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I .   BA LLPA R K SENSOR S

By the start of the 2008 season, Sport-
vision’s PITCHf/x system was opera-
tional in all 30 MLB ballparks. This 
system applies computer vision tech-
niques to video obtained from cam-
eras located high in the stands along 
the first and third base lines and in 
centerfield to estimate the 3-D path of 
pitched balls. Pitch descriptors derived 
from the PITCHf/x measurements are 
publicly available and are augmented 
by pitch labels such as “fastball” or 
“curveball” that are generated by a real-
time pattern classification algorithm.

Pitchers have used PITCHf/x data 
to monitor and hone their repertoire of 
pitches. The system has also improved 
on a camera system from QuesTec for 
providing feedback to umpires and, 
in so doing, has effected significant 
changes to the game on the field. Con-
current with an increase in umpire 
accuracy has been the growth of the 
strike zone from 435 in2 in 2009 to 
475 in2 in 2014 as measured in a verti-
cal plane that intersects the front edge 
of home plate [2]. This larger strike zone 
contributed to increases in strikeout 
rates and decreases in walk rates over 
the first few years of the PITCHf/x era.

Trackman’s phased-array Doppler 
radar has recently replaced PITCHf/x 
as MLB’s primary pitch-tracking 
technology. The Trackman radar is 
typically mounted high behind home 
plate and operates in the X-band at 
approximately 10.5 GHz. In addition 

Advancements in the capability of sensors, processors, and storage 
devices have led to an explosion in the amount of data that is 
captured during sporting events. The Statcast system, for exam-
ple, uses Doppler radar and stereoscopic video from two arrays of 

high-resolution optical imagers to acquire seven terabytes of data during each 
Major League Baseball (MLB) game. One use of these data is to enhance the 
experience of sports fans. As a case in point, Statcast data are used to generate 
information and visualizations that are disseminated in real time through tele-
casts and other media such as an app which displays pitch parameters derived 
from sensor measurements.

Before advanced sensors invaded major league ballparks, the best-selling and 
movie-inspiring Moneyball: The Art of Winning an Unfair Game [1] put forth com-
pelling evidence that the use of analytics-based models can provide a competitive 
advantage in baseball. Another use of ballpark sensors is to provide a new source 
of data that can be mined to improve these models. As a practical low-tech exam-
ple, consider that the labor-intensive manual review of standard video data led 
to detailed models for the batted ball tendencies of hitters. These models have 
enabled the widespread deployment of defensive shifts which represents the most 
conspicuous change in baseball strategy over the last decade.
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to measuring 3-D pitch trajectories, the 
radar provides a measurement of the 
magnitude of a pitch’s total spin [3]. 
The Sportvision and Trackman systems 
also characterize batted balls but access 
to these data has been more limited.

Statcast, a system designed to track 
the ball and every player on the field, 
was functional in all major league sta-
diums for the 2015 season. The Track-
man radar serves as the ball-tracking 
component of Statcast. This radar, 
however, is less useful for tracking 
players since their slower speeds lead 
to smaller Doppler shifts which cannot 
be distinguished from clutter returns. 
Hence, Statcast employs a system from 
ChyronHego that uses two arrays of 
optical video sensors and stereo vision 
techniques to track the location of 
players. Each array includes three 
high-resolution cameras with views 
that are stitched together to span the 
field. The dual three-camera arrays are 
configured 15 m apart and are typi-
cally located high in the stands along 
the third base line.

II .   ME A SU R ING PL AY ER 
SK ILL

Baseball executives face many options 
as they work to construct a competitive 
roster while adhering to organizational 
payroll constraints. The stakes are high. 
Single decisions can affect a team’s 
long-term health as individual player 
contracts have reached the level of hun-
dreds of millions of dollars. Although 
there are substantial differences in the 
resources available to MLB teams, the 
Moneyball thesis is that the ingenuity 
of a small market franchise can win out 
over the financial might of a wealthier 
opponent. Critical to success in this pro-
cess is a team’s ability to measure and 
forecast the performance of players.

With the rise of analytics in base-
ball, teams depend more and more on 
mathematical models rather than sub-
jective evaluation to guide personnel 
decisions. Player models are usually 
based on talent level estimates for each 
of a set of skills where each estimate is 
derived from a statistic. Future talent 

level is forecast by using a function 
that describes how each skill typically 
changes with age. For several reasons, 
statistics derived from sensor meas-
urements are playing an increasingly 
prominent role in player assessment.

Sensor measurements have ena-
bled the quantification of new skills 
that can be incorporated into player 
models. PITCHf/x data, for example, 
revealed the surprising degree to which 
catcher mechanics can affect the prob-
ability that a pitch will be called a 
strike [4]. Several teams realized that 
the underlying catcher skill, termed 
pitch framing, was undervalued in the 
marketplace. These teams enjoyed a 
short-term advantage which has largely 
disappeared as pitch framing ability 
has been accurately quantified and fac-
tored into catcher valuation.

Sensor measurements also sup-
port the representation of traditional 
skills with greater accuracy. During 
the 20th century, for instance, esti-
mates of fielding skill were subject to 
uncertainty due to the lack of data on 
factors such as how hard a ball was hit 
or how far a fielder had to range for a 
ball. Over the last 15 years, advanced 
fielding metrics have been based on 
the manual partitioning of batted 
balls into bins according to their type, 
e.g., ground ball or fly ball, speed, 
and direction. The bins typically have 
widths of 10 mph in speed and a few 
degrees in angle. This partitioning 
allows estimation of how frequently a 
given batted ball is fielded successfully 
which establishes a framework for 
defensive evaluation.

Statcast’s time-synchronized radar 
and video subsystems provide the poten-
tial to further improve fielding evalu-
ation. The radar component acquires 
higher resolution measurements of 
batted ball parameters than are possi-
ble with the manual binning methods 
while the stereoscopic video component 
records fielder starting positions which 
are typically not available to current met-
rics. Statcast’s player-tracking technology 
also allows the components of fielding 
skill such as reaction time, route effi-
ciency, and speed to be separately quan-

tified. The effectiveness of defensive 
positioning strategies, which are often 
derived from analytical models, can also 
be assessed using Statcast.

III .   FROM SENSOR DATA 
TO IN TR INSIC VA LU ES

As a more detailed illustration of how 
sensor measurements can improve the 
accuracy of player models, we consider 
the representation of batted-ball skill. 
This skill is of particular interest since 
about 70% of batter/pitcher matchups 
result in a batted ball. Traditional sta-
tistics that represent batted-ball skill 
depend on observed outcomes such 
as whether a batted ball resulted in a 
hit or an out. These statistics are cor-
rupted by sources of variation that are 
beyond  a player’s control. A player’s 
batting average, for example, depends 
on variables such as the quality of the 
opponent defense and the ambient 
weather conditions [5]. These varia-
bles add uncertainty to talent level esti-
mates and forecasts that are derived 
from these statistics.

The Sportvision and Trackman sys-
tems provide measurements of a bat-
ted ball’s initial speed ​s​ and direction 
as specified by two angles. The vertical 
launch angle ​v​ is defined so that −90° 
is straight down and +90° is straight 
up. The horizontal spray angle ​h​ speci-
fies a batted ball’s initial direction in 
the plane of the playing field where 
−45° is the direction toward third 
base and +45° is the direction toward 
first base. A nonparametric machine 
learning algorithm within a Bayesian 
framework [6] has been used to gener-
ate a mapping from the ​(s, v, h)​ contact 
parameters to a batted ball’s intrinsic 
value which is invariant to variables 
such as fielder quality, the weather, the 
ballpark, and random luck. These vari-
ables cause traditional outcome-based 
statistics for batted-ball skill to have a 
low degree of repeatability. 

Intrinsic value is defined as a bat-
ted ball’s expected weighted on base 
average (wOBA) [7]. The wOBA model 
quantifies run expectancy with values 
normalized so that an out has a wOBA 
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value of zero and a home run has a 
wOBA value of about two. The map-
ping from the ​(s, v, h)​ measurements 
to intrinsic value depicted in Fig. 1 is 
known as the wOBA cube. Fig. 2 dis-
plays in more detail the slice through 
the cube for a fixed initial speed ​s​ of  
93 mph. A baseball fan might recog-
nize the four cold zones at the bottom 
of the figure ​(v < 0)​ which correspond 
to ground balls that are hit in the direc-
tion of an infielder and the three cold 
zones near the middle of the figure ​
(v  ∈  [​15​​ °​, ​20​​ °​])​ which correspond to 
fly balls that are hit in the direction 

of an outfielder. For this initial speed 
of 93 mph, the most valuable batted 
balls are those hit with a large launch 
angle ​(v ∈ [ ​25​​ °​, ​40​​ °​])​ near the foul lines ​
( | h |  ∈ [ ​35​​ °​, ​45​​ °​])​ which often result in 
home runs.

The wOBA cube assigns an intrin-
sic value to individual batted balls 
according to their initial speed and 
direction. The average of a player’s 
intrinsic values over a period of time, 
therefore, defines a statistic that 
represents batted-ball skill which is 
unaffected by confounding variables 
such as the opponent defense, the 

weather conditions, and the ballpark 
dimensions. A similar statistic [8] has 
been defined to represent the intrin-
sic value of pitches based on their 
measured speed and trajectory. Reli-
ability estimates based on Cronbach’s 
alpha have shown that statistics 
derived from sensor measurements 
have a significantly higher repeatabil-
ity than traditional statistics that are 
derived from outcomes [6],  [8]. This 
leads to less uncertainty in the talent 
level estimates obtained from these 
statistics.

I V.   SIMIL A R IT Y GROU PS 
FOR FOR EC A STING

A player’s talent level for a skill is 
defined as the expected value of the 
statistic that represents the skill. One 
estimate of talent level is simply the 
observed value of this statistic over 
a period of time. Several forecasting 
studies [7], [9], however, have shown 
that more accurate talent level esti-
mates are obtained by regressing the 
observed value of a player statistic 
toward the population mean. An 
important step in this process is the 
identification of a group of similar 
players to define this population.

Sensor measurements provide a way 
to generate similarity groups based on 
descriptors that are intrinsic to player 
skill. A pitch, for example, can be repre-
sented by its speed and movement [10] 
as measured by a pitch-tracking system 
and a pitcher can be represented by 
his distribution of pitches in speed-
movement space. To illustrate, Figs. 3 
and 4 are pitch distributions for a pair 
of left-handed pitchers in 2016 where 
the speed ​s​ is in miles per hour, the hor-
izontal and vertical movement param-
eters ​(x, z)​ are in inches, and different 
colors represent different pitch types. A 
metric  [11] based on a whitened earth 
mover’s distance has been developed to 
compare these kinds of distributions. 
This approach enables the derivation 
of similarity groups from sensor meas-
urements which can be used to define 
populations for computing talent level 
estimates.Fig. 2. wOBA cube slice for speed s of 93 mph with angles in degrees.

Fig. 1. wOBA cube. 
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Fig. 3. Jon Lester pitches in 2016.

Fig. 4. Chris Sale pitches in 2016.

V.  W H AT ’S NE X T

Major League Baseball is a multibillion 
dollar industry where the difference 
between winning and losing is often 
small. As a result, teams have endeav-
ored to exploit the data acquired by 
ballpark sensors to gain an edge. Efforts 
that began with the manual analysis 
of standard video have evolved into 
projects that apply machine learning 
techniques to descriptors extracted by 
computer vision algorithms from mul-
tisensor inputs. MLB’s newest system, 
Statcast, promises to continue trans-
forming our ability to measure player 
skill. A few MLB teams have taken the 
next step and installed a system from 
KinaTrax that uses video acquired at 
300 frames per second from between 
eight and 16 cameras in the stands to 
track the 3-D location of 26 joints on 
a pitcher’s body during pitch delivery. 
This biomechanical data can be used to 
monitor and refine pitching mechan-
ics with the goals of improving perfor-
mance and reducing injury risk. Similar 
systems will likely become available to 
evaluate batter mechanics. Although 
there has been great progress, base-
ball’s sensor revolution is still in its early 
stages. As  teams continue their relent-
less pursuit of knowledge, engineers 
and computer scientists will continue to 
support the revolution in a wide array of  
technical areas.� 


