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Demand Response with Micro-CHP Systems
Michiel Houwing, Rudy R. Negenborn, and Bart De Schutter Member, IEEE

Abstract—With the increasing application of distributed energy
resources and novel information technologies in the electricity
infrastructure, innovative possibilities to incorporate the demand
side more actively in power system operation are enabled. A
promising, controllable, residential distributed generation tech-
nology is a micro combined heat and power system (micro-CHP).
Micro-CHP is an energy efficient technology that simultaneously
provides heat and electricity to households. In this paper we
investigate to what extent domestic energy costs could be reduced
with intelligent, price-based control concepts (demand response).
Hereby, first the performance of a standard, so-called heat-led
micro-CHP system is analyzed. Then, a model predictive control
strategy aimed at demand response is proposed for more intelli-
gent control of micro-CHP systems. Simulation studies illustrate
the added value of the proposed intelligent control approach
over the standard approach in terms of reduced variable energy
costs. Demand response with micro-CHP lowers variable costs
for households by about 1–14 %. The cost reductions are highest
with the most strongly fluctuating real-time pricing scheme.

Index Terms—micro combined heat and power systems, de-
mand response, model predictive control.

I. INTRODUCTION

A. Distributed generation

POWER generation is responsible for a large share of the

anthropogenic CO2 emissions [1]. Many new sustainable

technologies for electricity provision are therefore currently

under development [2]. Many of these technologies are de-

signed for application at the distribution level of the electricity

infrastructure. Such small-scale electricity generation systems

are referred to as distributed generation (DG). Examples of

DG technologies are photovoltaic systems, wind turbines, and

combined heat and power plants (CHP). The use of DG has

several advantages. When DG systems use renewable primary

energy as input, they can provide significant environmental

benefits. Due to reduced losses from electricity transport and

due to cogeneration options, DG can also lead to increases in

energy efficiency. Moreover, besides their environmental ben-

efits, DG systems can reduce investment risks, they stimulate

fuel diversification and energy autonomy, and the presence of

generation close to demand can increase the power quality

and reliability of delivered electricity [3]–[5]. Currently, the

penetration of DG at medium and low voltages, both in

distribution networks and inside customers’ households, is

increasing in developed countries worldwide [3]–[7].
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B. Micro combined heat and power systems as novel heating

technology

The domestic sector is responsible for a large share of

a country’s energy consumption and carbon emissions. In

the Netherlands, for example, in 2007 the domestic sector

represented a share of 24 % in the total electricity consumption

and 20 % in the gas consumption [8], [9]. Further, Dutch

households are responsible for about 18 % of the total CO2

emissions (excluding transport) in the Netherlands [8], [9].

One of the options for households to reduce electricity

consumption from the grid is the installation of DG. Be-

sides small wind turbines and photovoltaic systems, specific

potential for applying DG at the residential level lies in

utilizing electricity and heat from so-called micro combined

heat and power systems (micro-CHP), also known as micro

cogeneration systems. Based on [10] a micro-CHP system is

defined as follows:

Micro-CHP: energy conversion unit with an electric

capacity below 15 kW that simultaneously generates

heat and power.

Micro-CHP systems can be relatively small and are expected

to be of the same size as current heating systems. Compared to

current heating systems micro-CHP is a step forward in terms

of energy efficiency [10]. By generating electricity locally

and utilizing the co-produced heat, the efficiency of domestic

energy use is substantially improved. In Figure 1 the basic

principle of micro-CHP is shown. Assuming that a household

needs 20 units of electrical energy and 80 units of heat, and

assuming a boiler efficiency of 100 % (based on the lower

heating value of the primary fuel) and an efficiency of large

power generation of 45 %, a household consumes 124 units

of primary energy in the case of separate heat and power

generation. With a micro-CHP system of 20 % electric and

80 % thermal efficiency, 100 units of primary energy are

required, leading to primary energy savings of around 20 %.

During the last years there has been significant progress

toward developing kW-scale CHP applications. Micro-CHP

systems are on the verge of becoming mass marketed as a

next generation domestic heating system [10], [11]. Several

manufacturers are preparing market introduction and retail

companies have started selling micro-CHP systems [12], [13].

The likely primary fuel for these systems is natural gas. Hence,

micro-CHP is envisaged as a promising next generation heat-

ing system for countries and regions with extensive natural gas

infrastructures. Potential markets for micro-CHP are European

countries such as the Netherlands, Germany, and Italy, as well

as Japan and parts of the United States and Canada [10], [14]–

[16]. In those areas, space heating and domestic hot water are

mainly produced inside the house via the conversion of natural

gas in boilers. District heating networks, heat pumps, and solar
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Fig. 1. Energy efficiency with micro-CHP.

boilers are only marginally used there.

C. Objective of the paper

Compared to wind turbines and photovoltaic systems,

micro-CHP is a special type of DG technology in the sense that

the power output can be easily controlled. This characteristic,

together with the fact that micro-CHP units are mostly coupled

to heat storage systems [17], creates flexibility in power gen-

eration. This paper analyzes the potential value of flexibility

in micro-CHP operation.

Besides the standard control strategies envisaged for micro-

CHP, which are aimed at following either heat or electricity

demand, there are many other control objectives for which

micro-CHP systems can be deployed. Examples from [18]–

[20] are the provision of intra-day balancing services, the

provision of black start services and improving power quality.

Another objective for which to control micro-CHP is demand

response, which is the ability of domestic net-consumption of

electricity to respond to real-time prices (net-consumption =

consumption - production). This paper investigates the extent

to which demand response with micro-CHP leads to reduced

energy costs for households when compared to standard heat-

led control.

D. Outline

This paper is organized as follows. In Section II we present a

model of a standard heat-led control strategy and analyze the

associated economic performance of the micro-CHP system

for households. In Section III we then propose a more intelli-

gent control strategy using so-called model predictive control

to implement demand response. Via extensive simulations a

comparison between the performance of this control strategy

and the heat-led control system is made. This indicates the

added value for investors of intelligently using the control

capabilities of micro-CHP units for the objective of demand

response. Conclusions and directions for further research are

given in Section IV.

II. ECONOMIC PERFORMANCE OF MICRO-CHP UNDER

HEAT-LED CONTROL

In order to analyze economic savings with intelligent micro-

CHP control, it is important to have a reference case, both

in terms of control strategy as well as economic feasibility

of the application of micro-CHP. This section describes such

a reference case, where micro-CHP units are controlled in a

heat-led way. Heat-led control means that the control is fo-

cused on following domestic heat demand. This type of control

is envisaged as the most likely standard control strategy for

micro-CHP [10]. In the heat-led case micro-CHPs are placed

in houses, they operate under heat-led control, and electricity

is traded both ways between the retailer and households.

A. Literature on standard control of micro-CHP

There is a substantial body of literature on standard control

strategies for micro-CHP systems and the associated perfor-

mance. A good overview of the literature on control strategy

design and cost performance is presented in [21]. In [21] it is

noted that there is a multitude of possible operating strategies

that can be generally classified as heat-led or electricity-led. It

is concluded that the control strategy for the first generations of

micro-CHPs will be heat-led or electricity-led and that future

generations may incorporate cost and/or emission minimizing

control.

More work on the design of standard control strategies

and on the impact of control strategies on variable costs for

households can be found in [15], [22]–[25]. These sources

report annual energy cost savings, relative to conventional

households, in the range of 8–40 %. Savings depend on the

adopted control strategy, domestic energy demand and pricing

regime. Throughout this paper we refer to ‘conventional house-

holds’ as being households that take all electricity demand

from the grid (i.e., sold to households by retailers) and that

fulfill their heat demand with a conventional, gas-fired boiler.

Looking at the existing literature in relation to the work

presented in this section of this paper, we make the following

contributions:

• Even though much work has been done on standard

control, a reference will need to be developed here to

serve as a basis against which more intelligent control

schemes can be compared. The existing literature helps

in making the modeling choices and assumptions for the

model of heat-led control developed here and forms a

validation for the simulation results. Further, the heat-led

control strategy that is developed in Section II-B2, aimed

at having as few prime mover start-ups as possible, is a

novel strategy and is not described in the literature. Many

start-ups are unwanted, as these create mechanical wear

and additional gas use for fuel cells (this is explained in

Section II-B1).
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• The economic analyses in the literature consider only

fixed tariffs for imported and fed-back electricity. As

there are also time-varying tariffs possible for households

and as these tariffs might influence the economic per-

formance of micro-CHP, the literature is limited in this

respect. Here, we also look at time-varying tariffs.

B. Modeling heat-led control of micro-CHP

This section presents mathematical models of the system

under study and of the standard heat-led control strategy for

the micro-CHP systems.

1) System description: The household-retailer system under

consideration is shown schematically in Figure 2. Energy flows

are present in a household and between a household and the

retailer as shown in the figure. The house is assumed to be

connected to the gas and power grids. The household can fulfill

its electricity and heat demand through several alternative

means. The micro-CHP unit present in the house consists of

a prime mover and an auxiliary burner.

There are three main prime mover technologies envisaged

for micro-CHP systems: internal combustion engines, Stir-

ling engines, and fuel cells [10]. Micro-CHP systems based

on internal combustion engine technology are commercially

available, Stirling engine systems are in between the pilot and

the marketing phase, and fuel cell systems are in the R&D

stage. Compared to the other two technologies, fuel cells have

relatively high electric efficiencies in the range of 30 to 40 %

and consequently fuel cells have lower heat-to-power ratios

[25], [26]. Under the assumption that generated heat cannot

be dumped, the output of micro-CHP systems is constrained

by domestic heat demand. Due to the relatively low heat-to-

power ratio of fuel cells, fuel cells will be constrained by heat

demand much less than the other prime mover technologies.

Because of that fuel cells provide the highest level of flexibility

in their power production. This paper therefore focuses on fuel

cell micro-CHP systems, as these will give the upper limit of

the added value provided by flexibility.

The micro-CHP units modeled in this paper use a Proton

Exchange Membrane Fuel Cell (PEMFC) as prime mover

technology. This fuel cell type is foreseen as a potential

technology for micro-CHP systems [10]. Fuel cells convert

the chemical energy of a fuel into electrical energy and

heat. Typically, the fuel is hydrogen, but with the use of

reforming processes many other primary fuels can be used,

including natural gas. The PEMFC system considered here

also has a fuel reforming unit and a DC/AC power inverter.

The reforming unit reforms natural gas into hydrogen, which

is subsequently electrochemically converted by the fuel cell.

The auxiliary burner of the micro-CHP system delivers any

additionally required thermal power.

Figure 2 shows the electric power, heat and natural gas

flow (in kW) in the household-retailer system. As indicated

in Figure 2 the prime mover converts natural gas gFC into

electricity eprod and heat hFC (‘FC’ stands for fuel cell). The

heat in the flue gas is supplied to the heat storage via hot

water, of which the energy content is indicated by hs (the unit

of the amount energy in the storage is kWh). The auxiliary

energy retailer
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Fig. 2. Energy flows in the household-retailer system.

burner converts natural gas gaux to provide heat haux. The heat

demand hd is taken from the heat storage. We assume that no

heat can be dumped. Generated electricity can be consumed

by the household, ed, or it can be sold to the retailer, eexp.

Electricity can also be imported from the retailer, eimp.

The fuel reforming process of the PEMFC system also uses

natural gas. For modeling purposes an additional gas stream

is therefore defined: gr, which is gas used for heating up the

reforming unit during start-up. The stream gFC represents the

total gas flow to the fuel cell system after it has started up

and includes the gas used for reforming. Once the fuel cell

has started up gr = 0, but during start-up gr is nonzero. This

is discussed further in the next section.

The energy retailer thus sells natural gas and electricity to

the household. The retailer buys electricity that is exported

from the household and will pay the household a certain feed-

back tariff for this electricity.

Next, we mathematically formalize the dynamics of the

household-retailer system. Each time step in the models devel-

oped in this paper represents a time interval of 15 minutes. In

the models, k represents a discrete time index. Discrete time

step k corresponds to continuous time k∆t, where ∆t is the

discrete time step length of 15 minutes.

The following electricity balance should hold:

eprod[k] + eimp[k] = ed[k] + eexp[k], (1)

where:

eprod[k] = gFC[k]ηe = hFC[k]ηe/ηth, (2)

in which ηe and ηth denote the electric and thermal efficiency

of the fuel cell, respectively.

The thermal power output of the fuel cell hFC[k] can vary

between a certain minimum and maximum capacity, which is

given by:

hFC,min ≤ hFC[k] ≤ hFC,max, (3)

where hFC,min and hFC,max are the minimum and maximum

thermal output of the fuel cell.
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Further, the PEMFC power output is constrained by a certain

ramp rate eramp, which is modeled by:

eprod[k − 1]− eramp ≤ eprod[k] ≤ eprod[k − 1] + eramp. (4)

The range of the auxiliary burner power output haux[k] is

given by:

haux,min ≤ haux[k] ≤ haux,max, (5)

where haux[k] = ηauxgaux[k], haux,min and haux,max are the

minimum and maximum heat output of the burner, and ηaux is

the efficiency of the auxiliary burner.

The energy storage content hs[k] between steps is modeled

by:

hs[k + 1] = hs[k]− hd[k] + hFC[k] + haux[k]. (6)

The energy losses of the hot water storage are negligible [27]

and are expected not to influence the results of the analyses

presented in this work.

The parameter values mentioned in the literature and chosen

here for the models are shown in Table I. As will be explained

further in Section II-B2, in heat-led control the micro-CHP

prime mover and auxiliary burner are (de)activated according

to temperature levels of the water in the storage (i.e. TFC, Taux).

There are minimum and maximum temperature levels defined

for the prime mover as well as for the auxiliary burner. Values

for these temperature levels have been chosen by the authors

based on expert knowledge from boiler manufacturers.

2) Design of the heat-led controller: In heat-led control

the micro-CHP system’s power output is controlled based on

domestic heat demand. We next describe the heat-led control

strategy applied to the PEMFC system.

The temperature of the water in the heat storage functions

as main control parameter in the strategy. The prime mover

output is controlled such as to keep the storage temperature at

an average value Ta of:

Ta = (Tlow,FC + Thigh,FC)/2 = 70 ◦C, (7)

corresponding with an average energy level denoted by hs,a.

The values for Tlow,FC and Thigh,FC are given in Table I.

The auxiliary burner control is also based on the storage

TABLE I
MODEL PARAMETERS FOR PEMFC AND AUXILIARY BURNER (‘NO INFO’
MEANS THAT NO INFORMATION WAS FOUND IN THE LITERATURE ON THIS

PARAMETER, ‘AUX. BURNER’ STANDS FOR AUXILIARY BURNER). BASED

ON DATA FROM [25]–[31].

Parameter Symbol
Value

Unit
Literature Chosen

Total efficiency ηtot 0.70–1.0 1.0 -
Electric efficiency ηe 0.20–0.40 0.30 -
Thermal efficiency ηth 0.30–0.80 0.70 -
Electric capacity range eprod 0–5 0.3–3 kW
Ramp capacity eramp 0.06–0.20 0.15 kW/min
Start-up time tstart 45 45 min
Gas use for reforming gref 1 1 kW
Levels fuel cell TFC no info 60–80 ◦C

Levels aux. burner Taux no info 53–58 ◦C

Heat storage volume m 0–400 150 l
Aux. burner efficiency ηaux 0.80–1.07 1.0 -
Aux. burner capacity range haux 0–30 4–20 kW

physical system

aux, h
start,r, t

heat−led controller

hs
hFC

Fig. 3. The heat-led controller in relation to the micro-CHP unit that it
controls.

temperature level. The corresponding energy levels of the

heat storage at simulation step k are calculated from the

temperatures with:

hs[k] = m[k]c∆T [k], (8)

where m[k] is the mass of the water in the storage at time

step k, c is the specific heat of water (i.e. 4.18 kJ/(kg·K)) and

∆T [k] is the difference between the storage temperature and

the temperature of the environment (Tenv = 20 ◦C) at time

step k. Figure 3 schematically illustrates the control inputs

the heat-led controller requires and the outputs the controller

sends to the micro-CHP system. The interpretation of the state

variable tstart,r[k], which the controller measures at each time

step k (together with the heat storage energy content hs), and

the decision variables hFC and haux, which the controller sends

to the system it controls, will be given below.

To avoid frequent starting up of the system, the control

strategy is aimed at keeping the prime mover in operation

as long as possible. In reality, heat and electricity are con-

sumed by households continuously. Here, energy consumption

is modeled by assigning values for domestic heat demand

hd[k] and electricity demand ed[k] each simulation step k.

The controller takes this information on energy demand into

account to determine its actions at each time step k. The

heat demand is taken from the heat storage, which thereby

decreases in temperature. The heat storage content hs[k] is also

an input for the controller. The thermal power output hFC[k]
of the PEMFC prime mover is controlled according to:

hFC[k] =























max
(

hs,a − hs[k] + hd[k], hFC,min

)

if
(

(tstart,r[k − 1] = 1) ∨
(

(hFC[k − 1] > 0)

∧(hs[k]− hd[k] + hFC,min < hhigh,FC)
)

)

0 otherwise,
(9)

where tstart,r[k] is the remaining start-up time at time step k.

The PEMFC’s thermal capacity hFC[k] should be as low as

possible, respecting the capacity limits given by (3) and the

power ramp rate constraint (5). The remaining start-up time is
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set by the controller according to:

tstart,r[k] =























tstart,r[k − 1]− 1 if (tstart,r[k − 1] > 0)
tstart if

(

(tstart,r[k − 1] = 0)
∧ (hFC[k − 1] = 0) ∧
(hs[k]− hd[k] < hlow,FC)

)

0 otherwise,
(10)

where tstart is the start-up time in 15-minute time steps from

Table I (i.e., tstart = 3). The controller thus also needs

information from the prime mover on the remaining start-up

time at the previous time step k−1. During start-up of the fuel

cell heat can be extracted from the storage, thereby lowering

the storage temperature. In order to avoid using the auxiliary

burner, the activation temperature for the fuel cell is therefore

set relatively high (i.e., Tlow,FC > Thigh,aux).

Using (9) a new intermediate value for the energy storage

content is calculated by the controller with:

hs,new[k] = hs[k]− hd[k] + hFC[k]. (11)

Even if the fuel cell prime mover is running, the heat storage

may still become too cold and its temperature may drop below

Tlow,aux. In that case the auxiliary burner will be activated by

the controller using (11) according to:

haux[k] =







max(hhigh,aux − hs,new[k], haux,min)
if (hs,new[k] < hlow,aux)

0 otherwise.
(12)

The auxiliary burner capacity haux[k] should be set by the

controller as low as possible and stay between the limits given

by (5). The desired burner capacity is such that the storage can

reach temperature Thigh,aux, which is the maximum temperature

to which the auxiliary burner can heat the storage.

The controller is designed to let the fuel cell shut down

completely when the storage reaches the temperature limit

Thigh,FC and to let the fuel cell go through the start-up time

before being able to produce usable energy again. The gas

used during start-up gr[k] follows from:

gr[k] =

{

gref if tstart,r[k] > 0
0 otherwise,

(13)

with gref being the gas used for reforming during start-up (see

Table I).

The new value for the energy storage content, with which

the next simulation step starts, follows from (6). With (1) and

(2) values for eimp[k] and eexp[k] are calculated.

3) Model input: The model of the controller that has just

been described requires energy demand as input. To calculate

the economic performance of the micro-CHP system, price

data is also needed. This section describes the input data that

we will use in the subsequent section in simulations. The

Dutch situation of 2006 is used as the source of the data.

a) Energy demand profiles: According to [32], domes-

tic energy demand profiles can be constructed based on

measurements [15], [23], from the aggregation of individual

component loads [33], or by using stochastic methods [34].

Here the last approach is taken, based on the following steps:

1) Set the annual electricity and heat demand in kWh.

2) Create average profiles by multiplying the annual de-

mand by certain fractions. This allocates the annual

demand to a demand per 15-minute periods for a full

year.

3) For each time step, take a sample from a probability

distribution around the 15-minute demand value.

In the analysis of this paper average households are used

with regard to their annual electricity and heat demand. An

average annual domestic electricity demand of 3,400 kWh [8]

and an average annual domestic heat demand of 12,500 kWh

[35] are taken. This heat demand is the total demand for

space heat and domestic hot water. To create average domestic

electricity and heat demand profiles, the annual demands are

multiplied by the so-called ‘profile fractions’ from [36]. These

profile fractions are used by Dutch market parties to predict

the electricity and gas demand of small consumers. The heat

profiles initially have a resolution of one hour (equal to the

resolution of the gas profiles) and the electricity profiles of

15 minutes. The hourly heat demand data are split into equal

amounts for 15-minute periods to create the same resolution

as for the electricity profiles.

In constructing individual domestic electricity demand pro-

files, at each 15-minute time period a sample is taken from

an exponential distribution, in which the expected value is

equal to the average electricity demand at that time. With an

exponential distribution the large spikes in domestic electric-

ity demand can be simulated quite accurately compared to

empirical data from [21], [34], [37]. In creating individual

domestic heat demand profiles, samples are taken from normal

distributions, with the expected values equaling the average

heat demand at that time period. Normal distributions are more

suitable for simulating the heat demand, as the demand spikes

are much smaller than with electricity [34]. By using gas

demand profile fractions it is assumed that the daily patterns

of gas and heat consumption are equal. As still only 15 % of

Dutch households presently have hot water storage systems

[35], regarding gas demand as heat demand seems a valid

assumption. In creating profiles for the aggregate heat demand,

standard deviations are chosen so as to get maximum peaks

in the total thermal power demand that approximate numbers

mentioned in [21], [34] as well as possible.

Figure 4 shows examples of individual domestic electricity

and heat load profiles together with the average profiles.

b) Price data: Regarding the electricity price for house-

holds, we assume that so-called smart meters will enable real-

time pricing. Then, instead of having flat rates, prices can

vary in time. Real-time prices will be based on marginal

supply costs for an energy company [38]. Marginal energy

costs at a certain moment depend on prices of power pools

and power exchanges, costs of own power generation, and

costs of bilateral transactions [38]. For the modeling work

of this paper, we assume three electricity tariff structures for

trading electricity, namely: fixed tariffs (denoted by F ), real-

time pricing based on Dutch power exchange prices (hourly

resolution; denoted by X), and real-time pricing reflecting

average Dutch wholesale market prices (varying with a 15-

minute resolution; denoted by D). The construction of these

tariff structures is as follows:
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Fig. 4. Examples of constructed energy demand profiles for the first three
days of January 2006.

• F tariff structure. From [8], [9] a residential tariff of

0.18 C/kWh is obtained (this is the variable part of the

tariff including taxes), which is used in the F structure.

• X tariff structure. According to [8] the supply part of

the residential tariff (including taxes) is 0.09 C/kWh. The

rest of the C0.18 consists of the transport part (i.e.,

C0.04) and taxes (i.e., C0.05). In creating the hourly-

varying tariff structure, the supply part of 0.09 C/kWh

is substituted by an hourly-varying supply tariff. For the

X structure the hourly-varying supply tariff is equal to

prices of the Dutch Amsterdam Power Exchange (APX),

which is a day-ahead market [39]. It is hereby assumed

that the retailer is able to buy and sell all the power for

and from households on the APX. So, all the supply and

demand bids that he places on the APX are accepted.

This implicitly assumes that retailers can predict the net

consumption of their domestic customers.

• D tariff structure. In setting real-time pricing tariffs for

domestic customers, energy retailers can alternatively use
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Fig. 5. The three residential electricity tariff structures that are used in the
simulations, for the first three days of January 2006.

a mixture of the prices on all the electricity markets on

which they trade [38]. In the Netherlands, for example,

only 20 % of all power is traded on the APX [40] and

a mixture of prices seems logical then. In creating the

varying supply tariff for the D structure, a merit order of

Dutch generation facilities based on marginal costs (as

described in [40]), together with national load data from

the Dutch transmission system operator [41] are used.

The Dutch electricity system is thereby conceptualized

as a black-box and all electricity is assumed to be traded

through one ‘average’ market.

The residential electricity tariffs are scaled such that the

annual averages of the three tariff structures are equal. In

Figure 5 the three constructed tariff structures are shown for

three days in January 2006. It can be clearly seen that the X
structure is more erratic than the D structure.

In determining the tariffs for electricity that is sold by a

household to the energy retailer, i.e., the feedback tariff, the

following is considered. It is first of all assumed that there is an

electricity transport tariff per kWh of electricity sold. A zero

feed-back tariff for exported electricity is highly improbable,

as energy retailers will have free electricity at their disposal

then. On the other hand, households with PEMFCs produce

so much electricity themselves, that they can easily become

net-producers of electricity (in, say, a period of a year). Feed-

back tariffs that are equal to import tariffs are illogical then, as

households would then incur net transport revenues. A nonzero

feed-back tariff is considered, which comprises the previously

mentioned supply part and further prevents double-taxation on

energy. The feed-back tariffs then become equal to the import

tariffs minus the transport tariff of 0.04 C/kWh.

For gas, from [8], [9] a variable domestic tariff (including

taxes) of 0.06 C/kWh is used.

C. Economic performance with heat-led control

In this section we analyze the economic situation of house-

holds in which micro-CHP systems are controlled in a heat-led
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TABLE II
ANNUAL ENERGY COSTS FOR CONVENTIONAL HOUSEHOLDS, DEPENDING

ON THE TARIFF STRUCTURE.

Total energy costs (C/y) Of which

gas (C/y)F X D

1,317 1,350 1,324 714

TABLE III
ANNUAL ENERGY COSTS WITH PEMFC MICRO-CHP UNDER HEAT-LED

CONTROL, DEPENDING ON THE TARIFF STRUCTURE AND GIVEN AS A

PERCENTAGE OF THE COSTS OF CONVENTIONAL HOUSEHOLDS.

Total energy costs (% of conventional) Gas

F X D (%)

61 61 62 144

way. We do this by implementing the mathematical models

of the household-retailer system and the heat-led controller in

Matlab 7.5 and performing simulations in which the input data

described above are used.

Multiple simulations with equivalent households but with

different electricity and heat demand profiles were done. The

households each have a heat storage volume of 150 liters.

At the start of each simulation, the micro-CHP units are not

running (i.e., hprime = 0 kW and haux = 0 kW) and the heat

storages all have average energy levels. The electricity and heat

demand profiles were created as explained in Section II-B3.

Each load profile of a household consists of 35,040 data points,

as simulations are done over a full year (i.e., 2006) and pro-

files have a 15-minute resolution. The economic performance

of micro-CHP application under different tariff structures is

obtained using 20 simulations. Experiments have confirmed

that this number is high enough to draw statistically significant

conclusions.

To place the results that are discussed in the subsequent sec-

tions in perspective, first annual energy costs for conventional

households are shown in Table II. Table III gives the annual

energy costs of the heat-led case as a percentage of the costs

of conventional households (Table II). The presented numbers

in both tables are the average values per tariff structured over

all simulations.

The following observations are made from Table III regard-

ing domestic energy costs in the heat-led case:

• Substantial cost savings with micro-CHP compared

to conventional households. Relative cost savings are

almost 40 %.

• Higher gas costs for micro-CHP households. To pro-

duce the same amount of thermal energy, a micro-CHP

unit will consume more gas than a conventional condens-

ing boiler. This can be seen by the higher gas costs for

households with micro-CHP compared to conventional

households. Even though micro-CHP application leads

to higher local gas consumption in households, the total

primary energy consumption for which households are

responsible becomes less with micro-CHP.

Now that the reference case has been analyzed, the follow-

ing section looks into the potential further cost reductions with

demand response.

III. ENHANCED ECONOMIC FEASIBILITY THROUGH

DEMAND RESPONSE

Instead of following domestic heat demand, the flexibility

provided by the micro-CHP and storage systems can be used

more actively and intelligently, without compromising comfort

for households in terms of heat demand. In this section we

propose a more intelligent control strategy to enhance the

economic savings with micro-CHP systems, when compared to

the heat-led case as analyzed before. The proposed scheme fo-

cuses on reducing variable energy costs via demand response.

Demand response with micro-CHP is reported in [21], [42]–

[49]. In [21], [45], [48] cost savings compared to standard

heat-led control are mentioned. Relative savings between 2

to 8 % are reported in those studies. In the existing literature

the influence of tariff structures on cost savings with demand

response and the design of the controllers is not looked into.

This section does address the influence of the tariff structure

and the controller design.

In the following sections we first formulate the controller

that focuses on demand response with micro-CHP and then

we analyze its performance.

A. Model predictive control (MPC)

The control strategy that is proposed here for demand

response is model predictive control (MPC) [50]–[52]. An

MPC controller is connected to or is built into the micro-

CHP unit. It is also connected to the storage system and a

smart meter. The presence of smart metering in households

is assumed in order for price information to be conveyed to

households by the retail company.

The controller has the task to determine how the micro-

CHP system should operate and how heat should be supplied

to the heat storage. The controller thereby has the objective to

minimize the variable energy costs while respecting the oper-

ational constraints. The concept of MPC is shown in Figure 6.

The MPC control agent uses a model of the household-retailer

system to determine the optimal control actions. Below it is

further discussed how MPC is applied to the system under

study.

1) MPC framework: To find the actions that meet control

objectives as well as possible, a controller has to make a trade-

off between different possible actions. In order to make the

best decision, as much relevant information about the conse-

quences of choosing actions as possible should be taken into

account. A particularly useful form of control that in principle

can use all information available is MPC [50]–[52]. MPC

is an optimization-based control technique, which over the

last decades has shown successful application in the process

industry [54] and which is now gaining increasing attention

in fields like road traffic networks [55], steam networks [56],

water networks [57], and also power networks [58], [59].

Here MPC is used as the control strategy for demand

response with micro-CHP. There are distinct and predictable

patterns in domestic energy demand and energy market prices

of which predictive control is expected to be able to take
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Fig. 6. The concept of MPC (adapted from [53]).

advantage. The controller uses an MPC strategy such that it

can:

• take into account the decision freedom due to the possi-

bilities of self-generation of electricity and of electricity

import and export;

• optimize the use of the heat storage unit;

• incorporate predictions of domestic electricity and heat

demand and future information on electricity prices (i.e.,

disturbances);

• incorporate models of the dynamics and constraints of

installed energy conversion and storage units.

2) MPC components: MPC is a control strategy that is

typically used in a discrete-time control context. At each time

step, an optimization problem is solved with the following

components:

• an objective function expressing which system behavior

and actions are desired;

• a prediction model describing the behavior of the system

subject to actions;

• possible constraints on the states, the inputs, and the out-

puts of the system (where the inputs and the outputs of the

system correspond to the actions and the measurements

of the controller, respectively);

• possible known information about future disturbances;

• a measurement of the state of the system at the beginning

of the current control cycle.

The objective of the controller is to determine those actions

that optimize the behavior of the system as specified in an

objective function.

B. MPC problem formulation

1) Objective function: The control objective is to minimize

the variable costs of domestic energy use. These costs depend

on the gas price pg, the price of imported electricity pimp,

and the price of exported electricity pexp. The gas price is

considered to be fixed over time and the evolution of pimp

and pexp depends on the applied tariff structure as discussed

in Section II-B3.

The cost function J at time step k over a prediction horizon

with length N is now defined as:

J =

N−1
∑

l=0

(

pg

(

gFC[k + l] + gaux[k + l] + gr[k + l]
)

+ pimp[k + l]eimp[k + l]− pexp[k + l]eexp[k + l]
)

.

(14)

2) Prediction model and operational constraints: The pre-

diction model and operational constraints that the controller

uses consist of a set of relations describing the household-

retailer system. This set of relations makes up a mathematical

model that builds upon the model of Section II-B1 and is a

further elaboration of the model presented in [60]. Parts of the

model equations have already been given in Section II-B1. All

the model parameters are given in Table I.

The main difference between the heat-led strategy and

the demand response strategy is that now the micro-CHP

controller sets the power output of the micro-CHP system

(i.e. hFC and haux) by only considering costs, while with heat-

led control the power output was set to keep the storage

temperature at its average value. The main constraints are on

the power output, which should remain within the operational

limits, and on the temperature of the water in the heat storage,

which should remain between the minimum and maximum

limits. It is assumed that the temperature of the water in

the heat storage should remain between Tmin = 55 ◦C and

Tmax = 80 ◦C.

Now the mathematical model of household-retailer system

will be described. First the binary variables vCHP[k] and vaux[k],
which indicate whether the micro-CHP prime mover and

auxiliary burner are in operation at a specific time step k,

are defined according to:

vCHP[k] =

{

1 if micro-CHP prime mover operates

0 if micro-CHP prime mover does not operate,

vaux[k] =

{

1 if auxiliary burner operates

0 if auxiliary burner does not operate.

In addition, the binary variables that indicate whether the

micro-CHP prime mover and the auxiliary burner start up or

shut down at time step k are defined as:

uCHP,up[k] =

{

1 if prime mover starts up

0 if prime mover does not start up,

uCHP,down[k] =

{

1 if prime mover shuts down

0 if prime mover does not shut down,

uaux,up[k] =

{

1 if auxiliary burner starts up

0 if auxiliary burner does not start up,

uaux,down[k] =

{

1 if auxiliary burner shuts down

0 if auxiliary burner does not shut down.
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As also shown in (3) the power output of the prime

mover eprod[k] can modulate between a certain minimum and

maximum capacity, which is now modeled by:

vCHP[k]eprod,min ≤ eprod[k] ≤ vCHP[k]eprod,max, (15)

where eprod,min and eprod,max are the minimum and maximum

electric capacity.

With the binary variables introduced above, the auxiliary

burner power output range haux[k] is now given by:

vaux[k]haux,min ≤ haux[k] ≤ vaux[k]haux,max. (16)

The thermal energy in the heat storage hs[k] has to stay

between a minimum and maximum value:

hs,min ≤ hs[k] ≤ hs,max. (17)

The values of hs,min and hs,max are calculated with (8) using

the temperatures mentioned above.

The energy content of the heat storage hs[k] changes over

time due to the consumption and generation of heat. The

dynamics of the heat storage is given in (6). Also equations

(4), (2), and (1) will hold.

As said before, the fuel cell system has a certain start-up

time during which it consumes gas but delivers no usable

electricity and heat. The system start-up is modeled by:

vCHP[k + p] ≥ uCHP,up[k], p = 0, . . . , tstart − 1, (18)

where tstart is the start-up time expressed in 15 minute periods.

Furthermore, the following statement is also needed to ensure

that there is no electricity production during start-up:

if uCHP,up[k] = 1 then eprod[k + q] = 0,

q = 0, . . . , tstart − 1, (19)

which can be modeled as a mixed-integer linear programming

problem [61]. Gas that is used during start-up to heat up the

reformer is represented by the variable gr[k] (see Figure 2). As

was also done with (13), the following relation ensures that

the total gas consumption of the fuel cell will not be lower

than gref when the fuel cell is starting up:

gr[k] =

{

gref if vCHP[k] = 1 ∧ gFC[k] = 0
0 otherwise.

(20)

In order to let the micro-CHP’s prime mover and auxiliary

burner function properly, the model should include equations

that link the binary variables that govern the operation of the

prime mover and the burner:

vCHP[k]− vCHP[k − 1] = uCHP,up[k]− uCHP,down[k] (21)

vaux[k]− vaux[k − 1] = uaux,up[k]− uaux,down[k] (22)

uCHP,up[k] + uCHP,down[k] ≤ 1 (23)

uaux,up[k] + uaux,down[k] ≤ 1. (24)

3) MPC scheme: At the beginning of each time step k,

the controller measures the system state of the previous step,

which consists of values of the heat storage energy level hs

and of the binary variables vCHP and vaux (these are the state

variables). Due to the constraining ramp rate on the fuel cell’s

power output, the electricity that was produced in the previous

step, eprod, is also measured. Further, between time steps the

start-up time of the PEMFC tstart should also be taken into

account.

Then, together with data on future energy consumption

and electricity prices the controller then determines values

for the decision variables gFC, gaux, gr, eexp,and eimp. It does

so by minimizing the objective function over a prediction

horizon with length N , subject to the prediction model and

the initial system state. Hence, a large set of mixed-integer,

linear equality and inequality constraints has to be solved. A

prediction horizon of 96 steps is taken (i.e., N = 96, which

equals one day). This horizon length covers the dynamics of

domestic energy demand and the electricity market.

Once the controller has determined the actions that optimize

the system performance over the prediction horizon, it imple-

ments the actions of the first step of the horizon k until the

beginning of the next time step k + 1.

At the start of time step k + 1 the procedure is repeated:

the controller determines new optimal actions over the shifted

prediction horizon that now starts at k + 1, thereby using

new system measurements and updated information on distur-

bances. Hence, the controller operates in a receding or rolling

horizon fashion to determine its actions.

4) Solving the optimization problem: The MPC optimiza-

tion problem is formulated as a mixed-integer linear pro-

gramming problem. It is linear, since the objective function

and all constraints are linear and it is mixed-integer, since

the problem involves continuous and binary variables. There

are optimization solvers available that can deal with these

kind of optimization problems [62]. In the case study the

optimization problems are solved using the ILOG CPLEX [63]

linear mixed-integer programming solver through the Tomlab

interface [64] in Matlab. To give an idea of the size of the

optimization problems: with a prediction horizon of 96 steps

(i.e., one day), at each time step an optimization problem

consisting of around 2,500 equations and 1,200 variables

(continuous and binary) has to be solved. Solving such an

optimization problem with the used solver takes from about a

few seconds to about a minute on a laptop with a 1.9 GHz CPU

and 1.0 GB internal memory.

5) Prediction accuracy of energy demand and prices: The

energy demand profiles and the electricity prices that the MPC

controller uses are assumed to be perfectly known to the

controller. Energy demand profiles can be determined by the

controller itself or by an external device. Forecasted prices are

conveyed to households by their retailer, who provides this

information as a service. By assuming perfect forecasts on

prices and energy demand, this analysis gives an upper limit

on the potential savings with demand response. The domestic

energy demand profiles and electricity tariff structures used

are described in Section II-B3.

C. Additional savings with demand response

In this section the energy costs with MPC applied to

PEMFC micro-CHP systems are determined and a comparison

with the results with heat-led control is made. The same

households are considered as in Section II (in terms of pa-

rameters and energy demand patterns), only now the domestic
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TABLE IV
ABSOLUTE AND RELATIVE ENERGY COST SAVINGS WITH DEMAND

RESPONSE OF PEMFC MICRO-CHP SYSTEMS, DEPENDING ON THE TARIFF

STRUCTURE AND COMPARED TO HEAT-LED CONTROL.

Cost saving with MPC under specific pricing regime

Absolute (C/year) Relative to heat-led control (%)

F X D F X D

8.9 111.6 20.2 1.1 13.6 2.5

heating system is controlled by an MPC controller instead

of the heat-led controller. As an illustration of the typical

behavior of the households, Figures 7, 8, and 9 show the

evolution over the first day of the simulation of the state of

the heat storage, the electricity import and export, and the gas

consumption of the micro-CHP’s prime mover and auxiliary

burner, respectively. The aggregate energy cost savings with

MPC under the different tariff structures compared to heat-led

control are shown in Table IV.

The results show that, compared to heat-led operation,

additional cost savings with demand response are between 9–

112 C/year, or between 1–14 %. The savings strongly depend

on the tariff structure. The X tariff structure shows the highest

savings and the F structure the lowest. MPC control reduces

costs by shifting net-consumption away from moments of high

prices. Because the X tariff structure is based on the real-time

prices with the highest variation, it is logical that MPC can

create most savings with that structure.

IV. CONCLUSIONS AND FUTURE RESEARCH

In the development towards more energy efficiency, a

promising option is the application of micro combined heat

and power systems (micro-CHP) in households. Micro-CHP

systems simultaneously generate heat and power and thereby

improve energy efficiency and reduce carbon emissions. Com-

pared to wind turbines and photovoltaic systems, micro-CHP

is a special type of distributed generation technology in the

sense that the power output of the system can be controlled.

Further, when micro-CHP units are coupled to heat storage

systems, flexibility in their power generation can be created.

Flexibility in power generation can lead to energy cost sav-

ings. The amount of these savings depends on how micro-CHP

systems will be applied once being installed in households.

Higher savings may be obtained by controlling micro-CHP

systems more intelligently. An objective to which intelligent

control with micro-CHP can be directed is demand response.

In the context of this paper, demand response is the ability

of households to change their electricity net-consumption in

response to real-time prices. In this paper we have analyzed

the potential economic value of demand response with fuel cell

micro-CHP systems. Due to their relatively low heat-to-power

ratio compared to other prime mover technologies, fuel cells

will provide the highest level of flexibility. The micro-CHP

units modeled in this paper use a Proton Exchange Membrane

Fuel Cell (PEMFC) as prime mover.

First the economics of standard application of micro-CHP

were analyzed. The most logical standard control strategy
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for micro-CHP systems is heat-led control, in which the

micro-CHP’s power output follows heat demand. With heat-

led control annual energy costs are reduced with around 40 %,

compared to when households would use conventional gas

boilers. As a next step the additional energy cost savings

with demand response, compared to heat-led control, were

calculated. Demand response was implemented in a model

predictive control (MPC) strategy. With demand response vari-

able energy costs are between 1–14 % lower than with heat-led

control. Absolute savings with demand response compared to

heat-led control are about C9–112 per year per household.

Cost savings with demand response strongly depend on the

structure of the real-time electricity tariffs: with more strongly

fluctuating structures more savings can be earned.

Future research should further extend the assessment of the

performance of the MPC strategy proposed here by quan-

tifying the relation between the economic performance and

the inherent uncertainty in demand profiles and prices, and

by considering a larger range of household types in terms of

electricity and heat demand (which could include also adaptive

electric and heat loads). The results of this paper represent an

upper limit in potential savings that can be achieved, because

perfect energy demand predictions were assumed to be used

by the MPC controller. In addition, besides real-time prices

for electricity, also real-time prices for gas should be included

in the MPC scheme, and the robustness of the conclusions to

the difference in price between electricity and gas should be

studied. Furthermore, as cost savings with intelligent control

should also cover the investments in that intelligence, the

costs of MPC controllers should be looked into. MPC applied

to prime movers with a higher heat-to-power ratio than fuel

cells (i.e. Stirling engines and internal combustion engines)

will provide a lower degree of operational flexibility and

therefore lower absolute savings with demand response. How

much lower these savings will be can be further researched as

well. Further, the impact of different PEMFC capacities and

different heat storage volumes on cost savings with demand

response should be further researched.

The magnitude of the savings that can be achieved with

demand response do not provide a very strong incentive to

individual households to undertake demand response with

their micro-CHP unit. Demand response could also be applied

to clusters of micro-CHPs in virtual power plants (VPPs)

[65]. Then, small savings of per household can provide an

aggregate economic incentive to set up a VPP. Applying

demand response in VPPs is recommended as future research

as well.
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