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Abstract

Active learning, which has a strong impact on processing data prior to the classification phase,

is an active research area within the machine learning community, and is now being extended for

remote sensing applications. To be effective, classification must rely on the most informative pixels,

while the training set should be as compact as possible. Active learning heuristics provide capability to

select unlabeled data that are the “most informative” and to obtain the respective labels, contributing to

both goals. Characteristics of remotely sensed image data provide both challenges and opportunities to

exploit the potential advantages of active learning. We provide an overview of active learning methods,

then review the latest techniques proposed to cope with the problem of interactive sampling of training

pixels for classification of remotely sensed data with support vector machines. We discuss remote sensing

specific approaches dealing with multi-source and spatially and time-varying data, and provide examples

for high dimensional hyperspectral and very high resolution multispectral imagery.
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I. INTRODUCTION

Remote sensing technologies now acquire enormous quantities of data from ground based, air-

borne, and space-based sensors, providing unprecedented capability for mapping and monitoring

dynamic processes over extended areas. The new generation of sensing technologies generates

very large data sets, and applications of very high spatial [1], [2] and spectral [3], [4] resolution

data are growing rapidly. Supervised classification methods that require labeled reference data

for learning models are among the most popular approaches for analyzing these data. These

approaches provide capability to generate representations of land use/land cover, map disasters,

and monitor areas of risk due to climate change, to name a few, thus providing information to

analysts and decision makers that is obtained in a non-intrusive way. However, these supervised

models rely on observed data, and their performance is strongly dependent on the availability of

representative labeled data for training [5]. For hyperspectral data, the problem is exacerbated

by the large number of parameters that must be estimated in traditional parametric classification

methods [6].

Unfortunately, obtaining labeled data is an enormous challenge for both researchers and users

of supervised methods and has led to overuse of a limited number of data sets in the remote

sensing classification literature. The large spatial extent and accessibility to sites often make

acquisition of appropriate training sets via field surveys difficult and expensive, necessitating

careful planning of field campaigns to collect reliable, informative class labels and spectra.

Thus, resulting training sets typically contain a relatively small number of samples compared to

the extended coverage of the scene over which class signatures may vary with local conditions.

Labeled data may also be obtained via visual interpretation of high resolution images, although

the process is subjective and dependent on the knowledge of the analyst. Pixels selected by

photo interpretation occur in spatially contiguous groups, so the training set is typically highly

redundant and may include noisy data and outliers that impact class statistics, leading to poor

performance of the classifier. Even if spatially contiguous pixels can be useful in contextual

classifiers, they are typically over-represented, and only a subset of these pixels contributes

effectively to the development and performance of the classifier. Therefore, it is worthwhile to

search for a small data set with high training utility, whereby both the human annotation cost

and the computational load for training a classifier are reduced, but performance of the classifier
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is not sacrificed. Also, given the abundance of unlabeled data, it is advantageous to exploit

the spectral information in both the labeled and unlabeled data to yield improved classification

results.

Active learning (AL) provides unique capability for addressing these issues. Like bagging

strategies, active learning is a form of resampling [7]. It has been studied extensively in the

field of machine learning and applied to problems in document retrieval and natural language

processing [8]–[10]. Unlike bagging, which draws samples from the data pool (usually labeled)

to create multiple versions of the training set with the goal of describing the statistical population,

AL selects samples from the unlabeled data pool in a biased manner via query strategies that are

designed to exploit properties of the classifier and the current labeled and auxiliary unlabeled

data. This interactively constructed training set does not necessarily represent the entire data

space, but is otherwise assumed to consist of samples that are the most informative and useful

for the learner. The overall goal of AL is to obtain satisfactory classification performance

with fewer labeled samples than those of conventional passive learning, where the training

set is often selected randomly or manually without interaction with the classifier [11]. Thus,

it potentially leads to greater information exploitation for the data and significant reduction

of the annotation cost. Recently, AL has gained attention for classification of remotely sensed

data (a survey in [12]), and has also been investigated for image segmentation [13], target

detection [14] and regression [15]. The focus of this paper is to provide an overview of

active learning strategies for supervised classification, summarizing some of the most popular

approaches, then providing more details on methods that have been developed recently to address

specific challenges and opportunities in analysis of remote sensing images. These include spectral

redundancy in hyperspectral data, spatial redundancy in high spatial resolution data and spatial

drift in class signatures. We illustrate these methods using two example hyperspectral data sets,

chosen to show the potential contribution of active learning in these scenarios. Our results are

based on the SVM classifier, which is natural for many active learning strategies, although other

classifiers can be used effectively with many active learning methods.

The remainder paper is organized as follows: the active learning framework is presented in

Section II. Methods focused on advances in active learning that are particularly relevant to

classification of remotely sensed image data are summarized with examples in Section III

(multi-view active learning), Section IV (spatial information in active learning), and Section V
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(adaptation in active learning). Section VI includes a summary of observations and a look to

future opportunities. The appendix contains a description of the data and the inputs to the

classification experiments.

II. A BRIEF INTRODUCTION TO ACTIVE LEARNING

This section contains an overview of the main elements of a general purpose active learning

algorithm. The notions of output-space optimization (Section II-A) and the concepts of active

learning heuristics (Section II-B) and uncertainty and diversity (Section II-C) are discussed. The

aim of this work is to outline problems specific to remote sensing that have been readdressed via

AL, rather than presenting and comparing specific base heuristics. Readers interested in details of

the methods can consult the work of Settles [11] or the survey by Tuia et al. [12], that provides

a review of several active learning heuristics proposed for remote sensing. In the following, we

summarize these methods for the sake of completeness.

A. Optimal network design in the output space

Finding a relevant training set for image classification (or retrieval of biophysical parameters)

can be considered as the task of designing an optimal monitoring network [16], [17]: given a

network, (the current training samples), we want to add new measurements in order to improve

the current performance of the algorithm. In a remote sensing setting, this reduces to the task of

finding new locations where the output can be measured either by a user or by a sensing device.

In geostatistics, a large body of work deals with space-filling methods, aiming to fill the input

space, often characterized by the spatial location of training samples [18]. In remote sensing, the

focus has often been on systematic methods in which the samples are acquired on a regular grid

or on stratified methods, where the number of samples is balanced according to an estimate of the

abundance of the classes present in the image or to another relevant parameter for which greater

variability corresponds to a larger number of required samples [19]–[21]. This last strategy in

particular has facilitated improvement in results where data were obtained by random sampling,

but it still requires prior knowledge of the relevant parameter on which to base the stratification.

Moreover, the problem of spatial autocorrelation between samples is often disregarded [22].

These strategies correspond to an exploration phase, where there is no attempt to control the

predictive power of the model directly, which would correspond to an exploitation phase. Active
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learning seeks to fill this gap. Instead of optimizing the coverage of the input space, active

learning considers the output space, i.e. the model’s predictions, and ranks the potential new

training samples according to the prediction confidence of the current model on each potential

sampling location [23]. Roughly speaking, active learning answers the question “which samples

should be added to improve the generalization of a given model?” Training sets designed with

active learning are therefore model-specific and do not enhance exploration naturally. Samples

which are expected to have the most impact on the current model are selected, and those samples

for which the current model provides a prediction with high certainty are ignored.

B. Recipe for an active learner

Following the terminology of Li and Sethi [24], an active learner can be summarized as a

quintuple (C,L, S, U,Q), where C is a classifier, L the labeled set used for training, S is a

user who can discover the label of the samples queried in a pool of unlabeled candidates U .

Samples in U are ranked by a criterion (or heuristic) Q. In a remote sensing setting, the sets L

and U are composed of d−dimensional pixels, d being the total number of spectral bands and/or

contextual filters used by the model. For pixels in L, the labels are known (L = {xi, yi}li=1),

while for pixels in U , only the input vector is known (U = {xj}uj=1). Together, these sets cover

the entirety of the n pixels of the image (n = l+ u). Unlike systematic or stratified methods, C

and the user S interact constantly in the active learning model: the first by predicting the output

variable for the pixels in U and the second by providing labels for the samples highly ranked

by the criterion Q. For this reason, active learning processes are naturally iterative, in the sense

that for a given state ε and a corresponding training set Lε, the classifier response Cε will be

different and will produce a different ranking of the candidates. Based on such ranking, the user

S provides the labels, and the newly labeled pixels are transferred from U ε to Lε, thus creating

the next training and candidate sets Lε+1 and U ε+1. The lower part of Fig. 1 illustrates the active

learning component of the classification process.

C. The Evaluation Criterion Q

The heuristic Q differentiates active learning from traditional sampling strategies: Q is based on

the output of the current classifier Cε and relates only indirectly to the input space design (unless

the heuristic is designed to enforce this relation. This is related to multi-view and spectral/spatial
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Fig. 1. General active learning flowchart using the quintuplet terminology of [24].

strategies and will be considered in Sections III and IV). The criterion is intended to provide

information for ranking the candidate pixels relative to their potential contribution, based on the

current classifier Cε. Such a value can be assessed according to: the uncertainty/confidence of a

pixel and its diversity in a batch or view perspective.

1) Uncertainty of pixel labels: unlabeled pixels are not equal in terms of “informativeness”

for the current classifier Cε. Considering support vector machine classifiers as an example, only

pixels that have a chance of becoming support vectors are informative, because others would be

disregarded if added to the training set Lε+1. In this sense, a good criterion Q must be capable

of assigning high rankings to pixels that have a great chance of becoming support vectors. This

is strongly related to the concept of pixel uncertainty: a pixel that can be correctly handled by

the current model has almost no chance of becoming a support vector, while a pixel located in

the margin, i.e. close to the support vectors, is uncertain, and therefore highly informative. This

is a major difference from stratified approaches, where the pixels are balanced by a variability

measure, but still chosen randomly, and therefore in a suboptimal way for the model.

Several heuristics are based on this concept: Margin Sampling (MS [25]) minimizes the

distance to the closest hyperplane, while the Breaking Ties (BT, [26]) and the Multiclass-Level

Uncertainty (MCLU [27]) methods consider the confidence of the two most probable classes. This
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family of heuristics is the most studied in the active learning community (see, for example, works

in [28], [29]). Approaches based on a committee of models have also been considered, either

based on models trained on sample subsets of Lε (e.g. Entropy Query-by-Bagging (EQB) [30]) or

on subsets of the d-dimensional feature space (Multi-view [31], [32]). See Fig. 2 for a comparison

of these last two types of AL architectures. When selecting a single pixel per iteration, these

heuristics return the most uncertain (or informative) pixel in U ε.

Heuristics based on committees have the advantage of being independent of the classifier (see

Section III). The BT strategy can also be applied to all models outputting posterior probabilities

(see examples in [26], where the heuristic is used with linear discriminant analysis or in [33],

where it is used with multinomial logistic regression). The same holds for the approach proposed

in [34], where divergence on the posterior probabilities is used either with the Maximum

Likelihood or the BHC classifier.

2) Diversity in active learning: selecting a single pixel per iteration is not computationally

efficient, since the classifier Cε must be retrained at every loop with the new training set Lε+1.

Moreover, pixels queried by only their uncertainty may be redundant relative to each other.

Therefore, many studies have been devoted to the question of sample diversity [35]: if selecting

many pixels at once (this selection is hereafter called a batch), the set of pixels must be as

diverse as possible to avoid redundancy. In this way, for each state ε, the most effective batch

of pixels is included in Lε+1. Diversity measures seek the pixels that are most dissimilar among

those highly ranked by Q. The resulting batch contains diverse, uncertain pixels for the current

classifier. Diversity is also important for active learning strategies that involve multiple inputs or

“views ”, where the goal is to exploit differences in information in the input space relative to the

selected criterion, and to exploit potential parallelism in computation. Many methods have been

proposed to achieve this diversity evaluation: they are either iterative (adding the most diverse

pixel with respect to the current batch [27], [30], [36]), based on clustering of the uncertain

pixels of U ε [27], [37], or on various diversity metrics related to view similarity [32]). In these

works, only the spectral diversity of the pixels or views was considered. Later, we consider the

image-specific characteristic of diversity.

The remote sensing data classification problem has some unique and specific features, related

to the fact that data are intrinsically multisource, spatial, and evolving in time. The next sections
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consider these specific characteristics in an active learning perspective and present approaches

for exploiting these unique properties. In the following section, we introduce the concept of

multi-view active learning, where subsets of disjoint inputs are provide a natural means of using

ensemble strategies to increase classification accuracy and improve computational performance.

III. MULTI-VIEW ACTIVE LEARNING

Multi-view strategies, which provide different “views” of input data or alternative models, are

particularly attractive for classification problems with high dimensional input spaces. In remote

sensing image based applications, committees may be comprised of inputs from different sensors,

subsets of the spectral bands, spectral and textural features derived from a given sensor, or

different classification models. When the input space is large, random subspace feature selection

can potentially provide improved classifier diversity, while stabilizing parameter estimates. This

is related to the reduction of the number of inputs to each classifier and to the construction

of multiple classifiers in the resulting input space [38]. The inconsistency of outcomes from

the classifiers that comprise an ensemble or committee is exploited by popular approaches such

as “query by committee” (QBC) [39] and its variants, as noted in Section II, and many active

learning strategies utilize the value of agreement [30], [40], [41] of a candidate point relative to

the current classifier as a criterion for selection (see Fig. 2a). This idea is naturally extended to

multi-view approaches, as disagreement among ensemble members is an indicator of the samples

with the most confusion about outcomes, which implies high value for the next query.

Appropriate selection of views is key to multi-view strategies: individual views should be

capable of learning the correct outcome (i.e. sufficient), they should provide complimentary

information [42], contribute to diversity, and provide accurate information relative to the de-

cision. Multi-view approaches are characteriized both in the way they generate the committee

members and in the combination strategy of their respective outputs. This implies different

implementations that should be designed relative to the characteristics of the particular data and

classification problem.

Although multi-view active learning is common in applications such as text classification, it

has received limited attention in the remote sensing community. The inherent redundancy of

hyperspectral data facilitates the construction of compatible views, and there is little risk of

under-representation since all the spectral bands can be included. However, accuracy of views
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(a) Flow chart for Query-by-Committee Active Learning
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(b) Flow chart for Multi-view Active Learning

Fig. 2. Comparison between Query-by-committee (a) and Multi-view (b) approaches.

on unlabeled data cannot be known, and research on view validation is limited. Interestingly,

the “curse of dimensionality” [43] that plagues supervised classification of hyperspectral data

is further exaggerated in the context of active learning, but can be alleviated by multi-view

approaches. Strategies that decompose the feature space into low-dimensional, mutually exclu-

sive subsets are also computationally advantageous for large scale problems, as they can be
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Fig. 3. Correlation coefficient matrix of KSC hyspectral data on Area 1.

implemented in parallel architectures.

Di and Crawford [32], conducted an extensive study of view generation (VG) strategies for

a maximum disagreement based active learning strategy for classification of hyperspectral data.

They considered generation of views based on correlation of contiguous bands, k-means based

band clustering, deterministic selection of every “kth” band (band slicing), and random sampling.

Views generated by correlation and clustering are diverse, but may differ in their discriminative

ability for individual classes, so there is a risk of insufficiency, while views obtained from “band

slicing” may be redundant, but are sufficient. Finally, random sampling provides diverse views,

but they are not guaranteed to be either sufficient or accurate. Figure 3 illustrates multi-view

subsetting of the input space of the KSC Area 1 data based on interband correlation (see Appendix

for details about the data). For these data, blocks of contiguous bands along the diagonal that

are highly correlated define the correlation based subsets. Figure 4 illustrates progression of

active learning in a multi-view scenario when using 5 views of the KSC Area 1 data generated

by correlation (Cr), clustering (Ck), uniform band slicing (Us), and randomly generated (RG),

compared to Random Sampling (RS) and Margin Sampling (MS), where the latter computed

by using the minimum distance among the One-Against-All (OAA) hyperplanes.

All methods except random sampling converge to a high accuracy outcome with fewer than

100 queries. For this data set, margin sampling has the highest overall accuracy, although multi-

view methods converge to approximately the same overall accuracy, reduce impact of high
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Fig. 4. Overall classification accuracy for SVM classification of KSC Area 1 with multi-view active learning based on band

correlation, k-means clustering, uniform band slicing, and random view generation compared to random sampling and margin

sampling.

dimensionality when training samples are limited, and can be parallelized to reduce computational

overhead. Even randomly generated views outperform random sampling. Fig. 5 shows the detail

for correlation-based view generation: as learning progresses, views tend to agree with each

other, except for View 1 (which primarily covers the blue portion of the spectrum for these

data), leading to reduced rate of learning, as exhibited in Fig 4. Noting this, [32] explored

approaches to mitigate this problem, including increasing the number of views, switching to

different view generation methods, and using bagging mode random view generation. The use

of multiple strategies coupled with thresholds for switching based on learning rate was found to

be quite effective.

Trade-offs between view diversity, sufficiency, and accuracy associated with different strategies

influence performance of multi-view active learning. Selection of diverse, reliable views for a

given problem is the most important factor relative to the overall success of these methods.

Application of domain knowledge by the analyst can also be important to this end.

IV. INCLUDING SPATIAL INFORMATION IN ACTIVE LEARNING

Compared to other sources of information, remote sensing images are intrinsically spatial

on a grid and have geospatial coordinates. Spatial relationships have been exploited in remote
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Fig. 5. Overall classification accuracy (OACC) and view performance derived from correlation based view generation for KSC

AVIRIS data.

sensing research to improve classifiers by incorporating spatial information via neighborhoods

or contextual inputs [44], [45], or by segmenting images into spatially coherent and spectrally

similar segments [46]–[49]: in both cases, constraining the model with spatial information results

in increased performance. As for traditional classification, active learning strategies can benefit

from the inclusion of spatial information: most heuristics presented in the literature deal with

spectral data only (even if the manifold is considered, regularization is performed in the spectral

space), and few take into account the position of the samples, either in terms of pixel location in

the image or the clusters to which they belong. Recently, this issue has been considered, mainly

for two reasons:

- Active learning is a set of techniques aimed at building training sets: when new acquisitions

are scheduled, AL can be used as a tool for planning the measurement campaign. In this

case, the spectral criterion is used to sample pixels that are useful and different from each

other, but a spatial criterion can be useful for distributing measurements in the geographical

space and handling variations in local conditions, which can also be source of spectral

signature drift. (see Section V).

- When acquiring new samples, a spectral criterion is not spatially informative (see Fig. 6).

Adding spatial information i) further differentiates the samples and ii) permits selection of

samples that are not spatially adjacent, thus promoting more robust field sampling.
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Fig. 6. Spectral/spatial active learning with spatial/spectral information: (a) spectral MCLU criterion [27]; (b) distance to current

support vectors in the spatial domain; (c) combined criterion exploiting non-dominated solution between (a) and (b) [54]. In all

three maps, bright tones highlight interesting regions for new samples. (see Appendix for details about the ProSpecTIR data)

For these reasons, a spatially differentiating criterion can be of interest. In recent literature, three

types of spatial enforcing criteria have been proposed:

a) Spatial information seen as the minimization of the “travel” distance to cover: in [50],

the authors encode a spatial criterion associated with overall travel time as a function to be

minimized. Starting from a known location, they solved the traveler’s salesman problem [51],

[52], in which information is maximized (through the spectral criterion), while the travel distance

between locations is minimized. This setting could be useful when the team in the field has

limited resources for traveling. The approach operates on an unrestricted geographical space;

more work is needed to convert it into an effective campaign planning tool that considers other

inputs, such as existing road networks and local terrain. Another recent work [53] explores these

possibilities including information about topography and road networks.

b) Spatial information seen as a metric to minimize selection of spatially collocated sam-

ples: research in sample diversity [27], [30] deals with the selection of batches whose pixels are

not spectrally redundant. An alternative approach is to track variability with respect to samples

selected at previous iterations, as in [37]. The key idea is that important samples are selected
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during the active learning process, and the efficiency of the system decreases if at the next

iteration, pixels are similar to those selected previously (even if they are spectrally different).

This intuition can be extended in spatial (geographical) terms: pixels that are geographically

very close to current support vectors (initial training samples or pixels selected in previous

iterations) have a higher risk of providing the same information as those already in the model.

Moreover, avoiding a well characterized region also provides the opportunity to discover isolated

patches and new data structures, where the spectral distribution of a given class may have shifted

spatially or temporally (see Section V). In [54], the distance to current support vectors is used

as a spatial criterion that competes with the spectral heuristic. By identifying the set of non-

dominated solutions (the Pareto front [55]) between the spectral and spatial criteria, the authors

seek to perform queries that are simultaneously spectrally informative (Fig. 6a) and spatially

distinct from previously sampled areas (Fig. 6b). Fig. 6c shows the non-dominated solutions for

the ProSpecTIR image (see Appendix), from the first front (bright tones, interesting locations) to

the last (dark tones, corresponding to areas either spectrally clear or too close to current support

vectors).

c) Spatial information incorporated in a segmentation problem: a different problem setting

would be the parallel definition and labeling of a segmented image [13]. Given a spatially

coherent and hierarchical partitioning of an image (a hierarchical segmentation [46], [48]), the

aim is to find the level of clustering (i.e. number of clusters, as well as their spectral coherence)

for which every cluster belongs to a single class. Consider the clustering algorithm proposed

by [46]: using this algorithm, a hierarchy of possible partitionings of the data is retrieved,

and then an attempt is made to label the clusters using class distribution information. Active

learning can be used to minimize the number of queries to provide a single label to each

cluster considered pure enough to belong to a single class. For the strategy to be effective, the

segments in the cluster hierarchy should be homogeneous, in order to retrieve labels that are

coherent for the cluster with few queries. Fig. 7 illustrates these principles for the ProSpecTIR

agricultural data of Indiana (see Appendix): without using spatial information (top row of Fig. 7),

the clustering of this high resolution image is spatially ambiguous, and the segments considered

as pure by the algorithm are either overestimated (at the beginning, where only very few labels

are available) or overfit (when more labels are available) resulting in complex areas being over-

segmented. By using spatial information (middle and bottom row of Fig. 7), coherent clusters
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are determined, and few labeled pixels are necessary to label the fields correctly. Using an

active learning strategy (the s4d2 strategy of [13]; see the bottome row of Fig. 7), an accurate

classification map is retrieved with just 240 queries, – although it should be noted that this

is related in part to the regular spatial geometry of agricultural scenes. Another interesting

application of active learning for (supervised) segmentation is presented in [33], where active

learning heuristics are applied to increase the training set used to perform image segmentation

based on the pixel’s neighborhood and multinomial logistic regression. Finally, a last recent

approach [56] queries spatial segments within regions of maximal uncertainty and diversity: this

strategy allows querying multiple segments simultaneously from the region.

All three approaches for incorporating spatial information into the active learning process

assume that the class distributions are stationary. For remote sensing data, this may not be valid,

even over small areas. For these problems, the areas of knowledge transfer and adaptive strategies

have been investigated recently in conjunction with active learning. Research dealing with the

application of active learning to adaptation is presented in the next section.

V. ACTIVE LEARNING FOR KNOWLEDGE TRANSFER AND ADAPTATION PROBLEMS

Remote sensing data are impacted by local conditions during acquisitions, which result in

variations in class signatures across a scene, or between images acquired at different times. In a

time series of images acquired by a given sensor, factors such as the acquisition date/time,

atmospheric conditions, and incidence angle impact the observed spectra of vegetation and

materials. These changes, or shifts, reduce the portability of classification models. By portability,

we mean the possibility of re-applying a model, which is optimal for an image (or subset of

an image), to another area of a large scene or to another image, without obtaining labeling

information on the second (or with very limited labeled information). Hereafter, these images

for which knowledge transfer is needed are referred to as source and destination domains, and

the general problem of model portability is referred to as (domain) adaptation.

Direct application of a classifier to class-specific spectral data that have drifted yields low

classification accuracies. The top row of Fig. 8 illustrates this principle for two classes of the

KSC dataset, which consists of two spatially disjoint areas (see Appendix for details): on the

left plot, the average Graminoid marsh signature is shown for the two regions, while the right

plot contains the Salt marsh signatures. In both cases, the average signature of these classes is
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Fig. 7. Active learning for labeling a segmentation hierarchy. Best classification per number of queries using bisecting k-

means [57]. (top) result after building the clustering without spatial constraints; (middle and bottom) results using constraint on

cluster contiguity using (middle) random queries and (bottom) active queries [13]. For legend colors, please refer to Table II.

significantly different. For Gramonoid marsh, the change appears to involve linear scaling of the

signature, while for Salt marsh, the difference is wavelength-dependent: the average signature

decreases for low wavelengths, but increases for longer wavelengths, necessitating alternative
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approaches. Considering classes showing similar signatures (bottom row of Fig. 8) yields a

similar conclusion: class signatures change from one area of the flightline to the other. For

instance, Oak/broadleaf hammock has the highest response around 1000nm in the first area,

while in the second area, the highest signal is provided by Cabbage/oak hammock, highlighting

the difficulty in analyzing complex natural scenes. When considering the data manifolds for all

the classes (Fig. 9a-b), the effect of the shift on a classifier becomes evident: either the centers

of gravity of the different classes or the border patterns (those that will become support vectors)

are displaced by the spectral shift, and direct application of a model trained in Area 1 will result

in many misclassified pixels if applied to Area 2 (see also Fig. 9c, where 100 training examples

from Area 1 are superimposed on the labeled examples of Area 2). These differences between the

local conditions can result in low accuracies if transferred directly to the second area: a model

trained on 500 randomly selected pixels from Area 1 achieved an overall accuracy of 90.6% on
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Fig. 8. Top: average spectral signature for classes (a) Graminoid marsh and (b) Salt marsh found in the two disjoint areas of

the KSC image. Bottom: signatures of three similar classes for (c) Area 1 and (d) Area 2.
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Fig. 9. (a)-(b) Feature space visualization of the ten classes for the two areas of the KSC image. (c) Superposition of 10

training pixels per class taken from Area 1 (large dots) on the Area 2 samples (small dots). Each color represents a landcover

class.

the test set of the same area (average of 10 experiments). When applied to Area 2, it achieved

only 62.5% overall accuracy on the test set (see the black bullet in Fig. 10). A model trained

with pixels from Area 2 achieved 89.2% on the same test data (blue line in Fig. 10). Model

portability has been considered by many researchers for analysis of data over extended spatial

areas and slowly varying multi-temporal scenarios using various approaches, including signature

extension through clustering [58], spatially invariant features [59] obtained by spatial detrending

with Gaussian processes in [60], and by manifold alignment [61]. The resulting classifiers were

more robust to local shift in areas where training samples were unavailable. Finally, approaches

inspired by semi-supervised learning have been adapted to the domain adaptation problem: by

considering the data distribution on the target domain as the unlabeled samples, classifiers are

modified to be more robust when applied to the target domain. A precursor of this research

direction was the work of [62], where class statistics are recomputed and updated using the

target domain for a Gaussian Maximum Likelihood classifier. Later, an adaptation strategy based

on SVM (the DA-SVM [63]) was proposed: in this model, the SVM is constrained by adding

and removing support vectors from both domains in an interactive way. Another semi-supervised

adaptation strategy [64] is based on an ensemble of classifiers which are pruned using a measure

of diversity of predictions in the destination domain. In [65], a manifold regularization approach

was used to adapt the classifier to new domains. All these solutions assume that no labels can be

acquired in the target domain. Relaxing this assumption by allowing some pixels to be sampled

in the target domain, we can also conjecture that the most useful pixels to be sampled are those
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Fig. 10. Active learning used to correct the shift between class distributions of the two disjoint areas of the KSC dataset.

Curves are averages over ten experiments using SVM. The initial training set is composed by 500 pixels randomly selected

from Area 1.

that are located in the areas where signatures changed, which are, with high probability, close

to the classification boundaries among classes. This intuition justifies the use of active learning

methods to learn the shift, in order to sample pixels in spatially disjoint areas and then to modify

the models accordingly [66]. Fig. 10 illustrates this principle, where active learning is used to

add pixels from the target domain to the training set: the accuracy increased consistently and

was higher than random selection, almost achieving the overall accuracy of a model developed

using only 200 pixels from Area 2. Recent research extends the understanding of how active

learning can be used to learn and correct the shift:

- Migration of samples from source to destination domains [67], [68]: in this case, the most

relevant samples from the target domain are added to the training set (as in the previous

example), while the less relevant samples for the source domain (estimated by the loss of

confidence in classification for source pixels) are removed. Thus, the training set becomes

less and less dependent on the source domain. In [67], the samples are removed from the

training set, while in [68], they are deweighted using a sample-weighted SVM. In both

cases, active learning strongly improves adaptation of the model. This type of approach

can be very effective when using classifiers based on class statistics, since they eliminate

samples that impact the class statistics in the target domain.

- Discovering new classes [26]: in this work, an unsupervised criterion is proposed to highlight
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dense and unsampled areas of the target domain, where new classes could be hidden.

These studies also show the potential of active learning for the adaptation of classifiers on

multitemporal sequences. Selecting the samples of the destination domain drastically reduces

the number of labels to be acquired to ensure the efficacy of a model on a new image of similar

properties. In this context, model portability, which is critical for a discipline where massive

quantities of data (images) acquired exceeds the labeling effort achievable by operators is greatly

enhanced.

VI. OBSERVATIONS AND FUTURE DIRECTIONS FOR AL IN REMOTE SENSING

The goal of this paper is to introduce Active Learning (AL) in the context of remote sensing,

particularly with respect to classification. We have concentrated on adaptations of classic AL

strategies that focus on issues that are relevant to supervised classification and have used hy-

perspectral and very high resolution (VHR) imagery to illustrate these heuristics. AL provides a

means to more effectively exploit information from labeled samples that may have been acquired

previously without regard to their potential contribution to training a classifier. It can also be

useful for planning ground surveys to collect reference. Although the assumption that pixel labels

can always be obtained is not always practical or even possible in remote sensing applications,

AL can still be valuable in supervised classification of remotely sensed data. A study of the

effectiveness of AL in returning pixels that analysts are able to label by photointerpretation has

recently been published in [69]. Results show that, to be effective, AL strategies must include

a measure of the confidence of the user in labeling, as well as the pixel’s uncertainty/diversity.

Highly uncertain areas that often correspond to shadow/border areas cannot be easily labeled by

an operator, and correspond to wasted queries. As a consequence, an AL heuristic often needed

twice as many screened pixels as random sampling to provide the batch of labeled pixels. This

is not desirable, since it leads to fatigue of the operator, frustration, and potentially increases in

mislabeling. To address this, authors in [69] trained a second model, learning which examples

were easily recognizable by the user, thus creating a filter for difficult pixels and minimizing the

number of screened pixels to obtain the batch. This approach combined the class uncertainty of

pixels selected and the recognition capacity of the user.

We used the state-of-the art SVM classifier with a One-Against-All (OAA) strategy to illustrate

these concepts. Distance measures in the OAA framework were more easily implemented for
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some active learning schemes, although One-Against-One (OAO) and hierarchical strategies can

be more effective in discriminating among pairs of overlapping classes and for implementation

of some methods. Although strategies related to margin sampling are naturally linked to SVM

classifiers, other classifiers or ensembles of classifiers can also employed in conjunction with AL.

Our experiments demonstrate that multi-view active learning can potentially exploit information

from remotely sensed data in a variety of ways, including use of multi-sensor platforms. It can

also be implemented in parallel computing architectures to address the inherent computational

burden of AL. However, the effectiveness of multi-view AL is dependent on the reliability

of each view relative to the classification problem. Unfortunately, this cannot generally be

known in advance, although knowledge of class characteristics can guide view specification.

Preliminary results also illustrate the potential of view switching for maintaining high learning

rates throughout the sampling process, reducing the number of iterations. Future work could

explore constraints on view accuracy via joint optimization of the sampling and view selection

strategies.

Spatially focused AL is particularly effective for extended homogeneous areas (e.g. agriculture

or large water bodies) and in VHR data, where class boundaries are associated with a large

portion of image pixels. Incorporation of spatial information in AL was shown to reduce spatial

redundancy and utilize non-contiguous clusters of labeled data effectively in choosing training

samples. Published strategies have focused primarily on inclusion of contextual information from

texture transforms and local spatial neighborhoods, either directly or via segmented images.

These approaches also provide capability to mitigate the impact of within-class variability on

classification observed in traditional spectral-based classification methods. Future studies could

explore use of hierarchical multi-resolution classification strategies and inclusion of constraints to

introduce additional realism into models (e.g. terrain and infrastructure related limitations). Semi-

supervised approaches focused on reducing the user supervision of hierarchical segmentation

tasks or easing the choice of unlabeled pixels for semi-supervised classifiers are also new

promising directions, where AL interacts with spatially consistent information.

Classification of large scenes and multi-temporal data necessitates adaptation of classifiers to

local conditions, while maintaining some degree of generalization. Detection of change, including

identification of new classes, is also very important. Traditional methods that are based on labeled

data from the original subset of an image do not provide capability to “learn” about these changes
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quickly. Semi-supervised approaches have traditionally been used to accommodate these issues,

although they are traditionally implemented when labeled data are limited, but the spectral

distributions of classes are stationary. If labels can be obtained, appropriate implementations of

AL also provide an effective tool for classification of data in dynamic environments. Algorithms

that exploit both AL and semi-supervised approaches could be extremely useful, but are largely

unexplored to date.

We have explored AL strategies for supervised classification problems in remote sensing,

but the framework is useful for other problems as well, motivating further research in several

areas. Because of its capability for learning “on the fly”, AL provides capability for near real

time analysis via onboard processing. Investigations of new approaches for handling multi-

sensor problems are also needed, particularly for SAR, where speckle would impact the value

of obtaining a label for a given pixel. Classification results for most investigations, including

here, are reported in terms of overall accuracies. In reality, AL can be most beneficial for the

“difficult” classes, as it provides a rational approach for investigation of “what is unknown”.

Class specific accuracies indicate that the greatest gain is often in terms of the those classes

that are hard to discriminate [70]. More directed research in the area of “critical class active

learning” may also be merited.

As noted in the Introduction, AL has also been investigated for segmentation and unmixing

in a few studies, and additional efforts toward these applications could be fruitful. Moreover,

regression and function estimation could largely benefit from the AL framework, but, for now,

only a few attempts have been published on the topic [15]. Another key application where active

learning is gaining popularity is change detection, where co-registered images are analyzed

to detect changed regions: specific algorithms have been proposed recently, that either rely

on training sets obtained by transferring the labels of unchanged samples from the source

to target domain [71], on joint conditional probabilities among acquisitions [72], or on target

detection models and exploration of the feature space [73]. Finally, it must be acknowledged

that AL methods are problem-driven heuristics which are often the most advantageous for

two very dissimilar problems: “reconnaissance” or operational implementation [74] where the

algorithms are specifically designed to address the unique characteristics of the application and

computational environment. Ample opportunities remain for advancing the state of both.
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APPENDIX

EXPERIMENTAL DESIGN AND REMOTELY SENSED DATA SOURCES

Experiments in this paper are designed to illustrate unique characteristics of the various active

learning strategies, rather than for comparison of absolute accuracies. In practice, the performance

of active learning for classification is strongly dependent on the characteristics of the data, the

classifier, and details of implementation. Our goal is to provide results of a set of experiments

conducted under consistent conditions using data which illustrate both the opportunities and

challenges of active learning methods for remote sensing applications.

All experiments utilized a radial basis function (RBF) SVM 1 classifier implemented in

the ALToolbox [12] available at http://code.google.com/p/altoolbox/. Parameters

were obtained by cross validation via grid search2. Results for each method are reported in

terms of overall performance of ten-fold cross validation and compared to baseline methods

of random sampling and margin sampling. The methods were implemented in a multi-class

One-Against-All (OAA) design for all experiments, except the adaptation experiments, where a

One-Against-One (OAO) strategy was employed to obtain posterior probabilities. It should be

noted that in preliminary experiments using these data, the OAA strategy provided somewhat

higher overall classification accuracies than the OAO approach, while the standard deviation of

the overall accuracies for the OAO implementation was lower. OAO strategies were also more

robust for discriminating “difficult” pairs of classes [70]. All experiments were based on the

1SVM is one of the most popular classifiers for hyperspectral data [75]. For an introduction to the mathematical formulation,

the reader is referred to [76].
2This procedure finds the best SVM parameters by grid search. For each combination, the labeled data (limited in an AL

process) are split into k sets. The classifier is trained k times, where the k− 1 of the sets are used to predict the classes of the

remaining validation set. After predicting each set once with models trained on the rest, an average training error is estimated.

The best parameters are those related to minimal error.
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Fig. 11. (a), (c) RGB images and (b), (d) Class label images of KSC Area 1 and Area 2, respectively.

same labeled data, which were sampled to provide 50% of the data for training (that compose

the initial training set L0 and candidate set U0) and 50% for validation.

Two airborne hyperspectral remote sensing data sets were used in the experiments: Kennedy

Space Center (KSC) and Indian Pines 2010. These data were selected to illustrate the charac-

teristics of the various active learning strategies.

• Kennedy Space Center (KSC)

The NASA AVIRIS instrument collected data at 18m spatial resolution over the Kennedy

Space Center (KSC), Florida, on March 23, 1996. The data consist of 224 bands of 10-

nm width from 400 to 2500 nm. After removing water absorption and low signal-to-noise

(SNR) bands, 176 bands of reflectance data were used for the analysis. Training data were
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selected using land cover maps derived from color infrared photography provided by KSC

and Landsat Thematic Mapper (TM) imagery. The vegetation classification scheme was

developed by KSC personnel in an effort to define functional types that are discernible

at the spatial resolution of Landsat and this AVIRIS data set. The scene is comprised

of water, uplands woodland classes, and lowlands marsh classes, which occur in patches

on the landscape. Discrimination of land cover for this environment is difficult because

many classes are mixed, and the spectral signatures for certain vegetation types are similar.

Also, the coastal waters are very clear, so bottom signatures are visible near shore. For

classification purposes, 10 classes representing the various land cover types that occur in

this environment were defined for the site. Two spatially disjoint subsets of a flightline,

referred to as Area 1 and Area 2 were analyzed in the experiments. Fig. 11 contains RGB

images of the data and the classes that are common to both areas. The classes and number

of training samples per class are listed in Table I. Active learning was initiated with 3 points

per class, and batch sizes of 5 were selected.

TABLE I

CLASS LABEL OF KSC DATA

Area 1 Area 2

ID Color Class name No. of samples No. of samples

1 Scrub 761 422

2 Willow swamp 243 180

3 Cabbage palm hammock 256 431

4 Cabbage palm/oak 252 132

5 Slash pine 161 166

6 Oak/broadleaf hammock 229 274

7 Hardwood swamp 105 248

8 Graminoid marsh 431 453

9 Salt marsh 419 156

10 Water 927 1392

• Indian Pine 2010

The ProSpecTIR system acquired multiple flightlines of data over agricultural areas near

Purdue University, West Lafayette, Indiana, on May 24-25, 2010 for a study focused on

estimating residue cover to evaluate tillage practices. The image subset analyzed in this
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study contains 445×750 pixels at 2-m spatial resolution, with 360 spectral bands of 5-

nm width. Sixteen land cover classes were identified, which included fields of different

crop residue covers, vegetated areas, and man-made structures. Many classes have regular

geometry associated with fields, while others are associated with woodlands, roads, and

isolated man-made structures. An RGB image of reflectance data and a class map of the

area are shown in Fig. 12, and Table II contains class labels and number of training samples

per class. Active learning was initiated with 5 points per class, and batch sizes of 10 were

selected.

(a) (b)

Fig. 12. (a) RGB image and (b) Class label image of Indian Pine 2010 SpecTIR data
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[61] D. Tuia, J. Muñoz-Marı́, L. Gómez-Chova, and J. Malo, “Graph matching for adaptation in remote sensing,” IEEE Trans.

Geosci. Remote Sens., in press.

[62] L. Bruzzone and D. Fernandez-Prieto, “Unsupervised retraining of a maximum likelihood classifier for the analysis of

multitemporal remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456–460, 2001.

[63] L. Bruzzone and M. Marconcini, “Toward the automatic updating of land-cover maps by a domain-adaptation SVM

classifier and a circular validation strategy,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1108–1122, 2009.

[64] S. Rajan, J. Ghosh, and M. Crawford, “Exploiting class hierarchy for knowledge transfer in hyperspectral data,” IEEE

Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3408–3417, 2006.

[65] W. Kim and M.M. Crawford, “Adaptive classification for hyperspectral image data using manifold regularization kernel

machines,” IEEE Trans. Geosci. and Remote Sens., vol. 48, no. 11, pp. 4110 –4121, 2010.

[66] G. Jun and J. Ghosh, “An efficient active learning algorithm with knowledge transfer for hyperspectral remote sensing

data,” in Proc. IEEE Geoscience and Remote Sensing Symposium, Boston, MA, July 6-11 2008, pp. I–52 I–55.

[67] C. Persello and L. Bruzzone, “Active learning for domain adaptation in the supervised classification of remote sensing

images,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4468–4483, 2012.

[68] G. Matasci, D. Tuia, and M. Kanevski, “SVM-based boosting of active learning strategies for efficient domain adaptation,”

IEEE J. Sel. Topics Appl. Earth Observ., vol. 5, no. 5, pp. 1335–1343, 2012.
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