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Abstract

Identifying the pathways and mechanisms that are significantly impacted in a given phenotype is 

challenging. Issues include patient heterogeneity and noise. Many experiments do not have a large 

enough sample size to achieve the statistical power necessary to identify significantly impacted 

pathways. Meta-analysis based on combining p-values from individual experiments has been used 

to improve power. However, all classical meta-analysis approaches work under the assumption that 

the p-values produced by experiment-level statistical tests follow a uniform distribution under the 

null hypothesis. Here we show that this assumption does not hold for three mainstream pathway 

analysis methods, and significant bias is likely to affect many, if not all such meta-analysis studies. 

We introduce DANUBE, a novel and unbiased approach to combine statistics computed from 

individual studies. Our framework uses control samples to construct empirical null distributions, 

from which empirical p-values of individual studies are calculated and combined using either a 

Central Limit Theorem approach or the additive method. We assess the performance of DANUBE 

using four different pathway analysis methods. DANUBE is compared with five meta-analysis 

approaches, as well as with a pathway analysis approach that employs multiple datasets 

(MetaPath). The 25 approaches have been tested on 16 different datasets related to two human 

diseases, Alzheimer’s disease (7 datasets) and acute myeloid leukemia (9 datasets). We 

demonstrate that DANUBE overcomes bias in order to consistently identify relevant pathways. We 

also show how the framework improves results in more general cases, compared to classical meta-

analysis performed with common experiment-level statistical tests such as Wilcoxon and t-test.
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meta-analysis; p-values; empirical distribution; pathway analysis; Alzheimer’s disease; acute 
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I. Introduction

The proliferation of high-throughput genomics technologies has resulted in an abundance of 

data, for many different biomedical conditions. Large public repositories such as Gene 

Expression Omnibus [1, 2], The Cancer Genome Atlas (cancergenome.nih.gov), 

ArrayExpress [3, 4], and Therapeutically Applicable Research to Generate Effective 

Treatments (ocg.cancer.gov/programs/target) store thousands of datasets, within which there 

are independent experimental series with similar patient cohorts and experiment design. 

Gene expression data, as measured by microarrays, are particularly prevalent in public 

databases, such that some disease conditions are represented by half a dozen studies or 

more.

Experiments comparing two phenotypes, such as disease and control, yield lists of genes that 

are differentially expressed (DE). However, lists of DE genes obtained from similar but 

independent experiments tend to have little in common, and taken alone, they usually fail to 

elucidate the underlying biological mechanisms. Effective meta-analysis approaches are 

needed to unify the biological knowledge spread out over such similar studies with 

apparently incongruent results.

The goal of the meta-analysis is to combine the results of independent but related studies 

and provide increased statistical power and robustness compared to individual studies 

analyzed alone [5, 6]. In spite of the numerous sophisticated tools for meta-analysis, many 

biological applications still use only Venn diagrams (intersection/union) or vote counting for 

combining multiple studies [7, 8]. Such approaches are useful for demonstrating consistency 

when combining a few studies. However, when combining many studies, Venn diagrams are 

either too conservative (for intersection) or too anti-conservative (for union), while vote 

counting is statistically inefficient [5, 9, 10]. Regarding microarray data, meta-analysis has 

been used at both gene level [5, 7, 11–13] and pathway level [11, 14]. Pathway analysis [15–

18] was developed to correlate differential gene expression evidence with a-priori defined 

functional modules, organized into biological pathway databases, such as Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [19, 20], Reactome [21], Biocarta 

(www.biocarta.com), or Molecular Signatures Database (MSigDB) [22].

One straightforward and flexible way of integrating diverse studies is to combine the 

individual p-values provided by each study. Classical meta-analysis methods of combining 

p-values have been reviewed and compared in [23]. These include Fisher’s method based on 

the chi-squared distribution [24], the additive method [25] using the Irwin-Hall distribution 

[26, 27], minP [28], and maxP [29].

In an early study, Rhodes and others [13] collected multiple prostate cancer microarray 

datasets and combined p-values using Fisher’s method. Since then, other sophisticated 

approaches have been proposed including the weighted Fisher’s method [30] and the latent 

variable approach [31, 32].

The major drawback of the available p-value-based meta-analysis frameworks is that they 

work under the assumption that the p-values provided by the individual statistical tests 

follow a uniform distribution under the null hypothesis. Previous reports describe non-
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uniform distributions of p-values under the null as due to specific factors such as improper 

normalization, cross-hybridization, poorly characterized variance, and heteroskedasticity in 

microarray data analysis [33, 34], or even due to properties of some more general 

distributions [35]. Here we show that this assumption also does not hold in the realm of 

pathway analysis methods, severely compromising the reliability of the results. In addition 

to strong statistical assumptions, the current methods for combining p-values are sensitive to 

outliers. For example, using Fisher’s method, a p-value of zero in one individual case will 

result in a combined p-value of zero regardless of the other p-values. The same is true for the 

minP and maxP statistics, where outliers greatly influence the combined p-value.

Here we propose DANUBE (Data-driven meta-ANalysis using UnBiased Empirical 

distributions), a new meta-analysis framework which can combine the p-values of multiple 

studies in a better way. Our contribution is two-fold. First, we use empirical null 

distributions to calculate p-values for individual studies. This approach learns from the data 

under the null hypothesis and compensates for any bias potentially introduced by an 

individual pathway analysis method. Second, we combine the individual p-values using a 

method based on the Central Limit Theorem. This is less sensitive to outliers and provides 

more reliable results. Our simulation experiments demonstrate that both type I and type II 

errors of DANUBE are better than those of classical meta-analysis approaches using both 

parametric and non-parametric tests.

We apply DANUBE in the context of pathway analysis using 16 public gene expression 

datasets from two biological conditions, and 4 different pathway analysis methods. Gene Set 

Enrichment Analysis (GSEA) [36] and Gene Set Analysis (GSA) [37] are Functional Class 

Scoring methods [36–39], Down-weighting of Overlapping Genes (PADOG) [38] is an 

enrichment method [40–42], and Signaling Pathway Impact Analysis (SPIA) [43, 44] is a 

topology-aware method [43, 45]. These pathway analysis methods are applied on the human 

signaling pathways from KEGG [19, 20].

We show that with the exception of GSEA, each of the other three methods GSA, SPIA, and 

PADOG have different biases, leading to non-uniform distributions of p-values under the 

null hypothesis. Not surprisingly, when combining p-values using classical methods such as 

Fisher’s or the additive method, each of the three pathway analysis methods (GSA, SPIA, 

and PADOG) yields a very different list of significantly impacted pathways. We then apply 

the DANUBE framework using the empirical distributions characteristic to each of these 

methods. The DANUBE results yield much more consistent lists of significant pathways that 

are also pertinent to the phenotypes.

II. Background

We first recapitulate the classical methods of combining p-values, such as Fisher’s method 

[24] and the additive method [25–27]. We then demonstrate the shortcomings of existing 

approaches in pathway analysis.
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A. Fisher’s method

Fisher’s method [24] is one of the most widely used methods for combining independent p-

values. Considering a set of m independent significance tests, the resulting p-values P1, P2, 

…, Pm are independent and uniformly distributed on the interval [0, 1] under the null 

hypothesis. Denoting Xi = −2 ln Pi (i ∈ {1, 2, …, m}) as new random variables, the 

cumulative distribution function of Xi can be calculated as follows:

Fi(x) = Pr(Xi ≤ x) = Pr( − 2lnPi ≤ x) = Pr(Pi ≤ e

x
2)

= ∫
e
− x

2

1
f (p)dp = 1 − e

− x
2

The above function is the cumulative distribution function of a chi-squared distribution with 

two degrees of freedom (χ2
2). Since the sum of chi-squared random variables is also a chi-

squared random variable, −2∑i = 1
m ln(Pi) follows a chi-squared distribution with 2m degrees 

of freedom (χ2m
2 ). In summary, the log product of m independent p-values follows a chi-

squared distribution with 2m degrees of freedom:

X = − 2 ∑
i = 1

m
ln(Pi) χ2m

2 (1)

We note that if one of the individual p-values approaches zero, which is often the case for 

empirical p-values, then the combined p-value approaches zero as well, regardless of other 

individual p-values. For example, if P1 → 0, then X → ∞ and therefore, Pr(X) → 0 

regardless of P2, P3, …, Pm. Therefore, we see that Fisher’s method is sensitive to outliers.

In practice, most pathway analysis methods use some kind of permutation or bootstrap 

approach to construct an empirical distribution of a statistic under the null. For example, the 

empirical null distribution of the t statistic is ξt = {t1, t2, …, tN}. The empirical p-value 

calculated from such a distribution is the fraction of the statistics’ values in the N random 

trials performed that are more extreme than the observed one. Many times, there are no 

occurrences of values more extreme than the observed one, yielding an empirical p-value of 

zero. In this situation, the combined p-value calculated using Fisher’s method will be zero, 

even if all other p-values are equal to one. It is important to note that this phenomenon 

occurs because many methods choose to round the reported empirical p-value down to zero 

(when in fact, the real p-value is somewhere in the interval [0, 1/N]), and not because of the 

mathematical formulation of Fisher’s method.

B. Additive method

The additive method proposes an alternative approach that uses the sum of p-values instead 

of the log product. Consider m random variables P1, P2, …, Pm that are independent and 
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uniformly distributed on the interval [0, 1]. Denoting X = ∑i = 1
m Pi as a new random 

variable, then X follows the Irwin-Hall distribution [26, 27]. The cumulative distribution 

function of X can be calculated as follows:

F(x) = 1
2 + 1

2m! ∑
i = 0

m
( − 1)i m

i
(x − i)msgn(x − i) (2)

Using the above cumulative distribution function, we can calculate the probability of 

observing the sum X = ∑i = 1
m Pi. We note that the concept of the additive method was also 

presented in [25] with a slightly different formulation and proof than in [26, 27]. However, 

they are equivalent and can be transformed into one another.

The additive method is not as sensitive to extremely small individual p-values as Fisher’s 

method. However, both methods assume the uniformity of the p-values under the null 

hypothesis. We will show that this assumption does not hold for three mainstream pathway 

analysis methods. The inherent bias of these pathway analysis methods is most likely to 

affect the classical meta-analysis in most cases, and thus lead to systematic bias in 

identifying significant pathways.

C. Pitfalls of the existing approaches

Null distributions are used to model populations so that statistical tests can determine 

whether an observation is unlikely to occur by chance. The p-values produced by a sound 

statistical test must be uniformly distributed in the interval [0,1] when the null hypothesis is 

true [33–35, 46]. For example, the p-values that result from comparing two groups using a t-

test should be distributed uniformly if the data are normally distributed [35]. When the 

assumptions of statistical models do not hold, the resulting p-values are not uniformly 

distributed under the null hypothesis. We will demonstrate this fact using gene expression 

data and pathway analysis.

Using only the control samples from 7 publicly available Alzheimer’s datasets (N=74), we 

simulate 40, 000 datasets as follows. We randomly label 37 as “control” samples and the 

remaining 37 as “disease” samples. We repeat this procedure 10, 000 times to generate 

different groups of 37 control and 37 disease samples. To make the simulation more general, 

we also create 10, 000 datasets consisting of 10 control and 10 disease samples, 10, 000 

datasets consisting of 10 control and 20 disease samples, and 10, 000 datasets consisting of 

20 control and 10 disease samples. We then calculate the p-values of the KEGG (version 65) 

human signaling pathways (extracted as graph objects by the R package ROntoTools1.2.0 

[44] version 1.2.0) using the following methods: GSEA [36], GSA [37], SPIA [43, 44], and 

PADOG [38].

Figure 1 displays the empirical null distributions of p-values using GSA, SPIA, and 

PADOG. The horizonal axes represent p-values while the vertical axes represent p-value 

densities. Blue panels (A0–A6) show p-value distributions from GSA, while purple (B0–B6) 

and green (C0–C6) panels show p-value distributions from SPIA and PADOG, respectively. 
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For each method, the larger panel (A0, B0, and C0) shows the cumulative p-values from all 

KEGG signaling pathways. The small panels, 6 per method, display extreme examples of 

non-uniform p-value distributions for specific pathways. For each method, we show three 

distributions severely biased towards zero (eg. A1–A3), and three distributions severely 

biased towards one (eg. A4–A6).

These results show that, contrary to generally accepted beliefs, the p-values are not 

uniformly distributed for three out of the four methods considered. Therefore one should 

expect a very strong and systematic bias in identifying significant pathways for each of these 

methods. Pathways that have p-values biased towards zero will often be falsely identified as 

significant (false positives). Likewise, pathways that have p-values biased towards one are 

likely to rarely meet the significance requirements, even when they are truly implicated in 

the given phenotype (false negatives). Systematic bias, due to non-uniformity of p-value 

distributions, results in failure of the statistical methods to correctly identify the biological 

pathways implicated in the condition, and also leads to inconsistent and incorrect results. For 

example, all three of the zero-biased GSA pathways shown in Figure 1: Prostate cancer 
(A1), Adherens junction (A2), and Pathways in cancer (A3), are reported as statistically 

significant in the results shown in Table I even though these data were collected in an 

experiment comparing Alzheimer’s disease patients vs. healthy subjects, an experiment that 

has nothing to do with cancer.

The effect of combining control (i.e. healthy) samples from different experiments is to 

uniformly distribute all sources of bias among the random groups of samples. If we compare 

groups of control samples based on experiments, there could be true differences due to batch 

effects. By pooling them together, we form a population which is considered the reference 

population. This approach is similar to selecting from a large group of people that may 

contain different sub-groups (e.g. different ethnicities, gender, race, or living conditions). 

When we randomly select samples (for the two random groups to be compared) from the 

reference population, we expect all bias (e.g. ethnic subgroups) to be represented equally in 

both random groups and therefore, we should see no difference between these random 

groups, no matter how many distinct ethnic subgroups were present in the population at 

large. Therefore, the p-values of a test for difference between the two randomly selected 

groups should be equally probable between zero and one (see Supplementary Section 4 and 

Figures S10–S11 for more discussion).

We apply this procedure for the popular Gene Set Enrichment Analysis (GSEA) [36] using 

the exact same 40, 000 datasets simulated from the pool of control samples of Alzheimer’s 

data. The resulting p-value distributions are uniform, as displayed in Supplementary Figure 

S1, showing not only that our resampled data correctly models the null, but also that GSEA 

is an unbiased test. This supports the idea that the non-uniformity of the distributions is due 

to the methods rather than the data. We also plot the top 24 most biased null distributions of 

GSEA (Figures S2) using the exact same data and exact same random grouping of samples. 

In each figure, the panels are sorted by the distribution means. The distributions of GSEA 

(Figures S2, S6) are uniform while those of GSA (Figures S3, S7), SPIA (Figures S4, S8), 

and PADOG (Figures S5, S9) are biased. Therefore, the bias is indeed due to the methods 

and not to one specific pathway.
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III. Methods

In this section we introduce the DANUBE framework and its application in the context of 

pathway analysis.

A. The DANUBE framework

We propose a new framework for meta-analysis that makes no assumptions on the data and 

is therefore expected to perform much better than any of the classical methods when the 

individual p-values are not distributed uniformly, as we have shown that it is the case for the 

pathway analysis methods. Figure 2 displays a flowchart comparison between classical 

meta-analysis and DANUBE. Both approaches take m independent studies as input. The 

pipeline marked by blue arrows (I–II) shows the classical meta-analysis, and the one marked 

by black arrows (1–4) is DANUBE.

The classical approach first calculates a p-value for each study using a parametric or non-

parametric test, then it combines the individual p-values into one. The main limitation of the 

classical approach is that it relies on the assumption of uniformity of the p-values under the 

null hypothesis, which often does not hold true. As shown in Figure 1, this assumption is not 

true for real transcriptomics data and KEGG pathways.

In the DANUBE framework, instead of modeling the data under a specific assumption, we 

construct empirical distributions and use them to calculate empirical p-values. Following the 

black arrows (1–4) in Figure 2, we initially calculate the values t1, t2, …, tm of the 

discriminating statistic for the m studies in step (1). For example, instead of using a 

statistical test to directly calculate the p-values, we could calculate the means of the data 

samples over the m studies. In step (2), we construct the empirical null distribution ξT for 

the chosen statistic. In step (3), we calculate the empirical p-values ep1, ep2, …, epm for the 

m studies with respect to the empirical null distribution ξT. For all i ∈ {1, 2, …, m}, epi is 

calculated as the number of elements in ξT more extreme than ti, divided by the total number 

of elements in ξT. We will prove that the resulting empirical p-values are uniformly 

distributed under the null hypothesis.

Lemma 1—Let T be a random variable with the empirical distribution ξT and the 

cumulative distribution function FT (T). We define the new random variable X as follows:

X =
x: x ∈ ξT ∧ x ≤ T

ξT
(3)

where the numerator represents the number of elements of ξT that are smaller than or equal 

to T. If ξT consists of enough data points to be considered as continuous, then X is 

uniformly distributed on the interval [0,1].

Proof—Denote FT (T) as the cumulative distribution function of T. For any value t ∈ ξT, 

FT(t) can be calculated as follows:
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FT(t) =
x: x ∈ ξT ∧ x ≤ t

ξT
(4)

We can see that X = FT (T). In addition, FT(t) is a strictly increasing function for all values t 
∈ ξT. Let FX(X) be the cumulative distribution function of X, we have the following 

formula:

FX(x) = Pr(X ≤ x)
= Pr(FT(T) ≤ FT(t))
= Pr(T ≤ t) = FT(t) = x

(5)

We note that FX(x) = x is the cumulative distribution function of the continuous uniform 

distribution on [0,1]. Therefore, if we have enough data for FT(T) to be considered 

continuous, then X will be a uniformly distributed random variable.     ■

In step (4), we combine the empirical p-values using either the additive method or the 

Central Limit Theorem (CLT). According to Lemma 1, the resulting p-values after step (3) 

are now truly uniformly distributed under the null hypothesis and thus can be combined 

using the additive method as described in equation (2). However, the additive method can be 

computationally intensive when m is large. For this reason, we use the CLT to approximate 

the combined p-value [47]. The uniform distribution has mean and variance of 1
2  and 1

12 , 

respectively. According to the CLT, the average of m independent and identically distributed 

(i.i.d.) variables (with large m) follows a normal distribution with mean μ = 1
2  and variance 

σ2 = 1
12m . By default, we use this to approximate the combined p-value when m ≥ 20. We 

note that the additive method of combining p-values in our framework may be substituted by 

any other method of combining p-values.

B. The application of DANUBE in pathway analysis

Here we present the application of DANUBE in the context of pathway analysis (Figure 3). 

Let us consider a method M, which can be GSEA, GSA, SPIA, or PADOG, or any other 

method that outputs a p-value for each pathway in the pathway database. We treat this p-

value as the discriminating statistic. In step (1), we calculate the p-values of the pathways 

using the method M. A pathway i will have m p-values (pi1, pi2, …, pim) for the m studies. 

The m p-values for a pathway are independent and identically distributed (i.i.d.). However, 

these p-values are not necessarily uniformly distributed under the null hypothesis (see Figure 

1). Therefore, combining these p-values will lead to systematic bias in identifying significant 

pathways as shown in Section II-C and as will be further illustrated in Section IV. Instead of 

combining these p-values, we treat them as observed values of the discriminating statistic.
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To calculate the probability of observing such values, we need to construct the empirical 

distribution under the null hypothesis as described in steps (2–5) above. In step (2), we take 

all of the control samples from the m studies to create a set of control samples as shown in 

(C) in Figure 3. In step (3), we generate the k synthetic datasets by random sampling from 

the pool of control samples. For example, for a simulation, we choose two groups of samples 

from the pool and label them as controls and diseases. In our case study using the 

Alzheimer’s datasets, as described in Section II-C, we generated 10, 000 simulations of 10 

control and 10 disease samples, 10, 000 simulations of 10 control and 20 disease samples, 

10, 000 of 20 control and 10 disease samples, and 10, 000 of 37 control and 37 disease 

samples, for a total of 40, 000 simulations.

After generating k simulations from the control samples, we proceed to calculate the p-

values for each pathway and each simulation using the same method M. For a pathway i, we 

have a set of p-values spi1, spi2, …, spik. Since all of these p-values are calculated from the 

real control samples (i.e. healthy people), they can be considered as p-values under the null 

hypothesis. These p-values will be used to construct the empirical distribution ξi in step (5). 

In summary, steps (2–5) produce an empirical distribution for each pathway, resulting in a 

total of n empirical distributions for n pathways. These distributions will be used to calculate 

the empirical p-values of the measurements done in step (1).

After steps (1–5), for a pathway i, we have m p-values pi1, pi2, …, pim and an empirical 

distribution ξi. Using the formula described in Equation (2), we calculate the empirical p-

values epi1, epi2, …, epim. As we showed in the Methods section, these empirical p-values 

are independent and uniformly distributed under the null hypothesis. In step (7), we combine 

these empirical p-values using the additive method to have a single p-value pDANUBEi for 

pathway i.

IV. Results and Validation

In this section we illustrate the limitations of combining p-values using classical meta-

analysis approaches, and show that DANUBE overcomes these limitations. Sections IV-A 

and IV-B compare the classical approaches with DANUBE for the specific application 

domain of pathway analysis. Sections IV-C and IV-D compare the classical meta-analysis 

approaches with DANUBE in the general case, applicable to any meta-analysis.

For the pathway analysis applications on which we focus in this paper, we compare 

DANUBE with 5 other classical meta-analysis methods: Stouffer’s, Z-method, Brown’s, 

Fisher’s, and the additive method [14, 24, 48, 49], each of them combined with each of the 4 

pathway analysis methods (GSEA, GSA, SPIA, and PADOG). We also compare these 

methods with a stand-alone meta-analysis method, MetaPath. In total, we analyze the results 

of 25 approaches: 6 meta-analyses combined with 4 pathway analysis methods, plus 

MetaPath [11, 50]. Each of these methods is tested on two diseases, one is Alzheimer’s 

disease with 7 and the other is acute myeloid leukemia (AML) with 9 datasets. These 

conditions were selected for two reasons. First, there is a pathway in KEGG for each of the 

diseases. We refer to this as the target pathway, and use it to validate the methods. Second, 

there are multiple experiments available in the public domain for both of these diseases.
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A. Pathway analysis applications: Alzheimer’s disease

The Alzheimer’s datasets we use in our data analysis are GSE28146 (hippocampus) and 

GSE5281 (6 different tissues: entorhinal cortex (EC), hippocampus (HIP), medial temporal 

gyrus (MTG), posterior cingulate (PC), superior frontal gyrus (SFG), and primary visual 

cortex (VCX)). The 4 pathway analysis methods, GSEA, GSA, SPIA, and PADOG, were 

used to process the expression data in each study and output a p-value for each study and for 

each pathway. Details of all datasets are provided in Supplementary Section 3.

The rankings and FDR-corrected p-values of the target pathway Alzheimer’s disease for the 

7 Alzheimer’s datasets are displayed in Figure 4. The graphs demonstrate that the adjusted 

p-values and rankings of the target pathway vary substantially between the 4 methods for a 

given study, and from one study to the next. Furthermore, both GSA and PADOG report the 

target pathway Alzheimer’s disease as not significant in all 7 studies.

We combine the 4 pathway analysis methods with 6 meta-analyses: Stouffer’s, Z-method, 

Brown’s, Fisher’s, the additive method, and DANUBE. Using a pathway analysis method M, 

each pathway has 7 p-values – one per study. These 7 p-values are combined using each of 

the 6 meta analysis methods Therefore, each pathway analysis method produces 6 lists of 

pathways. Each list has 150 pathways ranked according to the combined p-values. We then 

adjusted the combined p-values for multiple comparisons in each list using FDR.

In order to run DANUBE, we generated the null distributions from control samples as 

described in Section III-B. We took the 74 control samples from the 7 Alzheimer’s datasets, 

and randomly divided them into “control” and “disease” subgroups. We generated 10, 000 

simulations of 10 controls and 10 diseases, 10, 000 simulations of 10 controls and 20 

diseases, 10, 000 of 20 controls and 10 diseases, and 10, 000 of 37 controls and 37 diseases, 

for a total of 40, 000 simulations. For each pathway analysis method, we constructed 150 

empirical distributions for 150 KEGG signaling pathways (totally 600 empirical 

distributions for the 4 methods GSEA, GSA, SPIA, and PADOG). We used these empirical 

distributions to calculate the empirical p-values before applying the additive method to 

combine the empirical p-values for each pathway, resulting in 150 combined p-values. We 

then adjusted the combined p-values for multiple comparisons using FDR. Running time is 

reported in Supplementary Section 5 and Tables S1–S2.

Table I displays the results using GSA combined with the 6 meta-analysis methods. The 

horizontal line across each list marks the 1% significance threshold. The pathway 

highlighted green is the target pathway Alzheimer’s disease. Pathways highlighted in red are 

examples of false positives. These pathways were expected to be reported as false positives 

because their null distribution is very skewed towards zero (see Figure 1 panels A1–A3 and 

Supplementary Figure S3). These include Adherens junction and several cancer-related 

pathways, none of which are known to be implicated in Alzheimer’s disease. Stouffer’s 

method, the additive method, and DANUBE identify the target pathway as significant. 

DANUBE yields the best ranking.

Both Stouffer’s and the additive method identify the target pathway as significant using 

GSA, as shown in Table I. However, the inherent bias of the null distribution brings 
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irrelevant results into the list of significant pathways. For Stouffer’s method, pathways 

having p-values biased toward zero, such as Prostate cancer, Adherens junction, Pathways in 
cancer, and Pancreatic cancer are still among the significant pathways. For the additive 

method, pathways having p-values biased toward zero, such as Prostate cancer, Adherens 
junction and Pathways in cancer are still among the significant pathways.

Table II displays the results using PADOG combined with the 6 meta-analysis methods. 

Only DANUBE identifies the target pathway as significant. Z-method and Brown’s method 

return no significant pathways. For Stouffer’s, Fisher’s, and the additive method, the 

systematic bias of the pathway analysis method greatly influences the outcome of the meta-

analyses. Pathways having p-values biased toward zero, such as Adherens junction and 

cancer related pathways (see Figure 1 panels C1–C3 and Supplementary Figure S5) are 

among the significant pathways.

Supplementary Table S3 displays the results using SPIA combined with the 6 meta-analysis 

methods. The target pathway is significant and is ranked near the top for all methods. 

DANUBE yields the shortest list of significant pathways. All the 5 significant pathways, 

Parkinson’s disease, Alzheimer’s disease, Synaptic vesicle cycle, Cardiac muscle contration, 

and Huntington’s disease are also significant when we combine DANUBE with GSA and 

PADOG.

Supplementary Table S4 displays the results using GSEA combined with the 6 meta-analysis 

methods. The horizontal line across each list marks the cutoff FDR = 0.01. The pathway 

highlighted green is the target pathway Alzheimer’s disease. The target pathway is 

significant for all the 6 meta-analysis methods. Because GSEA is unbiased, the additive 

method and DANUBE have equivalent results. These two methods have a shorter list of 

significant pathways and rank the target pathway higher than other methods. In addition, all 

the 4 significant pathways, Cardiac muscle contration, Huntington’s disease, Alzheimer’s 
disease, and Parkinson’s disease appear in the lists of significant pathways when we 

combine DANUBE with GSA, PADOG, and SPIA.

There is no gold standard for assigning true or false values to each of the results, apart from 

the expectation that a disease under study should impact its namesake pathway. Indeed, the 

target pathway Alzheimer’s disease is ranked as significant for all of the 4 pathway analysis 

methods when combined with DANUBE. The target pathway is also ranked higher when 

using DANUBE compared to the results of other 5 meta-analysis methods. In addition, the 

pathways Parkinson’s disease, Alzheimer’s disease, Cardiac muscle constration, and 

Huntington’s disease, consistently appear as significant in the results of all the 4 pathway 

analysis methods when combined with DANUBE.

Alzheimer’s, Parkinson’s, and Huntington’s diseases are three neurological disorders that 

have many commonalities including abnormal protein folding, endoplasmic reticulum stress, 

and ubiquitin mediated breakdown of proteins, leading to programmed cell death. Given that 

the pathway Alzheimer’s disease is influenced by the mitochondrial compartment, which is 

strongly implicated in the disease [51–54], it is not surprising that other pathways with 

strong mitochondrial components also garner high rankings. Previous studies [55] have 
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shown the presence of a cross-talk that makes the neurological disease pathways, 

Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, along with Cardiac 
muscle contraction, appear as significant simultaneously, due to their dominant 

mitochondrial module. Cardiac muscle contraction has a strong mitochondrial component 

and is highly dependent on calcium signaling, which is also prevalent in Synaptic vesicle 
cycle, Alzheimer’s disease, and Huntington’s disease. Ca2+ regulates mitochondrial 

metabolism, but calcium overload to mitochondria can result in cell damage from reactive 

oxygen [56].

We also use MetaPath to combine the 7 studies. MetaPath is a stand-alone meta-analysis 

method, which does not need an external pathway analysis tool. This method performs meta-

analysis at both gene (MAPE_G) and pathway levels (MAPE_P), and then combines the 

results (MAPE_I) to give the final p-value and ranking of pathways. Supplementary Table 

S5 shows the top 7 pathways using MetaPath for the 7 Alzheimer’s datasets. The target 

pathway Alzheimer’s disease is not significant and is outranked by 6 other pathways.

B. Pathway analysis applications: AML

The AML datasets we use in our data analysis are GSE14924 (CD4 and CD8 T cells), 

GSE17054 (stem cells), GSE12662 (CD34+ cells, promyelocytes, and neutrophils and PR9 

cell line), GSE57194 (CD34+ cells), GSE33223 (peripheral blood, bone marrow), 

GSE42140 (peripheral blood, bone marrow), GSE8023 (CD34+ cells), and GSE15061 (bone 

marrow). The rankings and FDR-corrected p-values of the target pathway Acute myeloid 
leukemia for the 9 AML datasets are displayed in Supplementary Figure S12. The graphs 

demonstrate that the adjusted p-values and rankings of the target pathway vary substantially 

between the 4 methods for a given study, and from one study to the next. Furthermore, the 

AML pathway was not found to be significant by any method in any dataset.

We combine the 4 pathway analysis methods with the 6 meta-analysis methods. Using a 

pathway analysis method M, each pathway has 9 p-values – one per study. These 9 p-values 

are combined using each of the 6 meta-analysis methods Therefore, each pathway analysis 

method produces 6 lists of pathways. Each list has 150 pathways ranked according to the 

combined p-values. We then adjust the combined p-values for multiple comparisons in each 

list using FDR.

In order to run DANUBE, we generated the null distributions from control samples as 

described in Section III-B. We took the 140 control samples of the 9 AML datasets, and 

randomly designated “control” and “disease” subgroups. We generated 10, 000 simulations 

of 10 controls and 10 diseases, 10, 000 simulations of 30 controls and 50 diseases, 10, 000 

of 50 controls and 30 diseases, and 10, 000 of 70 controls and 70 diseases, for a total of 40, 

000 simulations. For each pathway analysis method, we constructed 150 empirical 

distributions for 150 KEGG signaling pathways (totally 600 empirical distributions for the 4 

pathway analysis methods). We then used the empirical distributions to calculate the 

empirical p-values before applying the additive method to combine the empirical p-values 

for each pathway, resulting in 150 combined p-values. Finally, we adjusted the combined p-

values for multiple comparisons using FDR.
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Table III displays the results of GSA combined with the 6 meta-analysis methods, ordered 

by the FDR corrected p-values. We place a horizontal line across each list to mark our 1% 

cutoff. Stouffer’s method, the additive method, and DANUBE identify the target pathway as 

significant. DANUBE yields the best ranking (ranked 1st), followed by the additive (2nd) and 

Stouffer’s method (13th). In addition, the target pathway is the only significant pathway in 

DANUBE’s result.

Table IV shows the results of PADOG combined with the 6 meta-analysis methods. The 

target pathway is significant for the 4 methods: DANUBE, Stouffer’s, Fisher’s, and the 

additive method. For DANUBE, Acute myeloid leukemia is ranked 1st compared to 7th using 

the other three meta-analysis methods. There are no significant pathways using the Z-

method and Brown’s method.

Supplementary Table S6 shows the results of SPIA combined with the 6 meta-analysis 

methods, ordered by the FDR corrected p-value. Again, the target pathway is significant 

using Stouffer’s, Fisher’s, the additive method, and DANUBE. The additive method and 

DANUBE have the same list of significant pathways. In addition, both methods place the 

target pathway higher than the other two methods.

Supplementary Table S7 displays the results of GSEA combined with the 6 meta-analysis 

methods. The target pathway Acute myeloid leukemia is highlighted in green. For all 6 

meta-analyses, the target pathway is not significant despite being ranked among the top 

pathways. Since GSEA has no bias, the additive method and DANUBE yield similar results. 

In essence, even though it is completely unbiased, GSEA lacks the power to identify the 

Acute myeloid leukemia (AML) as significant in the AML data.

We also use MetaPath to combine the 9 acute myeloid leukemia studies. Supplementary 

Table S8 shows the top 5 pathways using MetaPath. The target pathway is not significant 

(p=0.4), and is outranked by 2 other pathways.

Table V summarizes all the results for the 25 approaches (4 pathway analysis methods each 

combined with one of 6 meta-analysis approaches, plus MetaPath). On average, DANUBE 

performs best in terms of ranking, as well as in terms of identifying the target pathway as 

significant at the 1% cutoff.

We note that for both diseases, DANUBE and the additive methods have the same results 

when combined with GSEA because GSEA is an unbiased method with uniform 

distributions of p-values under the null. In addition, the results of the two methods for SPIA 

are almost equivalent because the distributions of the p-values produced by SPIA under the 

null are closer to the expected uniform. Notably, DANUBE is more useful in conjunction 

with methods that have more skewed empirical null distributions.

C. General case: t-test and Wilcoxon test

In this section we will demonstrate the generality of the problem, beyond pathway analysis 

applications. In order to do so, we have used the one sample t-test [57, 58] and the one 

sample Wilcoxon signed-rank test [59–61], as illustrative examples of parametric and non-

parametric tests. Using simulated null distributions, we show that both the t-test and 
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Wilcoxon tests have systematic bias depending on the shape and the symmetry of the null 

distribution. When the p-values are biased towards zero, combining multiple studies results 

in an increase of type I error (prevalence of false positives). When the p-values are biased 

towards one, the test loses power and more evidence is needed to identify true positives.

In Figure 5, panel (a) displays a simulated null distribution H0 which is not symmetrical and 

does not follow any standard distribution. Panel (b) displays an alternative distribution H1, 

which has the same shape as H0, but a slightly smaller median. Panel (c) displays another 

alternative distribution H2 which has the same shape as H0 but a slightly larger median. Each 

population has 100, 000 elements. The goal here is to investigate the ability of each 

approach to distinguish between H0 and H1, and between H0 and H2, respectively. This is 

attempted using both a t-test and a Wilcoxon test.

Denoting M0 and m0 as the mean and median of the null distribution H0, M0 is used as the 

parameter (mean) for the t-tests where m0 is used as the parameter (median) for Wilcoxon 

test. To make the analysis more general, the sample size is randomized between 3 and 10 

everytime we pick a sample. Since DANUBE uses the additive method to combine the p-

values, we also use the additive method to combine the p-values of t-test and Wilcoxon test. 

When the number of studies is larger or equals to 20, the combined p-values are calculated 

using the Central Limit Theorem as described in section III.

Panels (d–h) show the results using the one sample left-tailed t-test for the mean; panels (i–

m) show the results using the one sample right-tailed t-test for the mean; panels (n–r) show 

the results using the one sample left-tailed Wilcoxon test for the median; panels (s–w) show 

the results using one sample right-tailed Wilcoxon test for the median.

Panel (d) shows the distribution of p-values for samples drawn from the null distribution H0. 

To plot this panel, we randomly select 100, 000 samples from H0 and then calculate the p-

values using the left-tailed t-test. Since the null distribution H0 is not normal, the resulting p-

values are not uniformly distributed. Panel (e) displays the distribution of combined p-values 

for samples drawn from the null distribution H0. To calculate a combined p-value, we 

randomly pick 10 samples from the null population H0 and then calculate the 10 p-values 

using the left-tailed t-test. From these 10 p-values, we calculate a combined p-value using 

the addiive method. This procedure is repeated 100, 000 times to generate the distribution of 

the combined p-values under the null hypothesis. Similarly, panel (f) displays the 

distribution of the combined p-values for samples drawn from the alternative distribution H1.

The red dashed lines in panels (e, f) show the 0.05 cutoff. Since the combined p-values in (e) 

are calculated under the null hypothesis, values smaller than the cutoff are false positives. 

Therefore, the blue area to the left of the red dashed line is type I error of the classical meta-

analysis using the left-tailed t-test. Similarly, combined p-values larger than the cutoff in 

panel (f) are false negatives. The blue area to the right of the red line panel (f) displays type 

II error.

The results show that combined p-values will be biased towards zero, since p-values of the 

left-tailed t-test are biased towards zero. To understand the behavior of the meta-analysis, we 

display type I and type II error in panels (g, h) with varying numbers of studies to be 
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combined. As the number of studies increases, the meta-analysis becomes more biased, and 

type I error increases. For example, when the number of studies reaches 50, the analysis has 

more than 60% false positives. Paradoxically, increasing the number of studies will make the 

meta-analysis less useful due to the increase of type I error.

Panels (i–m) display the results of the right-tailed t-test. Panel (i) displays the distribution of 

p-values for samples drawn from the null distribution H0. Panel (j) displays the combined p-

values for samples drawn from the null distribution H0. Panel (k) displays the combined p-

values for samples drawn from the alternative distribution H2. Each combined p-value is 

calculated from 10 individual p-values. The right-tailed t-test is biased towards one, 

therefore more evidence is required to identify true positives. Compared to the left-tailed t-

test, the right-tailed t-test has smaller type I error but larger type II error (less power). 

Therefore, many more studies would be required for this test to identify true positives. Panel 

(m) shows that for the case of combining 10 studies, the type II error of the right-tailed t-test 

is about 0.5 whereas the type II error of the left-tailed t-test is less than 0.2.

Panels (n–r) display the results of meta-analysis using the one sample left-tailed Wilcoxon 

test for the median. In this example, the left-tailed Wilcoxon test is biased towards one, so 

more evidence is required to identify true positives. As shown in panel (r), the expected type 

II error of the meta-analysis is about 0.6 when combining 10 studies. Interestingly, the 

behavior of the meta-analysis using the left-tailed Wilcoxon test is similar to that of the the 

right-tailed t-test. In both cases, the meta-analysis needs a large number of studies to identify 

true positives. Panels (m and r) show that type II error converges to zero as the number of 

studies increases.

Panels (s–w) display the results of meta-analysis using the one sample right-tailed Wilcoxon 

test for the median. Similar to the t-test, the right-tailed Wilcoxon test is biased towards zero. 

As shown in panels (g, v), type I error using either of the two tests increases as the number 

of studies increases.

D. General case: DANUBE

In this section, we analyze the performance of DANUBE using the same null and alternative 

distributions that were used for the t-test and Wilcoxon tests. Figure 6 displays the results 

using DANUBE. Panels (a, b, c) show the null distribution H0 and two alternative 

distributions H1 and H2. Panels (d–h) display the results using left-tailed DANUBE for the 

mean; panels (i–m) display the results using right-tailed DANUBE for the mean; panels (n–

r) display the results using left-tailed DANUBE for the median; panels (s–w) display the 

results using right-tailed DANUBE for the median.

We randomly select 10, 000 samples from the null distribution and use them to construct the 

empirical distribution of sample means (panels d–m) and likewise of sample medians 

(panels n–w). For a given empirical distribution, we calculate the probability of observing 

the discriminating statistic in a study. Panel (d) displays the distribution of empirical p-

values for samples drawn from the null distribution H0; we see that these are uniformly 

distributed under the null hypothesis. Panel (e) displays the distribution of combined p-

values for samples drawn from the null distribution H0. Each combined p-value is calculated 
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from 10 individual empirical p-values. The blue area to the left of the red dashed line is type 

I error. Since the individual p-values are uniformly distributed, the combined p-values are 

also uniformly distributed. Consequently, the type I error of this test is equal to the 

threshold. Panel (f) displays the distribution of combined p-values for samples drawn from 

the alternative distribution H1. The blue area to the right of the red dashed line is the type II 

error.

Panels (g, h) display the type I and type II error of DANUBE with varying numbers of 

combined studies. The graphs show that the type I error of DANUBE consistently equals the 

threshold while type II error decreases when the number of studies increases. When 

combining 10 studies, the type I and type II errors of the left-tailed DANUBE for the mean 

are 0.05 and 0.27, respectively, compared to 0.24 and 0.14 for the left-tailed t-test. When the 

number of the studies increases over 30, one can expect DANUBE to give a 0.05 type I error 

and an almost zero type II error.

Similar to the left-tailed test, right-tailed DANUBE on the mean has the expected type I 

error and a reasonable type II error as shown in panels (l, m). With 10 studies to be 

combined, the right-tailed DANUBE’s type I and type II errors are 0.05 and 0.25, 

respectively, compared to 0.01 and 0.51 for the right-tailed t-test. The results for the mean 

show that both left- and right-tailed type I errors are equal to the threshold while the type II 

error decreases rapidly. On the contrary, the left and right-tailed t-tests have unpredictable 

behavior due to the skewness of the null distribution.

Panels (n–w) show the results of left- and right-tailed DANUBE for the median. As 

expected, the type I error for the median is also equal to the threshold, regardless of the 

number of studies that are combined. The test is proven to be powerful for both tails with 

type II error less than 0.2 for 10 studies. When compared to the left-tailed Wilcoxon test on 

10 studies, the DANUBE left-tailed type II error is 0.17 as opposed to 0.61.

V. Conclusions

In this paper, we present a new framework to combine the results of multiple studies in order 

to gain more statistical power. Our framework first calculates the empirical p-values for each 

study using the empirical distribution of the discriminating statistic. It then combines the 

empirical p-value using either the Central Limit Theorem or the additive method. The new 

framework makes no statistical assumptions about the data and is therefore usable in many 

practical cases when no simple model is appropriate. In addition, use of the additive method 

makes the framework more robust to outliers.

The advantage of the new meta-analysis framework is demonstrated using both simulation 

and real-world data. In our simulation study, we compare the results of DANUBE to the 

classical additive method using the one sample t-test and Wilcoxon signed-rank test. The 

skewness and the non-normality of the simulated null distribution produces systematic bias 

in classical meta-analysis, either increasing type I error or decreasing the power of the test. 

In contrast, the type I error of DANUBE is equal to the threshold cutoff and type II error 

declines quickly when the number of studies increases.
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To evaluate the proposed framework for pathway analysis applications, we examine 7 

Alzheimer’s and 9 acute myeloid leukemia datasets using 25 approaches: 6 meta-analysis 

methods, Stouffer’s, Z-method, Brown’s, Fisher’s, the additive method and DANUBE, each 

of them combined with 4 representative pathway analysis methods, GSA, SPIA, PADOG, 

and GSEA, plus an additional independent meta-analysis method MetaPath. The results 

confirm the advantage of DANUBE over classical meta-analysis to identify pathways 

relevant to the phenotype.

This work describes an important limitation of current meta-analysis techniques, and 

provides a general statistical approach to increase the power of an analysis method using 

empirical distributions. With vast databases of biological data being made available, this 

framework may be powerful because it lets the data speak for itself. The proposed 

framework is flexible enough to be applicable to various types of studies, including gene-

level analysis, pathway analysis, or clinical trials to assess the effect of a therapy in complex 

diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The empirical null distributions of p-values using: Gene Set Analysis (GSA) - top, Signaling 

Pathway Impact Analysis (SPIA) - middle, and Down-weighting of Overlapping Genes 

(PADOG) - bottom. The distributions are generated by re-sampling from 74 control samples 

obtained from 7 public Alzheimer’s datasets. The horizontal axes display the p-values while 

the vertical axes display the p-value densities. Panels A0–A6 (blue) show the distributions of 

p-values from GSA; panels B0–B6 (purple) show the distribution of p-values from SPIA; 

panels C0–C6 (green) show the distribution of p-values from PADOG. The large panels on 
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the left, A0, B0, and C0, display the distributions of p-values cumulated from all KEGG 

signaling pathways. The smaller panels on the right display the p-value distributions of 

selected individual pathways, which are extreme cases. For each method, the upper three 

distributions, for example A1–A3, are biased towards zero and the lower three distributions, 

for example A4–A6, are biased towards one. Since none of these p-value distributions are 

uniform, there will be systematic bias in identifying significant pathways using any one of 

the methods. Pathways that have p-values biased towards zero will often be falsely identified 

as significant (false positives). Likewise, pathways that have p-values biased towards one are 

more likely to be among false negative results even if they may be implicated in the given 

phenotype.
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Fig. 2. 
The DANUBE framework for meta-analysis. The blue arrows (I and II) show the classical 

meta-analysis pipeline while black arrows (1–4) show the pipeline of DANUBE. The first 

step (I) of the classical approach is to perform a parametric or non-parametric test for each 

study. This step provides individual p-values which are independent and identically 

distributed (i.i.d.), but not necessarily uniformly distributed under the null, as shown in Fig. 

1. The second step (II) of the classical approach is to use a classical method, such as 

Fisher’s, to combine the individual p-values, relying heavily on the assumption of 

uniformity under the null. In step (1) of DANUBE, we choose the discriminating statistic 

and calculate the values of this statistic in each study (t1, t2, …, tm). In step (2), we generate 

the empirical distribution ξT of the discriminating statistic under the null hypothesis. In step 

(3), we calculate the probability of observing t1, t2, …, tm using ξT. In step (4), we combine 

the m empirical p-values using either the additive method or the Central Limit Theorem 

(CLT).
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Fig. 3. 
DANUBE’s application in pathway analysis. The input is m studies (datasets), and a 

pathway database, such as KEGG. Each dataset has a certain number of control and disease 

samples. Step (1): perform pathway analysis using a method M (eg. GSA, SPIA, or 

PADOG). For each pathway, the resulting m p-values are independent and identically 

distributed (i.i.d.). However, these p-values are not uniformly distributed under the null 

hypothesis (see Figure 1), and therefore combining them would result in systematic bias. 

Step (2): pool the control samples from the m datasets to produce a large set of control 
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samples. Step (3): generate k simulated datasets by randomly sampling from the pool. Since 

the “disease” and “control” samples in each of the simulated datasets were chosen only from 

the control samples of the original m studies, the resulting p-values are calculated under the 

null hypothesis. Step (4): perform pathway analysis on the simulated data. Step (5): build an 

empirical distribution for each pathway, which consists of k p-values obtained under the null 

hypothesis. Step (6): calculate an empirical p-value for each p-value obtained from step (1). 

For example, using the empirical distribution ξ1, we calculate the empirical p-value ep11 as 

the probability of observing a p-value more extreme than p1, i.e., ep11 = |{sp1i ≤ p11, i ∈ 
[1..k])|. Step (7): combine the m empirical p-values obtained for each pathway using either 

the additive method or the Central Limit Theorem.
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Fig. 4. 
Ranks (panel A) and p-values (panel B) of the KEGG target pathway, Alzheimer’s disease, 

for 7 Alzheimer’s datasets, using the pathway analysis methods: Gene Set Enrichment 

Analysis (GSEA), Gene Set Analysis (GSA), Signaling Pathway Impact Analysis (SPIA), 

and Down-weighting of Overlapping Genes (PADOG). The horizontal axes show the 7 

Alzheimer’s datasets. The vertical axis in panel (A) shows the rankings of the target pathway 

for each dataset using the 4 methods. The vertical axis in panel (B) shows the FDR-corrected 

p-values of the target pathway. The red horizontal line in (B) shows the threshold 0.01. Note 

how the rankings and p-values of the target pathway vary greatly across different datasets 

and methods, making the interpretation of the results very difficult.

Nguyen et al. Page 28

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2018 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Type I and Type II errors of the classical meta-analysis using one sample t-test and 

Wilcoxon signed-ranked test. Panel (a) displays the probability distribution under the null 

hypothesis H0. Panel (b) displays an alternative distribution H1 which has the same shape as 

the null distribution with a slightly smaller median. Panel (c) displays another alternative 

distribution H2 which has the same shape as the null distribution with a slightly larger 

median. Panels (d–h) display the results using left-tailed t-tests. Panel (d) displays the 

distribution of p-values using left-tailed t-test for samples drawn from the null distribution 
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H0. Panel (e) displays the distribution of combined p-values using left-tailed t-test for 

samples drawn from the null distribution H0. The red dashed line represents the threshold 

(0.05) below which the null hypothesis will be rejected. The blue area to the left of the red 

dashed line is type I error (false positives). Panel (f) displays the distribution of combined p-

values using a left-tailed t-test for samples drawn from the alternative distribution H1. The 

blue area to the right of the red dashed line is type II error (false negatives). Panel (g) 

displays the type I error with varying number of studies. Panel (h) displays the type II error 

with varying number of studies using a left-tailed t-test for samples drawn from the 

alternative distribution H1. Similarly, panels (i–m) display the results using right-tailed t-test; 

panels (n–r) display the results of left-tailed Wilcoxon signed-rank test; panels (s–w) display 

the results of right-tailed Wilcoxon signed-rank test. In this example, the left-tailed t-test and 

right-tailed Wilcoxon tests are biased towards 0 as shown in (e,f). Therefore, an increase in 

the number of studies makes the combined p-values more biased towards 0, causing an 

increase in type I error as shown in (g,v). On the contrary, the right-tailed t-test and left-

tailed Wilcoxon test are biased towards 1. This kind of bias makes the test less powerful. For 

example, with 10 studies, type II errors using right-tailed t-test and left-tailed Wilcoxon test 

are 0.51 and 0.61, respectively.
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Fig. 6. 
Type I and type II errors of DANUBE using mean and median as discriminative statistics. 

Panel (a) displays the probability distribution under the null hypothesis (H0). Panel (b) 

displays an alternative distribution (H1), which has the same shape as the null distribution 

but a slightly smaller median. Panel (c) displays an alternative distribution (H2) which has 

the same shape as the null distribution but a slightly larger median. Panels (d–h) display the 

results of the left-tailed DANUBE using mean; panels (i–m) display the results of the right-

tailed DANUBE using mean; panels (n–r) display the results of left-tailed DANUBE using 
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median; panels (s–w) display the results of right-tailed DANUBE using median. Panels (d, i, 

n, s) show the p-value distributions for samples drawn from the null. For all four tests, p-

values are uniformly distributed under the null hypothesis. Consequently, the combined p-

values (using the additive method) are also uniformly distributed under the null hypothesis 

as shown in (e, j, o, t). The result is that the type I error equals the threshold (0.05) 

regardless of the number of studies combined, as shown in (g, l, q, v). Panels (h, m, r, w) 

show that the type II error converges quickly to zero. Combining 10 studies, the type II 

errors of left and right-tailed DANUBE for the mean are both less than 0.3 compared to 0.51 

for the right-tailed t-test. Similarly, using the median, the type II error of DANUBE is less 

than 0.2 compared to 0.61 for the left-tailed Wilcoxon test.
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