
1

Cyber physical modeling of distributed resources
for distribution system operations

Spyros Chatzivasileiadis, Member, IEEE, Marco Bonvini, Javier Matanza, Rongxin Yin, Zhenhua Liu,
Thierry Nouidui, Emre C. Kara, Rajiv Parmar, David Lorenzetti, Michael Wetter,

and Sila Kiliccote, Member, IEEE

Abstract—Co-simulation platforms are necessary to study the
interactions of complex systems integrated in future smart grids.
The Virtual Grid Integration Laboratory (VirGIL) is a modular
co-simulation platform designed to study interactions between
demand response strategies, building comfort, communication
networks, and power system operation. This paper presents
the coupling of power systems, buildings, communications and
control under a master algorithm. There are two objectives.
First, to use a modular architecture for VirGIL, based on the
Functional Mock-up Interface (FMI), where several different
modules can be added, exchanged, and tested. Second, to use
a commercial power system simulation platform, familiar to
power system operators, such as DIgSILENT Powerfactory. This
will help reduce the barriers to the industry for adopting such
platforms, investigate and subsequently deploy demand response
strategies in their daily operation. VirGIL further introduces the
integration of the Quantized State System (QSS) methods for
simulation in this co-simulation platform. Results on how these
systems interact using a real network and consumption data are
also presented.

Index Terms—Co-Simulation, Functional Mock-up Interface,
Modelica, Demand Response, Load Flow, DigSILENT Powerfac-
tory, OMNET++

I. INTRODUCTION

Moving towards “smarter” grids, power systems complexity
increases through the embedding of communication networks,
demand side management, electric vehicles, and the stochastic
nature of several renewable energy sources (RES). Simula-
tion platforms specialized in power systems can no longer
handle in an adequate way the increasing interdependencies
with systems such as communications, buildings, and electric
vehicles. More detailed simulation tools are necessary to study
the system interdependencies and determine the appropriate
control strategies for optimizing power system operation. An
option is to extend the existing power system simulation tools
by incorporating the dynamics of such networks inside the
same simulation platform. On the other hand, research in the
respective fields has developed highly detailed and reliable
tools, which can simulate the behavior and control of such
systems. This paper adopts the co-simulation approach, where
highly developed and reliable simulation tools, specialized in
the respective fields, are merged in a common co-simulation
platform to study the interdependencies between systems and
identify appropriate control strategies.

The authors are with the Lawrence Berkeley National Laboratory, Califor-
nia, USA. E-mail: {initial.lastname}@lbl.gov

Although co-simulation has found a lot of applications in
e.g. the automotive industry or building controls (e.g. BCVTB
[1]), in power systems it is a relatively recent field which
has seen some development during the last 8 years. The
approach followed in this paper is to couple a commercial
power system simulation platform, widely used by power
system operators, with advanced modeling tools for buidings
and communication networks. The goal is to determine the
impact the demand response strategies have on the network
and determined optimal algorithms to utilize flexible loads for
power system operation.

Two are the main objectives. First, we aim at reducing the
barriers for adoption of novel demand response and other con-
trol strategies in the daily power system operation. Coupling
a trusted power system simulator, with which several power
system operators are familiar, with other advanced modeling
tools will help towards a wider adoption of such tools. Testing
and becoming familiar with the impact of different strategies
on the power system will allow the wider deployment and
utilization of the energy reserves “stored” in buildings, e.g. in
the form of thermal inertia. Second, we need a modular co-
simulation architecture, which will allow the easy exchange
and test of different simulation modules, as well as the easy
extension with e.g. electric vehicle simulators, optimization
tools, hardware-in-the-loop, etc. For this reason, we use the
Functional Mock-up Interface standard, which provides a
standardized interface for the coupling of several different
tools.

This paper describes the Virtual Grid Integration Laboratory
(VirGIL), which couples a commercial power system simulator
with models for buildings and communication networks. The
goal is to estimate the impact of demand response strategies
on the grid, and to determine optimal algorithms for exploiting
flexible loads (for example, the thermal energy stored in
buildings). To this end, we describe a modular co-simulation
architecture that allows the easy exchange of different simula-
tion models, as well as the easy extension with, e.g., electric
vehicle simulators, optimization tools, hardware-in-the-loop,
and so on.

VirGIL’s architecture is based on the Functional Mockup
Interface, which defines a standard interface for exposing
the capabilities of a simulation tool [2]. FMI provides for a
modular structure that allows the simple exchange and testing
of different co-simulation tools. VirGIL is implemented in
the Ptolemy II framework, which combines continuous and
discrete-event simulation [3].

ar
X

iv
:1

50
5.

00
07

8v
1

 [
cs

.C
E

]
 1

 M
ay

 2
01

5

2

This paper is organized as follows. Section II reviews
existing co-simulation methods in power systems. Section III
provides the overview of the proposed co-simulation archi-
tecture in VirGIL, while Section IV describes the Functional
Mock-up Interface (FMI). Sections V, VI, and VII, VIII
present respectively the development of the Power Systems,
Buildings, Communications, and Control Functional Mock-up
Units (FMUs). Sections IX and X describe the simulation of
the model exchange FMUs based on the QSS algorithm and
the operation of the master algorithm respectively. Section XI
describes simulation results based on real data for the LBNL
network.Finally, Section XII concludes this paper and provides
an outlook for future extensions of this work.

II. CO-SIMULATION IN POWER SYSTEMS

Over the last years, several cosimulation approaches for
power systems have been developed and documented in the
literature. One of the first documented efforts is [4], which
co-simulates power and communications systems. The authors
advocate the use of already existing simulation tools that excel
in their respective fields instead of creating new simulation
platforms (“federated approach”). In that work, power systems
are simulated with fixed step through PSCAD/EMTDC and
PSLF while communications simulations are carried out on the
discrete event simulator ns-2. The two tools are synchronized
at specific “synchronization points” without an implementation
for a rollback function, which results in accumulation of
synchronization induced inacurracies over time. The authors
improved this approach in [5] where they use a master
algorithm with a common timeline for both modules. There
are no “synchronization points”, instead both simulators evolve
synchronously in time.

Most of the co-simulation approaches for power systems
combine power system with communication network simula-
tion (examples for distribution networks are [6], [7]). Ref. [8]
reports a co-simulation approach for power systems and EV
charging and control, where they also use FMI for the coupling
of one of the simulation tools to the master algorithm. A survey
of the latest simulation tools that are used for co-simulation
in power systems is reported, among others, in [9].

This work focuses on the interactions of building models
for energy consumption with distribution system models for
power system operation.

Among the tools used for co-simulation, Gridlab-D is prob-
ably one of the most widespread [10]. It has a flexible envi-
ronment, which incorporates advanced modeling techniques,
efficient simulation algorithms, but most importantly provide
a simulation environment not only for power systems, but also
incorporating detailed load modeling, rate structure analysis,
distributed generator and distribution automation.

In this paper, a commercial power system software, DigSi-
lent Powerfactory, is used for power systems simulation.
Building a co-simulation platform incorporating Powerfactory,
a tool that several utilities trust and use in their daily operation,
decreases the barriers for wider adoption of co-simulation tools
from the industry. Power system operators can incorporate
their version of Powerfactory with the co-simulation platform

to investigate in more detail the effect of demand response
signals, decide and subsequently deploy the most appropriate
in real-time operation. Powerfactory has the additional advan-
tage of being capable to model both AC and DC systems.
A co-simulation approaches incorporating Powerfactory has
also been documented in [11]. However, this is the first time
that a modular co-simulation architecture, based on FMI, is
implemented for coupling Powerfactory with the rest of the
simulation tools.

Besides the development of the appropriate models and
controls within each simulation tool, the focus in this paper is
on the development of the wrapper functions which will make
the modules compatible to the FMI standard for co-simulation.
FMI provides for a modular structure of the co-simulation
platform which allows the simple exchange and testing of dif-
ferent co-simulation tools. VirGIL’s master algorithm will be
Ptolemy II, which can combine both continuous and discrete-
event simulation. At the same novel simulation algorithms
are implemented in Ptolemy II, such as QSS (Quantized-
State-Simulation) which allow for higher efficiency and faster
execution times.

III. VIRGIL

VirGIL (Virtual Grid Integration Laboratory) is a modular
co-simulation platform that currently couples models of power
systems, buildings, communications, and has the potential to
integrate other sources or sinks on the electrical grid, including
electric vehicles. The platform will facilitate developing novel
control algorithms, and optimizing power systems, buildings,
communications and EV charging.

Fig. 1 shows an overview of the VirGIL co-simulation
architecture.

Fig. 1: Overview of the VirGIL co-simulation architecture.
Modules include tools for simulating power systems,
buildings, and communications.

Figure 2 presents in a schematic way the interactions
between the different VirGIL blocks and the potential inputs
and outputs of VirGIL. The communications modules, which
is fully integrated into VirGIL, is represented in this figure as
red blocks of communication delays.

IV. FUNCTIONAL MOCKUP INTERFACE (FMI)

VirGIL’s master algorithm coordinates all modules through
the Functional Mockup Interface (FMI) [2]. FMI defines a
tool-independent standard for exchanging models and running

3

Operator
Optimization Algorithms,

State Estimation, etc.

Power System
Simulator

Demand
Response

Client

Building
Model

Consumption
Active &

Reactive Power

DR Shed
{0,1}

Confirmation Signal

DR Amount
to Shed

P, Q for
Generation

Overloadings,
Voltage Problems,

Stability

System State
Switch Status

Controller
Setpoints

DR Amount
to Shed

Load Consumption
(Current and Forecast)

DR Potential

Measurements
e.g. SCADA, uPMU

Events
e.g. Line Outages

Forecasts
for PV, Wind, etc.

Comm.
Delay

Comm.
Delay

Comm.
Delay

Comm.
Delay

P,Q Consumption
Load Model

Fig. 2: Interactions between VirGIL Modules

standalone simulation tools. In principle, this allows VirGIL to
integrate any FMI-compliant tool. For example different power
system simulation tools can be exchanged and tested without
requiring changes to any other simulation module, or to the
master algorithm.

A simulation model exported according to the FMI standard
is called a Functional Mockup Unit (FMU). An FMU is a zip
file that contains the source or object code needed to execute
a model, plus text files that describe the model’s capabilities.
The FMU may also contain additional resources, such as
documentation and auxiliary input files.

The FMI standard distinguishes between Model Exchange
and Co-Simulation. See Fig. 3. The FMI for model exchange
represents a dynamic component directly, using differential,
algebraic, and discrete equations. Therefore the master algo-
rithm must provide the necessary solvers. By contrast, the FMI
for co-simulation defines an interface for coupling independent
simulation tools. Under co-simulation, the FMU itself provides
the associated solvers. In both cases, the master algorithm
coordinates time, and exchanges inputs and outputs, between
FMUs.

VirGIL can integrate both types of FMU. For example, the
power system model uses the FMI for Co-Simulation, while
the buildings model uses the FMI for Model Exchange.

Fig. 3: FMI for Model Exchange and FMI for Co-Simulation

V. POWER SYSTEMS FMU

We chose DigSILENT PowerFactory after reviewing several
power system software packages. The main focus was on
established commercial power system software, in order to
demonstrate how co-simulation enables the use of familiar
specialized simulation tools. For this project, PowerFactory’s
scripting interfaces, for example to C++, C#, Python, and
Matlab/Simulink, made it especially attractive. In our imple-
mentation, all VirGIL modules, except for the power systems
part run on Linux. DigSILENT Powerfactory runs only on
Windows. As a result, we implemented a socket communica-
tion between Windows and Linux. In Linux the PowerFMU
implements all functions necessary for the FMI standard and
calls their counterpart in the Windows implementation through
the socket. The Windows FMU, in turn, calls the Python
functions that start and stop PowerFactory, parameterize the
simulation, set the inputs, and get the outputs.

Fig. 4: An FMU wrapper for PowerFactory. The arrows rep-
resent variable names.

Fig. 4 shows the structure of the FMU for power systems
simulation. The FMU maps the C-language functions defined
in the FMI standard to calls on PowerFactory’s Python API.
For example:

• fmi2Instantiate(): start PowerFactory, Activate Project.
• fmi2SetReal(), fmi2SetInteger(), fmi2SetString(): Set the

values of variables and parameters.
• fmi2DoStep(): execute load flow.
• fmi2GetReal(), fmi2GetInteger(), fmi2GetString(): Get the

values of variables and parameters.
VirGIL’s initial focus is on the impact of demand response

algorithms in the power system steady-state operation, e.g.,
to investigate line loadings and voltage profiles. Thus the
Power Systems FMU runs several sequential load flows, and
determines the state of the system after each run. Extending
the FMU to handle dynamic simulations is an object of future
work.

VI. BUILDINGS FMU

To study how demand response affects the distribution grid,
VirGIL requires a building model that can capture the relevant
dynamics, without placing undue computational burden on
the overall simulation. For example, the model should have
sufficient detail to show the effect of DR strategies such as
changing temperature setpoints, or reducing fan speeds.

Building energy performance depends on the interaction
between many heterogeneous elements, e.g., the envelope,
windows, lighting, controls, and the heating ventilation and

4

Building
thermal model

HVAC

Local building
controller

Set point/s

Electric power

QCOOL

TRET

mFLOW

DR signals

FMU

Occupancy

Lights

Plug loads

+

+

+
+

+
+

-
+

QIHG

TAMB TGNDSE SW SN SS

TSUPPLY

TRET

Fig. 5: Overview of the VirGIL building FMU model. The
model comprises four main parts: the building thermal
model, the HVAC system, the schedules and the control
system.

air-conditioning (HVAC) systems. To represent these elements,
the building model used in VirGIL comprises four main parts,
as shown in Fig. (5): (1) the thermal system that describe
the envelope, windows, interior slabs and partitions, and room
air; (2) the HVAC systems (e.g., air handling units, fans, etc.);
(3) a set of schedules that describe thermal/electric loads such
as lights, plug loads and internal heat gains generated by
occupants; (4) and the building control systems that manages
the HVAC and other assets in order to maintain the comfort
levels and receives DR signals.

While VirGIL could incorporate EnergyPlus models di-
rectly, using its FMI interface for Co-Simulation [?], a com-
plete EnergyPlus model is too detailed to simulate all the
buildings in a complete distribution system. The Building
Resistance-Capacitance Modeling (BRCM) Toolbox [12] pro-
vides an alternative to overcome the computational burden of
a full-building simulation model such EnergyPlus. The BRCM
toolbox constitutes a part of the process for creating a building
FMU model. Fig. (6) describes the end-to-end process for
generating a building FMU model. The following subsections
provide a detailed description of each step of the process.

A. Generating the EnergyPlus model

An EnergyPlus whole-building energy simulation model is
the first step towards the creation of a simplified building
model used in VirGIL. Creating a detailed EnergyPlus model
can be a time consuming task, for such a reason the Energy-
Plus model have been generated using the Demand Response
Quick Assessment Tool (DRQAT) [13]. Alternately, one can
use prototypical models [14]. The generated EnergyPlus model
contains the entire description of building geometry and other

Building
information

EnergyPlus
model

RC linear
model

Reduced
order model

Modelica
model

Building
FMU

DRQAT BRCM

Model order reduction techniques

HVAC
model

Schedules Control
systems

BuildingsPy

FMI export

Fig. 6: Description of the end-to-end process for generating
the building FMU (Grey boxes are toolboxes or pack-
ages used in the process).

physical properties such as the conductivity of the wall layers,
their thermal capacitances, the solar heat gain coefficients of
the windows, etc. These information will then be used to
generate a simplified first-principle model of the building.

B. Converting the EnergyPlus model to RC model

The Building Resistance-Capacitance Modeling (BRCM)
toolbox allows to converts an EnergyPlus description of a
building’s materials and geometry, to a lumped-capacity RC
network that accounts for first-principle physical properties.
Examples of these properties are the thermal mass and the
effect of solar radiation.

For each thermal zone that is described in the EnergyPlus
model the BRCM toolbox generates a RC network as shown
in Fig. (7). For each zone i the generated RC network contains
the thermal capacitance of the air Ci, the thermal capacitance
of the internal mass present in the zone Ci

IM , and a series of
thermal capacitances and resistances for each of the N layers
of the k walls surrounding the zone Ckni

W . The heat fluxes
qi,qiIM , qkiINT , and qkiEXT respectively represent the internal
heat gains of the zone (e.g. due to occupants, solar radiation,
etc.), the internal heat gains heating the internal mass, the
fraction of solar radiation directed to the innermost layer of the
walls, and the fraction of solar radiation directed the outermost
layer of the walls.

Zone node i

Internal mass
node i

Wall branch 1

Wall branch 2

Wall branch k

Ci

qi

qIM
i

CIM
i

qINT
1i

qINT
2i

qINT
ki

qEXT
ki

qEXT
2i

qEXT
1i

CW
11i CW

12i

CW
21i CW

22i

CW
k1i CW

k2i

Fig. 7: RC network for a generic zone i. Capacitances rep-
resent states (i.e., Temperatures), resistances represent
thermal resistances, and current sources represent heat
fluxes.

Once the RC network model has been parametrized the
model can be written in the following form

5

ẋ(t) = Ax(t) +Buu(t) +Bvv(t) (1a)
y(t) = Cx(t) +Duu(t) +Dvv(t) (1b)

where x(·) ∈ Rn is the state vector containing all the
temperatures of the zones, internal masses and wall layers;
u(·) ∈ Rm is the input vector (e.g., control inputs), v(·) ∈ Rp

are the predicted disturbances (e.g., external air temperature,
solar radiation, internal heat gains, etc.), and y(·) ∈ Ro is the
output vector.

C. From RC model to reduced order model

The linear model describing the first-principle RC network
constitutes a first simplification of the whole-building model.
VirGIL requires a model that is detailed enough to correctly
capture the thermal dynamics of the buildings and correctly
predicts the impact they have on different DR strategies. For
such a purpose the model in (1) needs to be further simplified.

Before starting the simplification it’s important to define the
outputs to be controlled and the input control variables needed
to do so. As shown in Fig. (5) the building thermal model
computes the temperature of the air in the zones that is then
returned to the HVAC system (TRET). The local controller
controls the HVAC system in order to maintain the temperature
of the air in the building as close as possible to the desired set
point. The HVAC system model computes the cooling power to
be delivered to maintain the zones temperatures at the desired
set point.

This description allows to introduce two simplifications.
First, the HVAC and the control system are not part of
the building thermal model. They interact with a suitable
representation of the building that given the internal heat
gains and the other known disturbances computes the return
temperature. This allows to remove the HVAC inputs u(·)
from the model in (1). Second, the output vector y(·) is
equal to the return temperature TRET , that is the weighted
average of the thermal zones temperature. After introducing
such simplifications the model (1) can be rewritten as

ẋ(t) = Ax(t) +Bvv(t) (2a)
y(t) = Cx(t) (2b)

C =
(

V1

VTOT
· · · Vnx

VTOT
0 · · · 0

)
(2c)

where C ∈ R1×Rn is the output matrix, nz is the number
of thermal zones (the first nz elements of the state vector
x(·)), Vi for i ∈ [1, nz] is the volume of the i-th thermal, and
VTOT =

∑nz
i=1 Vi is the sum of all the volumes. The vector

of known disturbances v(·) and outputs y(·) are thus defined
as

v(·) =
(
QIHG TAMB TGND SE SW SN SS

)T
y(·) = (TRET)

Despite the number of input-output relationship of the
model (2) is seven, the number of state variables can be
high enough that the simulation speed remains an issue
(e.g., a model with ten zones can easily have more than
houndred states). For such a reason the model can be further

reduced [15], [16]. The resulting model will have a closely
match of the input-output behaviour while reducing the num-
ber of states.

D. Conversion to Modelica and generation of the FMU

Once the reduced order model that defines the input-output
relationship between the known disturbances and the output is
defined, it’s possible to express it using Modelica, an object-
oriented, equation-based language for modeling multi-domain
physical systems.

Then, drawing on the Modelica Buildings Library [17], we
add the HVAC, loads, and controls logic. These components
predict the active power consumption of the building, and
implement a demand response system that adjusts the zone
temperatures and airflow setpoints according to DR signals
sent by the utility.

Finally, we export the Modelica building model as an FMU
for Model Exchange.

VII. COMMUNICATIONS FMU

With respect to the communication modeling, OMNeT++
[18] was chosen among a number of simulation tools. This
open-source discrete event environment is a general commu-
nication simulator widely used in the research and academic
community. In this framework, a basic model is built in a
hierarchical manner: first the behavior of simple modules is
described in C++; then, these modules are instantiated and tied
together using OMNeT++’s Network Description Language
(NED) in order to form more complex entities.

Since OMNeT++’s main classes are mainly focused on
the implementation of the discrete event machine and the
simulation scheduler, it is common to add a number of
extensions to the framework in order to upgrade the capability
of the model. This is the case of the INET framework, which
includes support for IPv4, IPv6, TCP, Ethernet, HTTP and
many other used protocols within the Internet. Additionally,
there exist other frameworks that implement mobility scenarios
(like VNS), wireless sensor network (like WiXiM or Castalia),
LTE technology (like SimuLTE), etc. INET counts the all the
technologies that are needed for current version of VirGIL.

Other simulator options considered were: ns-2/ns-3 (Net-
work Simulator 2 / Network Simulator 3), JiST (Java in
Simulation Time) and OPNET Modeler R©. Among all of
them, OMNeT++ and ns-2/ns3 have extensively been used
in co-simulation application for Smart Grids scenarios [19]–
[21]. There are several reasons that led us to choose OM-
NeT++, some of which are detailed in the following lines.
OMNeT++ counts with a integrated development environment
(IDE) adapted to Eclipse which facilitates debugging and
topology creation tasks; other simulators, such as ns-2/ns-
3; do not provide any kind of GUI, making debugging a
very tedious task. In addition to this, OMNeT++ counts with
an extensive and detailed documentation. It does not only
provide information for the first steps in running a very generic
simulation, but also include specific details in order to built
onto the core classes for customized models. In fact, there is
a specific section in the documentation on how to embed the

6

simulation kernel into other applications, which is very helpful
for implementing a co-simulation framework such as VirGIL.
Once again, ns-2/ns-3 lacks organized documentation for the
simulator’s code.

From a more technical perspective, OMNeT++ has shown
good agreement with measured data for a number of commu-
nication technologies. This is the case of WiFi (IEEE802.11g)
or LTE, as reported in [22] and [23] respectively. In terms
of performance, both ns-2/ns-3 and OMNeT++ have a similar
performance and offer good scalability features, as discussed
in [24].

Regarding the demand response application under study,
the model counts with three high-level types of actors: server
nodes, where information about DR events is stored; client
nodes, which try to retrieve this information; and a network,
that interconnects all nodes. From a logical perspective, the DR
communication infrastructure can be built using these three
actors.

Both clients and servers in the network under study will
implement Open Automated Demand Response (OpenADR)
as an application layer protocol for exchanging messages.
OpenADR is a standardized communications data model for
sending and receiving DR signals from a utility or independent
system operator to electric customers [25], [26].

Fig. 8: Communication’s layer stack diagram.

Figure 8 shows a more detailed scheme of the model. The
three already mentioned actors can be seen in the figure: an
OpenADR Server, an OpenADR Client and an interconnected
network (in this case the Internet). Additionally, the figure
also shows the implementation of the different communication
layers on each of the nodes. In this case, the de facto
Internet’s layer stack is chosen: TCP as a transport protocol,
IP as network protocol and Ethernet as a physical protocol.
OpenADR servers and clients use the lower layers to transmit
their information. This layered structure, in practice produces
a virtual direct communication between pairs of layers.

Additionally, Figure 8 shows the names that OpenADR’
specification gives to the different nodes in the network:

Virtual End Nodes (VEN) and Virtual Top Nodes (VTN).
Information flows from VTN to VEN. Additionally, a VEN
may also behave as a VTN in order to forward certain data to
other nodes.

The implementation of the network is shown in Figure 9. It
counts with a DR Server (labeled with ”serv”), a DR Client
(labeled with ”cli[0]”), a number or routers and a cloud
network. This scheme represents the communication of both
nodes in an interconnected wired network such as the Internet.
The figure only shows one client for clarity reasons; however,
the number of clients is a parameter for the model. In case
that more than one should exist, each one of them would have
its own router to connect to the cloud.

Routers pretend to simulate the gateway that each ISP (In-
ternet Service Provider) would provide to a customer in order
to connect to the Internet; as such, routers only implement up
to layer-3 capabilities. The cloud network models the Internet
as a network with a variable delay, transmission speed and
error rate. Recalling the classification made in [21] about the
network model’s level of detail: the Internet would be modeled
as a black-box communication network, whereas the rest of the
entities would count with a high level of detail (i.e. all layers
and communication processes are taken into account).

Fig. 9: OMNeT++ implementation of the network.

The structure of the FMU for the communications model
is shown in Figure 10. The FMU acts as an interface for the
OMNeT++’s API. This API talks directly to the simulation
kernel in order to set or get certain variable’s values or
messages. As mentioned before, the kernel implement’s some
functions needed in the simulation like the message scheduler
or the discrete event machine. However, in order to model the
Internet layer stack shown in Figure 8, the INET library is
used. In addition to INET, the kernel also uses an additional
library developed for this study where other capabilities (such
as the OpenADR Server and Client) have been implemented.

7

Fig. 10: Structure for the Communication’s FMU.

In order to emulate the transmission of information in the
network, several parameters are input and output to and from
the communication’s. As seen in Figure 10, both Consumption
and DRPotential are inserted into de FMU together with a
node identifier. The FMU assumes these are values transmitted
from client nodes to the server node. The model simulates the
transmission and, after a certain amount of time (due to the
communication delay) it produces an output directed to the
server.

While Consumption and DRPotential’s information flows in
one direction only, communication for DR events goes both
ways. Now it is the server node which insert a shedLoad-
Request message issued to a given client. Upon reception, the
client decides whether to accept or not to participate in the
event and replies to the server accordingly. This reply is output
from the simulator after the corresponding transmission time.

It may happen that, due to errors in the transmission, some
of these messages get lost. However, these lost messages are
identified by the automatic repeat request (ARQ) mechanism
implemented on the TCP layer of all nodes (see Figure 8).
Without going into too much detail about ARQ, whenever
a message is lost, a re-transmission mechanism is trigger at
the transmitting party. The result is that messages are always
delivered even in the presence of errors. The only effect is that
erroneous messages are affected by a higher latency (due to
the re-transmission).

VIII. OPTIMIZATION AND CONTROL FMU

The control FMU continuously monitors the status of the
integrated system and issues control signals, e.g., asking
some building to increase/decrease her demand by a certain
amount/percentage, charging/discharging energy storage, to
ensure the health of the system. The control signal is based
on an optimization problem, e.g., optimal power flow (OPF)
problem, of the power system. Generally, it is in the following
form:

min f(P,Q, V, θ) (4)
k(P,Q, V, θ) = 0 (5)

V ≤ V ≤ V (6)

|S(θ, V)| ≤ S (7)

[t, P,Q,V, θ]

FMI API

ShedLoadRequest

C	
 func'on	
 interface	

C++	
 Solver	

Fig. 11: Structure of the Control FMU.

f(P,Q, V, θ) is the system cost, which can be the generation
costs, system losses, and other control efforts. k(P,Q, V, θ) =
0 represents the Kirchhoff Laws. We also have network
constraints, e.g., the voltage constraint and line capacity con-
straint, as well as other constraints not listed here. Then given
system configuration and current status, the control FMU will
issue control signals trying to move the system towards the
optimal point of the optimization problem. Notably there are
lots of challenges in solving the general form of the optimiza-
tion problem. We employ the state-of-the-art technique [27]
to obtain the solution. It is our ongoing work to explore
distributed control and decision making under uncertainty.

The basic structure of the control FMU is shown in Fig-
ure 11. The control FMU takes the system status at time t,
e.g., [t, V, P,Q, θ], as input, and then employs the C function
interface to finally call C++ solver to get the output and issue
the ShedLoadRequest.

We use the following controllers for our simulations:
• Line capacity controller: make sure the power flow on

each line is within its capacity, otherwise issue control
signal to shed building load so that all line capacity
constraints become satisfied. The shed request can be in
either kW or percentage of current building load.

• Volt/var controller: issue control signals to dynamically
adjust the reactive power, e.g., from energy storage, to
stabilize the voltage on target buses.

• Slope controller: make sure the change slope of power
consumption, voltage, and/or current is within acceptable
region, otherwise issue control signal to shed building
load and/or control energy storage so that the change
is not too aggressive, which results in high cost due to
reserves in power system.

IX. TIME INTEGRATION OF DIFFERENTIAL EQUATIONS
USING QUANTIZED STATE SYSTEM METHODS

As described in Sec. IV, each Buildings FMU defines ordi-
nary differential equations of the form

ẋ = f (x, u, t) (8)

where ẋ (t) is a vector of N state variables whose values the
solver will predict; u (t) is a vector of input variables which
act as boundary conditions; and f is the derivative function.

8

If Ptolemy coordinates more than one such FMU, then the
state variables predicted by one FMU may appear as the input
variables of another.

To integrate these equations, we implemented both explicit
and linearly-implicit Quantized State System (QSS) methods
in Ptolemy [28], [29]. QSS differs from typical integration
methods, in that it discretizes the state variables rather than
time. Thus Eq. 8 becomes

ẋ = f (q, µ, t) (9)

where q (t) is the quantized state, i.e., a discretized version of
x (t). Likewise, µ (t) is a quantized version of u (t).

Quantization consists of representing a variable as a series
of piecewise-continuous polynomials. Component j of the
ODE system has a quantized state model

q̂j [`] (t) =

M−1∑
i=0

q
[i]
j [`]

(
t− tqj [`]

)i
(10)

where q[i]j [`] denotes the ith polynomial coefficient for the `th

model; tqj [`] gives the quantization-event time at which the
model was formed; and M gives the QSS method order. For
example, QSS1, a first-order method, quantizes the state as a
constant, q̂j [`] (t) = q

[0]
j [`]. Each model holds on tqj [`] ≤ t <

tqj [`+1] (although tqj [`+1] is not known at time tqj [`]).
Integrating the quantized state gives a series of state models

x̂j [k] (t) =

M∑
i=0

x
[i]
j [k]

(
t− tsj [k]

)i
(11)

valid on tsj [k] ≤ t ≤ tsj [k+1]. Note that the state-event times
tsj [k] may differ from the quantization-event times. Fig. 12
shows a block diagram of a QSS integrator.

-
µ̂[∗]

-
q̂[∗]

fj -
dx̂j [k]

dt ∫
-

x̂j [k]
quantize -

q̂j [`]

Fig. 12: QSS integration of a component of an ODE system.
The quantized state is a piecewise-continuous approx-
imation to x (t). The simulation iteratively updates
the state and quantized state models for individual
components.

Component j forms a new state model when a quantized
input to fj changes. At the kth state-event time, the new state
model is made continuous with the previous one, and its slope
found from the derivative function:

x
[0]
j [k] = x̂j [k−1]

(
tsj [k]

)
(12)

x
[1]
j [k] = fj

{
(q̂[∗], µ̂[∗], t

s
j [k])

}
(13)

where the models q̂[∗] and µ̂[∗] are evaluated at tsj [k]. Index
“∗” indicates the most recent model for each component. For
QSS2 and QSS3, the higher-order coefficients x[2]j [k] and x[3]j [k]
are estimated by perturbing the arguments to the derivative
function; details are beyond the scope of this paper.

t

0 0.5 1 1.5 2 2.5 3

x

0
0.

2
0.

4
0.

6
0.

8
1 ●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ●

●

Qss1 (951 steps)
Qss2 (35 steps)

Fig. 13: QSS solution of the exponential problem, ẋ = −x.

Component j forms a new quantized state model when the
current quantized state model differs from x̂j [k] by an amount
∆Qj , called the quantum. In the absence of other events, this
happens when∣∣∣ x̂j [k] (t̂ qj [`+1]

)
− q̂j [`]

(
t̂ qj [`+1]

)∣∣∣ = ∆Qj (14)

where t̂ qj [`+1] is the predicted quantization-event time for
component j. In practice, ∆Qj varies with the magnitude of
q
[0]
j [k], according to user-defined tolerances.

At each time step, the simulation advances to the minimum
predicted quantization-event time from among all the compo-
nents. Thus a given global time step may re-quantize only one
out of all the components.

When component j does finally experience a quantization-
event, it forms a new quantized state model by matching the
value and derivatives from the current state model:

q
[0]
j [`] = x̂j [k]

(
tqj [`]

)
(15)

q
[1]
j [`] =

dx̂j [k]

dt

(
tqj [`]

)
(16)

and so on, for derivatives up to M − 1 (however, the linearly-
implicit QSS methods offset the initial value by up to ∆Qj).
The new quantized state model is then broadcast to any other
component whose derivative function depends on xj . This, in
turn, induces state-events in those downstream components.

Fig. 13 shows the QSS1 and QSS2 solutions of the exponen-
tial problem, ẋ = −x, with initial condition x (0) = 1. Quan-
tum was chosen as the minimum of 0.001 and 0.001·|q[0][`] |.
Compared to the analytical result x = e−t, both solutions end
at t = 3 with a global error less than 5·10−4.

The QSS approach treats every differential equation as a
discrete event actor, generating events, and responding to the
events produced by other equations. However the Ptolemy
implementation currently groups the equations by FMU. Thus
if one equation experiences a state-event, it updates the state
models for all equations contained in the same FMU.

In addition to the differential equations defined by Model
Exchange FMUs, Ptolemy also must handle Co-Simulation
FMUs. As suggested by Fig. 4, the Power Systems FMU

9

defines a static relation, determining the power flows as an
algebraic function of its inputs. Since all feedback paths from
the Power System outputs back to its inputs pass through the
building models, Ptolemy does not have to solve any algebraic
loops. To avoid having to call the Power FMU every time
a building model updates one of its outputs, we sample the
building loads at discrete intervals.

X. MASTER ALGORITHM

To synchronize the data of the different FMUs, we
will use Ptolemy II [3]. Ptolemy II is a modular software
environment for the design and analysis of heterogeneous
systems. It provides a graphical model building environment,
synchronizes the exchanged data and visualizes the system
evolution during run-time. In Ptolemy II, components
are encapsulated as actors which communicate with other
actors through ports. A director orchestrates the data exchange
between the actors and advances time for the individual actors.

Next, we will discuss the mathematical structure of each
FMU, and then discuss how we componsed them for a co-
simulation. To compose multiple actors in order to conduct
a co-simulation, we need to make the distinction between
outputs of actors that directly depend on inputs, e.g., they have
direct feedthrough, and outputs of actors that do not directly
depend on inputs. The latter are for example outputs of explicit
time integrators that only change when time is advanced, but
not if an input is changed.

The power systems FMU implements an algebraic, time
invariant system. Therefore, the outputs of this FMU directly
depend on the input values.

The building FMUs take as an input the control signal
yshed and produce as outputs the active and reactive power
P and Q. Both do not directly depend on yshed. The building
FMUs are exported using the FMI for Model-Exchange 2.0
standard. When imported to Ptolemy II, they are combined
with QSS integrator, as described in Section IX. For the
master algorithms, these QSS integrators can be abstracted
as actors that may schedule a time event whenever their input
changes, or whenever their state variables change by more than
a tolerance. Should the input change prior to such a scheduled
event, then the actor may replace this event with a new one
that may happen at a different time.

The communications FMU lead to time delays in the
signals. They take as inputs signal uj(t), for some j ∈
{1, . . . , n}, where n is a fixed number of channels, and
produce after some time delay δj(t) the signal at the output.
Hence, the output is yj(t + δj(t)) = uj(t). For signal j, the
time delay is a function of all signals that have not yet been
sent to their output, allowing to model network congestion.
In our communication FMU, once δj(t) has been computed,
it will not be changed. Therefore, network congestion does
not affect signals that have already been received in the
communication FMU but have not yet been produced at its
output.

The optimization and control FMU has discrete time seman-
tics. For a constant time step δ > 0, and given measurement

signal u(i δ), with i ∈ {0, 1, . . .}, it outputs the control action
y((i+ 1) δ) = f(u(i δ)).

Figure 14 shows the Ptolemy II system model that combines
the power, building, communication and controls FMU. The
QSS Director is a new addition to Ptolemy II that we devel-
oped in conjunction with the Ptolemy II development team.
The QSS director extends the discrete event director, and adds
a QSS solver. Thereby, this director allows combining FMUs
for model exchange, which will be integrated with the QSS
algorithm, with FMUs for co-simulation. In addition, other
Ptolemy II actors that work in the discrete event domain can
be used in such system models.

XI. SIMULATION RESULTS

A. Calibration of the building model

The case study LBNL’s building 71 is a 54,000 ft2̂ two story
steel-frame office and laboratory building located in Berkeley,
California. The building has a water-cooled chiller system with
three cooling towers. The building’s operation is typical of
office and laboratory, with an operational schedule of 9:00 am
to 6:00 pm and high equipment usage during off-hours. The
peak electric power demand is over 400 kW during the period
of 12:00 pm to 6:00 pm and the average demand during the
off hours is about 80 kW.

The building FMU has been generated as described in
section Sec. ??. Before using the building FMU model we
performed a calibration of the model in order to test the
ability of the simplified RC model to replicate the results
of the more detailed EnergyPlus model. The main difference
between the EnergyPlus model and the simplified RC mdoel
are the nonlinear relationships and complex algorithm used
by EnergyPlus to compute interior and exterior convective
coefficients, solar heat gain coefficients and long wave ra-
diation effects. However, the RC model has a number of
coefficients that can be tuned in order to align the simulation
results as much as possible. Sensitivity analysis was conducted
to rank the key parameters of the RC model that could be
tuned. The parameters with higher sensitivity that were used
to tune the model are: exterior wall convective coefficient,
building solar absorption factor, window heat gain factor and
heat transmission value. We therefore used the summer period
from May to October to perform a comparison between the
RC and the EnergyPlus models. We decided to use such a
period because it is of interest for the demand response events
as well for critical peak pricing.

Both the RC and the EnergyPlus model have been simulated
using standard weather for San Francisco, lighting, plug loads,
occupancy and set point schedules for the zones of the
building. Given the same boundary condition and operation
the models predicted the cooling load required to satisfy the
required comfort conditions.

Figure (15) shows the RC model cooling load versus the
EnergyPlus model cooling load. Every points represents a
simulated data point with a 5 min resolution over the period
between May and October. The green, yellow and red area
respectively represent a relative error of ±5%, ±10% and
±15%. As can be seen the highest relative error occurs at low

10

Fig. 14: Ptolemy II model that shows the composition of the different FMUs.

0 50 100 150 200
Load E+ [kW]

0

50

100

150

200

Lo
ad

 R
C

[k
W

]

Comparison between EnergyPlus and RC model cooling load

Fig. 15: Comparison of the cooling load predicted by Energy-
Plus and the RC model.

cooling load level while when the load is close to its maximum
the almost totality of teh points is within the ±15% interval.

Figure (15) shows a comparison across the hour of the day
between the cooling load predicted by EnergyPlus and the RC
model. All the simulation points for every hour of the day over
the simulation period have been collected and their distribution
have been compared. The blue boxes shows the cooling load
distribution for the EnergyPlus model while the green boxes
shows the distribution of the cooling load predicted using the
RC model. The highest relative errors evidenced in Figure (15)
happen exclusively at night time when the nonlinearities of the
long wave radiation exchange that are not captured by the RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

50

100

150

200

250

300
Cooling load comparison

EnergyPlus
RC model

C
oo

lin
g

po
w

er
 [

kW
]

Hour of the day [h]

Fig. 16: Comparison of the cooling load predicted by Energy-
Plus and the RC model.

model dominate the heat transfer of the building. However
Figure (15) help us to put in perspective this error, confirming
that even if it’s relative high it’s impact on the ability of the
RC mdoel to predict the cooling load can be neglected.

Under these assumptions it’s possible to consider the RC
model detailed enough to describe the thermal dynamics of the
building to be able to predict with a good accuracy its cooling
load. The original RC model generated using the BRCM
toolbox had 106 state variables. The model has been reduced
to a model that is able to predict the same averaged building
temperature as described in section Sec. ??. The obtained
reduced order model had 8 state variables and its difference
between the full RC model is small enough (less than 1% in
relative terms) to be neglected for the sake of this study.

B. Overview of the Use Cases

Both cases use the LBNL distribution network and Building
71. As shown in Fig. 17, the LBNL distribution network
represents the path from the point of common coupling with
PG&E, down to Building 71. The remainder of the distribution
system loads are modeled as aggregated loads connected to
two swithcing substations along this path. Real 15-minute data

11

were used for the two aggregate loads. For Bus SW-A1, real
reactive power was used, while for SW-A6, a power factor of
0.94 inductive was assumed. The active power consumption
of the aggregate loads in SW-A1 and SW-A6 are shown in
Fig. 18.

Fig. 17: PowerFactory model of the LBNL distribution system
to Building 71. The rest of the LBNL, except for the
Building 71, are modelled as aggregate loads on buses
SW-A1 and SW-A6.

The modeling of Building 71 has been detailed in Sec-
tion XI-A. To study the interaction of loads during high
penetration of DER, we have assumed a solar PV plant of 340
kWp and a battery connected at the same bus. The active power
consumption of Building 71 and the net load (Building 71 and
solar PV) demanded at Bus B71 is shown in Fig. 19. As we
did not have available data for the reactive power consumption
of Building 71, we assumed a constant power factor of 0.96
inductive.

We present two use cases in the following sections to
demonstrate the capabilities of VirGIL. The first applies de-
mand response actions in Building 71 to reduce the cable and
transformer loading. The second applies Volt-Var control so
that the voltage at Bus B71 follow specified setpoints.

0 20 40 60 80 100
Time (in 15 min intervals; 1 day)

2000

2500

3000

3500

4000

4500

A
ct

iv
e

Po
w

er
(i

n
kW

)

Grizzly-SW-A1
SW-A6

Fig. 18: Active Power Consumption of the Aggregate Loads.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (in seconds; 1 day)

0

50

100

150

200

250

300

350

400

A
ct

iv
e

Po
w

er
(k

W
)

Bldg.71-P
Net Load (B71 and PV)

Fig. 19: Active Power Consumption of Building 71 without
Demand Response (blue) and Net Load at Bus B71
(green; sum of load and PV infeed).

C. Demand Response in Building 71

Figure 20 presents the transformer and cable loadings of
the LBNL network during a typical day, when no demand
response actions are taken. As a secure and reliable power
supply is central for the operation of a National Laboratory
and the experiments that are taking place in it, we observe that
the maximum loading of all cables and transformers does not
exceed 60%.

In order to demonstrate the capabilities of VirGIL, we set
the threshold for demand response actions at 55%. If any
cable or transformer loading exceeds the 55% threshold, an
automated demand response signal is sent to the building,
reducing its power consumption by 20%. The Communications
FMU ensures that the communication between the controller
and the Building follows the OpenADR standard. Besides plug
loads and lighting, which are considered constant during the
day in this case, the main building load is HVAC cooling.
As soon as the Building receives the DR signal, it has lookup

12

0 10000 20000 30000 40000 50000 60000 70000 80000
Time (in seconds; 1 day)

0

10

20

30

40

50

60
L

oa
di

ng
(%

)

Bank-514
Bank-2
CBL-ADF-1-71-1
CBL A-619
CBL-A118
CBL-12.47-BK2
DR Setpoint

Fig. 20: Cable and Transformer Loading (no Demand Re-
sponse).

tables that transform the power reduction to increased setpoints
for the HVAC operation, as higher operating temperatures
reduce the necessary cooling power.

Figure 21 zooms in the most critical cable loading, when no
DR action is taken. We expect DR signals to be issued from
midnight till 9am in the morning, and then again after 1pm in
the afternoon.

0 10000 20000 30000 40000 50000 60000 70000 80000
Time (in seconds; 1 day)

50

52

54

56

58

60

L
oa

di
ng

(%
)

CBL-12.47-BK2
DR Setpoint

Fig. 21: Loading of the most critical cable and setpoint for
Demand Response actions.

Figure 22 shows the active power consumption with DR
and how this differs from the baseline for that day. To better
understand this figure, we should first examine the sequence of
events inside the building. Figure 23 presents the temperature
variations in Building 71 for this day. “Tamb” stands for the
ambient temperature. “Tbui-setpoint” is the setpoint for the
average zone temperature inside the building. In case a DR
event takes place, this setpoint changes. In our case, as we
have cooling load, the setpoint increases. “Tbui” represents
the actual average zone temperature of the building. Ideally,
“Tbui” should follow “Tbui-setpoint”. “Thvac” represents the

temperature that is given as input to the HVAC system.
This results from the actions of the PID controller which
monitors the building temperature and automatically adjusts
the HVAC setpoints. As expected, we see that the “Tbui-
setpoint” increases during the first 9 hours of the day, then
decreases to its nominal temperature of 293 Kelvin (20oC) and
increases back again after 1pm. We observe some oscillations
in the DR signal at t=45000 s. This is because the cable loading
is marginally above or below 55%. As the day starts and the
ambient temperature increases, we see that “Tbui” increases as
well. at about 9am (t=30’000 s) it reaches the “Tbui-setpoint”.
From that point on the average zone temperature follows the
“Tbui-setpoint”. Going back to Fig. 22, we observe that if DR
is activated, the building consumes no additional power till
about 9am, when the DR signal ends. If the “Tbui-setpoint”
remained at 293 K, then Building 71 would have increased
it socnsumption already from about t=2600 s. Similarly, we
see that after about 1 pm (t=50’000 s), when DR is activated
again, the building consumption is reduced in comparison to
the baseline.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
1 day (in seconds)

0

50

100

150

200

250

300

350

400

450
A

ct
iv

e
Po

w
er

(k
W

)

No Demand Response
Demand Response

Fig. 22: Active power consumption of Building 71 with and
without Demand Response Actions.

Figure 24 compares the active power consumption of Build-
ing 71 when there are no communication delays. In our base
case, shown in Fig. 22, the polling frequency of the DR client
in the Communications FMU was set at 30 s. This means that
every DR signal was sent with 30 s. The actual communication
delays that were also modelled in this setup did not exceed
on average 500 ms. In Fig. 24, we do not observe major
differences between the two cases. This is probably due to
the fact that the building dynamics are slow enough to not be
significantly affected by a 30 s delay. Still, We observe that at
about t=45’000 s, the oscillations of the active power have a
higher magnitude when the singal is transmitted with no delay.
This is expected due to the more direct response to the signal.

Concluding this use case, we see how VirGIL is able to
accurately model and simulate the interactions between build-
ings, communication, and power systems. We have observed
how a power system event leads to a DR signal, and how
this affects the building operation. At the same time, we were

13

0 10000 20000 30000 40000 50000 60000 70000 80000
1 day (in seconds)

285

290

295

300

Te
m

pe
ra

tu
re

(i
n

K
el

vi
n)

Thvac
Tbui
Tbui-setpoint
Tamb

Fig. 23: Temperature variations in Building 71 with active
Demand Response. Tamb: ambient temperature; Tbui-
setpoint: setpoint of the temperature setpoint inside
the building (varies based on demand response ac-
tions); Tbui: average temperature inside the building;
Thvac: setpoint at the HVAC controller.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
1 day (in seconds)

0

50

100

150

200

250

300

350

400

450

A
ct

iv
e

Po
w

er
(k

W
)

Delay 30 seconds
No Delay

Fig. 24: Active power consumption of Building 71 with de-
mand response, with and without signal communica-
tion delays.

able to represent the effect of the communication delays, and
measure the effect of the building actions back to the power
grid.

D. Volt-Var Control at Bus B71

In this use case, we demonstrate how VirGIL can be used
for Volt-Var control. In the LBNL network we have installed
three micro-phasor measurement units (µPMUs) [30]. One of
them is located at Bus SW-A6 and one more at Bus B71.
µPMUs are units that can measure with high fidelity voltage,
current, and voltage angle.

In this case we assume that we receive as inputs the voltage
from the µPMU measurements at Buses SW-A6 and B71. The

goal is that the voltage at Bus B71 should follow the voltage at
SW-A6, by appropriately controlling the reactive power infeed
of the battery.

The controller solves the following equation in order to find
the necessary reactive power infeed:

U1
2 = (U2+(R·P+X·Q)/U2)2+(X·P−R·Q)2/(U2)2 (17)

where:

U1 = USW-A6 (18)
U2 = UB71 (19)
P = PB71 − PBAT − PPV (20)
Q = PB71 −QBAT −QPV (21)
R = RBank-514 +RCBL-ADF-1-71-1 +RA-619 (22)
X = RBank-514 +XCBL-ADF-1-71-1 +XA-619 (23)

Figure 25 presents the voltage at the two buses if no volt-var
control actions take place. We can observe how the PV infeed,
starting at about 7am, increases the voltage momentarily, while
in general the voltage level at Bus B71 is decreasing as the
building consumption increases. Once again, we observe that
the LBNL network is sufficiently (over)dimensioned so that
we do not observe significant voltage drops at the end of the
feeders. Still this use case demonstrates VirGIL performance
and characteristics.

0 20 40 60 80
Time (in 15 min intervals; 1 day)

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

Vo
lta

ge
[p

.u
]

SW-A6
B71

Fig. 25: Without Volt-Var Control: Voltage level of Bus SW-
A6 and Bus B71.

Figure 26 presents the same voltages, but with volt-var
control, so that VB71 to track the voltage VSW−A6 at Bus
SW-A6. The required reactive power infeed from the battery
is presented in Fig. 27. In the same figure, we also present
the ∆Q, i.e. the difference by which the Q setpoint should be
adjusted from one timestep to another.

XII. CONCLUSIONS

The Virtual Grid Integration Laboratory (VirGIL) creates
a modular co-simulation platform for studying in detail the
impact of demand response and other controls on power

14

0 20 40 60 80 100
Time (in 15 min intervals; 1 day)

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Vo
lta

ge
[p

.u
.]

SW-A6
B71

Fig. 26: With Volt-Var Control: Voltage level of Bus SW-A6
and Bus B71.

0 20 40 60 80 100
Time (in 15 min intervals; 1 day)

20

0

20

40

60

80

100

120

140

160

R
ea

ct
iv

e
Po

w
er

(k
va

r) Total Q
Delta Q

Fig. 27: Reactive power injection of the battery. Total Q
corresponds to the reactive power injected. Delta Q
is the change in reactive power from the previous
timestep.

systems. The platform coordinates commercial software such
as PowerFactory, open-source packages such as the Modelica
Buildings Library, communication simulation tools such as
OMNET++ and bespoke models (such as the Buildings FMU
described above). Using commercial and trusted power system
software is expected to lower the barriers for adoption of
simulation and optimization tools by power system operators,
allowing them to test, improve, and deploy new practices, e.g.,
efficiently integrating demand response in their daily opera-
tion. VirGIL uses the industry-standard Functional Mockup
Interface (FMI), which encourages a modular approach to
instantiating and sharing models.

This paper presented the development of FMUs for Co-
Simulation for Power Systems, Communications, and Control,
and one FMU for Model Exchange for Building modeling
and control. Real network and consumption data were used

as parameters and inputs to these FMUs to model part of the
LBNL distribution grid, and to couple the grid to a reduced-
order physics-based model of a real building that implements
a simple demand response protocol. A full representation
of the communications network was also included. To our
knowledge, this is the first time that a co-simulation platform
couples commercial power system software such as Powerfac-
tory with building and communications models to study the
impact of demand response actions on the distributions grid.
A further contribution of this paper is the full integration of
the Quantized State System (QSS) methods for simulation in
VirGIL.

Ptolemy II, the VirGIL implementation framework, handles
both continuous and discrete-event simulation, and supports
both FMI for model exchange and co-simulation.

Future extensions of this work include electric vehicles,
power system optimization, and advanced building controls.
Use cases will include demand response applications for
volt/var optimization, 3-phase asymmetries, and distribution
system planning. Real case studies, such as the demand
response potential and impact in the region of the decom-
missioned San Onofre Nuclear Generating Station (SONGS),
will be simulated in VirGIL and presented.

ACKNOWLEDGEMENTS

We thank Edward Lee and Christopher Brooks from UC
Berkeley for their support in the FMI and QSS implementa-
tion in Ptolemy II. This work was supported by Laboratory
Directed Research and Development (LDRD) funding from
Berkeley Lab, provided by the Director, Office of Science, of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] M. Wetter and P. Haves, “Modular building controls virtual test bed
for the integration of heterogeneous systems,” in Proceedings of 3rd
National Conference of IBPSA-USA SimBuild 2008, Berkeley, CA, July
2008, pp. 1–8.

[2] Modelica Association Project “FMI”, “Functional mock-up interface for
model exchange and co-simulation,” [Online]: https://www.fmi-standard.
org, July 2014.

[3] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, 2014. [Online]. Available: http:
//ptolemy.org/books/Systems

[4] K. Hopkinson, X. Wang, R. Giovanini, J. Thorp, K. Birman, and
D. Coury, “EPOCHS: a platform for agent-based electric power and
communication simulation built from commercial off-the-shelf compo-
nents,” Power Systems, IEEE Transactions on, vol. 21, no. 2, pp. 548–
558, May 2006.

[5] H. Lin, S. Sambamoorthy, S. Shukla, J. Thorp, and L. Mili, “Power
system and communication network co-simulation for smart grid ap-
plications,” in Innovative Smart Grid Technologies (ISGT), 2011 IEEE
PES, Jan 2011, pp. 1–6.

[6] M. Lévesque, D. Q. Xu, G. Joós, and M. Maier, “Communications
and power distribution network co-simulation for multidisciplinary
smart grid experimentations,” in Proceedings of the 45th Annual
Simulation Symposium, ser. ANSS ’12. San Diego, CA, USA: Society
for Computer Simulation International, 2012, pp. 2:1–2:7. [Online].
Available: http://dl.acm.org/citation.cfm?id=2331751.2331753

[7] R. Bottura, D. Babazadeh, K. Zhu, A. Borghetti, L. Nordstrom, and
C. Nucci, “SITL and HLA co-simulation platforms: Tools for analysis
of the integrated ICT and electric power system,” in EUROCON, 2013
IEEE, July 2013, pp. 918–925.

https://www.fmi-standard.org
https://www.fmi-standard.org
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://dl.acm.org/citation.cfm?id=2331751.2331753

15

[8] M. Stifter, E. Widl, F. Andren, A. Elsheikh, T. Strasser, and P. Palensky,
“Co-simulation of components, controls and power systems based on
open source software,” in Power and Energy Society General Meeting
(PES), 2013 IEEE, July 2013, pp. 1–5.

[9] P. Palensky, E. Widl, and A. Elsheikh, “Simulating cyber-physical
energy systems: Challenges, tools and methods,” Systems, Man, and
Cybernetics: Systems, IEEE Transactions on, vol. 44, no. 3, pp. 318–
326, March 2014.

[10] D. Chassin, K. Schneider, and C. Gerkensmeyer, “GridLAB-D: An open-
source power systems modeling and simulation environment,” in IEEE
PES Transmission and Distribution Conference and Exposition, April
2008, pp. 1–5.

[11] S. Muller, H. Georg, C. Rehtanz, and C. Wietfeld, “Hybrid simulation of
power systems and ICT for real-time applications,” in Innovative Smart
Grid Technologies (ISGT Europe), 2012 3rd IEEE PES International
Conference and Exhibition on, Oct 2012, pp. 1–7.

[12] D. Sturzenegger, D. Gyalistras, V. Semeraro, M. Morari, and R. Smith,
“BRCM Matlab toolbox: Model generation for model predictive building
control,” in American Control Conference 2014, Apr 2014, pp. 1–5.

[13] R. Yin, P. Xu, M. A. Piette, and S. Kiliccote, “Study on auto-DR and
pre-cooling of commercial buildings with thermal mass in california,”
Energy and Buildings, vol. 42, no. 7, pp. 967–975, Jul 2010.

[14] Commercial prototype building models. http://www.energycodes.gov/
commercial-prototype-building-models.

[15] K. Glover, “All optimal Hankel-norm approximations of linear multi-
variable systems and their L-inf error bounds,” International Journal of
Control, vol. 39, no. 6, pp. 1115–1193, 1984.

[16] K. Zhou, “Frequency-weighted model reduction with L error bounds,”
Systems & control letters, vol. 21, no. 2, pp. 115–125, 1993.

[17] M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, “Modelica buildings
library,” Journal of Building Performance Simulation, vol. 7, no. 4, pp.
253–270, 2014.

[18] Omnet++. https://www.omnetpp.org/.
[19] T. Godfrey, S. Mullen, R. C. Dugan, C. Rodine, D. W. Griffith, and

N. Golmie, “Modeling Smart Grid Applications with Co-Simulation,”
in First IEEE International Conference on Smart Grid Communications
(SmartGridComm), 2010, pp. 291–296.

[20] C. Müller, H. Georg, and C. Wietfeld, “A Modularized and Distributed
Simulation Environment for Scalability Analysis of Smart Grid ICT
Infrastructures,” Proceedings of the Fifth International Conference on
Simulation Tools and Techniques, 2012.

[21] K. Mets, J. A. Ojea, and C. Develder, “Combining Power and Commu-
nication Network Simulation for Cost-Effective Smart Grid Analysis,”
IEEE Communications Surveys & Tutorials, pp. 1–26, 2014.

[22] M. Bredel and M. Bergner, “On the accuracy of ieee 802.11 g wireless
lan simulations using omnet++,” in Proceedings of the 2nd International
Conference on Simulation Tools and Techniques. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2011.

[23] A. Virdis, G. Stea, and G. Nardini, “SimuLTE – A Modular System-
level Simulator for LTE // LTE-A Networks based on OMNeT ++,” in
Proceedings of SimulTech, 2014, pp. 28—-30.

[24] E. Weing, H. Lehn, and K. Wehrle, “A performance comparison of recent
network simulators,” IEEE International Conference on ommunications,
2009.

[25] Openadr alliance. http://www.openadr.org/.
[26] Openadr web page in the demand response research center. http://drrc.

lbl.gov/openadr.
[27] L. Gan and S. Low, “A distributed algorithm for solving the optimal

load control problem in multiphase radial networks,” [Online]: http://
www.its.caltech.edu/∼lgan/codes/OptimalPowerFlowSolver.zip, 2014.

[28] F. E. Cellier and E. Kofman, Continuous System Simulation. Springer,
2006.

[29] G. Migoni, M. Bortolotto, E. Kofman, and F. E. Cellier, “Linearly
implicit quantization-based integration methods for stiff ordinary differ-
ential equations,” Simulation Modelling Practice and Theory, vol. 35,
pp. 118–136, 2013.

[30] E. Stewart, S. Kiliccote, C. Shand, A. McMorran, R. Arghandeh,
and A. Von Meier, “Addressing the challenges for integrating micro-
synchrophasor data with operational system applications,” in PES Gen-
eral Meeting — Conference Exposition, 2014 IEEE, July 2014, pp. 1–5.

http://www.energycodes.gov/commercial-prototype-building-models
http://www.energycodes.gov/commercial-prototype-building-models
https://www.omnetpp.org/
http://www.openadr.org/
http://drrc.lbl.gov/openadr
http://drrc.lbl.gov/openadr
http://www.its.caltech.edu/~lgan/codes/OptimalPowerFlowSolver.zip
http://www.its.caltech.edu/~lgan/codes/OptimalPowerFlowSolver.zip

	I Introduction
	II Co-simulation in Power Systems
	III VirGIL
	IV Functional Mockup Interface (FMI)
	V Power Systems FMU
	VI Buildings FMU
	VI-A Generating the EnergyPlus model
	VI-B Converting the EnergyPlus model to RC model
	VI-C From RC model to reduced order model
	VI-D Conversion to Modelica and generation of the FMU

	VII Communications FMU
	VIII Optimization and Control FMU
	IX Time integration of differential equations using Quantized State System methods
	X Master Algorithm
	XI Simulation Results
	XI-A Calibration of the building model
	XI-B Overview of the Use Cases
	XI-C Demand Response in Building 71
	XI-D Volt-Var Control at Bus B71

	XII Conclusions
	References

