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Boolean Computation Using Self-Sustaining
Nonlinear Oscillators

Jaijeet Roychowdhury, EECS Department, University of California, Berkeley

Abstract

Self-sustaining nonlinear oscillators of practically anytype can function as latches and registers if Boolean logic
states are represented physically as the phase of oscillatory signals. Combinational operations on such phase-
encoded logic signals can be implemented using arithmetic negation and addition followed by amplitude limiting.
With these, general-purpose Boolean computation using a wide variety of natural and engineered oscillators becomes
potentially possible. Such phase-encoded logic shows promise for energy efficient computing. It also has inherent
noise immunity advantages over traditional level-based logic.

I. INTRODUCTION

Self-sustaining oscillators abound in nature and in engineered systems – examples include mechanical
clocks [1], electronic ring [2–4] and LC oscillators [5], spin-torque oscillators [6–10], lasers [11–13],
MEMS/NEMS-based oscillators [14, 15], the heart’s neuronal pacemakers [16], engineered molecular
oscillators such as the repressilator [17],etc.. The defining characteristic of a self-sustaining oscillator is
that it generates sustained “motion” without requiring anystimulus of a similar nature –i.e., it produces
an output that changes with time indefinitely, usually in a periodic or quasi-periodic [18] fashion, in the
absence of any input that changes with time. If left undisturbed, most practical self-sustaining oscillators
become periodic with time and settle to a single amplitude ofoscillation. For the latter property1 to hold,
the oscillator must be nonlinear,i.e., it must be a self-sustainingnonlinear oscillator (SSNO). SSNOs
exhibit interesting dynamical properties – for example, synchronization [19–21] and pattern formation [22–
25] can result when they are coupled together. Biological phenomena such as the synchronized flashing
of fireflies [26], circadian rhythms [27, 28] and epilepsy [29] result from the interaction of SSNOs, while
coupled systems of SSNOs have been shown to have image processing capabilities [24, 30] and have
been proposed for associative memories [31, 32].
In this paper, we first review recent work that establishes that SSNOs can also serve as substrates for
general-purpose Boolean computation. By exploiting a phenomenon known as sub-harmonic injection
locking (SHIL), almost any SSNO can store logical states stably if logic is encoded in phase. This
result implies that almost any oscillator, from any physical domain, can potentially be used for Boolean
computation – examples include CMOS ring oscillators, spin-torque nano-oscillators, synthetic biological
oscillators, MEMS/NEMS-based oscillators, nanolasers and even mechanical clocks. Since logic values are
encoded in phase, or time shift, switching between them doesnot, in principle, involve energy expenditure.
We demonstrate this using a high-Q (energy efficient) oscillator design that consumes essentially no energy
to switch quickly (in half an oscillation cycle) between phase logic states. We also outline how phase
logic can have generic noise immunity advantages over level-based encoding of logic.
Phase-encoded logic was first proposed in the 1950s by EiichiGoto [33, 34] and John von Neumann
[35, 36], who showed that if the phase of a signal (relative toanother signal, the reference) is used to
encode Boolean logic states, combinational operations canbe implemented using arithmetic addition and
negation. Moreover, they devised a circuit that served as a phase logic latch –i.e., it could store a Boolean
logic state encoded in phase.2 In the early 1960s, the Japanese constructed phase logic computers (dubbed
Parametrons [37–40]) that enjoyed brief success on accountof their compactness and reliability compared
to the vacuum-tube based machines that were the mainstay of computing at the time. However, phase-
based computers were soon overshadowed by level-based onesemploying microscopic semiconductor
devices within integrated circuits. The difficulty of miniaturizing and integrating components in Goto/von

1known technically as asymptotic orbital stability [18].
2This circuit was not, however, a SSNO; it relied on a sinusoidal (AC) parametric pump (power source) to achieve bi-stability in phase.
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Neumann’s phase logic latches contributed to their demise.Although subsequently, Goto and colleagues
showed that Josephson-junction devices could be used for phase logic [41, 42], these require extremely
low temperatures for operation, hence are not practical in most applications.
With CMOS miniaturization facing fundamental energy and noise barriers today, there has been an ongoing
search for alternative computational paradigms [43, 44]. In this context, the facts that phase-encoded logic
allows essentially zero-energy bit flips, and is capable of resisting noise better than level-encoded logic,
provide considerable motivation for re-examining it as a candidate technology for the post-CMOS era.
Also, that any SSNO can potentially serve as a latch removes an important limitation that prior phase-based
logic schemes have faced,e.g., many types of nanoscale SSNOs become candidates for phase latches.3

The remainder of the paper is organized as follows. In§II, the concept of encoding logic in phase is
outlined and it is shown how SSNOs can be made to serve as phaselogic latches. An example of a state
machine using phase logic is also provided. In§III, energy consumption and speed in SSNO-based phase
logic are explored. The superior noise immunity propertiesof phase encoded logic are outlined in§IV.

II. PHASE LOGIC LATCHES USINGSSNOS

(a) Time domain. (b) Phasor.

Fig. 1: Encoding Boolean logic using the relative phase of oscillatory signals.

Fig. 2: SSNO serving as a bi-stable phase latch.

Fig. 1 above illustrates the use of relative phases to
represent Boolean (binary) logic states.4 A periodic
signal, denoted REF in the figure, serves as a
reference with respect to which the phases of
other signals are measured. As shown in Fig. 1(a),
we choose the opposite phase to represent logical
0, and the same phase to represent logical 1.
Any other choice where the two logic levels are
maximally separated in phase (i.e., by 180◦) would
be equally valid. Implicit in this scheme is the
assumption that all signals encoding logic using
phase are at the same frequency as REF and are
phase locked to it. The two phase-encoded Boolean
logic states can also be depicted as phasors [46],
as shown in Fig. 1(b). In the following, we use ‘1’ and ‘0’ to represent the phase-encoded Boolean states
shown in Fig. 1.

A. SHIL makes SSNOs phase-bistable

Fig. 2 illustrates how an SSNO can be set up as a phase logic latch – i.e., if left undisturbed, it will output
either a ‘1’ or a ‘0’ (and no other phase) indefinitely in phasesynchrony with a provided REF signal.5 We

3In this paper, we use CMOS ring and high-Q LC oscillators for illustration, but other nanoscale SSNOs such as spin-torqueoscillators,
NEMS-based oscillators, synthetic biological oscillators, etc., can also serve as substrates for SSNO-based phase logic.

4Ternary and multi-state logic values can also be encoded in phase; indeed, SSNOs can serve as multi-state latches [45]. For concreteness,
we focus on the binary case throughout this paper.

5A mathematical proof of this fact for a generic SSNO is available in [45].
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assume that a periodic REF signal with frequencyfREF, as shown in Fig. 1 and Fig. 2, is available. We
also require another signal SYNC with frequency exactly twice that of REF,i.e., fSYNC= 2 fREF. SYNC
is phase-synchronized to REF, as illustrated in Fig. 2. In practice, SYNC can be derived from REF by
frequency doubling [47], or REF from SYNC by frequency division [48].

(a) before SHIL

=⇒

(b) after SHIL

Fig. 3: Sub-harmonic injection locking in an SSNO stores phase logic states.

The SSNO being used as a phase logic latch needs to have a natural frequency near that of REF,i.e.,
fOSC≃ fREF, or fOSC≃ fSYNC/2. Fig. 3(a) illustrates SYNC, juxtaposed against the oscillator’s output at its
natural frequency. Since the oscillator’s natural frequency is only approximatelyhalf that of SYNC, the
two signals are not necessarily phase synchronized, as depicted by the drift between the two signals.
The key to devising a phase latch is toinject the SYNC signal into the oscillator, as shown in Fig. 2.
With SYNC injection and under the right conditions [45], sub-harmonic injection locking occurs: the
oscillator “forgets” its natural frequencyfOSC, adopts a frequency ofexactly fSYNC/2, and becomes phase-
synchronized with SYNC inone of two possible phases that are180◦ apart, as depicted in Fig. 3(b) by
the signals marked ‘0’ and ‘1’. In other words, when SYNC is injected, the oscillator becomes bi-stable
in phase at exactly half the frequency of SYNC and in phase lock with it. That there must be two stable
phase lock states is intuitive because SYNC can “see” no difference between the two lock states (see
Fig. 3(b)); i.e., if the ‘0’ lock state exists, symmetry dictates that the ‘1’lock state must also exist.6 Since
the oscillator’s output is phase locked to SYNC, it is also phase locked to REF (since SYNC and REF are
phase locked by design). The frequency of the oscillator under SHIL becomes identical to that of REF;
the key to using the oscillator’s two SHIL states for phase logic is that they can be distinguished using
REF.
Oscilloscope measurements of bi-stable SHIL in a CMOS ring oscillator are shown in Fig. 4. The SYNC
and REF waveforms shown were generated by a programmable function generator to be in phase lock,
with REF at exactly half the frequency of SYNC. It can be seen that the oscillator’s output is at the same
frequency as REF. In Fig. 4(a), observe that the peaks of REF are roughly halfway between the peaks
of the oscillator’s output; whereas in Fig. 4(b), the peaks of REF and the oscillator’s output are almost
aligned. These are the two SHIL states.7

Using combinational operations, SSNOs featuring bi-stable SHIL can be turned into D latches [49]. We
first review how combinational operations can be implemented using phase logic.

B. Combinational logic in phase

It is well known that certain sets of basic logical operations, when composed, suffice to implement any
combinational logic function. Such sets are calledlogically or functionally complete[50]. For example,
the Boolean function sets{AND, NOT}, {OR, NOT}, {NAND} and{NOR} are all logically complete.

6A rigorous proof of SHIL and its bi-stability can be found in [45].
7Which state the oscillator locks to depends on initial conditions, transients, noise,etc.., during circuit startup.§II-C below describes

circuits and techniques for setting and manipulating the state.
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(a) logic state ‘0’. (b) logic state ‘1’.

Fig. 4: Oscilloscope traces showing bi-stable SHIL in a CMOS ring-oscillator with SYNC injection.

When logic is encoded in phase as in Fig. 1, it is advantageousto use the logically complete set{NOT,
MAJ} [35, 36], where NOT is the standard Boolean inversion operation and MAJ is the 3-input majority
operation, returning whichever Boolean value occurs more than once amongst its three inputs.8 For
example, MAJ(0, 0, 1) returns 0; MAJ(1, 0, 1) returns 1.

Fig. 5: Examples illustrating MAJ(A, B, C) in phase logic.

The reason{NOT, MAJ} is interesting for phase-encoded logic is that both functions can be implemented
using elementary arithmetic operations. NOT can be implemented simply by arithmetic negation, as is
apparent from Fig. 1; it can also be performed in other implementation-specific ways (e.g., a standard
CMOS inverter topology serves for use with CMOS ring SSNO phase latches; see§II-C below). MAJ(A, B,
C), where A, B and C are all phase-encoded logic signals taking values in{‘0’, ‘1’ }, can be implemented
by (essentially) adding A, B and C arithmetically. This is easy to appreciate graphically using the phasor
representation for phase logic (Fig. 1(b)), as illustratedusing the two examples in Fig. 5. Since ‘0’ and
‘1’ are represented by equal and opposite phasors, adding ‘0’, ‘0’ and ‘1’ leads to the ‘1’ being cancelled
by one of the ‘0’s, leaving ‘0’ – which is identical to MAJ(‘0’, ‘0’, ‘1’). Adding ‘1’, ‘1’, and ‘1’ results
in a phasor with three times the amplitude of ‘1’, but with thesame phase; if the amplitude is normalized
after addition (i.e., via amplitude limiting, easily achieved in certain implementations), the result is ‘1’,
which is the same as MAJ(‘1’, ‘1’, ‘1’). Arithmetic additionwith amplitude limiting can be confirmed to
be identical to MAJ for all other input combinations.
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(a) Generic scheme. (b) CMOS ring oscillator example.

Fig. 6: Controlling the lock state of a SSNO under SHIL.

C. Setting and resetting SSNO SHIL logic states; phase basedD-latches

To exploit SSNO bi-stability under SHIL (§II-A) for general purpose computation, it is necessary to control
the SSNO’s SHIL state. The basic mechanism by which this can be achieved is simple, as illustrated in
Fig. 6(a): a phase-encoded logic signal A is injected into the SSNO momentarily,e.g., by closing the
switch briefly. It can be shown [51] that under the right circumstances, the SSNO will adopt the logic
state of A and retain it after A is no longer injected. Injecting the phase-encoded logic signal A (which is
at the frequency of REF) removes SHIL bi-stability under SYNC injection and sets the oscillator’s phase
close to that of A [51, Figure 4];9 when A is removed, bi-stability is restored and the oscillator adjusts
its phase smoothly to the nearest SHIL stable lock state,i.e., that of A.
Fig. 6(b) shows a CMOS ring SSNO with SYNC and A injections – the two current injections are at the
same node in this case, though they can be incorporated in a variety of alternative ways. The dynamics
of setting and resetting the SSNO’s SHIL state can be seen in the transient simulation plots in Fig. 7.
The first cycle of the ring oscillator’s output shows startuptransients in the absence of SYNC injection.
SYNC injection starts att ∼ 17.5ps (see the waveform labelled SYNC). The oscillator responds within
about 2 cycles by changing its frequency tofSYNC/2 and settling to an arbitrary phase logic state – in
this case ‘1’, indicated by the oscillator’s stage 2 (red) output’s peaks being almost aligned with REF’s
troughs. Att ∼ 40ps, about 1 cycle of A=‘0’ is injected momentarily (see thelabelA=’0’ injected);
the oscillator’s waveforms change significantly in response. By aboutt ∼ 70ps, the oscillator settles to the
other bi-stable SHIL state,i.e.‘0’, as seen by the fact that the trough of REF is no longer aligned with
the oscillator’s stage 2 (red) output’s peaks, but is instead roughly halfway between the peaks. The SHIL
state is then switched back to ‘1’ by momentarily injecting A=‘1’ at t ∼ 80ps; the oscillator responds by
switching back to phase logic state ‘1’ byt ∼ 110ps, with the stage 2 output’s peak aligned again with
the trough of REF.
The basic ring oscillator phase latch topology of Fig. 6(b) can be easily adapted [51] into a gated D
latch (D latch with Enable) [49] with the help of the combinational primitives{NOT, MAJ}, as shown
in Fig. 8. The chain of three inverters represents the CMOS SSNO of Fig. 6(b) with the SYNC injection
included, but without the input A; direct feedback from the last inverter to the first is broken and a MAJ
gate introduced, as shown. All logic I/Os (D, EN, and Q) are phase encoded. The inverter driven by the
EN (Enable) input, representing logical inversion (using phase encoding), can be implemented simply as
a standard CMOS inverter. When EN=‘1’, D is fed to two inputs of the majority gate in the ring oscillator
loop, resulting in the ring oscillator’s feedback loop being broken and Q being set to D. When EN=‘0’, D
is ignored and complementary logic values are fed to two inputs of the majority gate in the ring oscillator

8That {NOT, MAJ} is logically complete becomes apparent when we note that AND(A,B) = MAJ(0, A, B); or that OR(A, B) = MAJ(1,
A, B).

9This happens because “simple” (i.e., fundamental harmonic) injection locking [52–54], in which the oscillator becomes phase locked to
A with exactly one stable state, overrides SHIL.
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Fig. 7: Transient simulation of the circuit in Fig. 6(b).

Fig. 8: Phase based D latch with enable using a CMOS ring oscillator [51]. The gates marked M are 3-input majority gates.
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loop, which sets Q to the output of the third inverter in the ring oscillator (which is the third input to the
majority gate), thereby completing the ring oscillator’s feedback loop, restoring bi-stability and retaining
the previously set state.

D. State machines using SSNO-based phase logic

Fig. 9: Structure of a state machine using SSNO-based phase latchesand{NOT, MAJ} based combinational logic.

Q=‘0’

a=0 OR b=0

Q=‘1’a=b=1
a=b=0

a=1 OR b=1

(a) State Transition Graph.

(b) Implementation with phase D latches and{NOT, MAJ}
gates.

Fig. 10: SSNO-based 1-bit state machine example [51].

With D latches for storage and combinational logic
using{NOT, MAJ}, we have the basic components
for a von Neumann computer [55] in SSNO-based
phase-encoded logic. One of the most important
units of a computer is the finite state machine
(FSM), used for,e.g., the control unit [49, 55] of a
stored program computer. The general structure of
a state machine, adapted to the phase logic context,
is shown in Fig. 9. All signals are phase encoded,
including the CLK signal which alternates between
phases ‘0’ and ‘1’, holding each for a few cycles of
REF. It is also easy to devise D latches where CLK
(ENable) is level-based, while the logic signals
remain encoded in phase; however, a level-based
clock signal will not benefit from the increased
noise immunity of phase-based encoding (see§IV,
below).
Fig. 10(b) shows an example of a simple Mealy
FSM that utilizes a full adder for the combinational
logic and a single bit for the state, all in phase logic
[51]. The latch is constructed using two of the D
latches shown in Fig. 8, arranged in a master-slave
[49] configuration to prevent races. The two inputs
to the state machine,a andb, are inputs to the full
adder. The carry-out (cout) bit of the full adder
is the input to the latch; the output of the latch
feeds back as the carry-in (cin) input of the full
adder. This arrangement implies that the ‘0’→‘1’
state transition can only occur ifa=b=‘1’, and the
‘1’→‘0’ transition if a=b=‘0’. The complete state
transition diagram of the FSM is shown in Fig. 10(a).
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III. ENERGY EFFICIENCY AND SWITCHING SPEED OF PHASE-ENCODED LOGIC

Having outlined the fundamental design and operational principles of SSNO-based phase logic, we now
explore two fundamental questions: how much energy does it take to flip a bit in phase-encoded logic,
and how quickly can a bit be flipped?

A. Energy dissipation and amplitude/phase change rates in high-Q oscillators

For reference, the minimum energy expended by level based logic (for which a single inverter serves
as an exemplar) in flipping a bit from 0 to 1 and back again to 0 isCV2

DD,10 averaging1
2CV2

DD per bit
flip. Just to maintain oscillation, a minimum energy of 3CV2

DD is dissipated per cycle by the 3-stage ring
oscillator of the previous section, hence it is not a compelling candidate for energy efficient computation.
Although dissipation can be lowered using small supply voltages,11 it is typically at the cost of decreased
oscillation frequency and logic switching speed.

However, high-Q LC oscillators (e.g., [56, 57]) are inherently energy efficient, dissipating only about 1
Q of

the energy stored in the LC tank12 per cycle, whereQ is the quality factor of the oscillator. LC oscillators
are also capable of very high frequency oscillation –e.g., a 300 GHz LC oscillator has been reported
[58]. These characteristics make high-Q LC oscillators interesting candidates for exploring how energy
efficient, and how fast, phase-encoded logic can be.
Using a proof-of-concept circuit, we show that it is possible to make high-Q LC oscillators suitable for
phase logic by subjecting them to SHIL, and toflip their phase logic states in just half a cycle with no
energy consumption(beyond the small amount of energy needed per cycle to maintain oscillation). Phase
logic can therefore be aboutQ times more energy efficient than level based flipping, without compromising
switching speed.13 With Q factors of 102-106 readily achievable, great energy savings over level based
logic can potentially result.

L1

C2

R1

L2

R2

C1 i=
f(v)

1

2

S1

vSYNC

Fig. 11: High-Q LC oscillator
based phase logic latch circuit.

Being able to flip a bit (i.e., disturb one normal oscillation pattern and settle
to another) within a single cycle of a high-Q oscillator may appear counter-
intuitive, since amplitude changes in high-Q oscillators are very slow on
account of their necessarily involving energy dissipationor accumulation
in the LC tank. This energy can be removed or supplied only in small
installments per cycle in high-Q oscillators, translatingto slow amplitude
transients with time constants of the order ofQ cycles of oscillation.
However, flipping a phase-encoded logic bit involves only time shifting or
delaying oscillatory waveforms. There appears to be no fundamental physical
principle dictating a minimum energy needed to achieve a time shift –
therefore, in principle, phase-encoded bit flipping would seem achievable
with no energy consumption at all. With no need to supply or remove energy,
the speed at which time shifts can be made would seem limited only by the
time constants of the oscillatory dynamics of the LC tank. Since the LC
tank changes phase by 360◦ as a matter of course during each cycle of
oscillation, it should be possible to shift phase by 180◦ (i.e., to the other stable SHIL phase lock state) in
half a cycle.14 Our experiments below confirm this reasoning and provide proof of the concept that zero
energy bit flips can be achieved in half a cycle of a high-Q LC oscillator.

B. High-Q LC oscillator based phase logic latch

Fig. 11 depicts the schematic of a high-Q LC oscillator that serves as a phase logic latch. The circuit is
based on the standard parallel-RLC tank and nonlinear resistor topology [59]. The oscillator’s main tank

10whereC is the capacitive load at each inverter andVDD is the supply voltage.
11Ring oscillators operating at 100mV using standard CMOS technologies have been reported [3].
121

2CV2
osc, whereVosc is the peak amplitude of oscillation.

13indeed, possibly at far higher speeds than level based logicis currently capable of, depending on the oscillator’s frequency.
14That the slowness limitation of amplitude changes in high-QLC oscillators does not apply to their phase/time shifting characteristics

appears not to be widely appreciated.
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is the upper one, consisting ofL1, C1 andR1; it is tuned to a natural frequencyfOSC, set close tofREF =
fSYNC/2. The single-pole double-throw (SPDT) switch S1, normally kept closed in the position shown, is
used for phase logic bit flipping, as described below.
To facilitate sub-harmonic injection locking, a second tank consisting ofL2, C2 andR2 is tuned tofSYNC
and placed in series with the main tank. The negative resistance nonlinearity is connected across both
tanks, as shown. The SYNC signal is injected as a voltage source in series withL2. The second tank
magnifies the effect of SYNC on the nonlinear resistor by a (typically large) factor of R2

2π fSYNCL2
, thereby

sensitizing the oscillator to SHIL from the SYNC signal.
The nonlinearity needs a negative differential resistanceregion to power the circuit and enable self
oscillation. It has the current-voltage characteristic

i = f (v), k1 tanh(k2v)+gSHIL(v), (1)

where

gSHIL(v),







k2
3(v+A)2 if v<−A,

0 if −A≤ v≤ A,
k2

3(v−A)2 if v> A.
(2)

The tanh(·) term in (1) provides the negative differential resistance needed for oscillation [59]. The
gSHIL(v) term facilitates second sub-harmonic injection locking byintroducing asymmetry inf (v) for
input amplitudes larger thanA. Such asymmetry enables second-harmonic components of thevoltage
input to f (v) to affect the phase of the fundamental component of its current output. Describing function
based feedback analysis [59] shows that this feature is important for susceptibility to injection locking.
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Fig. 12: Voltages, power and energy consumption of LC oscillator under SHIL.

For natural oscillation to occur (in the absence of any injection at vSYNC), it is necessary for

1
R2

>−k1k2 >
1
R1

, (3)

i.e., the maximum negative differential resistance off (v) needs to overcome the loss due toR1, but not
the loss due toR2 — the latter condition prevents fundamental-mode natural oscillation at fSYNC. The
parameterA in (2) is set at or around the amplitude of natural oscillation (i.e., in the absence of SYNC
injection).



10

The simulations below use the following values of circuit parameters:

L1 = 1nH, C1 = 1µF, R1 = 100Ω, L2 =
L1

2
, C2 =

C2

2
,

R2 = 90Ω, k1 =
1
30

, k2 =
0.0102

k1
, k3 = 40k1k2, A= 0.9.

(4)

The switchS1 was modelled with on resistance 0Ω and off resistance 10kΩ. With these parameters,
fOSC≃ 1

2π
√

L1C1
∼ 5.03292 MHz. fREF was taken to be 5.0328 MHz, with fSYNC= 2 fREF. The SYNC

injection was
vSYNC(t) = 10−3k1cos(2π fSYNCt). (5)

Fig. 12(a) shows the voltage of the main tank of the oscillator under SHIL.15 The two locks, representing
logic levels ‘0’ and ‘1’, can be seen to be exactly 180◦ out of phase, as predicted by theory [45, 51].
The instantaneous power of the various components of the circuit are shown in Fig. 12(b). Power is
supplied to the circuit by the nonlinearityi = f (v), and dissipated primarily by the tank lossesR1 and
R2. The SYNC injection signal can also dissipate or supply power, while the resistances of the switchS1
dissipate power, but these amounts are negligible. Fig. 12(c) and Fig. 12(d) depict cumulative energies
(i.e., integrated power) supplied/dissipated by the components; also overlaid are the instantaneous energies
of the tank capacitorsC1 andC2, the peak values of which represent the total energy stored in each tank.
The peak value forC1 indicates that the energy of the main tank is about 0.829µJ.
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Fig. 13: Voltages, power and energy consumption of LC oscillator undergoing bit flips.

As expected in periodic lock, the energy supplied by the nonlinearity during each cycle exactly compen-
sates the energy dissipated (primarily by the tank losses) –the net energy trace in Fig. 12(d) periodically
crosses zero, implying that no energy is being gained or lostby the tanks. The energy supplied to (and
dissipated by) the oscillator over each cycle is seen to be about 1.685nJ, implying an effective Q factor16

of about 492 in sub-harmonically injection locked operation.

15All results are from simulation using MAPP [60, 61]. Harmonic Balance (HB) [62, 63] was used to find the two locked steady states;
transient simulations were initialized with the HB solutions.

16Because of the nonlinear resistor, the Q of a self-sustaining oscillator is typically lower – by about 6× in this case – than the ideal Q
factor of the linear tank alone [64].
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C. Speed and energy during bit flips

The SPDT switchS1 in Fig. 11 can be used to transition the oscillator between the two SHIL states
shown in Fig. 12(a). IfS1 is flipped to short the inductorL1 when the voltage across it is zero, the main
tank’s dynamics are frozen in time untilS1 is flipped back. Flipping the switch for half an oscillation
cycle delays the tank just enough to move the oscillator fromone lock state to the other.

The simulation results in Fig. 13 illustrate this techniqueof achieving phase logic bit flips.17 S1 is flipped
for half a cycle three times (starting around 0.27µs, 0.67µs, and 1.06µs), leading to three bit flips.
Fig. 13(a) shows the voltage across the main tank overlaid onthe two lock states of Fig. 12(a), illustrating
how well the bit flips from each state to the other. Power waveforms are shown in Fig. 13(b), while
cumulative energies are shown in Fig. 13(c) and Fig. 13(d). Energy consumption during bit flipping is
small, since the oscillator is essentially stopped when thebit is being flipped. Similar to Fig. 12(d), the
net energy graph in Fig. 13(d) crosses zero after bit flipping, indicating that no energy is being gained or
lost by the tanks. This shows that the energy benefits due to the high Q of the oscillator are reaped even
as bits are flipped at high speed (in half an oscillation cycle).

IV. NOISE IMMUNITY OF PHASE-ENCODED LOGIC

(a) Small noise amplitude. (b) Large noise amplitude.

Fig. 14: Level-based logic encoding: bit error rates for small and large noise amplitudes.

Phase-encoded logic also offers intrinsic noise immunity advantages over level-based logic. The underlying
mechanism behind this noise immunity is easy to appreciate graphically.
Fig. 14 depicts the impact of small and large noise if logic isencoded as levels. For comparison with
the phase-encoded case below, a diagram similar to Fig. 1(b)is used to represent the logical states 0 and
1, but these simply represent levels (with no phase); a positive level represents 1 and a negative level
(of equal amplitude) represents 0. The bit error threshold in the presence of noise is zero. In Fig. 14(a),
the impact of adding fixed-amplitude “small” noise (i.e., the noise is less than the signal) is shown. This
random noise adds to, or subtracts from, the signal with equal probability. In either case, the resulting
signal remains positive since the noise is small, hence there is no bit error. But if the fixed noise is larger
in value than the signal amplitude, as shown in Fig. 14(b), this situation changes. When the noise adds to
the signal, there is no bit error; but when it subtracts, there is alwaysa bit error, since the result becomes
negative, crossing the bit error threshold. Hence, when thenoise is larger than the signal, level-based logic
encoding suffers a 50% probability of error,i.e., the bit becomes perfectly random, losing all information.
The situation when logic is encoded in phase is depicted in Fig. 15. Here, the signal values ‘0’ and ‘1’
are phasors, exactly as in Fig. 1(b); the noise added is also aphasors, at thesame frequency. In this case,
the bit error thresholds are the vertical phasors at±90◦, i.e., the phase halfway between the ‘0’ and ‘1’
states. Fig. 15(a) shows the case when the noise amplitude isless than the signal’s. Because the noise is
random, its phase is uniformly distributed in [0◦, 360◦], as shown. The worst-case phase error caused by
the additive noise, denoted∆θ , is less than 90◦ in absolute value; hence there is no bit error. For “small”
noise, therefore, phase encoding and level encoding are identical from a bit error perspective.

17It is also possible to use other techniques, such as voltage or current injections, to flip the oscillator’s state.
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(a) Small noise amplitude. (b) Large noise amplitude.

Fig. 15: Phase-based logic encoding: bit error probabilities for small and large noise amplitudes.

When the noise amplitude is “large” (i.e., greater than the signal’s), the situation in the case of phase
encoding differs markedly from that for level encoding, as shown in Fig. 15(b). The shaded region depicts
the range of noise phases (∆φ ) that lead to a bit error. Importantly,∆φ is always less than 180◦, implying
a bit error probability of less than 50% even when the noise amplitude is greater than that of the signal.
Indeed, for noise amplitudes that are only slightly greaterthan the signal’s, the bit error probability is
very small, in stark contrast with the level based case. Phase based encoding approaches a 50% bit error
probability only as the noise amplitude tends to infinity.
These noise characteristics of phase encoding are well known in communication theory [65]; in particular,
the above reasoning is essentially identical to that establishing the superior noise performance of BPSK
(binary phase shift keying) over BASK (binary amplitude shift keying). Phase based logic encoding simply
leverages this fact to improve noise immunity at the physical implementation level of Boolean computing.

V. CONCLUSION

Recent developments in phase-encoded logic have made it relevant as an alternative computational scheme
for today’s nanoscale integration era. The fact that almostany SSNO can serve as a phase logic latch
implies that many new substrates for phase-based logic (such as spin-transfer nano-oscillators (STNOs)
[66]) can potentially be exploited. That energy-efficient oscillators serving as phase logic latches are
capable of switching very quickly in an energy-neutral manner, and that phase encoding brings inherent
noise immunity benefits, provide incentives for exploring its use.
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