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Abstract—Millimeter wave (mmWave) communications have
emerged as one of the most promising options to vastly increase
wireless data rates due to the high bandwidth they offer. Given
the high path loss at mmWave frequencies, such systems require
directional antennas to achieve a good communication range. The
communicating devices thus need to align the beam directions
of their mmWave antennas. Due to the high penetration loss,
the paths between the antennas also need to be free of blocking
obstacles. This makes efficient and reliable operation of mmWave
networks in dynamic environments very challenging. At the same
time, the directionality reduces interference and allows to scale
these networks to much higher access point and device densities.

In this article, we discuss the above challenges and present
techniques that allow mmWave networks to scale to high-density
deployments, to adapt to dynamic and mobile environments, and
to consistently achieve high data rates. This includes learning
the environment to find different propagation paths, reacting
timely to channel impairments such as blockage, and integrating
mmWave networks with networks operating at lower-frequency
for robustness. A key ingredient to enable these forms of
adaptivity is the use of location information. Such mechanisms
then turn a collection of very-high-speed but brittle mmWave
links into an efficient, low-latency, and reliable network.

Index Terms—Millimeter wave communications, beam train-
ing, handover, location systems, 5G mobile networks, IEEE
802.11ad, IEEE 802.11ay.

I. INTRODUCTION

M ILLIMETER-wave (mmWave) communications systems
have emerged as a key wireless technology for fifth-

generation (5G) mobile networks and beyond [1], [2], as well
as for high speed wireless local area networks (WLAN) [3],
[4]. The limited spectrum available below 6 GHz makes it
difficult for current systems to sustain the data rates required
to meet traffic demands that are growing at a staggering
pace [5]. mmWave bands use frequencies above 10 GHz
and, due to the massive available bandwidth at these bands,
they can provide orders-of-magnitude higher data rates than
lower-frequency systems. However, higher propagation loss,
atmospheric absorption, and penetration loss result in shorter
coverage ranges and make mmWave communications highly
susceptible to blockage. The unique dynamics of mmWave
links, i.e., very high data rates combined with low ranges and
high variability of the channel, present particular challenges to
all the layers of the protocol stack, from the physical (PHY)
and medium access control (MAC) layers to higher layers such
as transport and even applications.

The use of highly directional mmWave antennas makes it
possible to achieve multi-Gbit/s data rates over typical link
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distances, where beamforming gains compensate for the higher
path loss at mmWave carrier frequencies [6]. At the same time,
this complicates link establishment and maintenance especially
under mobility and in dynamic environments, since the antenna
beams of the sender and receiver must be well aligned in order
to achieve a sufficient link margin. This alignment, the so-
called beam training and tracking, has a significant impact
on the performance of control procedures such as the initial
network access [7], association schemes [8], medium access [9]
and mobility management [10]. Hence, efficient mechanisms
that limit the overhead of the beam training are essential [11],
especially for dense deployments.

Given the shorter communication ranges, future mmWave
networks will have a much higher access point (AP) density
than lower-frequency networks, making efficient network
management and control essential. To give an illustrating
example, while the initial access is performed by signaling
over omni-directional channels in current systems like Long
Term Evolution (LTE) or 802.11ac, mmWave beamforming
requires beam training with potentially many candidate access
points, before the most suitable one can be selected.

The commercial potential of mmWave networks has given
rise to standardization activities within the IEEE for wireless
local/personal area networks (WLAN/WPAN) and within the
3rd Generation Partnership Project (3GPP) for 5G cellular
networks. The Wireless Gigabit Alliance (WiGig) and the WiFi
Alliance provided the first version of the IEEE 802.11ad amend-
ment in 2012. 802.11ad builds upon prior 802.11 standards,
but adapts operation to the specifics of mmWave, such as the
integration of beam training for the directional antennas [3].
Studies show that current first generation devices provide
stable links up to ranges of 20–30 m [12], which imposes
limits on coverage and mobility. The IEEE 802.11ay standard
extends 802.11ad to provide even higher throughput, better
reliability, and improved range [4], [13]. The 5G New Radio
(NR) standardization activities of 3GPP define how to use the
new mmWave frequencies [14] for mobile networks in Release
15, TS 38.101-1. Fundamental components of cellular systems
are undergoing modifications at all layers of the protocol
stack. At the PHY and MAC layers, numerology, channel
coding, multiple-input multiple-output (MIMO), initial access
and handover are among the ones requiring adaptation [15].
Upper layers receive functionality extensions in the Radio Link
Control (RLC), the Packet Data Convergence Protocol (PDCP),
and the Radio Resource Control (RRC) [16].

In this paper, we survey mechanisms and techniques for
efficient, low latency, and reliable mmWave networks. We
outline viable solutions and provide a performance assessment
based on results obtained from practical experiments. We
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specifically focus on techniques enabling mmWave systems to
adapt to complex and dynamic environments, and to scale to
dense network deployments offering very high data rates.

We first discuss mmWave networking challenges with respect
to beam training (Section II). Once a link is established, the
beam alignment has to be preserved by means of tracking
procedures, which is particularly challenging in dynamic
and mobile environments. Furthermore, the aforementioned
challenges are exacerbated for dense networks, where beam
training with potentially many access points is necessary to
determine the best one to associate with. The performance
of beamforming, training and tracking can be significantly
improved with the help of contextual information, and in
particular through an in-band localization system able to
capture the position and orientation of mobile devices with
high accuracy and low overhead (Section III). The mmWave
channel is quasi-optical, i.e., the channel consists of few paths
that are either line-of-sight (LoS) or non-line-of-sight (NLoS)
via low-order reflections, which makes it very amenable to the
implementation of wireless location systems.

The high antenna directionality also has an impact on
medium access. It reduces interference and improves spatial
reuse. However, certain common MAC mechanisms such
as carrier sense multiple access with collision avoidance
(CSMA/CA) suffer from the incomplete carrier sensing caused
by the antenna’s directionality, and more efficient medium
access is required to scale to high density networks (Section IV).
Furthermore, simultaneous use of multiple interfaces at the
MAC level, for example a mmWave interface complemented
by a sub-6 GHz interface, can improve network reliability and
resilience in a way that is transparent to higher layers.

In summary, mmWave networks constitute an extremely
interesting solution to the spectrum shortage encountered at
lower frequencies, but significant challenges remain in order
to realize their full potential.

II. SCALABILITY CHALLENGES OF MMWAVE NETWORKS

A. Beam Training

High-gain directional antennas are essential to overcome the
severe propagation issues at mmWave frequencies. In turn, this
requires mmWave devices to perform beam training in order
to determine suitable directions for transmission and reception.
Beam training is the procedure that aligns antenna beams
at the transmitter and receiver. It is one of the fundamental
mechanisms that mmWave systems employ in order to adapt to
changes in the environment. Its efficiency is thus crucial for the
overall efficiency of the network itself. For analog beamforming,
beam training involves selecting the most suitable beamforming
vectors, usually from a predefined codebook [17]. The simplest
method for beam training is an exhaustive search over the
predefined antenna beams, after which the one that maximizes
the signal-to-noise ratio (SNR) over the link is finally chosen to
communicate. However, this approach is highly inefficient, and
the overhead scales with the number of antenna configurations
(and thus the number of antenna elements). To establish a
single link with no omni-directional reception and N beams per-
antenna, the beam search space is N2. With omni-directional

reception, the complexity is still linear. While such complexity
is feasible for current designs, it will become inefficient for
future devices with increasingly larger antenna arrays.

The search process can be divided into multiple phases with
different antenna beamwidths, reducing the number of beam
training steps by narrowing down the search space going from
wide beams to successively narrower beams [18], [19]. A simple
two-stage version of such hierarchical beam training is used in
the 802.11ad standard. Given the sparseness of the mmWave
multi-path channel, compressive beam training concepts can
also provide a fast solution. The intuition is to reduce the search
space by probing only a subset of the N possible patterns [20],
[21] (see Fig. 1(a)) and estimating the most likely angle of
arrival of the signal by analyzing the sequence of SNR values
obtained for the different measurements. The estimated angle
then determines the best pattern to be used for transmission
and/or reception. Similarly, Agile-Link [22] determines the
best alignment in a logarithmic number of measurements by
creating so-called multi-armed beams to quickly assess the
signal power over multiple spatial directions and estimate the
most likely angle of arrival. The flexibility of hybrid and fully
digital beamforming enables much better adaptivity, using
multi-directional transmission and reception to probe several
directions at the same time, so as to reduce the number of
search steps even further [11].

B. The Impact of Dynamics

Once a link is established, the communicating devices need
to continuously track each other to maintain antenna beams
aligned in case of mobility. To this end, beam training can be
performed periodically (as is done in 802.11ad) or whenever
the link quality degrades below a certain threshold. While
the approaches discussed in the previous section work well
in conventional indoor settings and with moderate mobility,
even the reduced overhead of the more advanced beam
training schemes becomes a limiting factor for highly dynamic
environments.

Rather than carrying out a full beam training, more sophis-
ticated solutions can reduce such overhead to nearly zero by
performing tracking on a per-packet basis [23]. This approach
uses beam patterns with two strong adjacent lobes during part
of the packet preamble, where the lobes have a 180° phase
shift with respect to each other. By detecting the presence or
absence of a phase shift during the preamble, it is possible
to infer device movement and rotation as part of the packet
detection process. The approach provides a much higher degree
of adaptivity to dynamic environments.

Since movement is typically continuous, past angle infor-
mation is also useful to narrow down the beam tracking
search space [24]. Other approaches use contextual information.
In [25], [26], the 2.4/5.8 GHz bands available in multi-band
devices are used to measure the relative angle between two
devices, which is then used to bootstrap the beam training
process. In addition, the low-frequency interface of a multi-band
device provides a highly important communications fallback
in case the mmWave link breaks, and can even be used to
predict when the link will become available again [27]. Also
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Fig. 1. Scalability challenges of (a) beam training, (b) tracking, and (c) access point selection and association.

the sensors (accelerometers, gyroscopes, and magnetometers)
available, for example, in smartphones or vehicles can help
determine rotation and movement [28], [29]. Similarly, for
vehicular networks, the information provided by cameras, light
detection and ranging systems (LIDARs), global positioning
system (GPS) receivers, and the like help obtain the relative
position of neighboring vehicles or access points, and thus
speed up the beam training process [30]. It is even possible to
take advantage of the blinking notification LEDs of an access
point to track relative changes of the position and orientation
of a mobile device, and thus steer the antenna towards the
access point [31], [32].

Most importantly, movement is often highly predictable [33].
For example, a vehicle at the intersection shown in Fig. 1(b) can
only move straight or turn left, and the speed with which these
movements happen are typically bounded within a relatively
narrow range. This makes it possible to reliably predict future
beam steering angles from past information. Using machine
learning, even complex scenarios can be predicted [34], and
blockage when the users moves behind obstacles, such as a
building, vegetation, vehicles, or other users, can be anticipated
to perform a handover prior to link disruption. In summary,
with these techniques, mmWave links can be maintained even
in highly dynamic scenarios.

C. Access Point Selection and Handover in Dense Networks
Prediction- and learning-based techniques to deal with chal-

lenging scenarios can be applied whenever history information
is available, for example when only the beam steering angle
for an existing link requires updating. Otherwise, some form
of beam training must performed.

Beam training is a necessary procedure for any mmWave
device performing an initial access to the network. In 5G
cellular networks, the initial access process entails three
phases to register a user as active: downlink timing and
frequency synchronization (cell search procedure), system
information acquisition and uplink timing synchronization
(random access procedure). IEEE 802.11ad organizes the initial
access to the medium by having the access point transmit
beacon messages with network information at certain intervals.
Access schemes in cellular and WLAN mmWave networks
face similar challenges. Due to channel characteristics and the
use of directional antennas, there can be a mismatch between
the discoverable and supportable coverage area. An omni-
directional transmission from a device A may not reach device

B, even though B is within the directional transmission range
of A, which is particularly problematic for the omni-directional
transmission of control messages such as primary and secondary
synchronization signals for cell search [35] or request-to-
send/clear-to-send messages [36]. Therefore, even control
messages are typically sent directionally. In 5G networks, cell
search procedures [7] can be based on (i) exhaustive search,
(ii) iterative search (a process similar to the one mandated
by 802.11ad), and (iii) context-information [37]. After cell
search, users undergo a random access procedure consisting of 4
phases: (i) preamble transmission, (ii) response, (iii) connection
request, and (iv) resolution. Factors limiting the scalability of
random access are the duration and the number of usable
receive beams [38]. When using directional communications
for random access, the duration of the procedure can be long
due to multiple preamble transmissions for each pair of transmit
and receive beams.

Similar to initial access, whenever a handover is required
there may be many potential access points to which a device
may connect. In either case, beam training with just a single
candidate access point is suboptimal: the channel quality to
the access point may be low, the access point may already be
serving many users, or the connection to that specific access
point will quickly be lost again due to device mobility. To
make an optimal decision, the device should beam-train with
all access points in its vicinity but this results in combinatorial
complexity for the optimal access point association problem
(see Fig. 1(c)), and even for very fast beam training procedures
the overhead becomes prohibitive for moderate to high access
point and device densities. This is particularly problematic
since access point densities for mmWave networks will be
significantly higher compared to lower-frequency networks.
There are two main reasons for this fact: to provide good
coverage, and to improve capacity by reducing the number of
devices simultaneously connected to an access point. Device-
to-device communications further exacerbate the problem, as
potentially all devices within range would need to carry out
beam training with one another.

The key to making such scenarios scalable is location
information. Even when a link is to be established without
any prior history, simply knowing the location of the device
and of the nearby access points makes it possible to directly
select both the most suitable access point and the beam pattern
that ensures the highest beamforming gain. In contrast to the
combinatorial complexity of exhaustive access point probing,
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localizing a device typically requires only a few measurements
with a small set of access points, and location information is
inherently amenable to prediction. While location information
is useful to reduce the beam training overhead in general and
deal with high environment dynamics, its use is crucial to scale
mmWave networks to very high densities.

III. THE IMPORTANCE OF LOCATION INFORMATION

As has become evident above, accurate location information
is essential to improve initial access and mobility management
and thus allow mmWave systems to scale and rapidly adapt
to changes in the environment. For a versatile, stand-alone
mmWave system, such location information needs to be
provided fully in-band, without the need for additional devices
or sensors such as GPS, accelerometers, gyroscopes, etc.
Furthermore, to ensure scalability to high device densities,
additional control messages for the purpose of localization
should be minimized or avoided altogether, and ideally the
system should just use information that is already available to
the physical and MAC layers of the mmWave communication
stack. Because localization algorithms need to run on mmWave
end devices in real time, they need to be low-complexity both
for the initialization as well as the run-time phases.

Client localization algorithms specifically designed for
mmWave systems are relatively new in the literature. A recent
work has shown that the potential performance of mmWave
client localization is very high [39]: the packing of massive
antenna arrays in a comparatively small space, the potentially
high SNR regimes, and the very large bandwidth result in
millimeter-level error bounds. For 5G cellular scenarios, this
means that both downlink and uplink localization become
possible, and that in the presence of a sufficiently multipath- and
scattering-rich channel, the error performance of localization
schemes is potentially sub-centimeter [40]. For sufficiently large
arrays, the work in [41] shows that even random beamforming
makes it possible to achieve sub-centimeter accuracy, which
tends to improve with accurate beam pattern design. Even
with smaller arrays it is still possible to exploit the angular
sparsity of mmWave propagation to identify changes in a
MIMO beamspace channel matrix, which can be leveraged to
localize a mobile client. The main advantage of this approach is
that line of sight LoS propagation is not strictly required [42].

While mmWave signals have been used for environment
scanning radars [43], [44], such approaches hinge on specialized
equipment which is rarely available on mmWave network
devices. The results of the client scans also have to be
communicated to the access points: this requires protocols
deployed for this purpose, and thus is not desirable. Early
contributions investigating the potential of simple client-based
mmWave localization with a single anchor have achieved
decimeter-level accuracy both in simulations and using real
60 GHz equipment in conjunction with the deployment of
lab-grade hardware [45]. As a design constraint, the considered
algorithms are sufficiently simple to be run on computationally
limited devices.

Range-based mmWave localization can usually achieve better
performance than purely angle-based algorithms [46]. This is

the case of [47], which ranges each mmWave propagation
path joining an access point and a client, and derives the
location of the client with multilateration. This approach is
called pseudo-lateration and requires only a single access point,
although the ranging procedure requires the characterization of
the environment’s path loss model, which in turn imposes a high
measurement burden, and needs to be carried out periodically in
case the environment itself changes over time. The work in [48]
exploits time-of-flight measurements and accurate mmWave
pointing to estimate both the range and the angular coordinates
of a client with respect to a known access point position, which
makes it possible to localize the client with sub-meter errors in
about 70% of the cases. The algorithm requires the extraction
of channel state information from beam training measurements
carried out by the IEEE 802.11ad standard.

Multipath propagation is seen as a resource for both client
localization and environment estimation in [49]: the angle
measurements obtained by the beam training process make it
possible to distill angle-of-departure and/or -arrival information,
which is then used to estimate the location of the client even
in the presence of the very rough measurements provided
by today’s commercial mmWave devices. The work in [50]
shows that the same input information can be leveraged to
jointly estimate the location of the anchor access points and
the client even in the absence of any initial information about
the environment and the access point locations. As the process
exploits multipath mmWave propagation, the method also
estimates the location of walls and obstacles in a simultaneous
localization and mapping (SLAM) fashion. The work in [51]
merges angle-of-arrival, received signal strength and time of
arrival information to infer both the location of the client and
the shape of the environment in a SLAM fashion. The devised
system yields good performance in simulations.

A slightly different approach is taken in [52], where the
authors adapt the structure of a deep neural network so that it
can take as input the phase differences of a sub-6 GHz signal
measured at the elements of an antenna array and relate them
to a user location, even with a few tens of training samples.
The accuracy is sufficient to point a directive beam accurately.
An earlier work [25] demonstrated that using angle-of-arrival
estimates from low-frequency (2.4/5.8-GHz) antenna arrays
to reduce the overhead of mmWave beam training is in fact
a promising approach, both for the inference of the optimal
steering angles and for the detection of LoS paths, which are
subject to lower attenuation than NLoS paths and thus yield
higher throughput. More recently, independent measurements
carried out in an anechoic chamber confirm that sub-6 GHz
angle measurements can inform mmWave beam pointing to a
degree that achieves near-ideal range measurements [53].

A location system fully integrated with the mmWave network
has a number of advantages: besides supporting location-aided
services, such a system can reduce the overhead of all network
maintenance and adaptation steps, including beam training,
user tracking, handover, load balancing and obstacle avoidance.
However, in order to be scalable to high user densities, the
system must be independent of other subsystems and eliminate
any further interactions between the user and the access points.
Ideally, the system should be able to operate independently
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on each client, without any sort of interaction among the
clients (e.g., to reach mutual consensus on the location of
one another), and with no information passing between the
clients and the access points (except for the necessary standard-
compliant beam training algorithms). The largest majority of
the literature on mmWave localization does not allow this kind
of flexibility and isolation of the location system. In our own
work, we propose to implement this architecture both i) in
an access point-driven “intelligent system” fashion and ii) in
a fully distributed client-based fashion. In case i), the access
points measure angles of departure to all clients and infer their
location, thereby having sufficient information to drive optimal
access point-client associations, beam training procedures, and
handovers. The client performs periodic beam training with
the single access point to which it is associated, while the
remaining access points overhear the beam training messages
to estimate angle information. These are then collected to
compute location estimates. Thus, case i) scales well with the
number of access points, but each client needs to perform beam
training such that it can be overheard by all access points within
range, i.e., only one client should beam-train at a given time.
Scalability is therefore limited for very high client densities.

In case ii), the localization procedure is fully client-driven,
and therefore scales very well with the number of clients. The
complexity only increases linearly with the number of (visible)
access points. We remark that having more access points in an
indoor area improves coverage and localization accuracy, and
in any case the client only needs to measure angles of arrival
with the visible access points, not with all of them. For this
reason, we argue that the additional complexity is acceptable.

In the following, we first present an actual implementation of
an access point-driven location system (type i) implemented us-
ing consumer-grade standard-compliant Talon AD7200 routers,
and then discuss the design of a fully-scalable system designed
along the lines of type ii).

A. Implementing an Access Point-Driven Location System

For narrow antenna beams, beam training and tracking
implicitly provide angle of departure (AoD) from the transmitter
and angle of arrival (AoA) at the receiver, as each beam
covers a well defined spatial angle. Given the location of
the access points, locating mmWave clients under such a
sector beam model is straightforward. However, commercial
off-the-shelf (COTS) devices do not provide such a level
of accuracy. The beam shapes of consumer-grade antennas
are highly irregular and do not point towards a specific
direction, but rather exhibit several lobes that are often equally-
strong. This prevents a direct translation of sector identifiers
into angle information. Moreover, the quasi-omnidirectional
beam patterns employed by current 60 GHz hardware for
reception are explicitly designed to avoid the complexity
of receive beam training, which further limits the angular
information that can be collected at receivers to achieve accurate
localization. Finally, the phased antenna arrays of consumer-
grade mmWave hardware often provide very coarse signal-to-
noise ratio measurements and usually do not provide phase
information.

The above constraints call for a different approach to the
client localization process: instead of assuming that each sector
identifier relates to a given angle, we leverage the knowledge
of the device’s transmission beam patterns to compute a sparse
channel decomposition. This yields the power and angle of
departure of each mmWave propagation path. Merging this
information from all access points makes it possible to estimate
the location of the user. Location errors due to blockage are
mitigated by integrating a mechanism similar to dead reckoning
in a modified particle filter.

Our method works in real time on commercial off-the-shelf
60-GHz access points with electronically steerable phased
antenna arrays, and the only modification applied to the device’s
firmware is to make the SNR information of each beam training
message available to the location system. Notably, the access
point’s operation itself is unchanged. Below, we provide the
characteristics and the main steps of our method, and introduce
some results. The full details are available in [49].

Our localization method hinges on the estimation of the
angles-of-departure of the signal transmitted by the client. This
is achieved indirectly, by processing the power measurements
collected independently by each visible access point, for each
of the client’s transmit beam patterns. The process involves
the following two functions: a channel decomposition that
reliably estimates angles of departure from the client despite
the imperfect beam patterns, and a modified particle filter that
merges measurement data with system evolution models in
order to estimate the location of the client.

Since we cannot rely on phase information from the access
points or access antenna array weights, we cannot infer
the mutual interference of different multipath components
pertaining to the same signal. Moreover, the coarse dB-scale
quantization of the SNR values sensed by the access points
impedes the use of non-coherent path estimation approaches
such as [54]. Thus, we choose to only constrain the measured
amplitude to be less than the sum of the amplitudes of all
paths, a required condition for the problem to have a physically
representative solution. This leads to the formulation of the
following linear estimation problem with variables αi(θ):

min
∑
θ

αi(θ)

( ∑
b∈Bi

pb(θ)2
)1/2

, (1a)

s.t.
∑
θ

αi(θ)pb(θ) ≥ P(b)Ri
, ∀b ∈ Bi, (1b)

αi(θ) ≥ 0 , ∀θ ∈ Θ, (1c)
where pb(θ) is one of B beam patterns indexed by b = 1, . . . ,B,
θ ∈ Θ is the emission angle, Bi is the set of beam patterns
used by access point i for which a measurement is available
(which can be a subset of the total beam pattern set due to
firmware inefficiencies). The cardinality of set Θ depends on
the resolution of the angular domain quantization. Finally,
P(b)Ri
= 10γ

(b)
i /20 is the signal amplitude corresponding to the

SNR γ
(b)
i (in dB) measured by access point i when the client

transmits with beam pattern b.
The minimization formulation of the objective function

in (1a) imposes that, for each access point, there exist only a
limited number of angles that actually contribute to the received
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Fig. 2. Angle of departure identification via channel decomposition. Left:
linear programming result from Eq. (1). Right: smoothed version for the
computation of the angle goodness function. (Adapted from [49].)

power. By constraining the total amplitude of the signal received
via all beam patterns along the angles that provide a non-zero
contribution to be at least the total received signal amplitude
output by the router’s hardware (constraint (1b)), we impose
that the solution becomes naturally sparse, as there are normally
just a few paths that propagate from a client to each access point.
Finally, constraint (1c) guarantees that each angle contribution
is physically meaningful.

The result of the AoD estimation problem (1a) is shown
in the left panel of Fig. 2, where the outer dots represent the
actual AoD from each of four access points. The linear program
solution includes several likely directions (whose total number
is bounded by |Bi |, i.e., by the number of beam patterns used
for beam training by the hardware), among which at least one
is in fact a good estimate of the LoS AoD. To actually localize
the device we exploit the angles estimated via problem (1) to
construct an angular goodness function that helps determine the
coherence of the measurements with the location and orientation
of the device. Such function cannot be non-zero for a discrete
set of angle values and zero everywhere else, otherwise we
would not be able to compute a soft confidence value in the
presence of angle estimation errors. This problem is solved
by convolving the variables αi(θ) with a smooth Gaussian
kernel of predefined standard deviation σe = 10◦, namely
g(θ) = exp

(
− θ2/(2σ2

e )
)
/
√

2πσ2
e , to yield vi(θ) = αi(θ) ⊗ g(θ).

An angular goodness function L̄(x) can then be defined by
checking how a position and orientation x fits the smooth
angles of departure estimated vi(θ) (details in [49]). Function
L̄(x) can be joined with a distance goodness function D(x)
which evaluates whether the distance between the access point
and the user matches a reasonable propagation model. Note
that this can be roughly estimated with a few measurements,
and is not used for range-based client localization, only to
estimate the fitness of a distance value. We finally define an
angular and distance fitness function as

F(x) = L̄(x)D(x), (2)
and employ it to check the correctness of a position estimate
in light of the collected measurements.

The localization of the user can then be achieved via a real-
time-capable filter such as a particle filter, which computes a
number of likely user locations using a predefined mobility
model, and tests the fitness of each particle using the previously
introduced angular and distance goodness function. However,
such a filter may diverge quickly in the presence of local fitness
maxima, especially in the presence of the inaccurate angle and

power measurements provided by real hardware. Therefore,
we employ a modified particle filter, where the particle set is
enriched by “informed” particles. These particles are generated
at the locations obtained by solving angle-difference-of-arrival
localization problems [45], when the measurements collected
are sufficient to enable this (namely, when at least three angle
estimates from three different access points are available for a
given measurement epoch). This makes it possible to steer the
particle filter to more accurate estimates.

The steps followed by the localization algorithm are sum-
marized as follows:
• Access points collect data from 802.11ad’s beam training

procedure; this data includes SNR measurements quantized
to 0.25 dB for each sector;

• the location system jointly processes the measurements
to derive angle-of-departure estimates;

• a particle filter is evolved, and the likelihood of each
particle is tested using a likelihood function based on the
measurements collected by the access points;

• when angle-of-departure measurements are collected from
at least 3 access points, an “informed” particle is fed into
the particle filter;

• the locations of the surviving particles are weighed via
their respective likelihood and averaged to yield the client’s
location estimate.

We demonstrate the capabilities of our access point-driven
location system using the TP-Link Talon AD7200 router, that
has 34 hard-coded antenna configurations which can be selected
to steer the antenna array. The corresponding beam patterns
were measured in an anechoic chamber to obtain the pb(θ)
data required for the channel decomposition in Eq. (1a). We
consider two different indoor environments: i) an unfurnished
11 × 21 m2 auditorium (see Fig. 3(a)), which allows to study
our system in a blockage- and movement-free setting; and
ii) a real-world 7.4 × 13.5 m2 open office environment that
includes typical office furniture, such as screens and metal
cabinets that reflect mmWave signals, and obstructing structural
elements such as columns. The office is actively being used
by employees during the measurements (see Fig. 3(b)). In
both scenarios, we deploy the access points to maximize the
coverage within the measurement area, and take sector SNR
and RSSI measurements at 32 locations arranged in an 8 × 4
grid.

Figures 3(c) and 3(d) depict our measurement results in the
auditorium and office area, respectively, by mapping the color
to the median error for all positions and orientations, including
some examples of the estimated locations. The system achieves
high accuracy in both scenarios, except for some degradation
near the walls and corners of the indoor area due to imperfect
access point illumination. Localization results in the auditorium
are very accurate, as we obtain sub-meter accuracy in 70% of
the cases. In the office space sub-meter accuracy is achieved
in 60% of the cases.

B. Designing a Client-Based Location System

Considering the limitations of consumer-grade hardware, the
above system provides good results. However, future mmWave



7

2
1

m
 

11m 

mmWave AP 
UE trajectory 

(a) Auditorium scenario

1
3

.5
m

 
mmWave AP 

Column 

UE trajectory 

7.4m 

(b) Office scenario

0 5 10

x-axis [m]

0

2

4

6

8

10

12

14

16

18

20

22

y-
ax

is
 [m

]

0

0.5

1

1.5

2

2.5

3

 E
rr

or
 [m

]

mmWave AP

22

20

18

16

14

12
10

8

6

4

2

0

y
ax

is
[m

]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

E
rr

or
[m

]

0 5 10
x axis [m]

mmWave AP

(c) Auditorium error map

0 2 4 6

x-axis [m]

0

2

4

6

8

10

12

14

16

18

y-
ax

is
 [m

]

0

0.5

1

1.5

2

2.5

3

 E
rr

or
 [m

]

mmWave AP

18

16

14

12

10

8

6

4

2

0

y
ax

is
[m

]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

E
rr

or
[m

]

0 2 4 6
x axis [m]

mmWave AP

(d) Office error map

Fig. 3. Performance of the access point-driven location system. (a)–(b) Measurement setups. (c)–(d) Error maps for each setup. The white circles in panels (c)
and (d) represent two measured positions, whereas the black dots show their corresponding location estimates. (Adapted from [49].)

(a) Measurement 1 (b) Measurement 2 (c) Measurement 3 (d) Measurement 4

Fig. 4. Sequence of measurements required by the client-driven location system described in Section III-B. After the fourth measurement, it is possible to
estimate both the location of the access points and the coordinates of the measurement points of the user, according to a relative coordinate system.

systems are expected to integrate much more directional
antenna arrays [55] and thus can more easily and accurately
estimate angle information. This makes it possible to design a
location system that relies only on angle-difference-of-arrival
(ADoA) measurements carried out locally by each client in
order to estimate the location of a device. Most importantly,
the localization process can be carried out with zero initial
information about the map of the indoor environment, about
the initial location of the device, and even about the location
of the mmWave access points. All this information can be
estimated as the device moves and receives additional ADoA
measurements, in a range-free fashion, i.e., without requiring
any distance information. The intuition behind this concept
is provided in Fig. 4. If a client is fully unaware of the
environment and measures, e.g., four angles of arrival from
four different access points as in Fig. 4(a), the problem of
jointly computing the location of the access points and of the
client is under-determined. If we knew the distance traveled by
the client between two subsequent measurements we would be
able to triangulate the location of the access points and solve
the rotation ambiguity with a third measurement (Figs. 4(b)
and 4(c)). However, we advocate that the mmWave location

system should be independent of other subsystems such as
inertial movement sensors or GPS, therefore we have no way
to measure the distance covered by the client. To solve the
problem we observe that with just three access points, the
problem of jointly estimating the location of the access points
and of the user is under-determined, as for any three access
point locations we could define a circumference, position the
client at its center and measure the same angles of arrival
to those access points. A fourth access point is then needed
to “validate” the estimation, by checking that the angle of
arrival from this fourth access point is in accordance with
the estimated coordinates of all other access points and the
client. Having up to 4 measurements with the same scenario
as in Fig. 4(d) provides a sufficient number of angle of arrival
measurements to eliminate all unknowns of the problem in a
relative coordinate system.

Formally, call NAP the number of access points and NM
the number of locations where the client gathers one angle
of arrival measurement for each of the access points. Then,
at each measurement location, the client takes NAP − 1 angle
difference of arrival measurements, for a total of (NAP − 1)NM
measurements. We assume relative 2-dimensional localization
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where we do not need to solve any rotation, translation and
scale ambiguities.1 We have 2NAP + 2NM − 4 unknowns to
determine, where the latter 4 unknowns refer to rotation (1
unknown), translation (2) and scale (also 1). We therefore need
to have

(NAP − 1)NM ≥ 2NAP + 2NM − 4 , (3)
which can be solved only if NAP ≥ 4, for which we require at
least NM = 4 measurements. We remark that the measurements
are collected independently by each device and no prior
knowledge or interaction with the access points is required to
localize a node, hence the system is inherently scalable and
can adapt itself to any environment with sufficient access point
illumination.

In the following, we briefly summarize the main steps
required to carry out localization and environment estimation
using ADoA location estimates. The details of the procedure
can be found in [50]. First, we note that ADoAs have the
advantage to being invariant to rotation, so that we do not
need to trace the orientation of a device with respect to a
given coordinate system. Our ADoA-based algorithm processes
angle information related to both LoS and NLoS propagation
paths emanating from the same mmWave transmission. NLoS
components can be modeled as emanating from a “virtual
source” corresponding to the mirroring of the physical mmWave
source via a reflective surface [56], [57]. When a client localizes
itself through the signal of one or more access points, virtual
access points help enrich the set of available anchors, so that
the client can be located even in areas with limited mmWave
illumination.

Let t be the current time, xi the location of anchor
i, and y(t) the location of the client at time t. Call
v(t)i = 2



y(t) − xi


−2
(y(t) − xi). Finally, let θ(t)i j = φ

(t)
j − φ

(t)
i

be the ADoA corresponding to signals from anchors i and j
(located at xi and xj , respectively), and let ζ (t)i j = π/2 − θ

(t)
i j .

In our algorithm, each client solves the following problem in
a distributed fashion:

arg min
{v(t )i }, {xi }

∑
(i,t),(j ,t)∈V

(
v(t)Ti R

ζ
(t )
i j
(xj−xi) − 2 sin θ(t)i j

)2
, (4)

where Rα is the matrix that rotates a vector in the counter-
clockwise direction by an angle α in R2. In Eq. (4), the set
V contains all pairs (i, t) such that at time t the client can
measure visible paths corresponding to the anchor i, and the
sum is computed over all i, j, and t such that (i, t), ( j, t) ∈ V.
We remark that the solution to this problem is complex and
depends on the location of the anchor nodes xi , i ∈ A, which is
also unknown. We iteratively solve problem (4) by estimating
the location of the user and the location of the access points
in turns. In particular, it can be shown that the location of the
client is the solution to the following minimum mean-square
error (MMSE) problem:

v(t)i = (M
(t)
i M(t)Ti )

−1M(t)i b(t)Ti , (5)

1We remark that the resolution of these ambiguities is not needed for
network optimization operations such as beam training and handovers: in order
to know in which direction to point a beam, a device only only needs relative
coordinates. In any event, all ambiguities can be fully removed by knowing the
absolute location of any two reference points in the space, e.g., the coordinates
of two access points.

where M(t)i is the 2 × |J (t) | matrix whose columns are

[M(t)i ]:,k = R
ζ
(t )
ik

(xj − xi) , (6)

b(t)i ∈ R
1×|J | is the column vector whose kth entry is [b(t)i ]k =

2 sin θ(t)
ik

, for k ∈ J (t), and J (t) is the set of visible anchors
for which the client can collect angle measurements at time t.

Subsequently, we solve a second MMSE problem to find the
location of the anchors given the location of the user. After
some algebra, it can be shown that the location of the access
points is the solution to the problem

x̂ = arg min
x

∑
(i,t),(j ,t)∈V

(
q(t)Ti j x − 2 sin θ(t)i j

)2
, (7)

where x =
[
xT

1 xT
2 · · · xT

|A |

]T is the anchor location vector. The
solutions in (5) and (7) can be computed iteratively until the
solution converges, or until a maximum number of iterations
has been reached. To initialize the computation, we provide
an initial estimate of the anchor locations by rearranging (4)
into a form amenable to grid search.

As the measurements collected include physical and virtual
anchors alike, multipath propagation can be exploited for
environment estimation by pairing each physical access point
with its virtual counterparts that model the source of NLoS
propagation paths (i.e., reflections). This makes it possible to
estimate the location of the environment boundaries, but is also
sensitive to angle and access point estimation errors. Since our
client-based location system estimates the position both of the
access points and of the client, we filter the boundary estimates
by requiring that the same boundary point has been seen under
different angles and using different physical and virtual access
point pairs, before it can be accepted as a feasible estimate.

The main steps of the algorithm are summarized as follows:

• The client measures the angles-of-arrival to the visible
access points, and uses them to compute angle-difference-
of-arrival values;

• The client initializes and iteratively solves problems (5)
and (7) to localize itself and the access points in a relative
coordinate system;

• The corresponding information is employed to estimate the
location of obstacles and room boundaries via geometrical
considerations.

We simulate the performance of our algorithm by using a ray
tracer in a complex indoor area with several internal walls that
separate a few offices from an open space, including reflective
office materials, and featuring a dense access point deployment.
Fig. 5(a) shows the cumulative distribution function of the
localization error for our algorithm, compared to two range-
free, angle-based benchmarks from the literature, one based
on triangulation (named TV) and a second one based on
the geometrical ADoA algorithm [45]. We remark that both
benchmarks require some additional knowledge: for example,
TV needs information about the device orientation, and both
the TV and ADoA benchmarks require to know the floor
map and the location of the access points, in contrast to our
algorithm that works with zero initial knowledge, and is thus
much more scalable and adaptable. Our algorithm achieves
sub-meter accuracy in more than 90% of the cases, 80% of the
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Fig. 5. Performance of the client-based location system in a complex indoor scenario, compared to two benchmarks making less realistic assumptions on the
knowledge of the environment. (Adapted from [50].)

estimates are within less than 40 cm from the true location of
the client, and the median error is less than 20 cm. This is in
contrast with the two benchmark range-free algorithms, which
achieve much worse accuracy, confirming that our algorithm
is a feasible approach.

Fig. 5(b) shows the true trajectory (green) of the client that
visits several spaces within the office area, superimposed to the
estimates found by our algorithm (magenta). We also show the
location of the physical access points (red square for the true
location and red cross for the estimate). Virtual anchor nodes
are not included for clarity but are used by the algorithm to
improve the accuracy of the estimates. We observe that in most
cases our algorithm achieves an excellent reconstruction of
the client’s trajectory as well as of the locations of the access
points, and that the largest errors are typically within tens of
centimeters from the actual locations.

The environment mapping performance of our algorithm is
also very good, considering the lack of any initial knowledge
about the access point deployment or the floor plan. As the
client moves through the area and reflected paths are found,
more and more wall sections and mmWave-reflective obstacles
such as computer screens are discovered. These elements are
marked as black crosses in Fig. 5(b). In some cases, there
exists a slight error in the estimation of the anchor locations,
especially within the offices in the top section of the area, where
the algorithm must often rely on the illumination from a single
access point. These access point localization errors translate into
slight room boundary estimation errors (e.g., in the left-middle
section of the bottom wall). Still, the reconstruction of the
client’s path and of the environment is very good, especially
considering that our algorithm only uses angle information
extracted from beam training procedures.

C. Discussion
In conclusion, the results shown above indicate that newer

generations of mmWave communication devices with better

antenna characteristics in terms of beam pattern directionality
and more fine-grained measurements of the complex baseband
signals received by the arrays will enable highly accurate
and scalable location estimation and environment estimation
algorithms. These algorithms can be used for a variety of
network adaptation and optimization tasks, and will enable
complex location-based applications. Since the systems are
based purely on angle information and no coordination among
nodes is needed, each node uses its own local coordinate
system that is invariant to rotation, translation and scaling.
For the network adaptation and optimization tasks discussed
below, this is irrelevant, but for location-based services where
absolute location is needed, either two reference points must
be specified that determine location and scale, or a few SNR
or time-of-flight based distances measurements can be used to
provide an absolute reference.

As an example, an accurate and distributed location and
environment estimation system enables clients to know when
obstructions to LoS mmWave propagation paths will occur, so
that fast handover schemes can be initiated before the client
loses connectivity, and without requiring explicit beam training
to the new access point (since the relative angle to that access
point is known). Moreover, rather than having to probe several
candidate access points to find the most suitable one, the client
can use its location and that of the access points to directly
select the best candidate that provides a good LoS link and at
the same time is expected to remain in LoS, given the current
trajectory of the client. Also, if an obstruction occurs, e.g., by
a human traversing the LoS link, the client can immediately
re-associate itself to another access point without any prior
beam training. Conversely, if location estimation is not carried
out locally by the clients, but rather achieved collaboratively
by the access points of the network, the network itself can be
managed as a dynamic system. Such system can organize itself
to distribute client-access point associations the the objective
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Fig. 6. CSMA/CA performance for a dense network deployment. (Adapted from [9].)

of maximizing the network throughput and balance the load
across the available access points. Moreover, it can preemptively
avoid disconnections caused by the mobility of a client or of
the environment around it. This leaves such time-consuming
operations as beam training and tracking as a fallback solution
for the limited number of cases where location information
cannot be used (e.g., due to an excessive localization error).

In addition to the above advantages related to mmWave
network adaptation, management and optimization, an accurate
and scalable location system is a tool of great importance for
a number of applications, including personalized healthcare
and assisted living [46], customized experiences in specific
environments (shopping malls, hospitality, etc.), follow-me
services, indoor robotics, as well as more lay applications such
as social networking and automated appliance control [58].

IV. MAC LAYER OPERATION

This section discusses the implications of mmWave character-
istics on MAC-layer operations, including resource allocation
and medium access, and how these operations need to be
adapted. Again, location information can significantly help
enable efficient designs for large network deployments.

A. Spatial Reuse

In theory, the high directionality of the communication links
limits interference, allowing multiple transmissions to take
place simultaneously. To this end, both 802.11ad and 802.11ay
include mechanisms for spatial sharing and interference mit-
igation. Access points can measure the interference among
individual links in order to simultaneously schedule links of
stations that do not interfere.

However, the beam patterns of low-cost commercial devices
are far from perfect, and have significant side lobes that may
create interference [20]. Thus, analyzing the actual degree
of spatial reuse through experiments is of interest. To assess
spatial reuse, we consider the following scenario. Two pairs
of wireless links (referred to as the “left” and “right” link)
operate in the same channel. The placement and the direction
of the communication from the two clients to the two access

points occurs according to the following topologies: i) parallel
vertical links (↑↑), ii) vertical and horizontal links (↑→), and
iii) horizontal links (→←). As illustration, in topology (iii),
the two clients face each other and the two access points are
placed between them, each one facing its own client, and away
from the other access point. An example configuration is given
in Fig. 6(a). Fig. 6(b) shows the aggregated throughput of both
links together with the 95% confidence interval for different
values of the distance between each access point and the client
connected to it. A single link achieves a throughput of around
1.6 Gbit/s. Hence perfect spatial reuse, where both links operate
simultaneously without impairing each other, should yield an
aggregate throughput of 3.2 Gbit/s. This is only achieved for
parallel links (topology i) and a separation distance of more
than 5 m. For all configurations, the aggregated throughput
increases with the separation distance. However, the beam
steering (and thus the node placement) clearly has a significant
impact, and spatial sharing is not feasible for the links with
clients facing one another (topology iii) even for very large
distances. This suggests that opportunities for spatial reuse
critically depend on the beam configurations of the involved
devices, and thus on the current scheduling decisions.

With precise location information for access points and
devices, as well as knowledge of the available beam patterns
of the devices, it is possible to determine potential interference
a priori. Therefore, location information can help identify
promising candidate links for spatial reuse, rather than having
to try all link combinations to identify which ones can operate
simultaneously. Furthermore, knowledge of the device locations
allows to design custom beam patterns with a strong main
lobe towards the communication partner and very low gain
towards interferers. The higher the device and access point
densities become in future networks, the larger the importance
of efficiently detecting spatial reuse opportunities and of using
beam patterns specifically designed to enhance spatial reuse.

B. Taking Advantage of Multiple Bands

The problems of blockage and limited range of mmWave
networks require efficient recovery mechanisms. For this reason,
in both WLAN and 5G cellular networks there exist methods
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for fast seamless handover and joint use of mmWave and
low-frequency interfaces. To take advantage of multiple bands,
IEEE 802.11ad includes a fast session transfer (FST) technique.
An IEEE 802.11ad device can seamlessly change its operational
band from 60 GHz to 2.4/5.8 GHz in a manner that is
transparent to higher layers, i.e., while maintaining the same
interface and MAC address. As a result, a device can extend
its coverage area without interrupting the currently active
flows. For the cellular context, 3GPP Release 12 introduced
the concept of dual-connectivity, where a device can be
simultaneously connected to two base stations, one master base
station and a secondary base station. The master handles both
the control plane and the user plane, whereas the secondary
typically handles only the user plane. For 5G systems, the
concept of dual-connectivity evolved into multi-connectivity
where a device can be simultaneously attached to an LTE base
station and a next generation 5G base station operating at
mmWave frequencies. The 3GPP Release 15 provides the basis
for inter-networking among LTE and 5G new radio (NR) [59],
allowing user-plane traffic to be split or duplicated at the
aggregation point [60].

The objective of the above mechanisms is to enhance
adaptability and utility of the system by combining the high
data rates offered by the mmWave bands with the reliability
and resilience offered by sub-6 GHz bands. At the same time,
the joint use of multiple bands brings significant challenges to
the network. Signals may penetrate obstacles that are present
in a given environment, be (partially) reflected, attenuated, or
completely blocked, depending on the frequency of the signals
and the material and thickness of the obstacle. If the problem
of optimal access point selection is already combinatorial by
considering only multiple access points at mmWave frequencies,
this problem becomes even harder for multi-band systems.
Theoretically it would be necessary to assess the channel quality
to each access point in each band, resulting in a prohibitively
high overhead.

Also for such multi-band systems, accurate location informa-
tion is of immense help, as it allows the network to determine
where obstacles are located. A simple approximation (that holds
most of the times) is to assume that obstacles only attenuate low
frequency signals, whereas they block mmWave signals. Given
the predicted trajectory of a client, a location-aided multi-band
system can determine when a client will not see any mmWave
access points due to obstacles, and therefore would have to
switch to a low frequency alternative. Furthermore, whenever
this does not hold (i.e., an access point is assumed to be visible
but in reality it is not, or vice versa), this information can be
recorded for the given location and be taken into account in
future decisions.

In summary, location information is not only essential
for beam training and access point association, but also for
scheduling, spatial reuse, and deciding when to fall back to
lower frequency systems to avoid outage. Similar optimizations
may be feasible using machine learning based on large volumes
of past channel measurements instead of explicit location
information. However, due to the quasi-optical mmWave
channel characteristics, location information is an excellent
performance predictor for mmWave, requires significantly

fewer measurements than machine learning to work reliably,
and gives more useful information for network performance
troubleshooting.

V. CONCLUDING REMARKS

Millimeter-wave communications systems offer multi-Gbit/s
data rates and limited interference thanks to highly directional
antennas. However, mmWave channel properties such as high
propagation loss and blockage require highly efficient network
management and control algorithms to achieve a good overall
network-level performance.

Improvements in the antenna arrays will further increase
data rates and improve spatial reuse, but may increase the beam
training and tracking overhead. As a consequence, the use of
context information (and in particular location information)
becomes essential, as it makes it possible to significantly
reduce the overhead of such procedures. For this purpose,
we present efficient in-band mmWave location systems that
will allow future mmWave networks to adapt more rapidly
to changing environment conditions and scale to high device
densities. The high antenna directionality also brings about
challenges for the medium access control. We discuss these
aspects through practical measurements and simulations, and
highlight promising solutions to improve performance and
adaptivity.
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