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ABSTRACT | Deep learning has received considerable empirical

success in recent years. However, while many ad hoc tricks

have been discovered by practitioners, until recently, there has

been a lack of theoretical understanding for tricks invented

in the deep learning literature. Known by practitioners that

overparameterized neural networks (NNs) are easy to learn,

in the past few years, there have been important theoreti-

cal developments in the analysis of overparameterized NNs.

In particular, it was shown that such systems behave like

convex systems under various restricted settings, such as for

two-layer NNs, and when learning is restricted locally in the

so-called neural tangent kernel space around specialized ini-

tializations. This article discusses some of these recent signs of

progress leading to a significantly better understanding of NNs.

We will focus on the analysis of two-layer NNs and explain the

key mathematical models, with their algorithmic implications.

We will then discuss challenges in understanding deep NNs and

some current research directions.

KEYWORDS | Mean-field (MF) analysis; neural networks (NNs);

neural tangent kernel (NTK); overparameterization; random

features.

I. I N T R O D U C T I O N
Neural networks (NNs) are computational models that
are composed of (possibly multiple) feature representa-
tion layer(s) and a final linear learner. In recent years,
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deep NNs (DNNs) have largely improved the state-of-the-
art performances in numerous real applications, such as
image classification [1], [2], speech recognition [3], and
natural language processing [4]. However, the theoretical
understanding of these empirical successes for NNs is
still limited. One main conceptual difficulty is the high
nonconvexity of these models, which means that first-order
algorithms, such as gradient descent (GD) or stochastic GD
(SGD), may converge to bad local stationary points.

However, it is observed, in practice, that with the help
of a number of tricks, such as dropout [5] and batch
normalization [6], DNN can be reliably trained from ran-
dom initialization with reproducible results. The solutions
obtained by proper training procedures behave well and
consistently. In other words, two different random initial-
izations (using the same initialization and training strat-
egy) generally lead to models that give similar predictions
on test data. Thus, we may conclude that proper NN
training leads to similar solutions. This behavior resembles
that of convex optimization, instead of generic nonconvex
optimization problems that tend to get stuck in suboptimal
local stationary solutions. Because solutions from differ-
ent random initializations are similar and reproducible,
it can also be conjectured that, with proper training, DNNs
can reach solutions that are near-global optimal. These
empirical observations appear to be rather mysterious, and
they require the development of new mathematical models
for NNs that can bridge the gap between nonconvex and
convex models to understand.

In addition to the above empirical observations, it is also
known by practitioners that overparameterized NNs with
many hidden units are easy to learn [7]. They achieve
better and more consistent performance. Related to this
empirical observation, it was noticed in the 1990s that
NNs with infinitely many hidden units are easier to model
and analyze theoretically [8], [9]. In the past few years,
there have been many significant theoretical developments

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 683

https://orcid.org/0000-0002-8846-1260
https://orcid.org/0000-0002-5511-2558


Fang et al.: Mathematical Models of Overparameterized NNs

in the analysis of overparameterized NNs with massive
hidden units that approach infinity. Especially, it was
shown that such systems behave like convex systems under
various restricted settings. This provides theoretical justifi-
cations of the empirical observations of the reproducibility
of NN training.

In this article, we review some recently developed
mathematical models for overparameterized NNs, with the
focus on the neural tangent kernel (NTK) view and the
mean-field (MF) view. Section II introduces the basic for-
mulation for two-layer NNs. Section III introduces a closely
related learning model, i.e., random kitchen sinks [10].
In Section IV, we examine the NTK view for two-layer NNs,
which shows that a two-layer NN can be written equiva-
lently as a linear model in the tangent space under some
specialized conditions. Section V considers the MF view for
two-layer NNs. In this view, a continuous two-layer NN is
regarded as a learned distribution over the weights, which
leads to a more realistic mathematical model for analyzing
practical behaviors of NNs. In Section VI, we compare
the three models from the feature learning perspective.
Section VII considers the possible extensions on DNNs for
NTK and MFs. In Section VIII, we introduce some basic
complexity results for NTK. Section IX reviews some other
mathematical models. Finally, we conclude this article and
outline active research directions in Section X.

II. T W O - L A Y E R N E U R A L N E T W O R K S
Two-layer NNs have a history dating back to the
1940s [11]. A discrete two-layer NN can be viewed as a
k-dimensional vector valued function of a d-dimensional
input vector x, which has the following form:

f([u, θ], x) =
α

m

m�
j=1

ujh(θj , x) (1)

where x ∈ R
d, θj ∈ R

d, and uj ∈ R
k. The model parame-

ters are {[uj , θj ] : j = 1, . . . , m}, which will be learned via
training. Here, α > 0 is a real-valued scaling parameter
that is not learned. It is included here to differentiate
two different regimes of overparameterized NNs. In this
system, there are m hidden units (or neurons), and each
hidden unit corresponds to a function h(θj , x) of the input
x. It maps the original input feature x to a new feature
h(θj , x), with a parameter θj that is learned. The function
h(θ, x) is a real-valued function. In applications, it often
takes the following form:

h(θ, x) = h0(θ
�x)

where h0(·) is called an activation function, and the stan-
dard choices include rectified linear unit (ReLU) h0(z) =

max(0, z) and sigmoid h0(z) = ez/(1 + ez).

In order to learn the NN parameters, we consider the
minimization of the following optimization problem:

min
u,θ

φ(u, θ)

φ(u, θ) =
1

n

n�
i=1

L(f([u, θ], xi), yi) + R(u, θ). (2)

Here, {(xi, yi) : i = 1, . . . , n} are the training data, L

is a loss function, such as the soft-max loss for k-class
classification problem with v ∈ R

k and y ∈ {1, . . . , k}

L(v, y) = − log
exp(vy)�k

j=1 exp(vj)

and R(u, θ) is a regularizer (also called weight decay in the
NN literature), such as the L2 regularization

R(u, θ) =
1

2m

m�
j=1

�
λu‖uj‖22 + λθ‖θj‖22

�
.

In this article, we consider the situation that the regularizer
R(u, θ) is convex in (u, θ), and the loss function L(v, y) is
convex in v.

In general, we consider random initialization, and
specifically random Gaussians

uj ∼ N(0, σ2), θj ∼ N(0, σ2)

with different scalings of α. The training is often performed
via SGD, where we randomly pick a training datum i (or a
minibatch of data points) and update parameters as

u← u− η∇u[L(f([u, θ], xi), yi) + R(u, θ)]

θ ← θ − η∇θ[L(f([u, θ], xi), yi) + R(u, θ)].

The parameter η is referred to as learning rate. It is known
in optimization that, if we let η → 0 properly, then
the procedure converges to a point (u∞, θ∞) such that
∇φ(u∞, θ∞) = 0. If the loss function L(v, y) is convex in v,
then φ(u, θ) is convex in u but not convex in θ. Therefore,
in general, ∇φ(u∞, θ∞) = 0 does not imply that (u∞, θ∞)

achieves a global optimal solution. In order to understand
the empirical observation that (u∞, θ∞) behaves like a
solution that is close to global optimal, especially when
m is large, mathematical models have been developed in
recent years to explain the empirical phenomenon.

III. R A N D O M F E AT U R E S
Before developing mathematical models for two-layer NNs,
we will first consider a closely related machine learn-
ing model that employs random features. We note that,
in a two-layer NN, the hidden units are feature functions
h(θj , x) that contain parameters θj to be learned during
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NN training. The random feature approach (denoted by RF
in this article) is also referred to as random kitchen sinks
[10], [12], [13]. In RF, we still consider the function (1),
but assume that θj are fixed at θ̃j that is generated from a
random distribution, typically a Gaussian distribution

θ̃j ∼ N(0, σ2)

which is not learned during training. Only parameters {uj :

j = 1, . . . , m} are learned. In this case, we may take any
fixed scaling α, such as α = 1, because the scaling is not
important for the random feature approach.

In RF, the model f(·, x) becomes linear with respect to
the model parameters {uj}. Therefore, if L(v, y) is convex
in v, then the objective function (2) is convex, and thus,
the convergence of SGD is easy to analyze.

Since the parameters {θ̃j} do not change during train-
ing, we apply SGD to learn {uj} only in the training
process that optimizes (2)

u← u− η∇u[L(f([u, θ̃], xi), yi) + R(u, θ̃)].

We are interested in the situation that the number of
hidden units m → ∞. It can be shown that in this
case, the function learned by the random feature method
converges to a well-defined limit [10]. To understand its
behavior, it is useful to consider the kernel view for RF.

Note that if we let

u =
α√
m

[u1, . . . , um]� ∈ R
d×k

h(x) =
1√
m

[h(θ̃1, x), . . . , h(θ̃m, x)]� ∈ R
d

then the random feature method corresponds to the linear
model

f(u, x) = u�h(x). (3)

We consider the L2 regularization

R(u, θ) =
λ

2m

m�
j=1

‖αuj‖22 =
λ

2
‖u‖2F

where ‖ · ‖F is the Frobenius norm of a matrix. Then, with
fixed θj , the objective function φ(u, θ) of (2) becomes

φ(u) =
1

n

n�
i=1

L(u�h(xi), yi) +
λ

2
‖u‖2F (4)

which is convex in u.
In order to obtain the kernel representation, we note

that the first-order optimality condition of (4) at the

optimal solution can be written as

u =
n�

i=1

h(xi)β
�
i (5)

where

βi = − 1

λn
L′

1(u
�h(xi), yi)

and L′
1(v, y) ∈ R

k is the gradient of L(v, y) with respect
to v.

This leads to the kernel representation [14], where the
kernel is defined as the inner product of the feature vectors
h(x) and h(x′) for two input variables x ∈ R

d and x′ ∈ R
d

km(x, x′) = h(x)�h(x′) =
1

m

m�
j=1

h(θ̃j , x)h(θ̃j , x
′).

Consider a function represented using this kernel with
parameters βi ∈ R

k for i = 1, . . . , n

fm(β, x) =
n�

i=1

βikm(x, xi).

Then, we can see from (5) that fm(β, x) = u�h(x) =

f(u, x). That is, the original linear function has a kernel
representation. Moreover, the regularizer also has a kernel
representation

‖u‖2F =
n�

j=1

n�
�=1

(β�
j β�)km(xi, xj).

Using the kernel representation, the solution of RF, which
minimizes the objective function (4) over u, is equiva-
lent to the solution of the following kernel optimization
problem:

min
β

1

n

n�
i=1

L(fm(β, xi), yi) + Rm(β) (6)

Rm(β) =
λ

2

n�
j=1

n�
�=1

(β�
j β�)km(xi, xj).

Let β be the solution of (6), and we may obtain the solution
of (4) using the relationship between β and u in (5).

The kernel formulation (6) is particularly useful for
analyzing the behavior of overparameterized RF in the
limiting case of m → ∞. This is because, when m → ∞,
we have

km(x, x′)→ k∞(x, x′) =

�
h(θ̃, x)h(θ̃, x′)dρ0(θ̃)

which is a well-defined kernel, where ρ0(θ̃) is the random
distribution of θ̃, such as the Gaussian distribution N(0, σ2)
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in our case. It follows that as m→∞, the kernel function:

fm(β, x) =
n�

i=1

βikm(x, xi)→ f∞(β, x)

where

f∞(β, x) =

n�
i=1

βik∞(x, xi).

Moreover, the corresponding optimization problem of (6)
becomes

min
β

1

n

n�
i=1

L(f∞(β, xi), yi) + R∞(β)

R∞(β) =
λ

2

n�
i=1

n�
�=1

(β�
i β�)k∞(xi, x�) (7)

which is also well-defined.
Note that, in the kernel formulation, the number of

model parameters {βi} is n, which remains finite when
m→∞. Therefore, the limit of {βi} is well-defined.

If we consider the original random feature function (3)
in the case of m→∞, the number of parameters {uj} will
also approach infinity. In this case, we may consider u as a
function of θ̃, write (3) as

f(u, x) =

�
u(θ̃)h(θ̃, x)dρ0(θ̃)

in the limit of m→∞, and write the two norm regularizer
as

R(u) =
λ

2

�
‖u(θ̃)‖22 dρ0(θ̃).

With this notation for m =∞, we have the relationship

u(θ̃) =
n�

i=1

βih(θ̃, xi)

where β is the solution of the kernel formulation (7).
It is known that RF works well for certain problems

[10], [12]. However, for many real-world applications,
such as image classification, RF is inferior to NN
that learns better feature representations than random
ones. We will discuss the feature learning perspective
in Section VI.

One interesting extension of the RF theory that can
be used to analyze the behavior of NN is presented in
[15] and [16]. A kernel called conjugate kernel was
introduced, and it was shown that the GD process for
the NNs under some special initializations belongs to this
kernel space. Moreover, any function in this kernel space
can be approximated by changing the weights of the last
layer. Inspired by the above findings, the authors proved
the global convergence of GD for NNs. However, in their
analysis, only the GD updates on the last layer contribute
to the global convergence, which ignores weight updates

in the lower layers. In Section IV, we will introduce the
NTK view that develops theoretical results showing that
weight updates in the bottom layer of two-layer NNs can
also contribute to the convergence of GD.

IV. N E U R A L TA N G E N T K E R N E L S
In practice, the random feature approach is often inferior
to two-layer NNs because the parameters {θj} are not
trained. As we have seen, the overparameterized case with
m→∞ corresponds to kernel learning with a well-defined
kernel. One natural question is whether this point of view
can be generalized to handle two-layer NNs, where the
parameters {θj} are trained together with {uj}. Such a
generalization leads to NTK [17], which we shall describe
in this section. We note that the connection of infinitely
wide NNs and kernel methods (Gaussian processes) has
already been known in the 1990s [8], [9]. However,
the more rigorous theory of NTK has only appeared very
recently, e.g., [17] and [18].

In NTK, we consider a specialized scaling and random
initialization of parameters. The special scaling makes it
possible to consider NN parameters in a small region
around the initial value when m → ∞. The resulting
NN with parameters restricted in this region can be well
approximated by a linear model fit with random features.
Similar to RF of Section III, this linearization induces a
kernel in the tangent space around the initialization, which
becomes NTK [17], since the weights are near their initial
values during the training of the NN. This phenomenon is
also referred to as the “lazy training” regime in [19]. In this
regime, the system becomes linear, and the dynamics of GD
(or SGD) within this region can be tracked via properties
of the associated NTK.

There have been a series of studies about NTK in
recent years, in which a number of researchers proved
polynomial convergence rates to the global optimal,
e.g., [18] and [20]–[37], and sharper generalization
errors, e.g., [20], [21], [23], and [38]–[40]. The scaling
α also plays a significant role in the NTK view, where
a relatively large scaling α of order

√
m is needed. This

means that, when m→∞, α→∞.
To derive NTK under the assumption of m→∞, we con-

sider the case that h(θ, x) is differentiable with respect to
x, such as the sigmoid or tanh activation function. Note
that the nondifferentiable ReLU activation function can
also be handled similarly although many works consider
the differentiable assumption for simplicity.

We now consider a random initialization at [ũ, θ̃], around
which we can linearly approximate the NN as

f([u, θ], x) ≈ α

m

m�
j=1

�
ũjh(θ̃j , x) + (uj − ũj)h(θ̃j , x)

+ ũj(θj − θ̃j)
�∇θh(θ̃j , x)

�
+ high order terms

(8)
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where we assume that both u − ũ and θ − θ̃ are small.
Note that the theory of NTK requires α = O(

√
m) so that

the term (α/m)
�m

j=1 ũjh(θ̃j , x) has a bounded variance.
A large scaling α (α→∞ as m→∞) is important for this
linearization because if we fix the coefficient αũj(θj − θ̃)

for the random feature ∇θh(θ̃j , x), then, when the scaling
α→∞ (as m→∞), one can show that a small change of
θ leads to a big change of the output function values. This
means that, in the continuous limit, we should let (θj −
θ̃) → 0. A similar claim holds for uj − ũj . In this case,
the higher order terms will be o(α‖uj − ũ‖ + α‖θj − θ̃j‖)
that approach zero, and the linear approximation of (8) is
accurate.

This linear approximation employs random features
h(θ̃j , x) and ũj∇θh(θ̃j , x) for j = 1, . . . , m. Compared with
the RF approach, which only uses the random features
h(θ̃j , x), two-layer NNs use additional random features
ũj∇θh(θ̃j , x).

In order to motivate the NTK kernel, we consider the
following representation, similar to (5) for RF:

�����
���	

uj = ũj + α−1
n�

i=1

βu
i h(θ̃j , xi)

θj = θ̃j + α−1
n�

i=1

ũ�
j βθ

i∇h(θ̃j , xi).

(9)

Here, we have both βu
i ∈ R

k and βθ
i ∈ R

k. Using this
representation, the linear approximation of (8) becomes

1

m

m�
j=1



αũjh(θ̃j , x) +

n�
i=1

βu
i h(θ̃,xi)h(θ̃j , x)

+

n�
i=1

ũj ũ
�
j βθ

i∇θh(θ̃j , xi)
�∇θh(θ̃j , x)

�
.

Using the relationship of kernel as the inner product
of features for linear models, this linear approximation of
two-layer NN corresponds to the following kernel function
representation:

fm([βu, βθ ], x) =

n�
i=1

�
βu

i ku
m(x, xi) + kθ

m(x, xi)β
θ
i

�

where

ku
m(x, x′) =

1

m

m�
j=1

h(θ̃j , x)h(θ̃j , x
′)

which corresponds to the features of the linear coefficients
u (also used by the RF model of Section III), and

kθ
m(x, x′) =

1

m

m�
j=1

ũjũ
�
j ∇θh(θ̃j , x)�∇θh(θ̃j , x

′)

which is a k×k matrix corresponding to the features of the
linear coefficients θ (which was not used by the RF model

of Section III). This kernel representation is referred to as
NTK.

In the NTK representation, from the relationship of [u, θ]

and [βu, βθ ] in (9), we can see that, as α→ ∞, θ → θ̃ and
u → ũ, which means that we have a more accurate linear
approximation when α is large.

In the infinity-width limit of m → ∞, the ker-
nel becomes the infinite-width NTK kernel, which is
well-defined

ku
m(x, x′)→ ku

∞(x, x′) =

�
h(θ̃, x)h(θ̃, x′)dρ0(θ̃)

kθ
m(x, x′)→ kθ

∞(x, x′)

=

�
ũũ�∇θh(θ̃, x)�∇θh(θ̃, x′)dρ0(ũ, θ̃)

where ρ0(ũ, θ̃) is the random initialization distribution for
[ũ, θ̃], and in our case, it is chosen as N(0, σ2) × N(0, σ2).
Moreover, ρ0(θ̃) is the marginal random initialization dis-
tribution for θ̃, which, in our case, is N(0, σ2). With this
choice, we note that

�
ũũ�dρ0(ũ|θ̃) = σ2 Ik×k is propor-

tional to a diagonal matrix. Therefore, we may also replace
the k × k matrix kernel kθ

∞(x, x′) by the following scalar
kernel:

σ2

�
∇θh(θ̃, x)�∇θh(θ̃, x)dρ0(θ̃).

We may view the infinite-width NN as a kernel method
in a small neighborhood around the initialization as

f∞([βu, βθ], x) =
n�

i=1

�
βu

i ku
∞(x, xi) + kθ

∞(x, xi)β
θ
i

�
.

This function gives an equivalent representation of the
linear approximation of two-layer NN in (8) with m → ∞
and α → ∞. Therefore, in this case, the optimization in
[u, θ] can be equivalently represented using optimization in
the kernel representation. The corresponding optimization
problem using kernel representation can be written as

min
β

1

n

n�
i=1

L(f∞([βu, βθ], xi), yi). (10)

It is worth mentioning that, in the NTK view of NNs,
we usually do not employ regularization R(u, θ). This is
because the solution of NN with a nontrivial regularization
will not lie in a small region around [ũ, θ̃].

In the NTK view, under appropriate conditions, it is
possible to show that the optimization problem (10) in the
kernel space is equivalent to the solution by SGD in the
original representation (1) when α is large. In this case,
the general SGD for two-layer NN in the original parameter
space can be expressed as

u← u− ηu∇uL(f([u, θ], xi), yi)

θ ← θ − ηθ∇θL(f([u, θ], xi), yi).
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Fig. 1. Solution neighborhood size versus NN width m.

If we consider using the same learning rate for the rescaled
parameter αu/m and θ, as often done in practice, then we
shall set

α

m
ηu = η, ηθ = η (11)

where η is a small learning rate. We note that, in this case,
the learning rate ηu = O(ηm/α) will be large compared
with ηθ if we set α = O(

√
m) required by NTK. The large

learning rate ηu will move u to be far away from the
initialization ũ, violating the standard NTK requirement
of u ≈ ũ. Nevertheless, we note that the requirement of
θ ≈ θ̃ is more important in NTK for linearly approximating
the nonlinear function h(θ, x). With additional complexity,
it is, thus, possible to extend the NTK analysis to handle
the situation that θ ≈ θ̃, but u may not be close to ũ.

Because of the abovementioned complexity, for the the-
oretical analysis of NTK, one often assumes a smaller
learning rate for u [41], such as

αηu = η, ηθ = η (12)

or as
ηu = η, ηθ = η. (13)

For the learning rates in (12), since ηu is much smaller
than ηθ, we know that u moves very little compared with θ.
Consequently, we can see from (9) that βu moves very little
compared with βθ. Therefore, the kernel kθ

∞(·, ·) is effec-
tive, while the kernel ku

∞(·, ·) is not effective. The learning
rate (13) does not suffer from this problem. From (9), it
can be seen that the corresponding modifications of both
βu and βθ are at the same order. Therefore, in such case,
both kernels are effective.

It can be shown that, with learning rates set as either
(12) or (13), when m→∞ and α→∞, the final solution
of (2) without regularization can reach zero-error within a
very small neighborhood of the initialization, with radius
approaching zero as α→∞ (e.g., [18]). This phenomenon
is illustrated in Fig. 1. This regime is called the NTK regime,
where the two-layer NN can be linearized as a kernel
method, and the optimization process lies inside a small
neighborhood around the initialization.

This property can also be validated empirically in the
actual NN optimization process. In this article, we use
the MNIST handwritten digits data set available from
http://yann.lecun.com/exdb/mnist/ [42] to demonstrate
various aspects of the different frameworks. This data
set has a training set of 60 000 examples and a test set
of 10 000 examples and is one of the standard data set

for image classification. The theory of NTK implies that,
when the scaling parameter α increases, the NN training
process belongs to a smaller and smaller neighborhood of
the initialization, and NTK approximation becomes more
and more accurate. This phenomenon is shown in Fig. 2,
where the average distances between θ (and u) and the
initialization are plotted for different values of α.

Another factor that determines the accuracy of NTK
approximation is the number of hidden units m, which
measures the degree of overparameterization. Fig. 3 shows
that, when m increases, the solution of the NNs becomes
closer to the initialization, and this phenomenon happens
both with the practical learning rate ηu/ηθ = m/α and
with the NTK theoretical learning rate ηu/ηθ = 1. From
this experiment, it is reasonable to speculate that, as m

approaches infinity, the first-order approximation of NN
(NTK) will become more reliable.

It is also useful to point out that NTK approximation
works better on simple data sets and fails more easily on
complex data sets. Fig. 4 compares the objective functions
of the NN (both on training and test data) to its lin-
earized NTK approximations during the training process.
We compare the linearization error both on the MNIST
data set and on a simpler 100-D synthetic data set made by
make_classification in sklearn. For an NN with m = 1000

and η = 0.1, we can notice that the linearization of NN
on the simpler data set is almost perfect, which means
that the entire training process is well-approximated by
NTK. However, there is a noticeable discrepancy between
NTK and the actual NN on the MNIST data, which means
that NTK does not fully explain the actual NN training
process well in this case. This experiment implies that,
for relatively complex data sets, the NTK approximation
requires a much wider NN.

In summary, when α → ∞ and m → ∞, and the
formulation does not contain regularization, then we have
the so-called NTK regime, with the following properties.

1) Initialize NN with a certain scaling.
2) The network is sufficiently large.
3) The formulation does not contain regularization.
4) The learning rate is sufficiently small.
5) The NN solution path remains close to the initializa-

tion and can be linearized around the initialization.
6) The linearization induces a kernel (NTK) that is con-

vex.

The implications of the NTK view are given as follows.

1) The solution is in a tiny neighborhood of the initial
point.

2) The problem becomes convex, which can be solved
efficiently.

3) The solution path is reproducible in kernel
representation.

The theory of NTK applies to a specialized regime with
special initialization. It also assumes a small learning rate
so that the learned parameter does not escape from the
NTK region. Although this is a nice mathematical model,
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Fig. 2. Impact of α for NN optimization (ηu/ηθ � 1,m � 104).

there are several problems, making it unsuitable for a
general theory of NNs.

Note that RF can be considered as a two-layer NN where
the bottom layer is fixed. The model is linear with respect
to the top layer, and one can incorporate regularization
to improve generalization. In contrast, in the NTK regime,
we perform GD to optimize NN weights in all layers, with
random features generated in the tangent space around the
initialization. In order to ensure that the solution of (2)
can be approximated by (10), the resulting optimization
problem (10) of NTK cannot include nontrivial regularizers
that will pull the training process out of the tangent space.
It is natural to extend (10) by adding regularization, where
we may consider the following more general formulation
of NTK in (10) to the following regularized NTK method,
which may be regarded as an NTK motivated new learning
algorithm, although it may not be a good approximation
for two-layer NNs anymore:

min
β

1

n

n�
i=1

L(f∞([βu, βθ], xi), yi) + R([βu, βθ ]) (14)

where

R([βu, βθ ]) =
λ

2

n�
i=1

n�
�=1

�
βu

i

��
βu

�

�
ku
∞(xi, x�)

+

βθ

i

��
kθ
∞(xi, x�)β

θ
�

�
.

Although this regularized formulation is natural in the
kernel learning setting, it is not equivalent to two-layer NN
due to the addition of the regularization term.

A major problem of the NTK view is that the practical
performance of the NTK solution from (14) is often inferior
to that of the fully trained NNs, despite the equivalence
that can be proved under certain theoretical assumptions.
Even an infinitely wide NTK cannot achieve state-of-the-
art performance. In the following, we explain why this
happens in practice and what can break the NTK view for
NN learning. We show that the NTK regime is broken by
standard tricks in NN learning.

Although the random parameter initialization with large
scaling α is used by practitioners, and the choice is
consistent with that required by the NTK viewpoint,

Fig. 3. Impact of m for NN optimization (α �
√
m). (a) ηu/ηθ �m/α. (b) ηu/ηθ � 1.
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Fig. 4. Linearization of NN (first row: MNIST; second row: synthetic data).

practitioners use a large initial learning rate, while the
small learning rates are required by the theoretical analy-
sis. Consequently, the optimized NN by using practical
SGD procedures goes out of the NTK regime. Because of
this, the NTK linear approximation fails.

Moreover, in practice, NNs are not infinite-width, and
thus, the large m theory does not exactly match the practi-
cal behavior of NN learning. Another theoretical condition
for the NTK view is to not impose nontrivial regular-
ization1 because regularization automatically pushes the
solution away from the initialization, which violates the
NTK regime. However, regularization (or weight decay) is
frequently used by practitioners. Besides, there is currently
no analysis of NNs that can incorporate batch normaliza-
tion in the NTK regime.

One of the key reasons that NTK does not perform
well in practice is that the NTK method is very similar
to RF, in which it also employs random features. Com-
pared with RF of Section III, NTK contains an additional
kernel corresponding to the random features ũ∇θh(θ̃, x).
In fact, the mathematical theory of NTK relies mostly on
the modification of θ associated with random features
ũ∇θh(θ̃, x) to reduce training loss, while the mathematical

1We note that the NTK regime can still incorporate very small
regularizers. For example, one can add a regularizer as μ(‖θ‖2+‖u‖2),
where μ is much smaller than (1/m). In this case, there is still a
solution in the neighborhood of the initialization. Moreover, we may add
regularizers centered at the initialization θ̃, such as ‖θ − θ̃‖2

2, although
they are not used by practitioners.

theory of RF relies on the modification of u associated
with random features h(θ̃, x) to reduce training loss.
This is why the theoretical analysis of NTK relies on
a small learning rate ηu. Nevertheless, the additional
random features used by NTK provide extra information
over RF.

Since NTK is still a random feature-based method,
it does not learn feature representations. In contrast, it is
well-known by practitioners that a key benefit of NN learn-
ing is the ability to learn useful feature representations.
The theory of NTK completely fails to explain the benefit
of feature learning by NNs. We will investigate this issue
further in Section VI.

The NTK view is also inconsistent with many technical
tricks used in practical NN training, which benefits learn-
ing performance, such as large initial learning rate and
momentum, which may push the model parameters out of
the initialization neighborhood. Here, we show some cases
in real practice to demonstrate these phenomena.

As shown in Fig. 5, when we use a large learning
rate or employ momentum, the difference between the
initial parameters and the final solution increases. In such
a situation, the first-order approximation (19) used by NTK
fails to capture the dynamics of NN. The gap between NN
and NTK is significant, and the performance of NN is better
with these tricks. A few other works have also mentioned
the phenomenon that a large initial learning rate leads to
better NN solution [43], [44], which cannot be explained
by the NTK view very well.
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Fig. 5. Factors to break NTK regime (m� 5000). (a) Change of θ. (b) Change of u. (c) NN and NTK performance.

Note that most of our NTK experiments employ the
random initialization θ̃j ∼ N(0, 1). In the analysis, the vari-
ance σ2 is fixed as a constant, which does not influ-
ence asymptotic behavior significantly. However, the actual
value of σ2 plays a noticeable role when m is not large
enough compared with the input dimension d. Fig. 5 shows
that, when we use θ̃j ∼ N(0, 1/d) (which is a standard
initialization technique with good practical performance,
referred to as He initialization [45]), the NTK regime can
be broken more easily. Therefore, the gap between the first-
order approximation of NTK and the actual NN training
cannot be ignored in practice.

V. M E A N F I E L D V I E W
In order to overcome the limitations of the NTK view
that we explained above, other theoretical models have
been developed to investigate overparameterized two-
layer NNs. In this section, we introduce another line of
research, which applies the mathematical tools of the MF
analysis from statistical physics to study two-layer NNs
[46]–[51], [51]–[54].

In order to motivate the MF analysis for overparameter-
ized NNs, it is instructive to first investigate the continuous
dynamics of infinitely wide NNs, known as the MF limit,
and then consider the finite-width NNs as its approxima-
tion. In this article, we call the corresponding analysis as

the MF view. The idea of studying the mean filed limit
comes from statistical physics [55], which suggests that
the mathematical model of a large number of interacting
neurons can be simplified using the probability distribution
that represents the average effect.

Unlike the NTK view, which requires α→∞ as m→∞,
in the MF view [46], we may set the scaling fixed at a
constant, such as α = 1, while letting m→∞. In this case,
the solution is allowed to go far from the initialization,
which remedies the main limitations of NTK. Therefore,
one may argue that this approach gives a more realistic
mathematical model for practical behaviors of NNs.

In the limit of m → ∞ with fixed α, we may consider
the continuous limit of two-layer NNs in (1) as

f(ρ, x) =

�
αuh(θ, x)dρ(u, θ) (15)

where ρ(u, θ) is a probability distribution over [u, θ]. In this
continuous formulation, we can regard the probability
measure ρ as the model parameter. Therefore, the original
model parameters {[uj , θj ]} in the discrete NN formulation
can be viewed as a discrete probability distribution on
the model parameter space [u, θ] ∈ R

k × R
d, and this

discrete probability distribution puts a mass of 1/m at each
point [uj , θj ] (j = 1, . . . , m). In the continuous limit of
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m → ∞, this discrete probability distribution naturally
converges to the distribution parameter ρ in the continuous
NN formulation (15). It is easy to see that the function
represented by two-layer NN becomes linear in ρ.

In the continuous limit, the training objective (2) for the
discrete NN becomes

φ(ρ) =
1

n

n�
i=1

L(f(ρ, xi), yi) + R(ρ)

R(ρ) =

�
r(u, θ)dρ(u, θ) (16)

for the continuous NN, where r(u, θ) is a regularizer of
[u, θ], such as the L2 regularization

r(u, θ) =
λu

2
‖u‖22 +

λθ

2
‖θ‖22.

It follows that the training objective (16) is convex with
respect to ρ if both the loss function L(·) and the regular-
izer R(·) are convex. In fact, the global optimal solution
of ρ satisfies the first-order optimality condition: for all
probability measures ρ′(u, θ)

�
g(ρ, u, θ)dρ′(u, θ) ≥

�
g(ρ, u, θ)dρ(u, θ) (17)

where

g(ρ,u, θ) =
1

n

n�
i=1

αL′
1(f(ρ, xi), yi)uh(θ, xi) + r(u, θ) (18)

is the derivative of φ(ρ) with respect to the component
ρ(u, θ) by regarding the distribution ρ as an infinite-
dimensional vector ρ = {ρ(u, θ)}. Here, L′

1(v, y) =

∇vL(v, y). Note that, if we can find ρ such that

g(ρ, u, θ) = c (19)

for a constant c, then (17) is satisfied. This is because,
in this case, we have, for all ρ′:

�
g(ρ, u, θ)dρ′(u, θ) = c =

�
g(ρ, u, θ)dρ(u, θ).

In the MF view, we may take the following connection of
the discrete NN versus continuous NN when m is large. The
hidden units [uj , θj ] of the discrete NN (1) can be viewed
as m particles sampled from the distribution ρ(u, θ). In the
training process, we move each particle [uj , θj ] using SGD,
which is the derivative of the objective function with
respect to each particle. In the continuous limit, we have
infinitely many particles, and each particle [u, θ] also moves
according to the gradient of the objective function with
respect to the parameter. In the literature, such a gradient

is often referred to as gradient flow [56], which character-
izes the learning dynamics of the continuous formulation.
In the following, we will present a more mathematical
description.

In the continuous formulation, a hidden unit can be
regarded as a particle indexed by a parameter z0 sampled
from a distribution ν0(z0). Here, z0 only plays the role of
discrete index j in the discrete formulation, and its own
value is of no significance. The initial distribution ν0(z0) is
introduced for convenience so that we can sample over the
index z0. In the discrete setting, it is simply the uniform
distribution over j = 1 to j = m.

Each particle indexed by z0 also has a parameter [u, θ],
which will be trained. We assume that, at time t, we move
each particle during the training process so that the model
parameter becomes [u(t, z0), θ(t, z0)]. If we take z0 ∈ R

k+d,
with ν0(z0) as a Gaussian distribution, then we may sim-
ply initialize [u, θ] as [u(0, z0), θ(0, z0)] = z0. Since z0 is
sampled from ν0(z0), the particles [u(t, z0), θ(t, z0)] induce
a probability measure ρt(u, θ) on [u, θ] ∈ R

k × R
d. Here,

the time-dependent parameters u(t, z0) and θ(t, z0) are
obtained via training over the time.

Using the above terminology, the optimization of ρ(u, θ)

in (15) leads to a distribution ρt(u, θ) at training time t,
which is by moving hidden unit parameters [u, θ] via
gradient flow with respect to the objective function
φ(ρt). More precisely, the corresponding particle move-
ment in the continuous limit obeys the gradient flow
equation [47]

���
�	

∂u(t, z0)

∂t
= −η(t)∇ug(ρt, u(t, z0), θ(t, z0))

∂θ(t, z0)

∂t
= −η(t)∇θg(ρt, u(t, z0), θ(t, z0))

(20)

where the particle gradient g(ρ, u, θ) for a particle [u, θ] is
defined in (18). The gradient flow direction of a particle
[u, θ] is the gradient of g(ρ, u, θ), which is equivalent to the
gradient of the objective with respect to each particle para-
meter [uj , θj ] in the discrete NN formulation. Therefore,
(20) is the continuous version of GD method with respect
to the model parameter [u, θ] associated with the hidden
units, and this continuous version of GD method tries to
minimize the objective function (16).

The gradient flow equation (20) implies a partial differ-
ential equation (PDE) for the probability measure ρt as

∂ρt(u, θ)

∂t
= η(t)∇ · [ρt(u, θ)∇g(ρt, u, θ)] (21)

with its solution interpreted in the weak sense. This
equation describes the dynamics of the objective function
parameter ρ of (16) under the continuous GD method of
(20). Here, we use the simplified notation

∇g(ρ, u, θ) = [∇ug(ρ, u, θ),∇θg(ρ, u, θ)].
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The differential equation of ρt in (21) characterizes the
dynamics of ρt in the NN training process, and it can be
shown that the objective value reduces according to the
following ordinary differential equation:

dφ(ρt)

dt
=

�
δφ(ρt)

δρt
· ∂ρt

∂t
dθdu

=

�
g(ρt, u, θ) η(t) ∇ · [ρt(u, θ)∇g(ρt, u, θ)]dθdu

= −η(t)

�
‖∇g(ρt, u, θ)‖22 dρt(u, θ). (22)

The derivation of the first equation has used the calcu-
lus of variations, which may be considered as the func-
tional gradient of φ with respect to ρt by treating ρt

as an infinite-dimensional vector indexed by (θ, u). The
functional gradient is given by g(ρt, u, θ), which leads to
the second equation. In the third equation, we have used
the integration by parts, and with a slight abuse of nota-
tion, we have used the notation dρt(u, θ) = ρt(u, θ)dθdu,
which does not differentiate measure ρt and its corre-
sponding density representation. This equation is the key
to prove global convergence in the MF approach. It shows
that the GD method of (20) reduces the objective function
of (16), and the result is stated using the probability mea-
sure ρt, which is what we want to learn in the continuous
NN formulation.

Since the objective function is bounded from below,
from (22), we can obtain that, as t → ∞, we must have
dφ(ρt)/dt→ 0. It follows that:

lim
t→∞

�
‖∇g(ρt, u, θ)‖22dρt(u, θ) = 0. (23)

However, this does not ensure that the objective function
reaches the global minimum, unless additional conditions
are imposed. Next, we shall present an intuitive explana-
tion first and then describe more rigorous results.

From (23), if we can show dρt(u, θ) �= 0 for all [u, θ],
then we have ‖∇g(ρt, u, θ)‖22 = 0 for all [u, θ]. In this case,
from ∇g(ρt, u, θ) → 0, we obtain g(ρt, u, θ) → c for a
constant c, which implies the first-order condition (19).
This result implies that GD training converges to the global
optimal solution of (16) in the continuous setting.

A more rigorous treatment of the above reasoning was
presented in [46], which considered a formulation with
an additional entropy regularization term in R(ρ). This
entropy regularizer ensures that dρt(u, θ) �= 0 for all [u, θ].
In fact, with this regularization, the measure ρ(u, θ) always
has a density, dρ(u, θ) = p(u, θ)dudθ, and we can write the
regularizer as

R(ρ) = λp

�
p(u, θ) log p(u, θ)dudθ +

�
r(u, θ)p(u, θ)dudθ

which modifies the regularizer in (16) by adding an extra
entropy term. Using this regularizer, it can be shown that

there is a unique global solution that satisfies (19). More-
over, under mild conditions, we have ρt(u, θ) converges
(weakly) to a distribution ρ∞(u, θ) that can be lower
bounded by a normal distribution [46]. Then, by using
the Poincaré inequality for the Gaussian random variables
(which states that, if X is a standard normal random vari-
able, and f(X) is a real-valued function, then Var(f(X)) ≤
E‖∇f(X)‖22), we may obtain from (23) that g(ρ∞, u, θ) =

c almost everywhere for some constant c. This implies
that the first-order condition (19) holds. It follows that,
as t → ∞, the solution converges to the unique global
optimal solution.

In a practical implementation of the GD rule in (18) with
entropy regularization, we need to compute the gradient
∇ log p(u, θ) in ∇g(ρ, u, θ). It can be shown that an equiv-
alent implementation is to add a random noise, and the
corresponding gradient flow equation of (20) becomes a
stochastic PDEs (SDE) with t ≥ 0

d [u(t, z0), θ(t, z0)] = −η(t)∇g(ρt, u(t, z0), θ(t, z0))dt

+
�

2λpη(t)d B(t)

where {dB(t)}t≥0 is the standard Brownian motion in
R

k+d, and g(·) is defined in (18).
In the GD (or SGD) implementation of the Brownian

motion component of this SDE, we simply add a Gaussian
noise of N(0, 2λpη(t)) to each GD update step with learn-
ing rate η(t). This method is referred to as noisy GD in the
literature. With the help of entropy regularization, it can be
shown that noisy GD for continuous NN converges to the
unique global optimal solution, and the overparameterized
discrete NN with a sufficiently large m approximately
reaches this solution. This result can be used to explain
why training of overparameterized NN is easier in practice,
and why the (idealized) two-layer NN training process can
reach a good solution with consistent performance.

The benefits of entropy regularization are threefold.

1) When we supplement the loss function with entropy
regularization, the overall learning problem becomes
strictly convex. Thus, a unique global minimum can
be guaranteed.

2) The implementation of the entropy regularization is
a very simple addition of noise. In practice, one can
often observe that adding noise helps us to find a
better solution.

3) After injecting noise, dρt �= 0 for all [μ, θ]. This fact,
combined with (23), implies the pointwise vanishing
of ∇g(ρt, u, θ), which implies that the global mini-
mum is achievable.

On the other hand, without the extra entropy regulariza-
tion, the objective function of (16) may not have a unique
global optimal solution. That is, there can be more than
one solutions that satisfy the first-order condition (17).
However, we can still achieve the global convergence to
the optimal objective function value of (16) although the
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Fig. 6. NN optimization from an MF perspective. (a) Change of loss. (b) Initial �θ. (c) Optimized θ. (d) Normalized histogram of u.

(e) Optimized θ with large u. (f) Optimized with noisy gradient. (g) Normalized histogram of u (noisy). (h) Optimized with large u (noisy).

final solution the training process converge to may not
be unique. To analyze this situation (without the extra
entropy regularization), Chizat and Bach [47] consid-
ered a different assumption with homogeneous activation
functions (such as ReLU) and homogeneous regularizers.
Under such assumptions, it is possible to show that the
solution ρt(u, θ) converges to a global optimal solution
(which may not be unique) that satisfies (17) as t→∞.

In the MF approach, learning the distribution ρ can be
viewed as learning effective feature representations. The
ability of NN to learn feature representations is consistent
with empirical observations. This perspective also explains
why fully trained NN is better than RF and NTK, both of
which employ random feature representations that are not
learned. We will further discuss this aspect in Section VI.

To visualize the process of learning ρ, we conduct an
experiment to reproduce an m = 4 sigmoid activated NN
(ui = 1, i = 1, 2, 3, and 4, denoted as F4) by NNs with
different width m. Note that the process of learning the

target function can be recognized as the process of learning
the target optimal ρ∗ =

�4
i=1 δθi/4, where δx is Dirac delta

function at point x and θi is the weight of the NN to be
reproduced. Although we know that the target function
can be represented by four neurons, Fig. 6 shows that using
a larger m leads to better learning. This is consistent with
the theory of overparameterization. In Fig. 6(a), we use
the mean-squared-error loss to measure the difference
between the target and optimized NN. The training val-
ues are F4(x), x ∼ N(0, 1002I) blurred with noise ε ∼
N(0, 0.12) (the reason to use large scale input is to improve
the reconstruction difficulty). It can be seen that, with
m = 4, we will get stuck at a local minimum and cannot
learn the correct target function. When we increase m,
we achieve more and more accurate learning of the target
function. Fig. 6(b) and (c) shows the distributions of θ

at initialization and at the optimal solution when training
convergence. We can see that they differ significantly, and
thus, in this case, NN training goes out of the NTK regime.
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In the end, the distributions of the neurons are scattered,
with a large number of neurons become aligned with the
target {θi} represented by the four red dots. Since the
target function does not have a unique representation,
therefore, we cannot recover the parameters {θi} but
only recover the function value represented by each {θi}
using multiple θ parameters distributed over the lines of
the targets. Therefore, we can learn the target function
reliably when m is large although we do not necessarily
learn the four target parameters {θi}. This is consistent
with the analysis in [47], where the NN training reaches
the minimal training error but not necessarily unique.
Fig. 6(d) shows that many particles have a very small
u, which means that they are “wasted neurons” that do
not affect the function value. If we remove these wasted
neurons with small u, then we can display the effective
neurons in Fig. 6(e), which are well-aligned with the target
neuron directions, and they can approximately recover
the functions represented by the four target neurons. The
phenomenon of wasted neurons in Fig. 6(c) is because
the target function is not strongly convex in ρ. Therefore,
there can be many solutions that achieve global optimal.
The analysis in [47] demonstrates, that under suitable
conditions, the training process will converge to the global
optimal although the solution may not be unique. How-
ever, if we add the entropy regularization as in [29], then
the global solution becomes unique. Since the entropy
regularization can be implemented using a noisy gradient,
we show the effect of using a noisy gradient on this
problem in Fig. 6(f). It shows that, with this regularization,
there is a significant reduction of wasted neurons, and the
final solution is nearly aligned with the directions of the
four target neurons. Because the function is not uniquely
represented by the four neurons, we still do not recover the
four target neurons. Instead, the final solution converges
to a unique optimal distribution ρ∗, which is a smooth
distribution around the directions of {θi} in the continuous
limit. In real finite-width NNs, some neurons may still get
stuck in the low-density regions. We can, thus, observe a
small portion of wasted neurons, which will decrease with
wider NNs or larger noises.

We may summarize some key points of the MF approach
as follows.

1) The method learns a distribution ρ, which behaves
like learning effective feature representations.

2) GD or noisy GD (SGD) over model parameters define
gradient flows with dynamics characterized by PDEs.

3) Under appropriate assumptions, the solution of the
underlying PDE converges to the optimal solutions in
ρ that satisfies the first-order condition (19).

4) The optimal solution can be far from the initial
parameter, leading to a more realistic model for NN
learning than NTK.

It can be shown that, as α → ∞, the dynamics of MF
becomes similar to that of NTK under suitable condi-
tions, and the solution becomes closer and closer to the

Table 1 Comparison of the NTK View and the MF View

initialization [29], [57]. When we reduce α, the final
solution becomes farther apart from the initialization. This
migrates from the NTK regime to the MF regime. This
phenomenon is illustrated in Fig. 7. We also summarize
the relationship between NTK and MF in Table 1.

While MF for two-layer NN is well-understood, com-
pared with NTK, it is significantly more difficult to gener-
alize MF to handle DNN structures. It is also more difficult
to obtain concrete complexity results using MF, which
requires study both the discretized differential equations,
and the convergence rate in terms of letting m→∞.

VI. I M P O R TA N C E O F F E AT U R E
L E A R N I N G
In Sections III–V, we presented three mathematical models
closely related to two-layer NNs: RF, NTK, and MF. A
summary of the pros and cons of the three models is
shown in Table 2. The first two approaches, RF and NTK,
employ simplified mathematical models by treating two-
layer NNs as linear models with random features. The
MF view, on the other hand, directly models the feature
learning dynamics of NN. It was argued by Fang et al. [58]
that a theoretical understanding of feature learning is the
key to explain the success of NN. Following the argument
of Fang et al. [58], this section compares the three models
empirically from the feature learning perspective.

It was pointed out in [58] that, when m is large,
the hidden units of a discrete NN in (1) can be regarded
as m (nearly) independent samples from a distribution ρ,
which is the distribution of the corresponding continuous
NN in (15). If we treat the function value f(ρ, x) of the
continuous NN as the target, then it follows that the error
of discretize NN is caused by the variance of sampling m

hidden units from ρ, which converges to

‖f([u, θ], x)− f(ρ, x)‖22
≈ 1

m

�
‖αuh(θ, x)− f(ρ, x)‖22dρ(u, θ) (24)

Fig. 7. Scaling factor α controls NN behavior: NTK versus MF.
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Table 2 Pros and Cons of RF, NTK, and MF. Note That Though RF and NTK Can Be Applied on DNN, They Are Still a Linear (One-Layer) Model and Do

Not Fully Explore the Hierarchical Architecture (See Discussion on Further Directions in Section X)

where f([u, θ], x) represents the discrete NN of (1), with
each hidden unit j sampled (independently) from ρ, and
f(ρ, x) is the corresponding continuous NN of (15).

Since, under suitable conditions, the continuous rep-
resentation f(ρ, x) can reach a globally optimal solution
via training, it can be regarded as the target function
that we try to learn with discrete NN. A good feature
representation of the target is, thus, a feature distribution
ρ so that its continuous NN can be well approximated
by the corresponding discrete NN via (24). This means
that the variance on the right-hand side of (24) should be
small. If we consider using the L2 regularization for u, and
assume that h(θ, x) is batch-normalized as

1

n

n�
i=1

h(θ, xi)
2 = 1

for all θ, then it is shown in [58] that, when fully opti-
mized, ‖u‖2 is nearly a constant with respect to the distri-
bution ρ(u, θ). It implies that the variance of (24) achieved
by NN training is nearly minimized among all values of
ρ′ such that f(ρ′, x) = f(ρ, x). Therefore, for a fixed m,
we will achieve the smallest error with discrete NN and
the learned probability measure ρ(u, θ). We, thus, conclude
from this result that, after NN training, the discrete NN
can efficiently represent the target function by learning
an effective feature representation characterized by the
feature distribution ρ(u, θ).

If we compare this learned feature representation to
the random feature approaches (RF or NTK), the feature

representation learned by NN leads to more efficient dis-
crete representation by sampling from the distribution.
This efficiency explains the superiority of NN over the
random feature approach. A consequence of the optimal
feature representation point of view in [58] is the possibil-
ity to use a generative model to learn such a distribution
ρ and then use this generative model to replace the initial
random features (i.e., random Gaussian distributions) in
RF and NTK to generate hidden units of the NN. If we
consider the random features sampled from this learned
distribution, instead of random features at the initializa-
tion, more effective RF and NTK can be obtained. This was
illustrated in [58] and [59], which we present here as well.

For convolutional NNs (CNN), the phenomenon of learn-
ing features is a consensus among practitioners [59], [60].
A visualization of this phenomenon is shown in Fig. 8.
When we use a variational autoencoder (VAE) [61] to
learn the optimized ρ distribution from samples of pre-
trained models, we observe meaningful patterns not found
at the initialization. In particular, to obtain samples from
ρ∗, we prepare 1000 pretrained two-layer NNs (m = 100)
with different initializations. Note that the weight of the
pretrained NNs can be regarded as samples {θi} from ρ∗.
We can then use the generative model (VAE) to learn the
transform from the standard normal distribution to the
target distribution ρ∗ with these samples {θi}.

Fig. 9 illustrates the repopulation phenomenon in NNs.
In the repopulation process, we use VAE to learn the
feature distribution ρ and then sample weights from the
learned generative model. We then fix the generated fea-
tures and learn parameter u only as in (3), just like the

Fig. 8. Visualization of weights on the MNIST data set (reshaped to 28× 28). (a) Random. (b) Optimized. (c) Generated.
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Fig. 9. Random feature versus repopulated feature (m � 103).

Fig. 10. Tangent space comparison (m � 103).

Fig. 11. Importance sampling from large NN to remove “wasted” neurons (m� 10).

RF method. From this experiment, we can see that the
performance of the repopulated features outperforms that
of the initial random features. This means the random fea-
tures learned by NN are superior to the Gaussian random
features at initialization. This is consistent with the theory
of [58].

Another approach to examine the effectiveness of ρ is
to compare the tangent spaces at the initial and the final
solutions using the linear approximation (8). This scenario
has also been investigated in [62]. If the representation
power of NTK matches that of NN in practice, then the
performance using the tangent space at the initialization
should be similar to that of the learned distribution ρ.
We compare random weights and generated ones in Fig. 10
on the MNIST data set. Note that the generated weights
are learned by VAE at the final solution. In training, both
approaches achieve very small errors. However, the gen-
eralization ability differs significantly: the learned ρ pro-
vides a more robust model in the testing stage. Many
analyses of NTK investigated the training loss, which
can become almost zero due to the effectiveness of tan-
gent space. However, the restricted space cannot perform,

as well as the full NN in terms of the generalization
ability.

As indicated in Fig. 6(d), many neurons of NN can be
“wasted,” and it can be identified by u with proper regu-
larization. Therefore, it is possible to perform importance
sampling to select effective weights from a very wide NN,
which can also be regarded as an approach of pruning.
We train a large NN (m = 10 000) with regularization 10−3,
which leads to many “wasted” neurons. We want to prune
the NN by choosing only ten effective neurons and fine-
tune the weight u. There are two strategies to select the
neurons: 1) uniform sampling that does not distinguish the
importance of neurons and 2) importance sampling that
takes the corresponding u as the importance of neurons.
After selecting neurons, we fix the first layer θ and train u.
Note that the optimization of u is a convex problem. Fig. 11
shows that the performance of importance sampling out-
performs uniform sampling significantly. This also confirms
that, in a wide network, some neurons may get stuck due
to the nonstrong convexity of the formulation.

Since random features of NTK are not learned dur-
ing training, there have been several works that tried

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 697



Fang et al.: Mathematical Models of Overparameterized NNs

to investigate the difference between the lazy training
condition in NTK and the actual training process of NNs
[52], [58], [62]–[65]. Notably, Yehudai and Shamir [63]
showed that random features cannot be used to learn even
a single ReLU neuron unless the number of the hidden
units is exponentially large in d. Ghorbani et al. [62]
considered the quadratic activation function and showed
that GD achieves a lower prediction risk in the actual
training process when the number of neurons is small.
As discussed earlier, Fang et al. [58] showed that, with
appropriate regularization, NN can learn optimal feature
representations that are superior to random features.

Because MF outperforms NTK in the feature learning
perspective, in many cases, better generalization bounds
can be obtained for MF than those of NTK. In particu-
lar, as shown by Wei et al. [52] and Fang et al. [58],
learning a two-layer NN with an �-2 norm regularizer on
the weights is equivalent to solving an �-1 norm regu-
larized problem in the feature space. This is consistent
with the empirical observation that MF learns meaningful
features because �-1 regularization has a strong capability
for feature selection and sparse representation learning. In
contrast, the kernel methods typically consider an �-2 norm
regularizer. Moreover, in [52], a simple d-dimensional
distribution was constructed, for which MF needs O(d)

samples to learn. However, kernel methods (including
NTK) require at least Ω(d2) samples, which demonstrated
the superiority of MF in terms of generalization. Recently,
Chizat and Bach [66] obtained an interesting result, which
shows that, even without a regularizer, GD can implicitly
converge to the �-1 norm regularized solution in the MF
limit.

VII. O V E R P A R A M E T E R I Z E D D E E P
N E U R A L N E T W O R K S
We have explained the concepts of NTK and MF using two-
layer NNs. A number of articles have considered extensions
of these models to DNNs.

A. NTK

In general, NTK can be generalized to DNNs without
much difficulty, e.g., [18], [22], and [24], and the tech-
nique can also be generalized to handle more complex
topological structures, such as recurrent NNs [21] and
residual NNs [18].

In these approaches, with proper initialization, we can
linearize the nonlinear NN models at the initialization, sim-
ilar to what we have done for two-layer NNs. By showing
that the training process with small learning rates leads
to a zero-training error within a small neighbor of the
initialization, the entire NN train lies in the so-called NTK
(or lazy-learning) regime, and the linear approximation is
effective throughout the training. Similar to the situation
of two-layer NN, this requires specialized initialization and
specialized learning rates that are often different from
what is used by practitioners.

One difficulty with the NTK approach for DNNs is that
it cannot satisfactorily explain the benefit of using deeper
structures. This because the NTK view essentially corre-
sponds to a linear model using an infinite-dimensional
random feature representation that defines the underlying
NTK. Although, with deeper structures, we add more and
more random features, similar to the situation of the
two-layer NNs, these features are not learned.

If we want to apply NTK to real problems, efficient
computation of the NTK kernel is necessary, which may
require a special design. For example, an efficient exact
algorithm to compute convolutional NTK was proposed
in [30]. In practice, kernel methods have a quadratic
complexity with respect to the number of training data,
and the computational cost can be prohibitive for big data
applications. Various algorithms have been investigated to
alleviate this problem in the traditional kernel learning
literature. We refer the readers to [14] and references
therein.

B. MF

Unlike NTK, it is nontrivial to generalize MF to DNNs.
There were a number of recent works that attempted
to generalize MF [57], [66]–[71]. This is still an active
research area that has not matured. We will, thus, describe
some of the challenges and the latest results.

First, it is not easy to formulate the continuous limit
of DNNs. Consider a three-layer NN as an example. The
hidden units of the upper layer are functions of hidden
units of the lower layer. However, if we allow the number
of hidden units of the lower layer to go to infinity (as
we do in the two-layer NN), then there are infinitely
many features for every hidden unit of the upper hidden
layer. If we let the number of hidden units of the upper
layer to go to infinity, then there are infinitely many such
functions, each with infinitely many features (each feature
corresponds to a hidden unit of the lower layer). It is
nontrivial to model these functions mathematically. One of
the attempted approaches is to model DNNs with nested
measures (also known as multilayer measures [72], [73]).
However, as mentioned in [67], the mathematical limit
may not be well-defined. Another approach considered the
continuous limit of DNNs under special conditions. For
example, Araújo et al. [69] and Nguyen and Pham [70]
investigated the continuous limit of DNNs under the ini-
tialization that all weights were i.i.d. realizations of a fixed
distribution (with finite variance) independent of the num-
ber of hidden units. Unfortunately, in such a setting, all
neurons in a middle layer will have the same output value
at initialization, and this property holds during the entire
training process. It is clearly not an appropriate math-
ematical model for general DNNs. In real applications,
initialization strategies, e.g., [45] and [74], sample the
NN weights from N (0, O(m)), with variance approaching
infinity as the number of hidden nodes m goes to∞. More
recently, Fang et al. [71] designed a new MF framework
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for DNNs, in which a DNN is represented by probability
measures and functions over outputs of the hidden units
instead of the NN parameters. This new representation
overcomes the degenerate situation exited in some earlier
attempts, where all the hidden units essentially have only
one meaningful hidden unit in each middle layer.

The second difficulty is that a DNN cannot be regarded
as a linear model with respect to the distribution of the
parameters. Unlike the case of two-layer NN, which is
convex with respect to a reparameterization of the model
using the corresponding feature distribution, it is much
harder to derive a convex formulation of DNN with appro-
priate reparameterization. Therefore, the global minimum
is hard to be identified, and GD potentially leads to sub-
optimal solutions. Recently, Nguyen and Pham [70] and
Fang et al. [71] showed that GD can find a global minimal
solution for three-layer and multilayer DNNs, respectively.
Notably, they assumed that no regularization is imposed,
and the activation function can achieve universal approxi-
mation. Under such conditions, the global minimum can be
identified as 0. Another remarkable work is [68] and the
closely related study [75], in which the authors introduced
a new technique, called neural feature repopulation (NFR),
to reparameterize the DNNs. Using the NFR technique, one
can decouple the distributions of the features from the
loss function, and their impact can be integrated into the
regularizer. Surprisingly, with suitable regularizers, it can
be shown that the overall objective function under the
special reparameterization is convex, which is analogous to
the case of two-layer NNs. Moreover, they proposed a new
optimization process to find the global minimal solution
under such regularizers. It remains an open theoretical
question to show that GD type of algorithms can find a
global optimal solution for the associated convex formula-
tion.

VIII. C O M P L E X I T Y A N A L Y S I S F O R
O V E R P A R A M E T E R I Z E D N N s
The theoretical properties of the linearized system in the
NTK view are much easier to analyze. Therefore, it is
possible to prove rigorous convergence and statistical com-
plexity bounds under the NTK regime, and polynomial con-
vergence rates can be obtained under various conditions.

For two-layer NNs, for example, by assuming that the
minimum eigenvalue of the kernel matrix for the training
data is positive, denoted as λ0, it was shown in [41]
that, when the number of hidden units is greater than
n6λ−4

0 δ−2, with a learning rate of η = O(λ0n
−2), then,

with probability at least 1 − δ, the GD method finds an
ε-global minimum in O(η−1λ−1

0 log(ε−1)) steps. Before Du
et al. [41], Li and Liang [20] studied a different data
assumption. They showed that a polynomial convergence
rate can be achieved under appropriate separability condi-
tions of the data.

The above results can be generalized to DNNs. For
example, Du et al. [18] showed that, as long as the
number of hidden units is larger than Ω̃(poly(λ0, n)2L),

GD finds a global minimal solution in Õ(poly(λ0, n)2L)

steps for standard L-layer DNNs, where Ω̃ and Õ hide
polylogarithmic terms. Moreover, for the residual NNs,
the exponential dependencies on L can be reduced to
polynomial dependence. Similarly, Allen-Zhu et al. [24]
and Zou et al. [22] adopted the data assumption in [20]
and achieved polynomial complexities.

Some other researchers, e.g., Allen-Zhu and Li [21],
Hanin and Nica [76], Bai and Lee [77], and Huang
and Yau [78], have tried to model NNs beyond a linear
approximation of NTK, typically second-order approxima-
tion. For example, Allen-Zhu and Li [21], Bai and Lee
[77], and Chen et al. [79] proposed a training procedure
with randomization techniques to extract the second-order
approximation, sharpening complexity bounds. In gen-
eral, the second-order approximation satisfies the so-called
strict saddle property [80] and, thus, is solvable efficiently
by saddle-escaping algorithms, e.g., [81]–[83]. Specifi-
cally, Bai and Lee [77] showed that complexity bounds for
learning polynomials on uniform distributions are lower
than those of NTK by a factor of O(d).

IX. O T H E R M AT H E M AT I C A L M O D E L S
O F N N s
A number of recent works have considered approximation
properties of NNs, leading to a better understanding of
why DNNs are superior to shallow networks in terms of
function approximation. It is well known that two-layer
NNs are universal approximators [84], [85]. However,
for certain functions that can be represented by DNNs
with a small number of nodes, the exponential number
of nodes are needed to represent them with shallow NNs
[86], [87]. Related results show that DNNs can repre-
sent any function with a constant number of nodes per
layer [88], [89], which suggest a tradeoff between the
depth and the width in terms of universal approximation.
More generally, in order to represent a complex function,
we can either increase a network’s width or its depth.
It was observed, in practice, that it is beneficial to increase
both depth and width simultaneously to balance the
tradeoff [90].

Before the development of recent mathematical models
of overparameterized NNs, such as NTK and MF, which
tried to formulate the NN optimization procedure as con-
vex optimization, there were developments in the machine
learning research community that focused on the noncon-
vex optimization aspect of NNs.

In order to understand the NN training process, a num-
ber of earlier works studied the loss landscape of NNs.
For example, several researchers observed that NN’s gen-
eralization ability is related to the sharpness/flatness
of the local minimal solution resulted from training
and discussed different methods to characterize flatness
[91]–[93]. There are also works, e.g., [94] and [95], that
attempted to understand the Hessian matrices of NNs.
With the help of restrictive assumptions, or for special-
ized models, a number of earlier works, e.g., [96]–[103],
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studied the theoretical characterizations of NN landscapes,
for example, under the assumption that the input fol-
lows Gaussian distribution or the activation function is
linear or quadratic. These results, in general, showed that,
for any NN that satisfies strict saddle property, standard
saddle-escaping algorithms can converge to a global mini-
mal solution. We also refer the readers to the review [104]
and the references therein for the global landscape of NNs.

Related studies of NN training were investigated from
the generic nonconvex optimization point of view, where
the main issue was the complexity of stochastic optimiza-
tion algorithms, such as SGD to escape saddle points
and converge to local minimal solutions [80], [81]. This
question was resolved satisfactorily for general nonconvex
problems, where both the convergence rate of SGD and
that of the optimal stochastic algorithm were known [82],
[83], [105].

The kernel representation in the RF/NTK view has a
natural connection to Gaussian processes, which has a
Bayesian statistics interpretation. The earliest study of
overparameterized infinite-width NN was motivated by
this Bayesian interpretation [8], [9], [106], where the
relationship of infinite-width NN and Gaussian processes
was investigated, which is only based on the random
feature. More recently, some articles also investigate the
kernel form of the NTK regime to perform the Bayesian
inference [107], which has a larger function class than
NF. Moreover, the Bayesian interpretation can be used
to derive uncertainty estimation for NNs. For example,
it was argued in [108] using the Gaussian process point
of view that dropout [5] can be used to obtain uncertainty
estimation for NNs.

X. C O N C L U S I O N
NN has become an essential tool in machine learning and
artificial intelligence, with a wide range of applications.
Although there have been significant empirical signs of
progress, theoretical understanding is rather limited, due
to the complexity of the nonconvexity in NN modeling.
It has been noted by practitioners that overparameterized
NNs are easier to optimize, and the solutions are often
reproducible with good performances that are difficult
to explain from a nonconvex optimization point of view.
To explain this mystery, there have been numerous works
to develop mathematical models for overparameterized
NNs in recent years. Due to these efforts, we begin to
understand how NN works, especially in the continuous
limit of overparameterized NNs. Surprisingly, under these
models, overparameterized NNs behave more like convex
systems, which can explain why they lead to reproducible
results observed in practice. There are many research
activities in developing better mathematical theories of
DNNs. We outline some of the current directions that we
feel are particularly promising.

1) For two-layer NNs, NTK can achieve a polyno-
mial computational cost although a relatively weak

generalization result. In comparison, MF achieves
better generalization but lacks quantitative compu-
tational results under general conditions. Therefore,
we need a more sophisticated analysis of two-layer
NNs showing better generalization behavior than NTK
(especially in terms of feature learning), with polyno-
mial computational complexity.

2) The understanding of DNNs is still quite limited.
Although it can be shown that GD converges globally
in the NTK regime, in the existing analysis, the weight
updates can be ignored except for the second to the
last layer. This is clearly inconsistent with practice.
Moreover, because NTK is effectively a linear (single-
layer) model with respect to random features, existing
results on DNN approximation imply immediately
that representations requiring deep structures can-
not be learned efficiently by NTK. As an example,
the random features cannot even represent a single
ReLU neuron unless there are an exponential num-
ber of hidden units [63]. Although this gap can be
potentially addressed by the MF view, its analysis is
even further behind in which we still do not have a
satisfactory theory of MF for DNNs. Even if a satisfac-
tory theory of MF is developed, quantitative results on
generalization and optimization remain open. There-
fore, for DNNs, both optimization and generalization
analysis require further study. As one interesting work
in this direction, Allen-Zhu and Li [109] established
a principle called “backward feature correction” and
showed that GD can learn hierarchical features when
the activation function is quadratic. We expect to
see more results of this type that can truly illustrate
the benefits of deep structures beyond the inherently
shallow structure of NTK.

3) The success of NNs has been largely attributed to
their abilities to learn discriminative features. Related
topics of transfer learning, pretraining, semisuper-
vised learning, and so on have been actively stud-
ied by practitioners with great successes. We expect
more and more theoretical investigations of these
topics in the future, which will inevitably lead to
a better understanding of NNs ability to learn fea-
ture representations. This may inspire the develop-
ment of more robust algorithms for representation
learning.

4) In recent years, many specialized NN architectures
and components are designed by practitioners that
are effective in various different tasks. For example,
architectures, such as ResNet, CNNs, transformers,
and components, such as attention and batch normal-
ization, have become widely used. We start to see the
theoretical analysis for such architectures and com-
ponents. For example, Huang et al. [110] provided
theoretic justification for Res-Net and showed that
Res-Nets generalize better than DNNs by comparing
NTKs. We expect that a more sophisticated theoretical
analysis of special NN structures can lead to better
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understanding and eventually more effective neural
architecture design.

5) Practitioners have made many interesting empirical
observations of NNs that remain to be explained the-
oretically. For example, Nakkiran et al. [111] showed
that NN learning exhibits a double-descent phenom-
enon, where, when we increase the model size or the
number of training epochs, the test performance dete-
riorates first and then becomes better. In another
work, He and Su [112] observed the so-called local
elasticity phenomenon where the prediction of a
datum x′ will not be significantly affected after an
SGD update at a datum x, which is not close to x′.
As another example, Papyan et al. [113] observed
a phenomenon called neural collapse, which states

that predicted class means collapse to the vertices
of a simplex equiangular tight frame at the final
training stage. Developing theoretical explanations
of such practical phenomena can lead to a better
understanding of how NN works.

Finally, we conclude that the study of overparameterized
NNs is still in its infancy. We expect that deep mathematical
insights obtained from these theoretical investigations will
help us to develop solid theoretical foundations for NNs
and motivate effective algorithms and architectures in the
coming years.

C o d e A v a i l a b i l i t y
Codes for illustration are available at Github.2
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