1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2018 April 26.

-, HHS Public Access
«

Published in final edited form as:
Proc IEEE Inst Electr Electron Eng. 2017 March ; 105(3): 496-515.

DANUBE: Data-driven meta-ANalysis using UnBiased Empirical
distributions—applied to biological pathway analysis

Tin Nguyen,
Department of Computer Science, Wayne State University, Detroit, Ml 48202

Cristina Mitrea,
Department of Computer Science, Wayne State University, Detroit, Ml 48202

Rebecca Tagett, and
Department of Computer Science, Wayne State University, Detroit, Ml 48202

Sorin Draghici [Senior Member, IEEE]
Department of Computer Science and the Department of Obstetrics and Gynecology, Wayne
State University, Detroit, Ml 48202

Abstract

Identifying the pathways and mechanisms that are significantly impacted in a given phenotype is
challenging. Issues include patient heterogeneity and noise. Many experiments do not have a large
enough sample size to achieve the statistical power necessary to identify significantly impacted
pathways. Meta-analysis based on combining p-values from individual experiments has been used
to improve power. However, all classical meta-analysis approaches work under the assumption that
the p-values produced by experiment-level statistical tests follow a uniform distribution under the
null hypothesis. Here we show that this assumption does not hold for three mainstream pathway
analysis methods, and significant bias is likely to affect many, if not all such meta-analysis studies.
We introduce DANUBE, a novel and unbiased approach to combine statistics computed from
individual studies. Our framework uses control samples to construct empirical null distributions,
from which empirical p-values of individual studies are calculated and combined using either a
Central Limit Theorem approach or the additive method. We assess the performance of DANUBE
using four different pathway analysis methods. DANUBE is compared with five meta-analysis
approaches, as well as with a pathway analysis approach that employs multiple datasets
(MetaPath). The 25 approaches have been tested on 16 different datasets related to two human
diseases, Alzheimer’s disease (7 datasets) and acute myeloid leukemia (9 datasets). We
demonstrate that DANUBE overcomes bias in order to consistently identify relevant pathways. We
also show how the framework improves results in more general cases, compared to classical meta-
analysis performed with common experiment-level statistical tests such as Wilcoxon and t-test.
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meta-analysis; p-values; empirical distribution; pathway analysis; Alzheimer’s disease; acute
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[. Introduction

The proliferation of high-throughput genomics technologies has resulted in an abundance of
data, for many different biomedical conditions. Large public repositories such as Gene
Expression Omnibus [1, 2], The Cancer Genome Atlas (cancergenome.nih.gov),
ArrayExpress [3, 4], and Therapeutically Applicable Research to Generate Effective
Treatments (ocg.cancer.gov/programs/target) store thousands of datasets, within which there
are independent experimental series with similar patient cohorts and experiment design.
Gene expression data, as measured by microarrays, are particularly prevalent in public
databases, such that some disease conditions are represented by half a dozen studies or
more.

Experiments comparing two phenotypes, such as disease and control, yield lists of genes that
are differentially expressed (DE). However, lists of DE genes obtained from similar but
independent experiments tend to have little in common, and taken alone, they usually fail to
elucidate the underlying biological mechanisms. Effective meta-analysis approaches are
needed to unify the biological knowledge spread out over such similar studies with
apparently incongruent results.

The goal of the meta-analysis is to combine the results of independent but related studies
and provide increased statistical power and robustness compared to individual studies
analyzed alone [5, 6]. In spite of the numerous sophisticated tools for meta-analysis, many
biological applications still use only Venn diagrams (intersection/union) or vote counting for
combining multiple studies [7, 8]. Such approaches are useful for demonstrating consistency
when combining a few studies. However, when combining many studies, Venn diagrams are
either too conservative (for intersection) or too anti-conservative (for union), while vote
counting is statistically inefficient [5, 9, 10]. Regarding microarray data, meta-analysis has
been used at both gene level [5, 7, 11-13] and pathway level [11, 14]. Pathway analysis [15-
18] was developed to correlate differential gene expression evidence with a-priori defined
functional modules, organized into biological pathway databases, such as Kyoto
Encyclopedia of Genes and Genomes (KEGG) [19, 20], Reactome [21], Biocarta
(www.biocarta.com), or Molecular Signatures Database (MSigDB) [22].

One straightforward and flexible way of integrating diverse studies is to combine the
individual p-values provided by each study. Classical meta-analysis methods of combining
p-values have been reviewed and compared in [23]. These include Fisher’s method based on
the chi-squared distribution [24], the additive method [25] using the Irwin-Hall distribution
[26, 27], minP [28], and maxP [29].

In an early study, Rhodes and others [13] collected multiple prostate cancer microarray
datasets and combined p-values using Fisher’s method. Since then, other sophisticated
approaches have been proposed including the weighted Fisher’s method [30] and the latent
variable approach [31, 32].

The major drawback of the available p-value-based meta-analysis frameworks is that they
work under the assumption that the p-values provided by the individual statistical tests
follow a uniform distribution under the null hypothesis. Previous reports describe non-
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uniform distributions of p-values under the null as due to specific factors such as improper
normalization, cross-hybridization, poorly characterized variance, and heteroskedasticity in
microarray data analysis [33, 34], or even due to properties of some more general
distributions [35]. Here we show that this assumption also does not hold in the realm of
pathway analysis methods, severely compromising the reliability of the results. In addition
to strong statistical assumptions, the current methods for combining p-values are sensitive to
outliers. For example, using Fisher’s method, a p-value of zero in one individual case will
result in a combined p-value of zero regardless of the other p-values. The same is true for the
minP and maxP statistics, where outliers greatly influence the combined p-value.

Here we propose DANUBE (Data-driven meta-ANalysis using UnBiased Empirical
distributions), a new meta-analysis framework which can combine the p-values of multiple
studies in a better way. Our contribution is two-fold. First, we use empirical null
distributions to calculate p-values for individual studies. This approach learns from the data
under the null hypothesis and compensates for any bias potentially introduced by an
individual pathway analysis method. Second, we combine the individual p-values using a
method based on the Central Limit Theorem. This is less sensitive to outliers and provides
more reliable results. Our simulation experiments demonstrate that both type | and type Il
errors of DANUBE are better than those of classical meta-analysis approaches using both
parametric and non-parametric tests.

We apply DANUBE in the context of pathway analysis using 16 public gene expression
datasets from two biological conditions, and 4 different pathway analysis methods. Gene Set
Enrichment Analysis (GSEA) [36] and Gene Set Analysis (GSA) [37] are Functional Class
Scoring methods [36—39], Down-weighting of Overlapping Genes (PADOG) [38] is an
enrichment method [40-42], and Signaling Pathway Impact Analysis (SPIA) [43, 44] is a
topology-aware method [43, 45]. These pathway analysis methods are applied on the human
signaling pathways from KEGG [19, 20].

We show that with the exception of GSEA, each of the other three methods GSA, SPIA, and
PADOG have different biases, leading to non-uniform distributions of p-values under the
null hypothesis. Not surprisingly, when combining p-values using classical methods such as
Fisher’s or the additive method, each of the three pathway analysis methods (GSA, SPIA,
and PADOG) yields a very different list of significantly impacted pathways. We then apply
the DANUBE framework using the empirical distributions characteristic to each of these
methods. The DANUBE results yield much more consistent lists of significant pathways that
are also pertinent to the phenotypes.

Il. Background

We first recapitulate the classical methods of combining p-values, such as Fisher’s method
[24] and the additive method [25-27]. We then demonstrate the shortcomings of existing
approaches in pathway analysis.
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A. Fisher’s method

Fisher’s method [24] is one of the most widely used methods for combining independent p-
values. Considering a set of mindependent significance tests, the resulting p-values 2y, P5,
..., Ppare independent and uniformly distributed on the interval [0, 1] under the null
hypothesis. Denoting X;=-2In P; (/€ {1, 2, ..., m}) as new random variables, the
cumulative distribution function of .X;can be calculated as follows:

=

F(x) = Pr(X, < x) = Pr(=2InP, < x) = Pr(P; < e?)

| _x
=/ JSrdp=1-¢
-2
e

The above function is the cumulative distribution function of a chi-squared distribution with
two degrees of freedom (;é). Since the sum of chi-squared random variables is also a chi-

squared random variable, —222.": ,In(P) follows a chi-squared distribution with 27 degrees

of freedom (;ém). In summary, the log product of /77 independent p-values follows a chi-

squared distribution with 2/m degrees of freedom:

X= =2 Py, @
i=1

We note that if one of the individual p-values approaches zero, which is often the case for
empirical p-values, then the combined p-value approaches zero as well, regardless of other
individual p-values. For example, if 7/ — 0, then X— oo and therefore, P{.X) — 0
regardless of A, A, ..., Py Therefore, we see that Fisher’s method is sensitive to outliers.

In practice, most pathway analysis methods use some kind of permutation or bootstrap
approach to construct an empirical distribution of a statistic under the null. For example, the
empirical null distribution of the ¢statistic is &= {#, b, ..., {p}. The empirical p-value
calculated from such a distribution is the fraction of the statistics’ values in the A/random
trials performed that are more extreme than the observed one. Many times, there are no
occurrences of values more extreme than the observed one, yielding an empirical p-value of
zero. In this situation, the combined p-value calculated using Fisher’s method will be zero,
even if all other p-values are equal to one. It is important to note that this phenomenon
occurs because many methods choose to round the reported empirical p-value down to zero
(when in fact, the real p-value is somewhere in the interval [0, 1/A]), and not because of the
mathematical formulation of Fisher’s method.

B. Additive method

The additive method proposes an alternative approach that uses the sum of p-values instead
of the log product. Consider /7 random variables Ay, A, ..., P, that are independent and
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uniformly distributed on the interval [0, 1]. Denoting X = Z;"z | P; as a new random

variable, then X follows the Irwin-Hall distribution [26, 27]. The cumulative distribution
function of X can be calculated as follows:

F(x) =

M=

2 0= @

| —

0

Using the above cumulative distribution function, we can calculate the probability of
observing the sum X = z:”z , P;» We note that the concept of the additive method was also

presented in [25] with a slightly different formulation and proof than in [26, 27]. However,
they are equivalent and can be transformed into one another.

The additive method is not as sensitive to extremely small individual p-values as Fisher’s
method. However, both methods assume the uniformity of the p-values under the null
hypothesis. We will show that this assumption does not hold for three mainstream pathway
analysis methods. The inherent bias of these pathway analysis methods is most likely to
affect the classical meta-analysis in most cases, and thus lead to systematic bias in
identifying significant pathways.

C. Pitfalls of the existing approaches

Null distributions are used to model populations so that statistical tests can determine
whether an observation is unlikely to occur by chance. The p-values produced by a sound
statistical test must be uniformly distributed in the interval [0,1] when the null hypothesis is
true [33-35, 46]. For example, the p-values that result from comparing two groups using a t-
test should be distributed uniformly if the data are normally distributed [35]. When the
assumptions of statistical models do not hold, the resulting p-values are not uniformly
distributed under the null hypothesis. We will demonstrate this fact using gene expression
data and pathway analysis.

Using only the control samples from 7 publicly available Alzheimer’s datasets (N=74), we
simulate 40, 000 datasets as follows. We randomly label 37 as “control” samples and the
remaining 37 as “disease” samples. We repeat this procedure 10, 000 times to generate
different groups of 37 control and 37 disease samples. To make the simulation more general,
we also create 10, 000 datasets consisting of 10 control and 10 disease samples, 10, 000
datasets consisting of 10 control and 20 disease samples, and 10, 000 datasets consisting of
20 control and 10 disease samples. We then calculate the p-values of the KEGG (version 65)
human signaling pathways (extracted as grap/ objects by the R package ROntoTools1.2.0
[44] version 1.2.0) using the following methods: GSEA [36], GSA [37], SPIA [43, 44], and
PADOG [38].

Figure 1 displays the empirical null distributions of p-values using GSA, SPIA, and
PADOG. The horizonal axes represent p-values while the vertical axes represent p-value
densities. Blue panels (A0-A6) show p-value distributions from GSA, while purple (B0-B6)
and green (C0-C6) panels show p-value distributions from SPIA and PADOG, respectively.
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For each method, the larger panel (A0, B0, and CO) shows the cumulative p-values from all
KEGG signaling pathways. The small panels, 6 per method, display extreme examples of
non-uniform p-value distributions for specific pathways. For each method, we show three
distributions severely biased towards zero (eg. A1-A3), and three distributions severely
biased towards one (eg. A4-AB6).

These results show that, contrary to generally accepted beliefs, the p-values are not
uniformly distributed for three out of the four methods considered. Therefore one should
expect a very strong and systematic bias in identifying significant pathways for each of these
methods. Pathways that have p-values biased towards zero will often be falsely identified as
significant (false positives). Likewise, pathways that have p-values biased towards one are
likely to rarely meet the significance requirements, even when they are truly implicated in
the given phenotype (false negatives). Systematic bias, due to non-uniformity of p-value
distributions, results in failure of the statistical methods to correctly identify the biological
pathways implicated in the condition, and also leads to inconsistent and incorrect results. For
example, all three of the zero-biased GSA pathways shown in Figure 1: Prostate cancer
(AL), Adherens junction (A2), and Pathways in cancer (A3), are reported as statistically
significant in the results shown in Table | even though these data were collected in an
experiment comparing Alzheimer’s disease patients vs. healthy subjects, an experiment that
has nothing to do with cancer.

The effect of combining control (i.e. healthy) samples from different experiments is to
uniformly distribute all sources of bias among the random groups of samples. If we compare
groups of control samples based on experiments, there could be true differences due to batch
effects. By pooling them together, we form a population which is considered the reference
population. This approach is similar to selecting from a large group of people that may
contain different sub-groups (e.g. different ethnicities, gender, race, or living conditions).
When we randomly select samples (for the two random groups to be compared) from the
reference population, we expect all bias (e.g. ethnic subgroups) to be represented equally in
both random groups and therefore, we should see no difference between these random
groups, no matter how many distinct ethnic subgroups were present in the population at
large. Therefore, the p-values of a test for difference between the two randomly selected
groups should be equally probable between zero and one (see Supplementary Section 4 and
Figures S10-S11 for more discussion).

We apply this procedure for the popular Gene Set Enrichment Analysis (GSEA) [36] using
the exact same 40, 000 datasets simulated from the pool of control samples of Alzheimer’s
data. The resulting p-value distributions are uniform, as displayed in Supplementary Figure
S1, showing not only that our resampled data correctly models the null, but also that GSEA
is an unbiased test. This supports the idea that the non-uniformity of the distributions is due
to the methods rather than the data. We also plot the top 24 most biased null distributions of
GSEA (Figures S2) using the exact same data and exact same random grouping of samples.
In each figure, the panels are sorted by the distribution means. The distributions of GSEA
(Figures S2, S6) are uniform while those of GSA (Figures S3, S7), SPIA (Figures S4, S8),
and PADOG (Figures S5, S9) are biased. Therefore, the bias is indeed due to the methods
and not to one specific pathway.
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[1l. Methods

In this section we introduce the DANUBE framework and its application in the context of
pathway analysis.

A. The DANUBE framework

We propose a new framework for meta-analysis that makes no assumptions on the data and
is therefore expected to perform much better than any of the classical methods when the
individual p-values are not distributed uniformly, as we have shown that it is the case for the
pathway analysis methods. Figure 2 displays a flowchart comparison between classical
meta-analysis and DANUBE. Both approaches take /7 independent studies as input. The
pipeline marked by blue arrows (I-11) shows the classical meta-analysis, and the one marked
by black arrows (1-4) is DANUBE.

The classical approach first calculates a p-value for each study using a parametric or non-
parametric test, then it combines the individual p-values into one. The main limitation of the
classical approach is that it relies on the assumption of uniformity of the p-values under the
null hypothesis, which often does not hold true. As shown in Figure 1, this assumption is not
true for real transcriptomics data and KEGG pathways.

In the DANUBE framework, instead of modeling the data under a specific assumption, we
construct empirical distributions and use them to calculate empirical p-values. Following the
black arrows (1-4) in Figure 2, we initially calculate the values 4, b, ..., ¢, of the
discriminating statistic for the m studies in step (1). For example, instead of using a
statistical test to directly calculate the p-values, we could calculate the means of the data
samples over the m studies. In step (2), we construct the empirical null distribution &7 for
the chosen statistic. In step (3), we calculate the empirical p-values ep, ep, ..., epy, for the
m studies with respect to the empirical null distribution £7 Forall /€ {1, 2, ..., m}, epjis
calculated as the number of elements in £7more extreme than #; divided by the total number
of elements in £7 We will prove that the resulting empirical p-values are uniformly
distributed under the null hypothesis.

Lemma 1—Let T be a random variable with the empirical distribution £7and the
cumulative distribution function F7 (7). We define the new random variable X as follows:

|{x:x €érAx< T}|
=

©)

where the numerator represents the number of elements of £7that are smaller than or equal
to 7. If £7consists of enough data points to be considered as continuous, then X'is
uniformly distributed on the interval [0,1].

Proof—Denote F7(7) as the cumulative distribution function of T. For any value € &7,
F7(9 can be calculated as follows:
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{x:xeénx <l

&1

FT(t) = (4)

We can see that X'= F7(7). In addition, F7(? is a strictly increasing function for all values ¢
€ &7 Let Fx(X) be the cumulative distribution function of X, we have the following
formula:

FX(x) =Pr(X <x)
= Pr(F(T) < F(1)) Q)
=Pr(T <1)=Fpt)=x

We note that F{(x) = xis the cumulative distribution function of the continuous uniform
distribution on [0,1]. Therefore, if we have enough data for ~7( 7) to be considered
continuous, then X'will be a uniformly distributed random variable. W

In step (4), we combine the empirical p-values using either the additive method or the
Central Limit Theorem (CLT). According to Lemma 1, the resulting p-values after step (3)
are now truly uniformly distributed under the null hypothesis and thus can be combined
using the additive method as described in equation (2). However, the additive method can be
computationally intensive when m is large. For this reason, we use the CLT to approximate

the combined p-value [47]. The uniform distribution has mean and variance of % and %
respectively. According to the CLT, the average of m independent and identically distributed
(i.i.d.) variables (with large m) follows a normal distribution with mean p = % and variance

o’ = ﬁ By default, we use this to approximate the combined p-value when /= 20. We

note that the additive method of combining p-values in our framework may be substituted by
any other method of combining p-values.

B. The application of DANUBE in pathway analysis

Here we present the application of DANUBE in the context of pathway analysis (Figure 3).
Let us consider a method M, which can be GSEA, GSA, SPIA, or PADOG, or any other
method that outputs a p-value for each pathway in the pathway database. We treat this p-
value as the discriminating statistic. In step (1), we calculate the p-values of the pathways
using the method M. A pathway /will have m p-values (pa, pp, ..., Pim) for the m studies.
The m p-values for a pathway are independent and identically distributed (i.i.d.). However,
these p-values are not necessarily uniformly distributed under the null hypothesis (see Figure
1). Therefore, combining these p-values will lead to systematic bias in identifying significant
pathways as shown in Section I1-C and as will be further illustrated in Section IV. Instead of
combining these p-values, we treat them as observed values of the discriminating statistic.
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To calculate the probability of observing such values, we need to construct the empirical
distribution under the null hypothesis as described in steps (2-5) above. In step (2), we take
all of the control samples from the /7 studies to create a set of control samples as shown in
(C) in Figure 3. In step (3), we generate the & synthetic datasets by random sampling from
the pool of control samples. For example, for a simulation, we choose two groups of samples
from the pool and label them as controls and diseases. In our case study using the
Alzheimer’s datasets, as described in Section I1-C, we generated 10, 000 simulations of 10
control and 10 disease samples, 10, 000 simulations of 10 control and 20 disease samples,
10, 000 of 20 control and 10 disease samples, and 10, 000 of 37 control and 37 disease
samples, for a total of 40, 000 simulations.

After generating & simulations from the control samples, we proceed to calculate the p-
values for each pathway and each simulation using the same method M. For a pathway /, we
have a set of p-values spj1, Spp, ..., SPjx Since all of these p-values are calculated from the
real control samples (i.e. healthy people), they can be considered as p-values under the null
hypothesis. These p-values will be used to construct the empirical distribution &;in step (5).
In summary, steps (2-5) produce an empirical distribution for each pathway, resulting in a
total of nempirical distributions for /7 pathways. These distributions will be used to calculate
the empirical p-values of the measurements done in step (1).

After steps (1-5), for a pathway /, we have m p-values pj, Pp, ..., Pimand an empirical
distribution &;. Using the formula described in Equation (2), we calculate the empirical p-
values epp, epp, ..., epim As we showed in the Methods section, these empirical p-values
are independent and uniformly distributed under the null hypothesis. In step (7), we combine
these empirical p-values using the additive method to have a single p-value pDANUBE; for
pathway /.

IV. Results and Validation

In this section we illustrate the limitations of combining p-values using classical meta-
analysis approaches, and show that DANUBE overcomes these limitations. Sections 1V-A
and IVV-B compare the classical approaches with DANUBE for the specific application
domain of pathway analysis. Sections IV-C and IV-D compare the classical meta-analysis
approaches with DANUBE in the general case, applicable to any meta-analysis.

For the pathway analysis applications on which we focus in this paper, we compare
DANUBE with 5 other classical meta-analysis methods: Stouffer’s, Z-method, Brown’s,
Fisher’s, and the additive method [14, 24, 48, 49], each of them combined with each of the 4
pathway analysis methods (GSEA, GSA, SPIA, and PADOG). We also compare these
methods with a stand-alone meta-analysis method, MetaPath. In total, we analyze the results
of 25 approaches: 6 meta-analyses combined with 4 pathway analysis methods, plus
MetaPath [11, 50]. Each of these methods is tested on two diseases, one is Alzheimer’s
disease with 7 and the other is acute myeloid leukemia (AML) with 9 datasets. These
conditions were selected for two reasons. First, there is a pathway in KEGG for each of the
diseases. We refer to this as the farget pathway, and use it to validate the methods. Second,
there are multiple experiments available in the public domain for both of these diseases.
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A. Pathway analysis applications: Alzheimer’s disease

The Alzheimer’s datasets we use in our data analysis are GSE28146 (hippocampus) and
GSE5281 (6 different tissues: entorhinal cortex (EC), hippocampus (HIP), medial temporal
gyrus (MTG), posterior cingulate (PC), superior frontal gyrus (SFG), and primary visual
cortex (VCX)). The 4 pathway analysis methods, GSEA, GSA, SPIA, and PADOG, were
used to process the expression data in each study and output a p-value for each study and for
each pathway. Details of all datasets are provided in Supplementary Section 3.

The rankings and FDR-corrected p-values of the target pathway Alzheimer’s disease for the
7 Alzheimer’s datasets are displayed in Figure 4. The graphs demonstrate that the adjusted
p-values and rankings of the target pathway vary substantially between the 4 methods for a
given study, and from one study to the next. Furthermore, both GSA and PADOG report the
target pathway Alzheimer’s disease as not significant in all 7 studies.

We combine the 4 pathway analysis methods with 6 meta-analyses: Stouffer’s, Z-method,
Brown’s, Fisher’s, the additive method, and DANUBE. Using a pathway analysis method MV,
each pathway has 7 p-values — one per study. These 7 p-values are combined using each of
the 6 meta analysis methods Therefore, each pathway analysis method produces 6 lists of
pathways. Each list has 150 pathways ranked according to the combined p-values. We then
adjusted the combined p-values for multiple comparisons in each list using FDR.

In order to run DANUBE, we generated the null distributions from control samples as
described in Section I11-B. We took the 74 control samples from the 7 Alzheimer’s datasets,
and randomly divided them into “control” and “disease” subgroups. We generated 10, 000
simulations of 10 controls and 10 diseases, 10, 000 simulations of 10 controls and 20
diseases, 10, 000 of 20 controls and 10 diseases, and 10, 000 of 37 controls and 37 diseases,
for a total of 40, 000 simulations. For each pathway analysis method, we constructed 150
empirical distributions for 150 KEGG signaling pathways (totally 600 empirical
distributions for the 4 methods GSEA, GSA, SPIA, and PADOG). We used these empirical
distributions to calculate the empirical p-values before applying the additive method to
combine the empirical p-values for each pathway, resulting in 150 combined p-values. We
then adjusted the combined p-values for multiple comparisons using FDR. Running time is
reported in Supplementary Section 5 and Tables S1-S2.

Table I displays the results using GSA combined with the 6 meta-analysis methods. The
horizontal line across each list marks the 1% significance threshold. The pathway
highlighted green is the target pathway Alzheimer’s disease. Pathways highlighted in red are
examples of false positives. These pathways were expected to be reported as false positives
because their null distribution is very skewed towards zero (see Figure 1 panels A1-A3 and
Supplementary Figure S3). These include Adherens junctionand several cancer-related
pathways, none of which are known to be implicated in Alzheimer’s disease. Stouffer’s
method, the additive method, and DANUBE identify the target pathway as significant.
DANUBE vyields the best ranking.

Both Stouffer’s and the additive method identify the target pathway as significant using
GSA, as shown in Table I. However, the inherent bias of the null distribution brings
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irrelevant results into the list of significant pathways. For Stouffer’s method, pathways
having p-values biased toward zero, such as Prostate cancer, Adherens junction, Pathways in
cancer, and Pancreatic cancer are still among the significant pathways. For the additive
method, pathways having p-values biased toward zero, such as Prostate cancer, Adherens
Junctionand Pathways in cancer are still among the significant pathways.

Table Il displays the results using PADOG combined with the 6 meta-analysis methods.
Only DANUBE identifies the target pathway as significant. Z-method and Brown’s method
return no significant pathways. For Stouffer’s, Fisher’s, and the additive method, the
systematic bias of the pathway analysis method greatly influences the outcome of the meta-
analyses. Pathways having p-values biased toward zero, such as Adherens junction and
cancer related pathways (see Figure 1 panels C1-C3 and Supplementary Figure S5) are
among the significant pathways.

Supplementary Table S3 displays the results using SPIA combined with the 6 meta-analysis
methods. The target pathway is significant and is ranked near the top for all methods.
DANUBE vyields the shortest list of significant pathways. All the 5 significant pathways,
Parkinson’s disease, Alzheimer’s disease, Synaptic vesicle cycle, Cardiac muscle contration,
and Huntington’s disease are also significant when we combine DANUBE with GSA and
PADOG.

Supplementary Table S4 displays the results using GSEA combined with the 6 meta-analysis
methods. The horizontal line across each list marks the cutoff FDR = 0.01. The pathway
highlighted green is the target pathway Alzheimer’s disease. The target pathway is
significant for all the 6 meta-analysis methods. Because GSEA is unbiased, the additive
method and DANUBE have equivalent results. These two methods have a shorter list of
significant pathways and rank the target pathway higher than other methods. In addition, all
the 4 significant pathways, Cardiac muscle contration, Huntington’s disease, Alzheimer’s
disease, and Parkinson’s disease appear in the lists of significant pathways when we
combine DANUBE with GSA, PADOG, and SPIA.

There is no gold standard for assigning true or false values to each of the results, apart from
the expectation that a disease under study should impact its namesake pathway. Indeed, the
target pathway A/lzheimer’s disease is ranked as significant for all of the 4 pathway analysis
methods when combined with DANUBE. The target pathway is also ranked higher when
using DANUBE compared to the results of other 5 meta-analysis methods. In addition, the
pathways Parkinson’s disease, Alzheimer’s disease, Cardiac muscle constration, and
Huntington’s disease, consistently appear as significant in the results of all the 4 pathway
analysis methods when combined with DANUBE.

Alzheimer’s, Parkinson’s, and Huntington’s diseases are three neurological disorders that
have many commonalities including abnormal protein folding, endoplasmic reticulum stress,
and ubiquitin mediated breakdown of proteins, leading to programmed cell death. Given that
the pathway Alzheimer’s disease is influenced by the mitochondrial compartment, which is
strongly implicated in the disease [51-54], it is not surprising that other pathways with
strong mitochondrial components also garner high rankings. Previous studies [55] have
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shown the presence of a cross-talk that makes the neurological disease pathways,
Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, along with Cardiac
muscle contraction, appear as significant simultaneously, due to their dominant
mitochondrial module. Cardiac muscle contraction has a strong mitochondrial component
and is highly dependent on calcium signaling, which is also prevalent in Synaptic vesicle
cycle, Alzheimer’s disease, and Huntington’s disease. Ca2+ regulates mitochondrial
metabolism, but calcium overload to mitochondria can result in cell damage from reactive
oxygen [56].

We also use MetaPath to combine the 7 studies. MetaPath is a stand-alone meta-analysis
method, which does not need an external pathway analysis tool. This method performs meta-
analysis at both gene (MAPE_G) and pathway levels (MAPE_P), and then combines the
results (MAPE_I) to give the final p-value and ranking of pathways. Supplementary Table
S5 shows the top 7 pathways using MetaPath for the 7 Alzheimer’s datasets. The target
pathway Alzheimer’s disease is not significant and is outranked by 6 other pathways.

B. Pathway analysis applications: AML

The AML datasets we use in our data analysis are GSE14924 (CD4 and CD8 T cells),
GSE17054 (stem cells), GSE12662 (CD34+ cells, promyelocytes, and neutrophils and PR9
cell line), GSE57194 (CD34+ cells), GSE33223 (peripheral blood, bone marrow),
GSE42140 (peripheral blood, bone marrow), GSE8023 (CD34+ cells), and GSE15061 (bone
marrow). The rankings and FDR-corrected p-values of the target pathway Acute myeloid
leukemia for the 9 AML datasets are displayed in Supplementary Figure S12. The graphs
demonstrate that the adjusted p-values and rankings of the target pathway vary substantially
between the 4 methods for a given study, and from one study to the next. Furthermore, the
AML pathway was not found to be significant by any method in any dataset.

We combine the 4 pathway analysis methods with the 6 meta-analysis methods. Using a
pathway analysis method A, each pathway has 9 p-values — one per study. These 9 p-values
are combined using each of the 6 meta-analysis methods Therefore, each pathway analysis
method produces 6 lists of pathways. Each list has 150 pathways ranked according to the
combined p-values. We then adjust the combined p-values for multiple comparisons in each
list using FDR.

In order to run DANUBE, we generated the null distributions from control samples as
described in Section I11-B. We took the 140 control samples of the 9 AML datasets, and
randomly designated “control” and “disease” subgroups. We generated 10, 000 simulations
of 10 controls and 10 diseases, 10, 000 simulations of 30 controls and 50 diseases, 10, 000
of 50 controls and 30 diseases, and 10, 000 of 70 controls and 70 diseases, for a total of 40,
000 simulations. For each pathway analysis method, we constructed 150 empirical
distributions for 150 KEGG signaling pathways (totally 600 empirical distributions for the 4
pathway analysis methods). We then used the empirical distributions to calculate the
empirical p-values before applying the additive method to combine the empirical p-values
for each pathway, resulting in 150 combined p-values. Finally, we adjusted the combined p-
values for multiple comparisons using FDR.
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Table 111 displays the results of GSA combined with the 6 meta-analysis methods, ordered
by the FDR corrected p-values. We place a horizontal line across each list to mark our 1%
cutoff. Stouffer’s method, the additive method, and DANUBE identify the target pathway as
significant. DANUBE yields the best ranking (ranked 1%%), followed by the additive (2% and
Stouffer’s method (1377). In addition, the target pathway is the only significant pathway in
DANUBE’s result.

Table IV shows the results of PADOG combined with the 6 meta-analysis methods. The
target pathway is significant for the 4 methods: DANUBE, Stouffer’s, Fisher’s, and the
additive method. For DANUBE, Acute myeloid leukemiais ranked 1% compared to 7% using
the other three meta-analysis methods. There are no significant pathways using the Z-
method and Brown’s method.

Supplementary Table S6 shows the results of SPIA combined with the 6 meta-analysis
methods, ordered by the FDR corrected p-value. Again, the target pathway is significant
using Stouffer’s, Fisher’s, the additive method, and DANUBE. The additive method and
DANUBE have the same list of significant pathways. In addition, both methods place the
target pathway higher than the other two methods.

Supplementary Table S7 displays the results of GSEA combined with the 6 meta-analysis
methods. The target pathway Acute myeloid leukemiais highlighted in green. For all 6
meta-analyses, the target pathway is not significant despite being ranked among the top
pathways. Since GSEA has no bias, the additive method and DANUBE vyield similar results.
In essence, even though it is completely unbiased, GSEA lacks the power to identify the
Acute myeloid leukemia (AML) as significant in the AML data.

We also use MetaPath to combine the 9 acute myeloid leukemia studies. Supplementary
Table S8 shows the top 5 pathways using MetaPath. The target pathway is not significant
(p=0.4), and is outranked by 2 other pathways.

Table V summarizes all the results for the 25 approaches (4 pathway analysis methods each
combined with one of 6 meta-analysis approaches, plus MetaPath). On average, DANUBE
performs best in terms of ranking, as well as in terms of identifying the target pathway as
significant at the 1% cutoff.

We note that for both diseases, DANUBE and the additive methods have the same results
when combined with GSEA because GSEA is an unbiased method with uniform
distributions of p-values under the null. In addition, the results of the two methods for SPIA
are almost equivalent because the distributions of the p-values produced by SPIA under the
null are closer to the expected uniform. Notably, DANUBE is more useful in conjunction
with methods that have more skewed empirical null distributions.

C. General case: t-test and Wilcoxon test

In this section we will demonstrate the generality of the problem, beyond pathway analysis
applications. In order to do so, we have used the one sample t-test [57, 58] and the one
sample Wilcoxon signed-rank test [59-61], as illustrative examples of parametric and non-
parametric tests. Using simulated null distributions, we show that both the t-test and
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Wilcoxon tests have systematic bias depending on the shape and the symmetry of the null
distribution. When the p-values are biased towards zero, combining multiple studies results
in an increase of type | error (prevalence of false positives). When the p-values are biased
towards one, the test loses power and more evidence is needed to identify true positives.

In Figure 5, panel (a) displays a simulated null distribution Hg which is not symmetrical and
does not follow any standard distribution. Panel (b) displays an alternative distribution H,
which has the same shape as Hp, but a slightly smaller median. Panel (c) displays another
alternative distribution A, which has the same shape as Hp but a slightly larger median. Each
population has 100, 000 elements. The goal here is to investigate the ability of each
approach to distinguish between Hp and Hy, and between Hg and Hy, respectively. This is
attempted using both a t-test and a Wilcoxon test.

Denoting My and rmg as the mean and median of the null distribution Hy, M, is used as the
parameter (mean) for the t-tests where 777y is used as the parameter (median) for Wilcoxon
test. To make the analysis more general, the sample size is randomized between 3 and 10
everytime we pick a sample. Since DANUBE uses the additive method to combine the p-
values, we also use the additive method to combine the p-values of t-test and Wilcoxon test.
When the number of studies is larger or equals to 20, the combined p-values are calculated
using the Central Limit Theorem as described in section Il1.

Panels (d-h) show the results using the one sample left-tailed t-test for the mean; panels (i—
m) show the results using the one sample right-tailed t-test for the mean; panels (n-r) show

the results using the one sample left-tailed Wilcoxon test for the median; panels (s—w) show
the results using one sample right-tailed Wilcoxon test for the median.

Panel (d) shows the distribution of p-values for samples drawn from the null distribution AHj.
To plot this panel, we randomly select 100, 000 samples from A and then calculate the p-
values using the left-tailed t-test. Since the null distribution A is not normal, the resulting p-
values are not uniformly distributed. Panel (e) displays the distribution of combined p-values
for samples drawn from the null distribution AHp. To calculate a combined p-value, we
randomly pick 10 samples from the null population A and then calculate the 10 p-values
using the left-tailed t-test. From these 10 p-values, we calculate a combined p-value using
the addiive method. This procedure is repeated 100, 000 times to generate the distribution of
the combined p-values under the null hypothesis. Similarly, panel (f) displays the
distribution of the combined p-values for samples drawn from the alternative distribution .

The red dashed lines in panels (e, f) show the 0.05 cutoff. Since the combined p-values in (g)
are calculated under the null hypothesis, values smaller than the cutoff are false positives.
Therefore, the blue area to the left of the red dashed line is type I error of the classical meta-
analysis using the left-tailed t-test. Similarly, combined p-values larger than the cutoff in
panel (f) are false negatives. The blue area to the right of the red line panel (f) displays type
Il error.

The results show that combined p-values will be biased towards zero, since p-values of the
left-tailed t-test are biased towards zero. To understand the behavior of the meta-analysis, we
display type | and type Il error in panels (g, h) with varying numbers of studies to be
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combined. As the number of studies increases, the meta-analysis becomes more biased, and
type | error increases. For example, when the number of studies reaches 50, the analysis has
more than 60% false positives. Paradoxically, increasing the number of studies will make the
meta-analysis less useful due to the increase of type | error.

Panels (i-m) display the results of the right-tailed t-test. Panel (i) displays the distribution of
p-values for samples drawn from the null distribution Hp. Panel (j) displays the combined p-
values for samples drawn from the null distribution A. Panel (k) displays the combined p-
values for samples drawn from the alternative distribution H,. Each combined p-value is
calculated from 10 individual p-values. The right-tailed t-test is biased towards one,
therefore more evidence is required to identify true positives. Compared to the left-tailed t-
test, the right-tailed t-test has smaller type | error but larger type 11 error (less power).
Therefore, many more studies would be required for this test to identify true positives. Panel
(m) shows that for the case of combining 10 studies, the type Il error of the right-tailed t-test
is about 0.5 whereas the type Il error of the left-tailed t-test is less than 0.2.

Panels (n—r) display the results of meta-analysis using the one sample left-tailed Wilcoxon
test for the median. In this example, the left-tailed Wilcoxon test is biased towards one, so
more evidence is required to identify true positives. As shown in panel (r), the expected type
Il error of the meta-analysis is about 0.6 when combining 10 studies. Interestingly, the
behavior of the meta-analysis using the left-tailed Wilcoxon test is similar to that of the the
right-tailed t-test. In both cases, the meta-analysis needs a large number of studies to identify
true positives. Panels (m and r) show that type Il error converges to zero as the number of
studies increases.

Panels (s—w) display the results of meta-analysis using the one sample right-tailed Wilcoxon
test for the median. Similar to the t-test, the right-tailed Wilcoxon test is biased towards zero.
As shown in panels (g, v), type | error using either of the two tests increases as the number
of studies increases.

D. General case: DANUBE

In this section, we analyze the performance of DANUBE using the same null and alternative
distributions that were used for the t-test and Wilcoxon tests. Figure 6 displays the results
using DANUBE. Panels (a, b, ¢) show the null distribution Ay and two alternative
distributions H; and H,. Panels (d-h) display the results using left-tailed DANUBE for the
mean; panels (i-m) display the results using right-tailed DANUBE for the mean; panels (n—
r) display the results using left-tailed DANUBE for the median; panels (s—w) display the
results using right-tailed DANUBE for the median.

We randomly select 10, 000 samples from the null distribution and use them to construct the
empirical distribution of sample means (panels d-m) and likewise of sample medians
(panels n—w). For a given empirical distribution, we calculate the probability of observing
the discriminating statistic in a study. Panel (d) displays the distribution of empirical p-
values for samples drawn from the null distribution Hp; we see that these are uniformly
distributed under the null hypothesis. Panel (e) displays the distribution of combined p-
values for samples drawn from the null distribution AHp. Each combined p-value is calculated
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from 10 individual empirical p-values. The blue area to the left of the red dashed line is type
I error. Since the individual p-values are uniformly distributed, the combined p-values are
also uniformly distributed. Consequently, the type | error of this test is equal to the
threshold. Panel (f) displays the distribution of combined p-values for samples drawn from
the alternative distribution H;. The blue area to the right of the red dashed line is the type Il
error.

Panels (g, h) display the type I and type Il error of DANUBE with varying numbers of
combined studies. The graphs show that the type | error of DANUBE consistently equals the
threshold while type Il error decreases when the number of studies increases. When
combining 10 studies, the type I and type Il errors of the left-tailed DANUBE for the mean
are 0.05 and 0.27, respectively, compared to 0.24 and 0.14 for the left-tailed t-test. When the
number of the studies increases over 30, one can expect DANUBE to give a 0.05 type | error
and an almost zero type Il error.

Similar to the left-tailed test, right-tailed DANUBE on the mean has the expected type |
error and a reasonable type Il error as shown in panels (I, m). With 10 studies to be
combined, the right-tailed DANUBE’s type | and type Il errors are 0.05 and 0.25,
respectively, compared to 0.01 and 0.51 for the right-tailed t-test. The results for the mean
show that both left- and right-tailed type | errors are equal to the threshold while the type Il
error decreases rapidly. On the contrary, the left and right-tailed t-tests have unpredictable
behavior due to the skewness of the null distribution.

Panels (n—w) show the results of left- and right-tailed DANUBE for the median. As
expected, the type | error for the median is also equal to the threshold, regardless of the
number of studies that are combined. The test is proven to be powerful for both tails with
type Il error less than 0.2 for 10 studies. When compared to the left-tailed Wilcoxon test on
10 studies, the DANUBE left-tailed type Il error is 0.17 as opposed to 0.61.

V. Conclusions

In this paper, we present a new framework to combine the results of multiple studies in order
to gain more statistical power. Our framework first calculates the empirical p-values for each
study using the empirical distribution of the discriminating statistic. It then combines the
empirical p-value using either the Central Limit Theorem or the additive method. The new
framework makes no statistical assumptions about the data and is therefore usable in many
practical cases when no simple model is appropriate. In addition, use of the additive method
makes the framework more robust to outliers.

The advantage of the new meta-analysis framework is demonstrated using both simulation
and real-world data. In our simulation study, we compare the results of DANUBE to the
classical additive method using the one sample t-test and Wilcoxon signed-rank test. The
skewness and the non-normality of the simulated null distribution produces systematic bias
in classical meta-analysis, either increasing type | error or decreasing the power of the test.
In contrast, the type | error of DANUBE is equal to the threshold cutoff and type Il error
declines quickly when the number of studies increases.
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To evaluate the proposed framework for pathway analysis applications, we examine 7
Alzheimer’s and 9 acute myeloid leukemia datasets using 25 approaches: 6 meta-analysis
methods, Stouffer’s, Z-method, Brown’s, Fisher’s, the additive method and DANUBE, each
of them combined with 4 representative pathway analysis methods, GSA, SPIA, PADOG,
and GSEA, plus an additional independent meta-analysis method MetaPath. The results
confirm the advantage of DANUBE over classical meta-analysis to identify pathways
relevant to the phenotype.

This work describes an important limitation of current meta-analysis techniques, and
provides a general statistical approach to increase the power of an analysis method using
empirical distributions. With vast databases of biological data being made available, this
framework may be powerful because it lets the data speak for itself. The proposed
framework is flexible enough to be applicable to various types of studies, including gene-
level analysis, pathway analysis, or clinical trials to assess the effect of a therapy in complex
diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

The empirical null distributions of p-values using: Gene Set Analysis (GSA) - top, Signaling
Pathway Impact Analysis (SPIA) - middle, and Down-weighting of Overlapping Genes
(PADOG) - bottom. The distributions are generated by re-sampling from 74 control samples
obtained from 7 public Alzheimer’s datasets. The horizontal axes display the p-values while
the vertical axes display the p-value densities. Panels AO-A6 (blue) show the distributions of
p-values from GSA,; panels BO-B6 (purple) show the distribution of p-values from SPIA;
panels CO-C6 (green) show the distribution of p-values from PADOG. The large panels on
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the left, A0, BO, and CO, display the distributions of p-values cumulated from all KEGG
signaling pathways. The smaller panels on the right display the p-value distributions of
selected individual pathways, which are extreme cases. For each method, the upper three
distributions, for example A1-A3, are biased towards zero and the lower three distributions,
for example A4-AB, are biased towards one. Since none of these p-value distributions are
uniform, there will be systematic bias in identifying significant pathways using any one of
the methods. Pathways that have p-values biased towards zero will often be falsely identified
as significant (false positives). Likewise, pathways that have p-values biased towards one are
more likely to be among false negative results even if they may be implicated in the given
phenotype.
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Fig. 2.
The DANUBE framework for meta-analysis. The blue arrows (I and I1) show the classical

meta-analysis pipeline while black arrows (1-4) show the pipeline of DANUBE. The first
step (1) of the classical approach is to perform a parametric or non-parametric test for each
study. This step provides individual p-values which are independent and identically
distributed (i.i.d.), but not necessarily uniformly distributed under the null, as shown in Fig.
1. The second step (I1) of the classical approach is to use a classical method, such as
Fisher’s, to combine the individual p-values, relying heavily on the assumption of
uniformity under the null. In step (1) of DANUBE, we choose the discriminating statistic
and calculate the values of this statistic in each study (4, b, ..., ¢;). In step (2), we generate
the empirical distribution &7-of the discriminating statistic under the null hypothesis. In step
(3), we calculate the probability of observing 4, &, ..., tpusing &7 In step (4), we combine
the mempirical p-values using either the additive method or the Central Limit Theorem
(CLT).
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Fig. 3.

Dg\NUBE’s application in pathway analysis. The input is /7 studies (datasets), and a
pathway database, such as KEGG. Each dataset has a certain number of control and disease
samples. Step (1): perform pathway analysis using a method M (eg. GSA, SPIA, or
PADOG). For each pathway, the resulting /m p-values are independent and identically
distributed (i.i.d.). However, these p-values are not uniformly distributed under the null
hypothesis (see Figure 1), and therefore combining them would result in systematic bias.
Step (2): pool the control samples from the /7 datasets to produce a large set of control
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samples. Step (3): generate A simulated datasets by randomly sampling from the pool. Since
the “disease” and “control” samples in each of the simulated datasets were chosen only from
the control samples of the original /m studies, the resulting p-values are calculated under the
null hypothesis. Step (4): perform pathway analysis on the simulated data. Step (5): build an
empirical distribution for each pathway, which consists of & p-values obtained under the null
hypothesis. Step (6): calculate an empirical p-value for each p-value obtained from step (1).
For example, using the empirical distribution &, we calculate the empirical p-value epy; as
the probability of observing a p-value more extreme than py, i.e., €011 = {sp1; < p11, 7€
[1..A4])|- Step (7): combine the mempirical p-values obtained for each pathway using either
the additive method or the Central Limit Theorem.
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Ranks (panel A) and p-values (panel B) of the KEGG target pathway, Alzheimer’s disease,

for 7 Alzheimer’s datasets, using the pathway analysis methods: Gene Set Enrichment

Analysis (GSEA), Gene Set Analysis (GSA), Signaling Pathway Impact Analysis (SPIA),
and Down-weighting of Overlapping Genes (PADOG). The horizontal axes show the 7

Alzheimer’s datasets. The vertical axis in panel (A) shows the rankings of the target pathway

for each dataset using the 4 methods. The vertical axis in panel (B) shows the FDR-corrected
p-values of the target pathway. The red horizontal line in (B) shows the threshold 0.01. Note
how the rankings and p-values of the target pathway vary greatly across different datasets

and methods, making the interpretation of the results very difficult.
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Fig. 5.

Type | and Type Il errors of the classical meta-analysis using one sample t-test and
Wilcoxon signed-ranked test. Panel (a) displays the probability distribution under the null
hypothesis Hp. Panel (b) displays an alternative distribution A4 which has the same shape as
the null distribution with a slightly smaller median. Panel (c) displays another alternative
distribution A, which has the same shape as the null distribution with a slightly larger
median. Panels (d-h) display the results using left-tailed t-tests. Panel (d) displays the
distribution of p-values using left-tailed t-test for samples drawn from the null distribution
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Ho. Panel (e) displays the distribution of combined p-values using left-tailed t-test for
samples drawn from the null distribution AHj. The red dashed line represents the threshold
(0.05) below which the null hypothesis will be rejected. The blue area to the left of the red
dashed line is type | error (false positives). Panel (f) displays the distribution of combined p-
values using a left-tailed t-test for samples drawn from the alternative distribution A;. The
blue area to the right of the red dashed line is type Il error (false negatives). Panel (g)
displays the type | error with varying number of studies. Panel (h) displays the type Il error
with varying number of studies using a left-tailed t-test for samples drawn from the
alternative distribution AHy. Similarly, panels (i-m) display the results using right-tailed t-test;
panels (n—r) display the results of left-tailed Wilcoxon signed-rank test; panels (s—w) display
the results of right-tailed Wilcoxon signed-rank test. In this example, the left-tailed t-test and
right-tailed Wilcoxon tests are biased towards 0 as shown in (e,f). Therefore, an increase in
the number of studies makes the combined p-values more biased towards 0, causing an
increase in type | error as shown in (g,v). On the contrary, the right-tailed t-test and left-
tailed Wilcoxon test are biased towards 1. This kind of bias makes the test less powerful. For
example, with 10 studies, type Il errors using right-tailed t-test and left-tailed Wilcoxon test
are 0.51 and 0.61, respectively.
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Fig. 6.

Type | and type Il errors of DANUBE using mean and median as discriminative statistics.
Panel (a) displays the probability distribution under the null hypothesis (Hp). Panel (b)
displays an alternative distribution (A7), which has the same shape as the null distribution
but a slightly smaller median. Panel (c) displays an alternative distribution (H,) which has
the same shape as the null distribution but a slightly larger median. Panels (d-h) display the
results of the left-tailed DANUBE using mean; panels (i-m) display the results of the right-
tailed DANUBE using mean; panels (n—r) display the results of left-tailed DANUBE using
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median; panels (s—w) display the results of right-tailed DANUBE using median. Panels (d, i,
n, s) show the p-value distributions for samples drawn from the null. For all four tests, p-
values are uniformly distributed under the null hypothesis. Consequently, the combined p-
values (using the additive method) are also uniformly distributed under the null hypothesis
as shown in (e, j, 0, t). The result is that the type | error equals the threshold (0.05)
regardless of the number of studies combined, as shown in (g, I, q, v). Panels (h, m, r, w)
show that the type Il error converges quickly to zero. Combining 10 studies, the type Il
errors of left and right-tailed DANUBE for the mean are both less than 0.3 compared to 0.51
for the right-tailed t-test. Similarly, using the median, the type Il error of DANUBE is less
than 0.2 compared to 0.61 for the left-tailed Wilcoxon test.
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