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Abstract

Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic 

examination of tissue reveals information enabling the pathologist to render accurate diagnoses 
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and to guide therapy. The basic process by which anatomic pathologists render diagnoses has 

remained relatively unchanged over the last century, yet advances in information technology now 

offer significant opportunities in image-based diagnostic and research applications. Pathology has 

lagged behind other healthcare practices such as radiology where digital adoption is widespread. 

As devices that generate whole slide images become more practical and affordable, practices will 

increasingly adopt this technology and eventually produce an explosion of data that will quickly 

eclipse the already vast quantities of radiology imaging data. These advances are accompanied by 

significant challenges for data management and storage, but they also introduce new opportunities 

to improve patient care by streamlining and standardizing diagnostic approaches and uncovering 

disease mechanisms. Computer-based image analysis is already available in commercial 

diagnostic systems, but further advances in image analysis algorithms are warranted in order to 

fully realize the benefits of digital pathology in medical discovery and patient care. In coming 

decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows 

and minimizing interobserver variability and will begin to provide diagnostic assistance, identify 

therapeutic targets, and predict patient outcomes and therapeutic responses.

Keywords

Biomedical imaging; biomedical informatics; digital pathology; image analysis; virtual 
microscopy

I. INTRODUCTION

Defined as the practice of diagnosing disease, pathology is a central subspecialty in 

medicine. Anatomic pathology, a subdivision of pathology, uses microscopy to visualize and 

diagnose the disease process in tissue. In spite of the successful and widespread use of 

imaging data and computerized processes in other healthcare fields (e.g., radiology), the 

basic process by which diagnoses are made in anatomic pathology remains mostly devoid of 

computerized intervention. However, recent advances in digital pathology imaging, 

specifically in the arena of whole slide imaging, have initiated the transition to digital 

pathology practice. As digitization devices become more practical and affordable, their use 

in pathology laboratories is increasing. The College of American Pathologists (CAP) 

recently developed its Transformation Program Office in order to help accelerate adoption 

of technological advances in U.S. pathology laboratories [3]. In addition, the American 

Board of Pathology, the organization that certifies pathologists in the United States, has 

progressively changed the practical examination to adopt digital images, leaving few 

questions dependent upon direct examination of glass slides using a microscope [4]. As this 

technology is implemented, pathology imaging data are growing at an exponential rate and 

are predicted to far exceed the already vast quantities of radiology imaging data.

A. Technological Challenges

Full use of digital pathology imaging data has the promise to improve patient care and 

accelerate understanding of disease and therapy, yet significant technological challenges 

remain that will push the limits of media and communications.

Cooper et al. Page 2

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



• Image size. A typical whole slide pathology image contains 20 billion pixels 

(assuming digitization at 40× objective magnification). A 24-b color un-

compressed representation of this typical image contains 56 GB. Compression with 

JPEG typically reduces this size to several gigabytes or hundreds of megabytes. A 

multilayer image stack that provides a focus capability typically contains tens of 

such images. A single scanning system can generate hundreds of images daily, 

which creates a significant dilemma for storage and analysis.

• Low-latency access. Pathology images are typically maintained on a centralized 

server and viewed remotely by practitioners over network. Low-latency serving is 

required to maintain a fluid viewing experience that permits the panning and 

zooming operations required for diagnostic procedures. Most diagnoses are 

rendered “offline” through the examination of a biopsy but occasionally remote 

viewing is performed in real time during surgical intervention.

• Unique compression requirements. The content of pathology images presents 

unique challenges for image compression. Compression artifacts take on a new 

meaning when the compressed content is being used to make a diagnosis. 

Aggressive compression is a requirement for fluid viewing; however, the effects of 

existing methods developed for photography applications are still not well 

characterized. Additionally, compression schemes for multilayer images that 

exploit z-redundancy are not currently represented in commercial systems.

These challenges are compounded by the emergence of an additional layer of pathology 

media: quantitative data generated by computational image analysis. These derived data 

represent the contents of a virtual pathology slide at multiple resolutions, from individual 

descriptions of each of the millions of cells to regional/textural descriptions of whole tissues. 

The implementation, management, and delivery of this additional layer of content remain 

works in progress for diagnostic applications. As solutions emerge, pathology image 

analysis will expand beyond emulation of established diagnostic workflows and reduction of 

inter-observer variability in diagnosis to facilitate scientific discovery. Image analysis will 

play a critical role in the identification of novel therapeutic targets and creation of new 

disease classification systems that improve prediction of treatment response. Just as whole 

genome sequencing provides a window into a patient’s genetic predisposition to disease and 

capability of treatment response, the computation of features representing millions of 

digitally accumulated tissue images will illuminate the interplay between molecules and 

biological entities. Image analysis data will provide a rich repository where patterns that 

predict survival and treatment response can be deduced while further elucidating disease 

mechanisms and revolutionizing the care of patients with cancer and other diseases.

B. Content

This paper is organized into six sections. Section II provides the background on the practice 

of pathology including a brief history of microscopy and its influence on established 

diagnostic procedures. Section III discusses digitization in pathology imaging and provides a 

survey of the state of the art in digital modalities. In Section IV, pathology image analysis 

and current trends in this research area are discussed. Section V describes the management 

Cooper et al. Page 3

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



challenges associated with digital pathology practice and image analysis results and 

illustrates the scale of computational and storage requirements needed. Remarks on the 

possible futures for digital pathology are in Section VI, followed by the conclusion.

II. PATHOLOGY—ORIGINS AND PRACTICE

A. The Practice of Anatomic Pathology

Anatomic pathology is a subdivision within the field of pathology that has traditionally used 

microscopes to examine the cellular and subcellular morphology of specimens, either in the 

form of solid tissues or fluids. When a specimen is removed from a patient, it is sent to the 

pathology laboratory for examination and diagnosis. Laboratory personnel first visually 

examine the specimen without the aid of a microscope, called gross examination, where 

trained personnel select tissue for microscopic examination. The selected pieces are 

subjected to a fixation using a formaldehyde solution to cross-link proteins and preserve 

tissue integrity. After fixation is complete, the tissue is further processed to replace water 

with organic solvents and is then embedded in a block of paraffin wax. Thin slices of the 

tissue (typically 4 μm in thickness) are mounted on glass slides, and these slides are taken 

through a series of chemical stains, each of which has an affinity for select cellular elements. 

After staining, a drop of optical grade mounting glue is placed on top of the tissue followed 

by a glass or plastic coverslip, both of which allow for clear inspection of the stained tissue 

section while protecting it from damage. Stains not only allow the pathologist to see the 

tissue under the microscope, but they also enhance detection of specific changes in the tissue 

that occur as a result of disease. The most commonly used stain is a combination of 

hematoxylin and eosin (H&E) that highlights microanatomic structures. Hematoxylin is dark 

purple and has an affinity for the nucleic acids present in cell nuclei, while eosin is red and 

has an affinity for protein present in the cytoplasm and extracellular spaces of the tissue (see 

Fig. 1).

After slide preparation is completed, they are delivered with appropriate clinical information 

regarding the patient to the pathologist for microscopic examination. In most cases, the 

pathologist begins by examining the tissue section on a glass slide at low magnification to 

get a broad view, and this is followed by examination of selected areas under high 

magnification for better visualization of diagnostic and/or challenging areas. The pathologist 

describes his or her findings according to the current standard of care for the disease and 

tissue type in a pathology report. Such findings may include determination of the extent of a 

tumor, the status of the margins around a tumor (i.e., to determine whether a surgeon 

removed the entire tumor), the count of cells undergoing division (mitosis) per high-

magnification field, and the presence or absence of inflammation, infectious organisms, 

vascular tumor invasion, etc. If the diagnosis cannot be made with H&E stains alone, 

additional stains may be employed to help resolve uncertainties. Hundreds of other stains are 

routinely available in most pathology laboratories, and pathologists will select these based 

upon the suspected diagnosis. Immunohistochemical (IHC) stains use an antibody that has 

been developed for a specific target, called an antigen, that is tagged with a colorimetric 

signal (see Fig. 1). These stains are applied to tissues and examined for the presence and 

location of particular antigenic targets that cannot otherwise be seen using a microscope and 
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routine H&E stains. IHC stains are particularly useful for detection of infectious organisms 

and for abnormal antigenic changes in cells related to cancer.

B. Origins of the Practice of Anatomic Pathology

The examination of fine biologic detail using a lighted microscope began around 500 years 

ago. In 1595, the Dutch spectacle-maker Hans Jansen and his son Zacharias constructed the 

first compound microscope consisting of two lenses within a hollow tube, the distance 

between which could be varied to achieve different levels of magnification [5]. Since their 

work was initially unpublished, much of the credit went to Robert Hooke, a Fellow of the 

Royal Society in London who published the first work on microscopy, Micrographia in 

1665 [6]. Here Hooke described his refined compound microscope, having three optical 

lenses, a stage, and a light source. Antonie van Leeuwenhoek, a Dutch scientist, made 

important advances in the construction of lenses that improved magnification, permitting the 

visualization of bacteria, protozoa, and spermatozoa, for which he became known as the 

“Father of Microbiology” [7], [8].

In the late 1800s and early 1900s, many important microscopic discoveries were made 

through the application of stains and synthetic dyes. Joseph von Gerlach described the 

differential staining of the nucleus and cytoplasm using carmine dye in 1858 [7]. This was 

followed by the application of silver staining by Camillo Golgi in 1873 [7]; the first 

fluorescent dye, fluorescein, by Adolf von Bayer in 1871 [7], [9]; and the application of the 

H&E stain by Paul Mayer in 1896 [7]. Important advances in light microscopy were also 

made in the late 1800s, including the elaboration of the diffraction limit theory in 1873 by 

Ernst Abbe, working in collaboration with Carl Zeiss and Otto Schott [7], [10]. This theory 

stated that the smallest resolvable distance between two points using a conventional 

microscope may never be less than half the imaging light wavelength, and application of this 

principle led to further improvements in microscope construction [7]. Oskar Heimstädt 

developed the first practical fluorescence microscope in 1911 after August Köhler devised 

the first ultraviolet microscope in 1904 [7], [11]. Subsequent to this, the development of 

numerous ancillary techniques has enabled the exploration of biologic systems including: 

immunofluorescence for the antibody-labeled detection of specific antigens [7], [12]–[14], 

immunoperoxidase methods for detecting antigens in standard light microscopic sections 

[15]–[18], and the application of green fluorescent protein for the examination of gene 

expression [7], [19], [20].

III. DIGITIZATION OF PATHOLOGY IMAGING

Computing technology was first applied to microscopic data in the late 1950s in an effort to 

automate screening for gynecological cancer. The CYDAC Image Cytometric Microscope 

System, based partly on the Nipkow Disc, is a notable example of early attempts to digitize 

pathology practice [21], [22]. Initial efforts at digital pathology were only able to capture 

portions of tissue sections for examination because magnification precluded the inclusion of 

the entire tissue section into a single digital photograph. Eventually, instruments were 

developed that could capture an entire slide into a single digital image, called a whole slide 

image (WSI) [2], [21]–[29]. Initial approaches to WSI were performed by acquiring multiple 

overlapping digital photomicrographs acquired over the course of many hours using a 
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robotic microscope and then stitching together the images at their boundaries. A “virtual 

microscope” was created that allowed users to navigate WSI at varying levels of 

magnification. Performance was a challenge addressed through a parallel server and a client 

that carried out caching and prefetching [30], [31]. An early WSI instrument was developed 

by John Gilbertson and Art Wetzel, who were then at Interscope technologies [32]. Since 

then, a large number of systems have become commercially available [33], and the list of 

such systems is growing. With the availability of graphical user interfaces that allow the 

implementation of a “virtual microscope” [31] and increases in acquisition speeds, these 

devices are now being used not only in research and education but also in daily pathology 

practice.

Telepathology is the use of digital pathology images to make diagnoses in the absence of 

glass slides and a microscope, and the advent of WSI technology has spurred a sharp 

increase in the adoption of telepathology for clinical patient care. The first articles to use the 

term “telepathology” appeared in 1986, prior to the existence of WSI [2], [28]. The use of 

WSI systems for telepathology has resulted in a number of studies describing its 

effectiveness for patient care [34], [35], and a white paper on telepathology validation is 

expected in the last half of 2012 from the CAP Digital Pathology Working Group. An 

increase in informatics training in pathology residency programs will likely lead to further 

increases in the utilization of this technology [36]–[38], as will the ability for pathologists to 

become board-certified in clinical informatics, expected to be sometime in 2013 [39], [40].

A survey of the current market finds more than ten companies currently offering WSI 

solutions. Contemporary systems are offered in a variety of formats, from closed high-

throughput line scanning devices to inexpensive miniaturized single slide systems for 

desktop use. The appearance of index terms related to digital pathology in scientific 

publications demonstrates the growth in the device market (see Fig. 2).

Several slide scanning devices were compared at the first European Scanner Contest held 

May 2010 in Berlin, Germany, to evaluate scanning speed, focus, and image quality [41]. 

Novel focus mechanisms have emerged in the latest generation of scanners, with some 

devices offering dynamic focus technologies that use dual sensors or coil-mounted sensors 

to accelerate scanning and improve focus quality. Cassette-style slide holders that handle 

slides indirectly are also replacing the complex robotics used to directly manipulate 

individual slides as the latter are prone to mishandling of slides and malfunction.

IV. COMPUTATIONAL ANALYSIS OF PATHOLOGY IMAGING

The digitization of pathology imaging created opportunities for quantitative analysis through 

image processing. Improvements in digitization over the last two decades have been 

accompanied by commensurate advances in both computing hardware and image processing 

methodology. The result has been a proliferation of image analysis into the pathology 

imaging domain where image analysis has been used in both research and clinical settings. 

In this section, we describe the fundamentals of pathology image analysis and discuss recent 

trends and current challenges.
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Pathology is an ideal domain for image analysis. The power to segment, measure, and 

classify images has direct applications in routine pathology tasks, including quantification of 

antibody staining, recognition and classification of cells, and the characterization of 

microscopic structures that are multicellular or regional in nature. The following application 

categories are commonly encountered in literature and commercial software.

• Antibody quantification. IHC stains are applied to highlight expression of specific 

proteins or their mutated forms. These stains typically accompany a counter stain 

such as hematoxylin that highlights tissue structure. Application of multiple stains 

produces a compound color image highlighting both structure and antibody binding 

which can subsequently be unmixed using digital techniques [42]. The first Food 

and Drug Administration (FDA) approved algorithm for breast tissue diagnosis 

falls under this category [43].

• Object segmentation. Entities such as cell nuclei are detected and their boundaries 

are identified. Calculations to describe the shape, color, and texture of a segmented 

object often follow segmentation and are an example of feature extraction.

• Region segmentation. Often the entities to be segmented are composed of 

collections of simple objects and structures and are defined by a complex or 

textural appearance. Examples include identifying the boundaries of blood vessels, 

lesions, and inflammation.

• Feature extraction. Feature extraction is the process of calculating informative 

descriptions of objects or regions, and often precedes classification or segmentation 

tasks. Feature extraction could be applied to raw image data to describe spatial 

characteristics (useful for region segmentation), a single segmented object to 

describe object characteristics such as shape or texture (useful for object 

classification), or a collection of segmented objects to describe group behavior.

• Classification. Segmented objects, regions, or whole slides can be classified into 

meaningful groups based on extracted features. Classification of cell types, 

antibody activation, or entire slides into pathologic categories are common 

classification themes.

• Registration. Image registration is the process of mapping two or more images into 

the same coordinate frame. Registration can be used to create 3-D reconstructions 

of tissue from a sequence of tissue sections, or to map adjacent differently stained 

sections to each other to integrate antibody presence.

A brief background of research in pathology image analysis is presented below. A more in-

depth technical review is available in [44].

1) Object Segmentation

The segmentations of cell nuclei, cell membranes, or subcellular components are the most 

fundamental problems in pathology image analysis. Staining can be applied to reveal these 

objects as uniform regions of distinct color. Color segmentation is one of the fundamental 

problems in image analysis, however segmentation of pathology images remains challenging 

due to natural biological and process-induced variations across images. Commonly used 
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methods include forms of thresholding, active contours, Bayesian approaches, region 

growing, and mean shift.

A common theme in pathology image analysis is the segmentation of cell nuclei. A Bayesian 

nuclear segmentation that integrates color, texture, and shape was proposed for processing 

breast and prostate cancer images [45]. A frequent problem in nuclei segmentation is the 

separation of nuclei among groups of closely packed cells [46]–[48].

Another common problem is the separation of a structure-highlighting stain such as 

hematoxylin and eosin into subcellular components. In these images structures like nuclei, 

cytoplasm and blood are characterized by color modes that vary slightly between samples, 

making statistical modeling a popular approach [49]. The mean-shift algorithm combines 

both color and spatial locality into a robust framework that identifies these modes in a 

transformed color space [50].

2) Region Segmentation

Region segmentation can assume many forms, from segmentation of simple multicellular 

structures to completely unsupervised segmentation of tissues. Due to the textural 

appearance of many tissues or regions, texture segmentation methods from the broader 

image analysis community are frequently adapted to pathology imaging.

Region segmentation is typically preceded by a sequence of operations including feature 

extraction to create an intermediate description of image data that captures texture-

discriminating information. Multiresolution methods based on filterbanks are commonly 

used to exploit the appearance of tissues at multiple scales [51], [52]. Other methods rely on 

spatial statistics and statistical geometry [53], [54]. The two-point correlation function 

measures the spatial distributions of tissue components such as nuclei and cytoplasm, 

forming a spatial–statistical signature for each tissue type. These features have the advantage 

that they can be computed deterministically in a computationally efficient fashion [55].

3) Computer-Aided Diagnosis

Computer-aided diagnosis (CAD) is the most active research area in pathology image 

analysis. The aim of these systems is to reduce variability and error in diagnosis by 

emulating established diagnostic procedures. There are numerous systems developed for a 

large spectrum of diseases, including cervical cancer [56], prostate cancer [57]–[59], breast 

cancer [60]–[63], colon cancer [64], neuroblastoma [65]–[67], and follicular lymphoma 

[68]–[70]. CAD systems typically contain multiple modules implementing object 

segmentation, region segmentation, and feature extraction to achieve classification of 

disease. A brief overview of two CAD systems is presented below to illustrate fundamental 

CAD concepts.

4) Neuroblastoma CAD System

Neuroblastoma (NB) is one of the most frequently occurring tumors of the nervous system 

in children. The process of NB diagnosis is conducted by highly specialized pathologists, is 

time consuming, and is prone to variability. Heterogeneous tumors present a particular 
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problem, since the pathologist is limited in the number of fields they can practically review 

during diagnosis. Two components of NB grading were automated in order to overcome 

challenges posed by the heterogeneity of these tumors [65], [67], [71]. Stromal classification 

uses a texture analysis to identify regions as either stroma-rich or stroma-poor. Degree of 

differentiation is evaluated by segmenting the image into nuclei and cytoplasm components 

and analyzing the texture created by these components. Both analyses are performed in a 

multiresolution manner to optimize computation and accuracy.

5) Lymphoma CAD System

Follicular lymphoma (FL) is the second most common type of non-Hodgkin’s lymphoma. 

Originating within follicle-like multicellular regions, FL comprises mainly centrocytes 

(middle-to-small sized cells) and centroblasts (large malignant cells). Grading is performed 

by counting malignant centroblasts in ten different and representative follicles, first using 

low magnification to identify follicles and then a 40× objective to search for centroblasts. In 

heterogeneous tumors, the centroblast count can vary widely from one follicle to another, 

leaving grading subject to substantial variability.

A computerized system was developed to automate the centroblast counting using a hybrid 

registration/classification approach that integrates information from multiple stains [68]–

[70]. Follicle regions are difficult to identify in a structure highlighting stain, and so follicles 

are first identified from antibody stained sections using region segmentation. Centroblasts 

are difficult to distinguish from other cell types in the antibody stain, and so the follicle 

boundaries are mapped using a nonrigid registration to an adjacent piece of tissue stained 

with a structure highlighting stain. Cells in the mapped follicle regions are then segmented 

and classified.

A. Challenge of Scale

Computation, storage, and networking remain significant challenges for whole slide 

imaging. Modern commercial scanners, capable of producing images at 40× objective 

magnification images, are becoming ever faster. At 40× magnification, the digitization of a 

single 2-cm2 sample contains 7.5 billion pixels (21 GB uncompressed). At this scale, in-core 

analyses on a single machine are not possible. High-performance computing has been 

employed in both research and commercial pathology image analysis applications to address 

the scale challenge. The emergence of repurposed commodity graphics hardware for general 

purpose computing has been a promising development, offering hardware acceleration of 

image analysis on desktop systems in environments where computing clusters are not 

available. Several companies currently offer some form of parallel computing as a feature in 

their image analysis package lineups. Beyond the challenge of raw image storage there are 

needs to record algorithmic results and provenance in a searchable form. This topic is 

discussed further in Section V.
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V. MANAGEMENT INFRASTRUCTURE

The infrastructure for examining, managing, querying, and sharing of WSI is essential for its 

use in electronic health-care records. Design should support both basic acquisition and the 

management and exchange of WSI and derived analytical results.

A. WSI Acquisition, Management, and Exchange

The major challenges for WSI management come from the speed of acquisition, the scale of 

data generated, the diversity of image formats, and regulations surrounding information 

technology used for patient care. In order for a pathology practice to digitize all slides, 

instruments would need to be able to scan WSI at high magnification (40× objective) at 

average speeds no more than those outlined in Fig. 3. These average speeds must account for 

the variable amount of surface area covered by tissue sections: a typical section measures 15 

mm × 15 mm (225 mm2), but sections can range anywhere from a few millimeters to a 

maximum of 25 mm × 55 mm (1375 mm2, over six times the average section’s surface 

area). At 2 m for a 15 mm × 15 mm section at 20× objective magnification, even the average 

pathology practice requires several full time scanners in order to achieve complete 

digitization. Significant increases in image acquisition speed will be needed in order to reach 

this goal.

Numerous protocols have been developed to manage and exchange healthcare information, 

including the Digital Image Communications in Medicine (DICOM) [72]–[74] in radiology 

and Health Level Seven (HL7) [18], [73], [74] for clinical data. Nomenclature methods have 

also been developed to establish a lingua franca for the terminology in data exchange, 

including Logical Observation Identifier Names and Codes (LOINC) [32] and Unified 

Medical Language System (UMLS). Pathology imaging poses unique requirements 

associated with managing and exchanging large images and executing complex queries over 

collections of images and derived data. Development of standards for WSI is a relatively 

new and rapidly evolving field. The Open Microscopy Environment (OME) project has 

developed a data model and management system that can be used to represent, exchange, 

and manage microscopy image data and metadata [75]. The DICOM working group for 

pathology, known as Working Group 26, recently developed two supplements 122 and 145 

for formal representations for specimens and WSI images [72]. Supplement 145 defines a 

tiled multiresolution representation for rapid retrieval and viewing. A DICOM-based 

representation offers the advantages of a universal standard that is also compatible with 

existing Picture Archiving and Communication Systems (PACS) used in radiology 

departments.

B. Pathology Analytical Imaging Infrastructure

Pathology images are often associated with rich meta-data, including annotations made by 

humans, markups, features, and classifications computed from automated image algorithms. 

The systematic analysis of WSI results in vast amounts of morphological information at 

various biological scales. The information generated by this process has tremendous 

potential for providing insight regarding the underlying mechanisms of disease onset and 

progression. One major obstacle which tends to reduce wider adoption of these new 
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technologies throughout the clinical and scientific communities is management, query, and 

integration of this metadata. The Pathology Analytic Imaging Standards (PAIS) project 

develops a comprehensive data model for representing virtual slide related image, 

annotation, markup, and feature information [76], [77]. PAIS also provides a data 

management infrastructure— essentially a medical imaging geographical information 

system (GIS) to support queries for data retrieval based on analysis and image metadata, 

queries for comparison of results from different analyses, and spatial queries to assess 

relative prevalence of features and classified objects and to retrieve collections of segmented 

regions and features. With the scale of data (~2-GB metadata per WSI), high-performance 

parallel database architecture is critical to support such queries and scale to large collections 

of WSIs. Complex queries such as algorithm result comparison across WSI are data and 

computation intensive. Support of rapid response of these queries requires specialized 

querying algorithms executing on high-performance computing infrastructure.

VI. THE FUTURE OF DIGITAL PATHOLOGY

Digitization and image analysis are expected to fundamentally alter the practice of 

pathology, as digitization hardware and commercial image analysis tools proliferate in the 

clinical sphere. Most of the commercial image analysis tools are aimed at increasing 

throughput and reducing variability. Several analysis tools already have approval from the 

FDA for automating routine scoring of IHC-stained slides. The research community has 

largely followed this trend, with a focus on systems that emulate diagnostic procedures. 

Emulation of grading schemes is more complex than protein scoring but validation is also 

usually carried out on rather limited data sets.

In this section, we consider how image analysis may leverage the emerging abundance of 

digitized pathology to surpass emulation of human pathologists to improve prognosis, 

therapeutics, and understanding of complex diseases like cancer. The integration of patient 

registries, hospital information systems, and digital pathology repositories will provide a 

research testbed where imaging and molecular data can be interrogated to associate patient 

genomes with morphology. This will permit clinicians and scientists to study biological 

characteristics across cohorts of subjects to create new categorizations of patient populations 

to better drive personalization of treatment.

A. Glioblastoma: Integrative Morphology

Subtypes of disease have emerged as a recent theme in cancer research. Advances in 

genomics have produced a wealth of molecular information that has illuminated the 

molecular heterogeneity in many cancers. Diseases that have traditionally been defined by a 

single diagnosis are now understood to represent multiple subtypes, each with characteristic 

molecular foundations. Recognition of these characteristic genetic alterations and 

dysregulation of gene expression will result in targeted therapies that go beyond generic 

approaches to therapy. In glioblastoma (GBM), the most common form of primary brain 

tumor in adults, recent findings have defined molecular subtypes driven by gene expression 

and with strongly associated genetic alterations [78], [79]. A recent study of GBM has 

established morphology-driven groupings of tumors [80]. Although visual inspection of a 

biopsy is the standard for GBM diagnosis, these subtypes were not previously recognized, 
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though heterogeneity in tumor cell morphology has been recognized as a characteristic of 

GBMs [81]. Using image analysis, we described the shape and texture of hundreds of 

millions of cells using 74 features [82]. Statistical models describing the morphology of 

each patient were generated and shown to self-aggregate into four distinct clusters with 

significantly different outcomes (see Fig. 4). Analysis of gene expression for these 

morphology-driven subtypes suggests significant differences in expression for genes known 

to influence cell appearance including cell differentiation, cell lineage, and programmed 

death.

B. Mapping Molecules in the Tumor Microenvironment

Tumors are complex self-sustaining environments, similar to organs, and consist of multiple 

biological actors fulfilling different roles [83], [84]. The interactions between these actors 

play a significant part in maintaining the tumor and promoting growth. Proliferating cancer 

cells require nutrition, and so tumors are often characterized by the presence of abundant 

vessels. Stromal cells provide physical scaffolding for the entire system. Although these 

components are found in normal tissue, the abnormal environment and signaling induces 

changes in the molecular program within noncancer cells.

Microarray and sequence-based technologies provide high-resolution transcriptional, 

genetic, and epigenetic characterizations of tissue, but lack the spatial resolution necessary 

to decode the tumor microenvironment. Imaging on the other hand can localize protein 

expression to individual cells using fluorescence or immunohistochemistry, but is limited in 

the number of molecules that can be simultaneously measured. The recent development of 

an imaging technique called quantum dot immunohistochemistry has shown promising 

results for the spatial localization of molecules through fluorescence imaging. Quantum dots 

are novel nanocrystal fluorophores which were initially developed by the semiconductor 

industry [85]. Their compact narrowband emission spectra permit simultaneous independent 

measurement of multiple channels without significant crosstalk [86]. Advantages include 

their ability to be conjugated to a wide range of biological elements including proteins and 

nucleic acids, rendering them as possible eventual replacements for IHC stains and for in 

situ hybridization probes for molecular targets. They have a very tightly defined 

transmission spectra defined by the excitation wavelength, and their emission spectra are 

more accurately quantifiable than colorimetric targets. When quantum dots are conjugated to 

molecular targets and combined with a microscope capable of multispectral excitation 

wavelengths, the convergence of image analysis and molecular biology is realized. We 

anticipate that new modalities such as quantum dot IHC will make the transition from the 

laboratory to the clinic over the next decade, and that new modalities such as quantum dot 

WSI will become as ubiquitous in pathology as magnetic resonance is in radiology.

C. Technological Challenges

Data produced by advances in digitization and image analysis are outpacing the storage and 

computation capacities of workstations and small cluster systems. The “big data” from 

image analysis have similar high-performance and scalability requirements as enterprise 

healthcare data, but present unique challenges. In the future, even medium scale hospitals 

and research projects will require capabilities to manage thousands of high-resolution 
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images, execute and manage interrelated analysis pipelines, and query trillions of 

microscopic objects and their features. These applications demand fast loading and query 

response, as well as declarative query interfaces for high usability.

On the computational front, the highly data-parallel nature of pathology image analysis 

provides opportunities to apply both new hardware and software advances. General purpose 

graphics processing units (GPGPUs) have emerged as a popular implementation platform 

for many data-intensive computational science applications. Heterogeneous high-

performance computing configurations consisting of multicore CPUs and multiple GPGPUs 

are becoming common, providing an attractive alternative to more traditional homogeneous 

computing clusters. Such heterogeneous systems offer tremendous computing capability at 

reasonable acquisition and operating costs, providing individual researchers with the means 

to explore different analysis strategies at meaningful data scales. Similarly, system software 

stacks developed for data-parallel enterprise applications, such as MapReduce [86], can be 

used to provide scalable, efficient, cost-effective solutions for pathology image analysis. 

Widespread adoption of these new technologies brings a new set of challenges, however: 

GPGPUs add a new level of complexity to application memory hierarchies, and new tools 

must be developed to define, deploy, and manage distributed computations across 

heterogeneous systems and networks.

Storage technologies have also progressed significantly in the past decade. Solid state drives 

(SSDs) provide low-latency data storage, albeit at smaller storage capacities and with 

different data access performance characteristics than traditional hard disks. We can expect 

that storage systems composed of multiple levels of coupled spinning drives and SSDs in 

RAID configurations will become more common. In such configurations, high capacity 

arrays of traditional disks would provide longer term storage and high-speed access for 

operations that are characterized by sequential data access patterns (e.g., streaming of image 

data for analysis). SSDs would provide low latency storage for applications whose data 

processing patterns are dominated by random data accesses. Nevertheless, new storage, 

indexing, data staging techniques, and software components will be needed to fully take 

advantage of these multiple levels of storage systems.

There have been substantial advances in network switches and networking protocols for 

intracluster communications. Technologies such as Infiniband provide low-latency, high-

bandwidth communication substrates. However, progress in wide-area networking has been 

relatively slow. Even as multigigabit networks are becoming more widely deployed within 

institutions, and techniques for providing acceptably high effective bandwidths for 

distributed applications have been developed, low-latency access to remote resources 

remains problematic on commodity wide-area networks. Efficient compression, progressive 

data transmission, and intelligent data caching and computation reuse methods will continue 

to play critical roles in enabling digital pathology and scientific collaborations involving 

large pathology image data sets.
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VII. CONCLUSION

The ability to quantitatively characterize disease classification and process from multiple 

biological scales and dimensions has the potential to enable development of preventive 

strategies and medical treatments that are precisely targeted to each individual patient, also 

known as personalized medicine. The advances in pathology imaging technologies discussed 

in this paper, along with comparably dramatic advances in the “-omics” and radiology 

domains, are revolutionizing the medical professional’s ability to rapidly capture and exploit 

vast amounts of multiscale, multidimensional data on each patient’s genetic background, 

biological function, and structure. High-resolution, high-throughput instruments are being 

employed routinely not only in medical science, but also in healthcare delivery settings at an 

accelerating rate. As this decade progresses, significant advances in medical information 

technologies will transform very large volumes of multiscale, multidimensional data into 

actionable information to drive the discovery, development, and delivery of new 

mechanisms of preventing, diagnosing, and healing complex disease. In current practice, 

molecular information and human-generated pathology interpretations are used to guide 

treatments for disease. Tumor subtypes have crucial treatment implications and play 

increasingly crucial roles in development of successful targeted therapeutic regimens. For 

instance, in current neurooncologic practice, pathology classification and molecular 

subtyping are used together to guide choice of treatment.

In the past, pathologists classified issue by manually recognized patterns. In recent years, 

many researchers have demonstrated that in some cases, image analysis algorithms can 

reproduce pathologist-rendered diagnoses. The integrative morphology results presented in 

Section VI go a step further and represent what we think will become an increasingly 

common example where image analysis methods can be used to define previously 

unrecognized subcategories that carry prognostic significance. The analysis and information 

management methods described in this paper represent the technology that will be used to 

provide highly targeted and personalized healthcare in the next decade.
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Fig. 1. 
Whole slide imaging (WSI). (a) WSI captures the contents of an entire glass slide at high 

magnification, producing an image containing billions of pixels. (b) Detail view of (a). A 

hematoxylin and eosin (H&E) stain highlights structure. (c) Immunohistochemical staining 

tags specific proteins with a colorimetric signal. Here, a protein expressed by oxygen-

deprived cells is marked with dark brown.
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Fig. 2. 
National Library of Medicine index articles show increasing trends in pathology digitization 

and image analysis.
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Fig. 3. 
Slide production estimates. Anaverage sized pathology practice can reasonably produce 80 

000 slides per year. (*)Time available to perform WSI scanning using a single WSI scanner.
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Fig. 4. 
Morphological analysis of glioblastoma. (a) Two hundred million nuclei corresponding to 

167 patients were segmented and analyzed to (b) generate statistical models of features that 

represent patient morphology. (c) Clustering of 167 patient models revealed four groups 

with distinct morphology. (d) Kaplan Meier plots of patient survival show significant 

differences between morphology-driven patient groups.
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Table 1

Timeline of Advances in Microscopy and Digital Pathology

Year Advance

1590 Zacharias Janssen, Dutch spectacle-maker, discovers the principles of the compound microscope

1665 Robert Hooke publishes Micrographia,

1858 Joseph von Gerlach differentially stains the nucleus and cytoplasm using carmine dyes

1873 Camillo Golgi devises the silver stain

1871 Adolf von Bayer uses the first fluorescent dye

1873 Ernst Abbe, with Carl Zeiss and Otto Schott, devise the diffraction limit theory

1896 Paul Mayer applies the hematoxylin and eosin stain

1911 Oskar Heimstädt develops the first practical fluorescence microscope

1965 In an era of increasing growth of digital technology, Gordon Moore predicts the exponential growth of computing power

1967 Morris Karnovsky develops peroxidase methods for microscopically detecting antigens

1986–1987 “Telepathology” appears in literature [1, 2]

1990s CCD & CMOS sensors achieve common use in microscopy, allowing widespread digital use in pathology

2000s Whole slide imaging becomes more widespread
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