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Imaging of the human body using a number of different modalities
has revolutionized the field of medicine over the past several decades
and continues to grow at a rapid pace [2]. More than ever, previously
unknown information about biology and disease is being unveiled at

a range of spatiotemporal scales.
Although results and clinical adop-
tion of strategies related to the com-
putational and quantitative analysis
of the images have lagged behind
development of image acquisition
approaches, there has been a notice-
able increase of effort and interest
in these areas in recent years [6].
This special issue aims to define and
highlight some of the “hot” newer
ideas that are in biomedical imaging
and analysis, intending to shine a
light on where the field might move
in the next several decades, and
focuses on emphasizing where elec-
trical engineers have been involved
and could potentially have the most

This special issue
aims to define
and highlight key
ideas in biomedical
imaging and analysis
that shed a light on
where the field is
headed in the
next decade.

impact. These areas include image acquisition physics, image/signal processing,
and image analysis, including pattern recognition and machine learning. This
issue focuses on two themes common in much of this effort: first, engineers
and computer scientists have found that the information contained in medical
images, when viewed through image-based vector spaces, is generally quite
sparse. This observation has been transformative in many ways and is quite
pervasive in the articles we include here. Second, medical imaging is one of the
largest producers of “big data,” and data-driven machine-learning techniques
(e.g., deep learning) are gaining significant attention because of improved
performance over previous approaches. Thus, data-driven techniques, e.g.,
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formation via image reconstruc-
tion [11] and image analysis via
deep learning [8], [9], are gaining
momentum in their development.

The set of articles included exam-
ine the capability of image sci-
ence to explore the complexity of
life systems, from bacterial colonies
to human medicine. This goal
has challenged biological and med-
ical imaging researchers to develop
sensing techniques capable of track-
ing cellular communications over a
large range of spatiotemporal scales
to explore the hierarchy of prop-
erties emerging from complex liv-
ing systems. The search for deeper
understanding and clearer diagnos-
tic assessments is driving technol-
ogy into higher dimensional spaces.
Ideas that began with multimodality
approaches for imaging and treat-
ing cancer and cardiovascular dis-
ease have expanded into developing
techniques that reveal the systemic
role of the microbiome in healthy
cells and disease cells, the topology
of brain connectivity and biochem-
istry in cognition, and cognitive
computing in image formation and
interpretation where human pattern
recognition and model-based image
formation methods are hitting their
limits. The limitations encoun-
tered when modeling instruments
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as linear systems can be overcome
using data-driven approaches now
offered through a range of machine-
learning techniques. Yet many sense
that the most useful and robust
models may involve some mixture
of model-based and data-driven
approaches. The articles that are
included focus on a collection of
topics, which we feel are important
areas for the future of biomedical
imaging. These are spread across ten
contributions from ten different sets
of authors that are detailed below.
In this “Scanning the Issue” article,
we first try to set the stage for the
Special Issue by briefly reviewing the
recent history of the terminology used
in the fields of big data, machine
learning, and deep learning in the
context of medical imaging. Then,
we will introduce and summarize
the ten articles by grouping them
into categories of: A) modality-
centric image acquisition efforts,
including image reconstruction and
B) efforts that are more focused on
image analysis and image-guided
intervention. We will conclude by
summarizing some of the cross-
cutting themes of the contributions.

I. B A C K G R O U N D A N D
T E R M I N O L O G Y:
P AT T E R N
R E C O G N I T I O N , B I G
D ATA , M A C H I N E
L E A R N I N G , A N D
A R T I F I C I A L
I N T E L L I G E N C E
Although the history of radiology
began with Wilhelm Roentgen’s
taking the first X-ray image (of his
wife) in 1895 and evolved through
1913 with the invention of mam-
mography and with the first cerebral
angiogram taken in 1927, modern-
day medical imaging began to take
shape in the 1950s with the invention
of positron emission tomography
(PET) and ultrasound imaging.
Perhaps the key defining moments of
computational medical imaging came
with the 1970s as Godfrey Hounsfield
(an Electrical Engineer) and Allan
Cormack invented the first computed
tomography (CT) scanner in 1972 and

then the first commercial magnetic
resonance imaging (MRI) scanner was
developed by Raymond Damadian
in 1977. Somewhat in synchrony with
the medical imaging equipment devel-
opments in the 1970s and beyond,
and the age of digital computers,
were the development of the general
techniques and terms of digital image
processing and pattern recognition.
Digital picture and image processing
were developed in the 1960s, mostly
at places like Caltech/JPL, MIT,
and Bell Laboratories, and were
most often associated with imaging
and exploration of outer space.
Interestingly, in 1994, “Digital Image
Processing—Medical Applications”
was an “Inducted Technology” into
the Space Technology Hall of Fame
[10], illustrating at least one connec-
tion between these fields. But perhaps
most germane to the current article
is the evolution of the term “pattern
recognition” and its relationship with
the notions of machine learning and
deep learning, all ideas that influence
the ten articles are included in this
Special Issue. Pattern recognition first
became an area of study in the early
1970s, perhaps best exemplified by
the classic textbook Pattern Classifica-
tion by Duda and Hart [7], which was
first published in 1973. This textbook
and this very field most definitely
evolved out of the general field of
electrical engineering (EE) as a type of
intelligent (digital) signal processing,
thereby developing into a subfield
solidly based in the EE university
curricula of this time frame. The early
goals of work in pattern recognition
were to develop algorithms that
would be implemented in software or
hardware to perform intelligent tasks
similar to what a human could per-
form, for example, picking out trends
in an electrocardiogram or finding
objects in an image. Decision making
was typically done using features
extracted from the data and run
through heuristic or logical decision
trees or discriminant analyses based
on Bayesian statistical methods.
In the 1980s and 1990s, the field
gained more attention from computer
scientists and decision-making algo-

rithms moved toward using increasing
amounts of data, with the goal of less
human intervention being required,
leading to the coining of the term
“machine learning.” One of these
strategies was based on multiple
layers of simple decision-making
nodes that loosely tried to mimic
human brain networks, known as
computational neural networks. It is
most interesting to see the evolution
of the use of these terms during the
early years and beyond the 21st
century, with pattern recognition
becoming less and less popular and
machine learning and deep learning
becoming ubiquitous as evident from
Fig. 1 (see also the earlier comparison
and discussion in [5]).

Certainly related to the above are
the ideas of “Big Data” and “AI,” the
latter of which has seen its use go up
and down over the last half-century
but (in at least some definitions) has
been used to encompass everything
and anything related to the idea of
computers and learning algorithms.

II. O V E R V I E W O F T H E
S P E C I A L I S S U E
As discussed above, this issue contains
ten contributions from some of the
most active investigators in the med-
ical imaging field who are using com-
putational strategies to affect their
approaches and to improve the utility
of information contained within, and
derived from, medical images. The
topics have been addressed by a group
of authors who are mostly from sep-
arate institutions or companies and
come from a number of regions across
the globe. The articles are all driven
by applications but show a range of
technology development. We feel that
these can mostly be clustered into two
large subcategories that make up Sec-
tions II-A and II-B: A) work related to
image acquisition and formation and
B) work related to image analysis and
image-guided intervention, including
the integration of nonimage data such
as genomics.

A. Image Acquisition and
Formation

In this section, five different sets of
contributors look at how data-driven/
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Fig. 1. Search of terminology use trends from Google Trends (https://trends.google.com/trends/): pattern recognition (blue) versus

machine learning (red) versus deep learning (yellow) between 2004 and 2018. These scores awarded on this “interest over time” line graph

express the popularity of that term over a specified time range. Google Trends scores are based on the absolute search volume for a term,

relative to the number of searches received by Google. The scores have no direct quantitative meaning. For example, two different terms

could achieve scores of 100 in the same month, but one received 1000 search requests, while the other received 1000000. This is because

the scores have been scaled between 0 and 100. A score of 100 always represents the highest relative search volume. These monthly scores

are calculated on the basis of the average relative daily search volume within the month. A rising or declining line does not necessarily

indicate a change in the popularity but rather likely indicates that general search use has increased or decreased over the time range.

machine-/deep-learning affects the
formation of images.

First, in the article “Deep
learning in ultrasound imaging,”
van Sloun et al. explore the use
of deep, data-driven learning on
all aspects of ultrasound imaging,
ranging from ideas that are at the
interface of raw signal acquisition
(including adaptive beamforming)
and image formation to learning
compressive codes for color Doppler
acquisition and to learning strategies
for performing clutter suppression.
They offer a provocative vision of
the future of ultrasound based on
extremely portable and intelligent
imaging that facilitates smart, wire-
less probes that are aimed at a range
of very specific applications. The
authors first note that sonographic
instruments are limited by the high
volume of data that must be processed
to implement the available methods.
For example, implementation of high-
frame-rate 3-D sonography with
advanced beamforming and sensitive
blood- and tissue-motion imaging
capabilities has placed extraordinary
demands on receive beamforming
and related signal processing. In
addition, the use of oversampling to
provide fine-scale phase adjustments
during dynamic-receive focusing
limits the frame rate and/or depth
of tissue penetration. The authors
describe new methods involving echo
modeling where copies of the sound
pulse with unknown amplitudes and
delays sparsely represent the response

of the system to tissue scatterers. This
sparse-data model can lead to signifi-
cantly reduced sampling rates without
limiting performance. Compressed
sensing techniques also eliminate the
need for analog microbeamforming
techniques now applied to speed
processing at the cost of image
quality. They show how efficient
sampling enables the addition of new
computational imaging technologies
throughout many applications of
medical sonography. In addition,
they also show a variety of examples
in their article, concluding that an
integration of model- and data-driven
approaches are often the best. More
specifically, highlights from this article
first include the idea that front-
end beamforming strategies could
be designed using deep learning
by learning the delays and the
apodizations by creating dedicated
delay layers. Furthermore, stacked
autoencoders or convolutional neural
nets could be used to generally map
pre-delayed channel data to beam-
formed outputs. Similar architectures
could learn how to take raw RF
data into optimized B-mode images.
Deep networks could also be used for
estimating spectra in spectral Doppler
applications and some of this work
has been done already. As in the opti-
cal microscopy applications described
below, deep learning and sparsity can
be used to develop super-resolution
ultrasound. In clinical echocardiog-
raphy, recognizing optimal views has
been achieved using deep networks.

In the second article, titled “Deep
learning-based image reconstruc-
tion and enhancement in optical
microscopy,” de Haan et al. develop
an overview of efforts to advance the
field of computational microscopy
and optical sensing systems for
microscopy using deep neural
networks. They first overview the
basics of inverse problems in optical
microscopy and then outline how
deep learning can be a framework
for solving these problems, typically
through supervised methods. Then,
they focus on the use of deep learning
to try to obtain single image super
resolution and image enhancement in
these data sets. Here, they describe
work that is able to extrapolate
missing spatial frequencies and
obtain an extended depth of field
(DOF), noting how these strategies
employ different deep neural network
architectures, including generative
adversarial networks (GANs). Perhaps
one of the most exciting areas noted
in this article is the new use of deep
learning to address the reconstruction
of single molecular localization
images at extremely high spatial
resolution, known as photoactivated
localization microscopy (PALM) and
stochastic optical reconstruction
microscopy (STORM). In both cases,
when deep learning was employed,
the techniques performed significantly
faster while maintaining the same
high spatial resolution. As the authors
note, microscopy is an ideal field
to apply deep learning, since the
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experimental data sets are typically
obtained under very controlled condi-
tions, including fixed and repeatable
illumination and focus. The authors
conclude that new smart systems are
possible that could be engineered to
solve specific image analysis tasks
by integrating the acquisition system
with the analysis algorithm that could
even predict which measurement is
required next. Such task-specific,
personalized, “thinking” imaging
systems are ideas that are in common
with the conclusions of other articles
in this issue.

The third article in this group,
“Machine learning in PET: From
photon detection to quantitative
image reconstruction,” by Gong et al.
addresses the uses of machine-
learning strategies in the area of PET
imaging. Here, the authors discuss
applications of machine learning to
PET, PET-CT, and PET-MRI multimodal
imaging. They describe the impact of
machine learning both at the detector
stage and for quantitative image
reconstruction. Given that there are
roughly equal contributions from true
coincident counts, scattered photon
events, and random noise events in
PET detection, and considering the
challenges imposed by low intrinsic
detection efficiencies, effective
application of signal processing to
the detector signals is essential in
the search for an optimal balance
among patient dose, scan time, and
image quality. Detector processing
involves determining the timing
and position of absorption events
within each detector crystal based
on the distribution of scintillation
photons recorded by photodetectors.
Given the many influences on light
distribution within the detector,
a broad range of machine-learning
approaches from traditional statis-
tical pattern recognition algorithms
to convolutional neural networks
(CNNs) have shown much promise at
improving sensitivity. As the authors
note in their abstract, fast waveform
digitizers are now available, and
machine learning has been used
to actually estimate the position
and arrival time of high energy

photons. They also discuss how a
broad array of statistical methods
and neural network applications is
improving performance of attenuation
and scatter correction algorithms,
as well as integrating patient priors
into reconstructions based on a
constrained maximum likelihood esti-
mator. In the reconstruction portions
of the image-formation algorithms,
machine and data-driven learning
has been used to correct for scatter
and attenuation while reducing noise.
As indicated in reference 166 of their
article, new ideas in the field moving
forward include trying to recognize
pattern relationships between low and
high count data in order to estimate
one day high count data from limited
count data.

MRI has become ubiquitous as
a go-to modality in many areas of
medical imaging fields. Rather than
overviewing this entire field, we chose
to ask the authors of the fourth
article, in this section, to focus on one
interesting area, which resulted in a
contribution titled “Machine learning
for rapid magnetic resonance fin-
gerprinting tissue property quantifi-
cation” by Hamilton and Seiberlich.
In this approach, a single rapid MRI
acquisition can produce quantitative
maps of multiple tissue proper-
ties simultaneously. The magnetic
resonance fingerprinting (MRF)
approach was initially developed
with notions of compressed sensing
and sparsity in mind to generate
a dictionary of signals using Bloch
equation simulations. However,
the latest techniques described in this
contribution describe how machine
learning can now accelerate the
extraction of quantitative maps from
the MRF results. More specifically,
the authors describe how neural
networks may accelerate dictionary
generation, which is crucial for
applications that quantify many tissue
properties simultaneously or require
frequent calculation of new dictio-
naries. In addition, they note how
machine learning may permit faster,
more robust pattern recognition by
bypassing dictionary generation and
directly estimate tissue property val-

ues from the measured data. In fact,
a version of the same techniques
may provide faster and more robust
reconstructions of tissue property
maps that could aid the clinical
translation and adoption of MRF.
These ideas support the integration of
acquisition and analysis theme noted
in the previous two paragraphs.

The fifth and final contribu-
tion in this section, titled “Image
reconstruction: From sparsity to
data-adaptive methods and machine
learning,” by Ravishankar et al.,
overviews how sparsity, data-driven
methods, and machine learning
have, and will continue to, influence
the general area of image recon-
struction, cutting across modalities.
In this mathematically solid article,
the authors review the basic strategies
currently in use as well as describe the
work now aimed at trying to interpret
what the deep-learning models are
actually doing. The authors describe
the strong influence that sparse and
reduced-rank data models have made
on model-based and data-driven
image reconstruction techniques. By
summarizing the history of image
reconstruction, they show how image
quality is driving the evolution
of ideas toward the cutting-edge
methods available today. The greatest
impact of sparsity on MR is to reduce
scan times, while that on CT is to
reduce patient dose. Referring back
to the ultrasound discussion above,
we notice that both the article by
van Sloun et al. as well as this fifth
contribution by Ravishankar et al.
describe how sparse and low-rank
models can simultaneously recover
mixed signal components through
separate constraints. Both articles
describe structured low-rank models,
e.g., the L + S decomposition, and
the associated algorithms now in use.
Source separation is valuable for elim-
inating unwanted motion artifacts,
for example, or separating anatomical
from functional signals. Furthermore,
we note that Ravishankar et al.
describe the current ideas on the
use of deep-learning strategies for
general image reconstruction. One
particularly interesting class of
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popular hybrid domain approaches
is based on the CNN penalty and
plug-and-play model. Finally, related
to the previous articles in this
section, the authors note that they
expect that the next generation
imaging systems would leverage
learning in all aspects of the imaging
system, learning to optimize the
underlying models for efficient and
effective reconstruction and analytics,
including ideas of classification,
segmentation, and disease feature
detection. Such a design would permit
the data acquisition, reconstruction,
and analytics components to be done
jointly in an end-to-end manner to
maximize performance in specific
clinical tasks and allowing for both
radiologist and patient inputs in the
learning process.

B. Image Analysis, Including
Integration of Non-Image
(e.g., Genomics) Data and
Image-Guided Therapy/
Intervention

In this section, another five sets of
contributors look at how data-driven
ideas have affected a variety of image
analysis and image-guided interven-
tion areas.

The first article titled “Model-
based and data-driven strategies
in medical image computing,” by
Rueckert and Schnabel, is a most
interesting and informative historical
overview as to how the medical
image analysis and image computing
field has developed, starting with
model-based approaches and then
evolving to today’s current emphasis
on data-driven/deep-learning-based
efforts. The authors do an excellent
job comparing these concepts and
highlighting the advantages and
disadvantages of each style of work.
Most elucidating, given current efforts
in the field, is the authors’ insight
that while data-driven, deep-learning
approaches often can outperform the
more traditional model-based ideas,
the notion of using these techniques
in clinical scenarios has led to a
number of challenges, including the
ideas that the approaches may be
brittle/nonrobust to new examples

and data are not easily generalizable
and are almost impossible to interpret
or explain. Table 1 of this article very
clearly lays out comparisons between
traditional, model-based, and current
data-driven techniques and the article
ends with provocative thoughts about
how a new diagnostic, data-driven
pipeline could be created that goes
directly from images to diagnostic
recommendations. When compared
with previous visions of the future in
medical image analysis, it may be of
interest for the reader to look back at
the article by Duncan and Ayache [1]
published in the IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE in 2000.
The second article in this section,

“Brain imaging genomics: Integrated
analysis and machine learning,” by
Shen and Thompson, describes appli-
cations of novel and traditional data-
science methods to the study of “brain
imaging genomics.” One could see this
as a further development of image-
derived-only quantitative analysis. In
the work noted here, the authors
talk about how researchers combine
diverse types of high-volume data
sets, which include multimodal and
longitudinal neuroimaging data and
high-throughput genomic data with
clinical information and patient his-
tory, to develop a phenotypic and
environmental basis for predicting
human brain function and behav-
ior. They examine three categories of
machine learning for brain imaging
genomics: heritability of traits, learn-
ing the imaging-genomic associations,
and applying this information for pre-
dicting behavior. This work assembles
multivariate statistical and network-
based techniques that enable the
authors to work within huge arrays
of imaging, omics, and medical data-
bases as necessary to overcome formi-
dable statistical and computational
challenges. Their tools include four
categories of regularized regression
analysis, where weight matrices are
adjusted to minimize a loss function
comparing imaging and genomic data
when identifying functional associa-
tions. The loss function is regularized
not only to minimize overfitting,

as usual, but also to reduce data
dimensionality for irrelevant associ-
ations. Sparse and low-rank models
populate the high-dimensional weight
matrices. Dimensionality reduction is
essential to increase the statistical
power of predictions given modest
sample sizes.

The third article related to image
analysis topics discusses work in an
area that has been studied for many
years—computer-aided diagnosis
(CAD) of breast cancer—but now
looking at the problem through
the lens of machine/deep learning.
In “Comparison of breast MRI
tumor classification using human-
engineered radiomics, transfer
learning from deep CNNs, and
fusion methods,” Whitney et al. have
further taken a unique look at recent
approaches, especially focusing on the
capabilities of deep neural networks
to perform transfer learning. In this
manner, features that have been
derived and found in the network
layers of architectures intended to
find useful features in natural image
classification tasks are then used
for classification tasks related to
find benign and malignant lesions
from breast images. CNNs have been
designed to perform exactly such tasks
and are discussed and overviewed in
detail. The primary goal of the work
described was to comprehensively
build on the prior research of the
authors, who have long worked in this
area, and evaluate the classification
performance of different classifiers,
in the task of classification of lesions
as benign or malignant, constructed
using human-engineered radiomic
features and two variations on
transfer learning: features extracted
from pretrained neural networks and
features extracted after fine-tuning a
neural network for a specific classifi-
cation task. Four different associated
fusion classifiers were evaluated, all
using dynamic contrast enhanced
(DCE) MRI data of the human breasts.

A fourth article in this section,
“Wireless capsule endoscopy: A new
tool for cancer screening in the
colon with deep-learning-based polyp
recognition,” by Jia et al., integrates
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notions of image acquisition and
image analysis for use in cancer
screening through wireless capsule
endoscopy (WCE). Here, machine-
and deep-learning approaches are
being developed to assist in auto-
mated polyp recognition/detection
and analysis that will enhance diag-
nostic accuracy and efficiency of this
procedure that is a critical tool for use
in the clinic. WCE allows direct visu-
alization of the entire colon without
patient discomfort but manual review
is tedious and labor-intensive. Com-
putational methods for automated
analysis of polyps have great poten-
tial here and the use of deep-learning
methods for these tasks has gained
traction and promises better accu-
racy and computational speed in
the years ahead. The majority of
these approaches employ CNNs, but
a recent work includes autoencoders
and GANs for finding polyp bound-
ing boxes as well as transferring fea-
tures learned from natural images for
use in tumor recognition and clas-
sification studies. In Table 1 of this
article, the authors perform an excel-
lent job of summarizing the range
of deep-learning methods applied to
WCE polyp recognition that can serve
as a guide to work in this subfield.

In the fifth and final article of this
section, titled “CAI4CAI: The rise of
contextual artificial intelligence in
computer-assisted interventions,”
Vercauteren et al. take a close look
at the use and the rise of Contextual
artificial intelligence (AI) in Computer
Assisted Interventions in the medical
imaging field. The primary challenges
in this subfield include how to
incorporate the range of prior
knowledge and instantaneous sensory
information from experts, sensors,
and actuators, as well as learning
how to develop a representation of
the surgery or intervention among
a mixed human–AI team of actors.
In addition, the authors describe how
to design interventional systems and
associated cognitive shared control
schemes for online uncertainty-
awareness while making decisions
in the operating room (OR) or in the
interventional radiology (IR) suite,

tasks that are critical for producing
precise and reliable interventions.
Much of all of this involves the
integration of all sorts of medical
data, including images for guidance
of the interventions or surgeries, and
has led to the coining of the term
“surgical data science.”

III. C R O S S - C U T T I N G
T H E M E S
As we look across the ten con-
tributions to this Special Issue,
we notice several solid themes that
have emerged. First, in most articles,
the authors make an important
observation that data-driven, deep
learning may likely unify the typically
modularized design of imaging
systems. The sensing, acquisition/
reconstruction/formation, and analy-
sis steps that permit medical imaging
to be used to quantify disease may
now very well become more inte-
grated, and we may also begin to see
complete end-to-end system designs
that are made more task-specific to
optimize performance. We saw this
clearly in the above discussion in
Section III-A and in the articles related
to PET, optical, and MRI systems,
as well as in most all of the articles in
Section III-B. Along with this, we note
that several of the contributions,
notably Hamilton and Seiberlich,
Whitney et al., and Ravishankar et al.
in Section III-A, as well as Rueckert
and Schnabel and Vercauteren et al. in
Section III-B have begun to consider
the integration of ideas and designs
based on more traditional (and
sometimes sparse) model-based meth-
ods with data-driven deep-learning
methods for a variety of reasons,
including as an approach to include
helpful priors and to handle problems
where limited amount of training
data are available. The editors even
wonder whether this is a current trend
in the last year or so that helps explain
the leveling out of the frequency
of use of the term “deep learning”
in 2019 (the yellow curve) in the
Google Trends graph shown in Fig. 1.

Second, we also note that many of
the articles in the issue make use of
sparse methods. This is particularly

the case with respect to sensing and
acquisition, as compressive sensing
(CS) makes it possible to acquire
data from patients at rates far below
the Nyquist limit without incurring
a significant loss of information.
Basically, all of the articles in
Section III-A consider sparsity in one
form or another. One could further
observe that if the acquired data
are sparse in some domain and the
acquisition is incoherent as viewed
through an isometric property, there
are nonlinear optimization methods
capable of fully recovering the patient
features and measurements that one
would seek from the images [3], [4].
This advance has given new life to
the pursuit of fast-acquisition MR,
low-dose CT, 3-D ultrasound with
2-D arrays, and all measurements
fundamentally limited by the elec-
tronic data transfer and processing
of high-volume data sets. The search
for sparse representations of data has
benefited from an expanded view of
standard decompositions like singular
value decomposition (SVD), so that
we now reach beyond basis sets to
include frames and dictionaries [12].
The latter two representations loosen
the rules of decomposition so we
can accept a richer palette for very
sparse representation. With sparse
data, we also achieve greater source
and/or class separability. Several of
the articles in Section III-B make this
specific point with respect to image
analysis (especially the article by
Rueckert and Schnabel) and a number
of articles in both Sections III-A and
III-B discuss these points and show
how efficient data acquisition aids in
statistical classification and training
neural networks. As we learn to recog-
nize the intrinsic dimensionality of
medical conditions, we will improve
the efficiency of our healthcare system
while lowering costs and improving
patient outcomes. This is the true
value of the Big Data revolution in
medical imaging.
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