverse DFT to convert back to the time domain

(TD). The resulting samples are parallel-to-serial (P/S)

converted and appended with a prefix or extension for

transmission. The simplest frequency mapping is to N
contiguous subcarrier frequencies, with the remaining
M� N being padded with zeroes. In this case, the output

samples are expressed as

sn¼
1

M

XN�1

‘¼0

d‘
XN�1

p¼0

ej2�
p n�‘MNð Þ

M

¼
XN�1

‘¼0

g n� ‘M

N

� �
d‘; n¼0; 1; . . . ;M�1 (13)

where

gðnÞ ¼ ej2�
ðN�1Þn

M
1

M

sin �Nn
M

� �
sin �n

M

� � (14)

while fsng, n ¼ �L;�Lþ 1; . . . ;�1, contains the cyclic
prefix.

This is recognized as a block of data symbols serially

transmitted at intervals of M=N samples. The sampled

pulse waveform given by (14) is a circular version of a sinc

pulse with zero excess bandwidth, limited to a bandwidth

N=MT. SCM signals generated in this way are called DFT-
precoded OFDM signals by the WINNER project [23], and

local single carrier FDMA (SC-FDMA) by the 3GPP-LTE
standards body [24], [25]. For (13), smM=N ¼ N=Mdm, thus

the DFT-precoded OFDM waveform at data symbol inter-

vals depends only on a single data symbol, and therefore

has a significantly lower peak to average power ratio than

that of a corresponding OFDM waveform, whose sample

Fig. 1. Generalized multicarrier transmitter (from [22]).
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