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Generative Adversarial Networks for Image and
Video Synthesis: Algorithms and Applications
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Abstract—The generative adversarial network (GAN) framework has emerged as a powerful tool for various image and video
synthesis tasks, allowing the synthesis of visual content in an unconditional or input-conditional manner. It has enabled the generation
of high-resolution photorealistic images and videos, a task that was challenging or impossible with prior methods. It has also led to the
creation of many new applications in content creation. In this paper, we provide an overview of GANs with a special focus on algorithms
and applications for visual synthesis. We cover several important techniques to stabilize GAN training, which has a reputation for being
notoriously difficult. We also discuss its applications to image translation, image processing, video synthesis, and neural rendering.

Index Terms—Generative Adversarial Networks, Computer Vision, Image Processing, Image and Video Synthesis, Neural Rendering

1 INTRODUCTION

HE generative adversarial network (GAN) framework
T is a deep learning architecture [59], [100] introduced by
Goodfellow et al. [60]. It consists of two interacting neural
networks—a generator network GG and a discriminator net-
work D, which are trained jointly by playing a zero-sum
game where the objective of the generator is to synthesize
fake data that resembles real data, and the objective of the
discriminator is to distinguish between real and fake data.
When the training is successful, the generator is an approx-
imator of the underlying data generation mechanism in the
sense that the distribution of the fake data converges to the
real one. Due to the distribution matching capability, GANs
have become a popular tool for various data synthesis and
manipulation problems, especially in the visual domain.

GAN’s rise also marks another major success of deep
learning in replacing hand-designed components with
machine-learned components in modern computer vision
pipelines. As deep learning has directed the community to
abandon hand-designed features, such as the histogram of
oriented gradients (HOG) [36], for deep features computed
by deep neural networks, the objective function used to train
the networks remains largely hand-designed. While this is
not a major issue for a classification task since effective and
descriptive objective functions such as the cross-entropy
loss exist, this is a serious hurdle for a generation task.
After all, how can one hand-design a function to guide a
generator to produce a better cat image? How can we even
mathematically describe “felineness” in an image?

GANs address the issue through deriving a functional
form of the objective using training data. As the discrim-
inator is trained to tell whether an input image is a cat
image from the training dataset or one synthesized by the
generator, it defines an objective function that can guide the
generator in improving its generation based on its current
network weights. The generator can keep improving as
long as the discriminator can differentiate real and fake
cat images. The only way that a generator can beat the
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Fig. 1. Unconditional vs. Conditional GANSs. (a) In unconditional
GANSs, the generator converts a noise input z to a fake image G(z)
where z ~ Z and Z is usually a Gaussian random variable. The discrim-
inator tells apart real images « from the training dataset D and fake im-
ages from G. (b) In conditional GANSs, the generator takes an additional
input y as the control signal, which could be another image (image-to-
image translation), text (text-to-image synthesis), or a categorical label
(label-to-image synthesis). The discriminator tells apart real from fake
by leveraging the information in y. In both settings, the combination of
the discriminator and real training data defines an objective function
for image synthesis. This data-driven objective function definition is a
powerful tool for many computer vision problems.

discriminator is to produce images similar to the real images
used for training. Since all the training images contain cats,
the generator output must contain cats to win the game.
Moreover, when we replace the cat images with dog images,
we can use the same method to train a dog image generator.
The objective function for the generator is defined by the
training dataset and the discriminator architecture. It is thus
a very flexible framework to define the objective function
for a generation task as illustrated in Figure ]

However, despite its excellent modeling power, GANs
are notoriously difficult to train because it involves chasing
a moving target. Not only do we need to make sure the
generator can reach the target, but also that the target can
reach a desirable level of goodness. Recall that the goal of
the discriminator is to differentiate real and fake data. As
the generator changes, the fake data distribution changes
as well. This poses a new classification problem to the dis-
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Fig. 2. GAN progress on face synthesis. The figure shows the progress
of GANs on face synthesis over the years. From left to right, we have
face synthesis results by (a) the original GAN [60], DCGAN [163], Co-
GAN |119], PgGAN [84], and StyleGAN [85]. This image was originally
created and shared by lan Goodfellow on Twitter.

criminator, distinguishing the same real but a new kind of
fake data distribution, one that is presumably more similar
to the real data distribution. As the discriminator is updated
according to the new classification problem, it induces a new
objective for the generator. Without careful control of the dy-
namics, a learning algorithm tends to experience failures in
GAN training. Often, the discriminator becomes too strong
and provides strong gradients that push the generator to a
numerically unstable region. This is a well-recognized issue.
Fortunately, over the years, various approaches, including
better training algorithms, network architectures, and regu-
larization techniques, have been proposed to stabilize GAN
training. We will review several representative approaches
in Section B} In Figure 2] we illustrate the progress of GANs
over the past few years.

In the original GAN formulation [60], the generator is
formulated as a mapping function that converts a simple,
unconditional distribution, such as a uniform distribution
or a Gaussian distribution, to a complex data distribution,
such as a natural image distribution. We now generally refer
to this formulation as the unconditional GAN framework.
While the unconditional framework has several important
applications on its own, the lack of controllability in the
generation outputs makes it unfit to many applications. This
has motivated the development of the conditional GAN
framework. In the conditional framework, the generator
additionally takes a control signal as input. The signal can
take in many different forms, including category labels,
texts, images, layouts, sounds, and even graphs. The goal
of the generator is to produce outputs corresponding to the
signal. In Figure [T} we compare these two frameworks. This
conditional GAN framework has led to many exciting appli-
cations. We will cover several representative ones through
Sections M to

GANSs have led to the creation of many exciting new
applications. For example, it has been the core building
block to semantic image synthesis algorithms that concern
converting human-editable semantic representations, such
as segmentation masks or sketches, to photorealistic images.
GANSs have also led to the development of many image-
to-image translation methods, which aim to translate an
image in one domain to a corresponding image in a different
domain. These methods find a wide range of applicability,
ranging from image editing to domain adaptation. We will

review some algorithms in this space in Section [&

We can now find GAN’s footprint in many visual pro-
cessing systems. For example, for image restoration, super-
resolution, and inpainting, where the goal is to transform
an input image distribution to a target image distribution,
GANs have been shown to generate results with much
better visual quality than those produced with traditional
methods. We will provide an overview of GAN methods in
these image processing tasks in Section 5}

Video synthesis is another exciting area that GANs have
shown promising results. Many research works have uti-
lized GANSs to synthesize realistic human videos or transfer
motions from one person to another for various enter-
tainment applications, which we will review in Section [
Finally, thanks to its great capability in generating photo-
realistic images, GANs have played an important role in the
development of neural rendering—using neural networks
to boost the performance of the graphics rendering pipeline.
We will cover GAN works in this space in Section[7]

2 RELATED WORKS

Several GAN review articles exist, including the introduc-
tory article by Goodfellow [58]. The articles by Creswell et
al. [35] and Pan et al. [154] summarize GAN methods prior
to 2018. Wang et al. [222] provides a taxonomy of GANS.
Our work differs from the prior works in that we provide a
more contemporary summary of GAN works with a focus
on image and video synthesis.

There are many different deep generative models or
deep neural networks that model the generation process of
some data. Besides GANs, other popular deep generative
models include deep Boltzmann Machines, variational au-
toencoders, deep autoregressive models, and normalizing
flow models. We compare these models in Figure (3| and
briefly review them below.

Deep Boltzmann Machines (DBMs). DBMs [45], [48], [68],
[175] are energy-based models [101], which can be repre-
sented by undirected graphs. Let & denote the array of
image pixels, often called visible nodes. Let h denote the
hidden nodes. DBMs model the probability density function
of data based on the Boltzmann (or Gibbs) distribution as

p(:0) = ﬁ S exp(—E(x h;0)), ()
h

where E is an energy function modeling interactions of
nodes in the graph, IV is the partition function, and 6 de-
notes the network parameters to be learned. Once a DBM is
trained, a new image can be generated by applying Markov
Chain Monte Carlo (MCMC) sampling, ascending from a
random configuration to one with high probability. While
extensively expressive, the reliance on MCMC sampling
on both training and generation makes DBMs scale poorly
compared to other deep generative models, since efficient
MCMC sampling is itself a challenging problem, especially
for large networks.

Variational AutoEncoders (VAEs). VAEs [93], [94], [168]
are directed probabilistic graphic models, inspired by the
Helmholtz machine [37]. They are also descendant of la-
tent variable models, such as principal component analysis
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Fig. 3. Structure comparison of different deep generative models. Except the deep Boltzmann machine which is based on undirected graphs, the
other models are all based on directed graphs, which enjoy a faster inference speed.

and autoencoders [18], which concern representing high-
dimensional data x using lower-dimensional latent vari-
ables z. In terms of structure, a VAE employs an infer-
ence model ¢(z|x; ¢) and a generation model p(x|z; 6)p(2)
where p(z) is usually a Gaussian distribution, which we can
easily sample from, and ¢(z|z; @) approximates the poste-
rior p(z|z; @). Both of the inference and generation mod-
els are implemented using feed-forward neural networks.
VAE training is through maximizing the evidence lower
bound (ELBO) of logp(x;60) and the non-differentiblity
of the stochastic sampling is elegantly handled by the
reparametrization trick [94]. One can also show that max-
imization the ELBO is equivalent to minimizing the Kull-
back-Leibler (KL) divergence

KL (q(x)q(z|x; ¢)|[p(2)p(x|2; 0)), )

where ¢(z) is the empirical distribution of the data [94].
Once a VAE is trained, an image can be efficiently generated
by first sampling z from the Gaussian prior p(z) and then
passing it through the feed-forward deep neural network
p(x|z; 0). VAEs are effective in learning useful latent rep-
resentations [188]. However, they tend to generate blurry
output images.

Deep AutoRegressive Models (DARs). DARs [30], [153],
[177], [207] are deep learning implementations of classical
autoregressive models, which assume an ordering to the
random variables to be modeled and generate the variables
sequentially based on the ordering. This induces a factoriza-
tion form to the data distribution given by solving

p(z;0) = Hp(:qu\w@;@), 3)

where x;s are variables in x, and x.; are the union of
the variables that are prior to z; based on the assumed
ordering. DARs are conditional generative models where
they generate a new portion of the signal based on what has
been generated or observed so far. The learning is based on
maximum likelihood learning

max Egp [log p(wilz<i;0)] . 4)

DAR training is more stable compared to the other gen-
erative models. But, due to the recurrent nature, they are
slow in inference. Also, while for audio or text, a natural

ordering of the variables can be determined based on the
time dimension, such an ordering does not exist for images.
One hence has to enforce an order prior that is an unnatural
fit to the image grid.

Normalizing Flow Models (NFMs). NFMs [40], [41], [92],
[167] are based on the normalizing flow—a transformation
of a simple probability distribution into a more complex dis-
tribution by a sequence of invertible and differentible map-
pings. Each mapping corresponds to a layer in a deep neural
network. With a layer design that guarantees invertibility
and differentibility for all possible weights, one can stack
many such layers to construct a powerful mapping because
composition of invertible and differentible functions are in-
vertible and differentible. Let F = f(Uo f(2) o f(5) be such
a K-layer mapping that maps the simple probability distri-
bution Z to the data distribution X. The probability density
of a sample £ ~ X can be computed by transforming it
back to the corresponding z. Hence, we can apply maximum
likelihood learning to train NFMs because the log-likelihood
of the complex data distribution can be converted to the log-
likelihood of the simple prior distribution subtracted by the
Jacobians terms. This gives
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where z; = f((z;_;). One key strength of NFMs is in
supporting direct evaluation of probability density calcula-
tion. However, NFMs require an invertible mapping, which
greatly limits the choices of applicable architectures.

3 LEARNING

Let 8 and ¢ be the learnable parameters in G and D, respec-
tively. GAN training is formulated as a minimax problem

mdi)n max V6, ¢), (6)

where V' is the utility function.

GAN training is challenging. Famous failure cases in-
clude mode collapse and mode dropping. In mode collapse,
the generator is trapped to a certain local minimum where
it only captures a small portion of the distribution. In mode
dropping, the generator does not faithfully model the target



TABLE 1
Comparison of different GAN losses, including saturated [60],
non-saturated [60], Wasserstein |6], least square [134], and
hinge [112], [241], in terms of the discriminator output layer type in
and (). We maximize fp and f¢ for training the discriminator. As
shown in (7) and (8), we minimize g for training the generator. Note

that o(z) = 2= is the sigmoid function.
Loss fp(z) fa(z) 9c ()
Saturated log o(x) log(1 — o(z)) log(1 — o(z))
Non-Saturated log o(x) log(1 — o(x)) —logo(x)
Wasserstein T —T —x
Least-Square —(z—1)2 —x? (z —1)2
Hinge min(0,z—1) min(0,—z—1) —z

distribution and misses some portion of it. Other common
failure cases include checkerboard and waterdrop artifacts.
In this paper, we cover the basics of GAN training and some
techniques invented to improve training stability.

3.1 Learning Objective

The core idea in GAN training is to minimize the discrep-
ancy between the true data distribution p(x) and the fake
data distribution p(G(z; 6)). As there are a variety of ways
to measure the distance between two distributions, such
as the Jensen-Shannon divergence, the Kullback—Leibler
divergence, and the integral probability metric, there are
also a variety of GAN losses, including the saturated GAN
loss [60], the non-saturated GAN loss [60], the Wassterstein
GAN loss [6], [64], the least-square GAN loss [134], the
hinge GAN loss [112], [241], the f-divergence GAN loss [81]],
[150], and the relativistic GAN loss [80]. Empirically, the
performance of a GAN loss depends on the application as
well as the network architecture. As of the time of writing
this survey paper, there is no clear consensus on which one
is absolutely better.

Here, we give a generic GAN learning objective formu-
lation that subsumes several popular ones. For the discrim-
inator update step, the learning objective is

maxEgop | fo(D(@: )] + Bzvz [ fa(D(G(z:0):6)]. @)

where fp and fg are the output layers that transform the
results computed by the discriminator D to the classification
scores for the real and fake images, respectively. For the
generator update step, the learning objective is

mink. .z [QG(D(G(Z§ 0);9)|, ®)

where gg is the output layer that transforms the result
computed by the discriminator to a classification score for
the fake image. In Table (1, we compare fp, fg, and g¢ for
several popular GAN losses.

3.2 Training

Two variants of stochastic gradient descent/ascent (SGD)
schemes are commonly used for GAN training: the simulta-
neous update scheme and the alternating update scheme.
Let Vp(0,¢) and Vi (0, @) be the objective functions in
and , respectively. In the simultaneous update, each

4

training iteration contains a discriminator update step and
a generator update step given by

8VD(0(”, ¢(t))

o) = ¢ +ap—"2 ©)
®) @)
9+ — g _ o, 3VG(960»¢ )’ (10)

where ap and ag are the learning rates for the generator
and discriminator, respectively. In the alternating update,
each training iteration consists of one discriminator update
step followed by a generator update step, given by

AVp(8M), p®
P = ¢ 1.0 VO ¢ - (11)
() pt+1)
6+ — 9) _ o oV (6 aéd) ). (12)

Note that in the alternating update scheme, the generator
update utilizes the newly updated discriminator pa-
rameters (1) while, in the simultaneous update , it
does not. These two schemes have their pros and cons. The
simultaneous update scheme can be computed more effi-
ciently, as a major part of the computation in the two steps
can be shared. In the other hand, the alternating update
scheme tends to be more stable as the generator update is
computed based on the latest discriminator. Recent GAN
works [24], [64], [70], [118]], [156] mostly use the alternating
update scheme. Sometimes, the discriminator update is
performed several times before computing [24], l64].

Among various SGD algorithms, ADAM [91], which is
based on adaptive estimates of the first and second order
moments, is very popular for training GANs. ADAM has
several user-defined parameters. Typically, the first momen-
tum is set to 0, while the second momentum is set to 0.999.
The learning rate for the discriminator update is often set to
2 to 4 times larger than the learning rate for the generator
update (usually set to 0.0001), which is called the two-time
update scales (TTUR) [67]. We also note that RMSProp [201]
is popular for GAN training [64], [84], [85], [118].

3.3 Regularization

We review several popular regularization techniques avail-
able for countering instability in GAN training.

Gradient Penalty (GP) is an auxiliary loss term that penal-
izes deviation of gradient norm from the desired value [64],
[138], [169]. To use GP, one adds it to the objective function
for the discriminator update, i.e., @ There are several
variants of GP. Generally, they can be expressed as

GP-0 = E; [ IVD(&)|, — 5]. (13)

The most common two forms are GP-1 [64] and GP-0 [138].
GP-1 was first introduced by Gulrajani et al. [64]. It uses
an imaginary data distribution

& =ux+(1—u)G(2), u~U0,1) (14)

where u is a uniform random variable between 0 and 1.
Basically, & is neither real or fake. It is a convex combination
of a real sample and a fake sample. The design of the GP-1
is motivated by the property of an optimal D that solves
the Wasserstein GAN loss. However, GP-1 is also useful
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Fig. 4. Generator evolution. Since the debut of GANs [60|, the generator architecture has continuously evolved. From (a-c), one can observe the
change from simple MLPs to deep convolutional and residual networks. Recently, conditional architectures, including conditional activation norms
(d) and conditional convolutions (e), have gained popularity as they allow users to have more control on the generation outputs.

when using other GAN losses. In practice, it has the effect
of countering vanishing and exploding gradients occurred
during GAN training.

On the other hand, the design of GP-0 is based on the
idea of penalizing the discriminator deviating away from
the Nash-equilibrium. GP-0 takes a simpler form where they
do not use imaginary sample distribution but use the real
data distribution, i.e., setting & = x. We find the use of
GP-0 in several state-of-the-art GAN algorithms [85], [86].

Spectral Normalization (SN) [140] is an effective regulariza-
tion technique used in many recent GAN algorithms [24],
[156], [170], [241]. SN is based on regularizing the spec-
tral norm of the projection operation at each layer of the
discriminator, by simply dividing the weight matrix by its
largest eigenvalue. Let W be the weight matrix of a layer of
the discriminator network. With SN, the true weight that is

applied is
W/ Anaz(WTW),

where Ap,q.(A) extracts the largest eigenvalue from the
square matrix A. In other word, each project layer has a
projection matrix with spectral norm equal to one.

(15)

Feature Matching (FM) provides a way to encourage the
generator to generate images similar to real ones in some
sense. Similar to GP, FM is an auxiliary loss. There are two
popular implementations: one is batch-based [176] and the
other is instance-based [99], [218]]. Let D* be the i-th layer of
a discriminator D, i.e., D = D%0...0 D? o D'. For the batch-
based FM loss, it matches the moments of the activations
extracted by the real and fake images, respectively. For the
i-th layer, the loss is

H]EmND[Dl 0..0 Dl(w)] —E,.z[D'o...0 Dl(G(z))]H .
(16)
One can apply the FM loss to a subset of layers in the
generator and use the weighted sum as the final FM loss.
The instance-based FM loss is only applicable to conditional
generation models where we have the corresponding real

image for a fake image. For the i-th layer, the instance-based
FM loss is given by

|[DPo...0o DY(x;)] — [D'o...0o DYG(z,y:))ll|, (17)

where y; is the control signal for x;.

Perceptual Loss [79]. Often, when instance-based FM loss
is applicable, one can additionally match features extracted
from real and fake images using a pretrained network. Such
a variant of FM losses is called the perceptual loss [79].

Model Average (MA) can improve the quality of images
generated by a GAN. To use MA, we keep two copies of the
generator network during training, where one is the original
generator with weight 6 and the other is the model average
generator with weight 0,/ 4. At iteration ¢, we update 074
based on

0\, =60 +(1-p)ol Y, (18)

where [ is a scalar controlling the contribution from the
current model weight.

3.4 Network Architecture

Network architectures provide a convenient way to inject
inductive biases. Certain network designs often work better
than others for a given task. Since the introduction of GANSs,
we have observed an evolution of the network architecture
for both the generator and discriminator.

Generator Evolution. In Figure[d} we visualize the evolution
of the GAN generator architecture. In the original GAN
paper [60], both the generator and the discriminator are
based on the multilayer perceptron (MLP) (Figure [#a)). As
an MLP fails to model the translational invariance property
of natural images, its output images are of limited quality.
In the DCGAN work [163], deep convolutional architecture
(Figure Ekb)) is used for the GAN generator. As the con-
volutional architecture is a better fit for modeling image
signals, the outputs produced by the DCGAN are often
with better quality. Researchers also borrow architecture
designs from discriminative modeling tasks. As the residual



architecture [66] is proven to be effective for training deep
networks, several GAN works start to use the residual
architecture in their generator design (Figure C)) [6], [140].

A residual block used in modern GAN generators typ-
ically consists of a skip connection paired with a series
of batch normalization (BN) [74], nonlinearity, and convo-
lution operations. The BN is one type of activation norm
(AN), a technique that normalizes the activation values
to facilitate training. Other AN variants have also been
exploited for the GAN generator, including the instance nor-
malization [206], the layer normalization [8], and the group
normalization [227]. Generally, an activation normalization
scheme consists of a whitening step followed by an affine
transformation step. Let h. be the output of the whitening
step for h. The final output of the normalization layer is

Yehe + Be, 19)
where 7, and [, are scalars used to shift the post-
normalization activation values. They are constants learned
during training.

For many applications, it is required to have some way
to control the output produced by a generator. This desire
has motivated various conditional generator architectures
(Figure Ekd)) for the GAN generator [24], [70], [156]. The
most common approach is to use the conditional AN. In
a conditional AN, both <. and [. are data dependent.
Often, one employs a separate network to map input con-
trol signals to the target 7. and [, values. Another way
to achieve such controllability is to use hyper-networks;
Basically, using an auxiliary network to produce weights
for the main network. For example, we can have a convo-
lutional layer where the filter weights are generated by a
separate network. We often call such a scheme conditional
convolutions (Figure e)), and it has been used for several
state-of-the-art GAN generators [86], [216].

Discriminator Evolution. GAN discriminators have also
undergone an evolution. However, the change has mostly
been on moving from the MLP to deep convolutional and
residual architectures. As the discriminator is solving a
classification task, new breakthroughs in architecture design
for image classification tasks could influence future GAN
discriminator designs.

Conditional Discriminator Architecture. There are several
effective architectures for utilizing control signals (condi-
tional inputs y) in the GAN discriminator to achieve better
image generation quality, as visualized in Figure [5| This
includes the auxiliary classifier (AC) [151]], input concate-
nation (IC) [75], and the projection discriminator (PD) [141].
The AC and PD are mostly used for category-conditional
image generation tasks, while the PD is common for image-
to-image translation tasks.

Neural Architecture Search. As neural architecture search
has become a popular topic for various recognition tasks,
efforts have been made in trying to automatically find a
performant architecture for GANs [56].

While the current and previous sections have focused on
introducing the GAN mechanism and various algorithms
used to train them, the following sections focus on various
applications of GANs in generating images and videos.

True/ y True/ True/ y
False False False
5
] O
L » | L » ] ¥
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(a) Auxiliary Classifier (b) Input Concatenation (c) Projection Discriminator

Fig. 5. Conditional discriminator architectures. There are several ways
to leverage the user input signal y in the GAN discriminator. (a) Auxiliary
classifier |151]. In this design, the discriminator is asked to predict the
ground truth label for the real image. (b) Concatenation |75]. In this
design, the discriminator learns to reason whether the input is real by
learning a joint feature embedding of image and label. (c) Projection
discriminator [141]. In this design, the discriminator computes an image
embedding and correlates it with the label embedding (through the dot
product) to determine whether the input is real or fake.

4 |IMAGE TRANSLATION

This section discusses the application of GANs to image-
to-image translation, which aims to map an image from one
domain to a corresponding image in a different domain, e.g.,
sketch to shoes, label maps to photos, summer to winter.
The problem can be studied in a supervised setting, where
example pairs of corresponding images are available, or an
unsupervised setting, where such training data is unavail-
able and we only have two independent sets of images. In
the following subsections, we will discuss recent progress in
both settings.

4.1 Supervised Image Translation

Isola et al. [|75] proposed the pix2pix framework as a
general-purpose solution to image-to-image translation in
the supervised setting. The training objective of pix2pix
combines conditional GANs with the pixel-wise ¢; loss
between the generated image and the ground truth. One
notable design choice of pix2pix is the use of patch-wise
discriminators (PatchGAN), which attempts to discriminate
each local image patch rather than the whole image. This
design incorporates the prior knowledge that the underly-
ing image translation function we want to learn is local,
assuming independence between pixels that are far away.
In other words, the translation mostly involves style or
texture change. It significantly alleviates the burden of the
discriminator because it requires much less model capacity
to discriminate local patches than whole images.

One important limitation of pix2pix is that its translation
function is restricted to be one-to-one. However, many of
the mappings we aim to learn are one-to-many in nature.
In other words, the distribution of possible outputs is
multimodal. For example, one can imagine many shoes
in different colors and styles that correspond to the same
sketch of a shoe. Naively injecting a Gaussian noise latent
code to the generator does not lead to many variations,
since the generator is free to ignore that latent code. Bicycle-
GAN [254] explores approaches to encourage the generator
to make use of the latent code to represent output variations,
including applying a KL divergence loss to the encoded
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Fig. 6. Image translation examples of SPADE [156], which converts semantic label maps into photorealistic natural scenes. The style of the
output image can also be controlled by by a reference image (the leftmost column). Images are from Park et al. [156].

latent code, and reconstructing the sampled latent code
from the generated image. Other strategies to encourage
diversity include using different generators to capture dif-
ferent output modes [54], replacing the reconstruction loss
with maximum likelihood objective [106], [107], and directly
encouraging the distance between output images generated
from different latent codes to be large [120], [133], [233].
Besides, the quality of image-to-image translation has
been significantly improved by some recent works [104],
[122], [156], [194], [218], [249]. In particular, pix2pixHD
is able to generate high-resolution images with a coarse-to-
fine generator and a multi-scale discriminator. SPADE
further improves the image quality with a spatially-adaptive
normalization layer. SPADE, in addition, allows a style
image input for better control the desired look of the output
image. Some examples of SPADE are shown in Figure [}

4.2 Unsupervised Image Translation

For many tasks, paired training images are very difficult to
obtain [16], [32]], [70], [90], [105], [117], [234], [253]. Unsuper-
vised learning of mappings between corresponding images
in two domains is a much harder problem but has wider
applications than the supervised setting. CycleGAN
simultaneously learns mappings in both directions and em-
ploys a cycle consistency loss to enforce that if an image
is translated to the other domain and translated back to
the original domain, the output should be close to the
original image. UNIT makes a shared latent space
assumption that a pair of corresponding images can be
mapped to the same latent code in a shared latent space. It
is shown that shared-latent space implies cycle consistency
and imposes a stronger regularization. DistanceGAN
encourages the mapping to preserve the distance between
any pair of images before and after translation. While the

methods above need to train a different model for each pair
of image domains, StarGAN is able to translate images
across multiple domains using only a single model.

In many unsupervised image translation tasks (e.g.,
horses to zebras, dogs to cats), the two image domains
mainly differ in the foreground objects, and the background
distribution is very similar. Ideally, the model should only
modify the foreground objects and leave the background
region untouched. Some work [31], [137], employs
spatial attention to detect and change the foreground re-
gion without influencing the background. InstaGAN
further allows the shape of the foreground objects to be
changed.

The early work mentioned above focuses on unimodal
translation. On the other hand, recent advances [5], [57],
[70], [105], [128], have made it possible to perform
multimodal translation, generating diverse output images
given the same input. For example, MUNIT assumes
that images can be encoded into two disentangled latent
spaces: a domain-invariant content space that captures the
information that should be preserved during translation,
and a domain-specific style space that represents the vari-
ations that are not specified by the input image. To generate
diverse translation results, we can recombine the content
code of the input image with different style codes sampled
from the style space of the target domain. Figure [7] com-
pares MUNIT with existing unimodal translation methods
including CycleGAN and UNIT. The disentangled latent
space not only enables multimodal translation, but also
allows example-guided translation in which the generator
recombines the domain-invariant content of an image from
the source domain and the domain-specific style of an image
from the target domain. The idea of using a guiding style
image has also been applied to the supervised setting [156],



[214), [243).

Although paired example images are not needed in the
unsupervised setting, most existing methods still require
access to a large number of unpaired example images in
both source and target domains. Some works seek to reduce
the number of training examples without much loss of
performance. Benaim and Wolf [17] focus on the situation
where there are many images in the target domain but
only a single image in the source domain. The work of
Cohen and Wolf [34] enables translation in the opposite
direction where the source domain has many images but
the target domain has only one. The above setting assumes
the source and target domain images, whether there are
many or few, are available during training. Liu et al. [118]
proposed FUNIT to address a different situation where there
are many source domain images that are available during
training, but few target domain images that are available
only at test time. The target domain images are used to
guide translation similar to the example-guided translation
procedure in MUNIT. Saito et al. [170] proposed a content-
conditioned style encoder to better preserve the domain-
invariant content of the input image. However, the above
scenario [118], [170]] still assumes access to the domain labels
of the training images. Some recent work aims to reduce
the need for such supervision by using few [220] or even
no [9] domain labels. Very recently, some works [15], [113],
[155] are able to achieve image translation even when each
domain only has a single image, inspired by recent advances
that can train GANs on a single image [179].

Despite the empirical successes, the problem of unsu-
pervised image-to-image translation is inherently ill-posed,
even with constraints such as cycle consistency or shared
latent space. Specifically, there exist infinitely many map-
pings that satisfy those constraints [38]], [51], [230], yet most
of them are not semantically meaningful. How do current
methods successfully find the meaningful mapping in prac-
tice? Galanti et al. [51] assume that the meaningful mapping
is of minimal complexity and the popular generator archi-
tectures are not expressive enough to represent mappings
that are highly complex. Bezenac et al. [38] further argue that
the popular architectures are implicitly biased towards map-
pings that produce minimal changes to the input, which are
usually semantically meaningful. In summary, the training
objectives of unsupervised image translation alone cannot
guarantee that the model can find semantically meaningful
mappings and the inductive bias of generator architectures
plays an important role.

5 IMAGE PROCESSING

GAN’s strength in generating realistic images makes it
ideal for solving various image processing problems, es-
pecially for those where the perceptual quality of image
outputs is the primary evaluation criteria. This section will
discuss some prominent GAN-based methods for several
key image processing problems, including image restoration
and enhancement (super-resolution, denoising, deblurring,
compression artifacts removal) and image inpainting.

S
(c) MUNIT(randomly sampled)

Xl C XQ

S 1 82
(d) MUNIT (example-guided)

Fig. 7. Comparisons among unsupervised image translation meth-
ods (CycleGAN [253], UNIT [117], and MUNIT [70]). X; and X are
two different image domains (dogs and cats in this example). (a) Cycle-
GAN enforces the learned mappings to be inverses of each other. (b)
UNIT auto-encodes images in both domains to a common latent space
Z. Both CycleGAN and UNIT can only perform unimodal translation.
(c) MUNIT decomposes the latent space into a shared content space C
and unshared style spaces Si, Sa. Diverse outputs can be obtained by
sampling different style codes from the target style space. (d) The style
of the translation output can also be controlled by a guiding image in the
target domain.

5.1 Image Restoration and Enhancement

The traditional way of evaluating algorithms for image
restoration and enhancement tasks is to measure the dis-
tortion, the difference between the ground truth images
and restored images using metrics like the mean square
error (MSE), the peak signal-to-noise ratio (PSNR), and
the structural similarity index (SSIM). Recently, metrics for
measuring perceptual quality, such as the no-reference (NR)
metric [127], have been proposed, as the visual quality
is arguably the most important factor for the usability
of an algorithm. Blau et al. [22] proposed the perception-
distortion tradeoff [22], which states that an image restora-
tion algorithm can potentially improve only in terms of its
distortion or in terms of its perceptual quality, as shown
in the Figure (8| Blau et al. [22] further demonstrate that
GANSs provide a principled way to approach the perception-
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Fig. 8. Perception-distortion tradeoff [22]. Distortion metrics, includ-
ing the MSE, PSNR, and SSIM, measure the similarity between the
ground truth image and the restored images. Perceptual quality met-
rics, including NR [127], measure the distribution distance between the
recovered image distribution and the target image distribution. Blau et
al. show that an image restoration algorithm can be characterized
by the distortion and perceptual quality tradeoff curve. The plot is from

Blau et al. [22].

distortion bound.

Image super-resolution (SR) aims at estimating a high-
resolution (HR) image from its low-resolution (LR) coun-
terpart. Deep learning has enabled faster and more ac-
curate super-resolution methods, including SRCNN ,
FSRCNN [43], ESPCN [182], VDSR [88], SRResNet [102],

EDSR [111]], SRDenseNet [203]], MemNet [193], RDN [246],
WDSR [235], and many others. However, the above super-

resolution approaches focus on improving the distortion
metrics and pay little to no attention to the perceptual qual-
ity metrics. As a result, they tend to predict over-smoothed
outputs and fail to synthesize finer high-frequency details.

Recent image super-resolution algorithms improve the
perceptual quality of outputs by leveraging GANs. The
SRGAN is the first of its kind and can generate photo-
realistic images with 4x or higher upscaling factors. The
quality of the SRGAN outputs is mainly measured by
the mean opinion score (MOS) over 26 raters. To enhance
the visual quality further, Wang et al. revisit the design
of the three key components in the SRGAN: the network
architecture, the GAN loss, and the perceptual loss. They
propose the Enhanced SRGAN (ESRGAN), which achieves
consistently better visual quality with more realistic and
natural textures than the competing methods, as shown
in Figure [J] and Figure [10} The ESRGAN is the winner of
the 2018 Perceptual Image Restoration and Manipulation
challenge (PIRM) (region 3 in Figure E[) Other GAN-
based image super-resolution methods and practices can be
found in the 2018 PIRM challenge report [21].

The above image super-resolution algorithms all operate
in the supervised setting where they assume corresponding
low-resolution and high-resolution pairs in the training
dataset. Typically, they create such a training dataset by
downsampling the ground truth high-resolution images.
However, the downsampled high-resolution images are
very different from the low-resolution images captured by
a real sensor, which often contain noise and other dis-
tortion. As a result, these super-resolution algorithms are
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Fig. 9. The perception-distortion curve of the ESRGAN on

PIRM self-validation dataset [21]. The curve also compares the ESR-
GAN with the EnhanceNet [174], the RCAN [245], and the EDSR [111].

The curve is from Wang et al. | .

ESRGAN

Fig. 10. Visual comparison between the ESRGAN and the
SRGAN [102]. Images are from Wang et al. [219)].

not directly applicable to upsample low-resolution images
captured in the wild. Several methods have addressed the
issue by studying image super-resolution in the unsuper-
vised setting where they only assume a dataset of low-
resolution images captured by a sensor and a dataset of
high-resolution images. Recently, Maeda proposes a
GAN-based image super-resolution algorithm operates in
the unsupervised setting for bridging the gap.

Image denoising aims at removing noise from noisy images.
The task is challenging since the noise distribution is usually
unknown. This setting is also referred to as blind image
denoising. DnCNN is one of the first approaches
using feed-forward convolutional neural networks for im-
age denoising. However, DnCNN requires knowing
the noise distribution in the noisy image and hence has
limited applicability. To tackle blind image denoising, Chen
et al. [27] proposed the GAN-CNN-based Blind Denoiser
(GCBD), which consists of 1) a GAN trained to estimate the
noise distribution over the input noisy images to generate
noise samples, and 2) a deep CNN that learns to denoise
on generated noisy images. The GAN training criterion
of GCBD is based on Wasserstein GAN [6], and the
generator network is based on DCGAN [163].

Image deblurring sharpens blurry images, which result
from motion blur, out-of-focus, and possibly other causes.
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Fig. 11. Face deblurring results with GANs [181]. Images are from
Shen et al. [181].

DeblurGAN [95] trains an image motion deblurring net-
work using Wasserstein GAN [6] with the GP-1 loss and
the perceptual loss (See Section [3). Shen et al. use a
similar approach to deblur face image by using GAN and
perceptual loss and incrementally training the deblurring
network. Visual examples are shown in Figure[T1]

Lossy image compression algorithms (e.g., JPEG, JPEG2000,
BPG, and WebP) can efficiently reduce image sizes but
introduce visual artifacts in compressed images when the
compression ratio is high. Deep neural networks have been
widely explored for removing the introduced artifacts IEI],
[52], [204]. Galteri et al. show that a residual net-
work trained with a GAN loss is able to produce im-
ages with more photorealistic details than MSE or SSIM-
based objectives for the removal of image compression ar-
tifacts. Tschannen et al. further proposed distribution-
preserving lossy compression by using a new combination
of Wasserstein GAN and Wasserstein autoencoder [202].
More recently, Agustsson et al. [4] built an extreme image
compression system by using unconditional and conditional
GAN:Ss, outperforming all other codecs in the low bit-rate
setting. Some compression visual examples [4] are shown in

Figure [12]

5.2

Image inpainting aims at filling missing pixels in an image
such that the result is visually realistic and semantically cor-
rect. Image inpainting algorithms can be used to remove dis-
tracting objects or retouch undesired regions in photos and
can be further extended to other tasks, including image un-
cropping, rotation, stitching, re-targeting, re-composition,
compression, super-resolution, harmonization, and more.
Traditionally patch-based approaches, such as the Patch-
Match [12]], copy background patches according to the low-
level feature matching (e.g., euclidean distance on pixel RGB
values) and paste them into the missing regions. These
approaches can synthesize plausible stationary textures but
fail at non-stationary image regions such as faces, objects,
and complicated scenes. Recently, deep learning and GAN-
based approaches 73], 78], [114], [145], [221), [228), [236),
[237], [240], [248] open a new direction for image inpainting
using deep neural networks learned on large-scale data

Image Inpainting

BPG: 3573 B, 1.2x JPEG: 13959 B, 7.9x WebP: 9437 B, 5x

Fig. 12. Image compression with GANs [4]. Comparing a GAN-based
approach for image compression to those obtained by the off-the-
shelf codecs. Even with fewer than half the number of bytes, GAN-based
compression [4] produces more realistic visual results. Images are from

from Agustsson et al. [4].

Fig. 13. Image inpainting results uisng the DeepFill [236]. Missing
regions are shown in white. In each pair, the left is the input image, and
the right is the direct output of trained GAN without any post-processing.
Images are from Yu et al. [236].

in an end-to-end fashion. Comparing to PatchMatch, these
methods are more scalable and can leverage large-scale data.

The context encoder approach (CE) is one of the
first in using a GAN generator to predict the missing regions
and is trained with the ¢ pixel-wise reconstruction loss and
a GAN loss. lizuka et al. further improve the GAN-
based inpainting framework by using both global and local
GAN discriminators, with the global one operating on the
entire image and the local one operating on only the patch in
the hole. We note that the post-processing techniques such
as image blending are still required in these GAN-based
approaches [73], to reduce visual artifacts near hole
boundaries.

Yu et al. proposed DeepFill, a GAN framework for
end-to-end image inpainting without any post-processing
step, which leverages a stacked network, consisting of a
coarse network and a refinement network, to ensure the
color and texture consistency between the in-filled regions
and their surrounding. Moreover, as convolutions are lo-
cal operators and less effective in capturing long-range
spatial dependencies, the contextual attention layer



Fig. 14. Free-form image inpainting results using the Deep-
Fillv2 [237]. From left to right, we have the ground truth image, the
free-form mask, and the DeepFillV2 inpainting result. Original images
are from Yu et al. [237].

Fig. 15. User-guided image inpainting results using the Deep-
Fillv2 [237]. From left to right, we have the ground truth image, the
mask with user-provided edge guidance, and the DeepFillV2 inpainting
result. Images are from Yu et al. [237].

is introduced and integrated into the DeepFill to borrow
information from distant spatial locations explicitly. Visual
examples of the DeepFill are shown in Figure[T3]

One common issue with the earlier GAN-based inpaint-
ing approaches [73], [157], is that the training is per-
formed with randomly sampled rectangular masks. While
allowing easy processing during training, these approaches
do not generalize well to free-form masks, irregular masks
with arbitrary shapes. To address the issue, Liu et al.
proposed the partial convolution layer where the convo-
lution is masked and re-normalized to utilize valid pixels
only. Yu et al. further proposed the gated convolution
layer, generalizing the partial convolution by providing a
learnable dynamic feature selection mechanism for each
channel at each spatial location across all layers. In addi-
tion, as free-form masks may appear anywhere in images
with any shape, global and local GANs designed for
a single rectangular mask are not applicable. To address
this issue, Yu et al. introduced a patch-based GAN
loss, SNPatchGAN [237], by applying spectral-normalized
discriminator on the dense image patches. Visual examples
of the DeepFillV2 with free-form masks are shown in
Figure

Although capable of handling free-form masks, these
inpainting methods perform poorly in reconstructing fore-
ground details. This motivated the design of edge-guided
image inpainting methods [145], [228]. These methods de-
compose inpainting into two stages The first stage predicts
edges or contours of foregrounds, and the second stage
takes predicted edges to predict the final output. Moreover,
for image inpainting, enabling user interactivity is essential
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as there are many plausible solutions for filling a hole in an
image. User-guided inpainting methods [145], [228],
have been proposed to provide an option to take additional
user inputs, for example, sketches, as guidance for image
inpainting networks. An example of user-guided image
inpainting is shown in Figure

Finally, we note that the image out-painting or extrapola-
tion tasks are closely related to image inpainting [89], [195].
They can be also benefited from a GAN formulation.

6 VIDEO SYNTHESIS

Video synthesis focuses on generating video content instead
of static images. Compared with image synthesis, video
synthesis needs to ensure the temporal consistency of the
output videos. This is usually achieved by using a tempo-
ral discriminator [205], flow-warping loss on neighboring
frames [217], smoothing the inputs before processing [26], or
a post-processing step [98]. Each of them might be suitable
for a particular task.

Similar to image synthesis, video synthesis can be clas-
sified into unconditional and conditional video synthesis.
Unconditional video synthesis generates sequences using
random noise inputs [33], [171], [205], [210]. Because such a
method needs to model all the spatial and temporal content
in a video, the generated results are often short or with very
constrained motion patterns. For example, MoCoGAN
decomposes the motion and content parts of the sequence
and uses a fixed latent code for the content and a series of
latent codes to generate the motion. The synthesized videos
are usually up to a few seconds on simple video content,
such as facial motion.

On the other hand, conditional video synthesis generates
videos conditioning on input content. A common category
is future frame prediction -, -, -, [103], [110], [125],
, , , , , which attempts to

pred1ct the next frame of a sequence based on the past
frames. Another common category of conditional video
synthesis is conditioning on an input video that shares
the same high-level representation. Such a setting is often
referred to as the video-to-video synthesis [217]. This line of
works has shown promising results on various tasks, such
as transforming high-level representations to photorealistic
videos , animating characters with new expressions, or
motions [26], [199], or innovating a new rendering pipeline
for graphics engines [50]. Due to its broader impact, we will
mainly focus on conditional video synthesis. Particularly,
we will focus on its two major domains: face reenactment and
pose transfer.

6.1 Face Reenactment

Conditional face video synthesis exists in many forms. The
most common forms include face swapping and face reenact-
ment. Face swapping focuses on pasting the face region from
one subject to another, while face reenactment concerns
transferring the subject’s expressions and head poses. Fig-
ure [16|illustrates the difference. Here, we only focus on face
reenactment. It has many applications in fields like gaming
or film industry, where the characters can be animated by
human actors. Based on whether the trained model can only
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Fig. 16. Face swapping vs. reenactment [149]. Face swapping focuses on pasting the face region from one subject to another, while face
reenactment concerns transferring the expressions and head poses from the target subject to the source image. Images are from Nirkin et al. [149)].

work for a specific person or is universal to all persons, face
reenactment can be classified as subject-specific or subject-
agnostic as described below.

Subject-specific. Traditional methods usually build a
subject-specific model, which can only synthesize one pre-
determined subject by focusing on transferring the expres-
sions without transferring the head movement [192], [197],
[198], [199], [209]. This line of works usually starts by col-
lecting footage of the target person to be synthesized, either
using an RGBD sensor or an RGB sensor [199]. Then a
3D model of the target person is built for the face region [20].
At test time, given the new expressions, they can be used
to drive the 3D model to generate the desired motions,
as shown in Figure Instead of extracting the driving
expressions from someone else, they can also be directly
synthesized from speech inputs [192]. Since 3D models are
involved, this line of works typically does not use GANS.

Some follow-up works take transferring head motions
into account and can model both expressions and different
head poses at the same time [11], [87]], [226]. For example,
RecycleGAN extends CycleGAN to incorporate
temporal constraints so it can transform videos of a par-
ticular person to another fixed person. On the other hand,
ReenactGAN can transfer movements and expressions
from an arbitrary person to a fixed person. Still, the subject-
dependent nature of these works greatly limits their usabil-
ity. One model can only work for one person, and gener-
alizing to another person requires training a new model.
Moreover, collecting training data for the target person may
not be feasible at all times, which motivates the emergence
of subject-agnostic models.

Subject-agnostic. Several recent works propose subject-
agnostic frameworks, which focus on transferring the facial

expressions without head movements , , , ,
[77], [144), [152], [159], [160], [190], [211], [250]. In particular,

many works only focus on the mouth region, since it is the
most expressive part during talking. For example, given an
audio speech and one lip image of the target identity, Chen
et al. synthesize a video of the desired lip movements.
Fried et al. edit the lower face region of an existing
video, so they can edit the video script and synthesize
a new video corresponding to the change. While these
works have better generalization capability than the previ-
ous subject-specific methods, they usually cannot synthesize
spontaneous head motions. The head movements cannot be
transferred from the driving sequence to the target person.

Some works can very recently handle both expres-

sions and head movements using subject-agnostic frame-
works [7], [62], [149], [184], [216], [225], [238]. These frame-
works only need a single 2D image of the target person
and can synthesize talking videos of this person given ar-
bitrary motions. These motions are represented using either
facial landmarks [7]] or keypoints learned without supervi-
sion [184]. Since the input is only a 2D image, many methods
rely on warping the input or its extracted features and then
fill in the unoccluded areas to refine the results. For example,
Averbuch et al. [7] first warp the image and directly copy
the teeth region from the driving image to fill in the holes in
case of an open mouth. Siarohin et al. warp extracted
features from the input image, using motion fields estimated
from sparse keypoints. On the other hand, Zakharov et
al. demonstrate that it is possible to achieve promising
results using direct synthesis methods without any warp-
ing. To synthesize the target identity, they extract features
from the source images and inject the information into the
generator through the AdalN parameters. Similarly, the
few-shot vid2vid injects the information into their
generator by dynamically determining the SPADE
parameters. Since these methods require only an image as
input, they become particularly powerful and can be used in
even more cases. For instance, several works [7], [216],
demonstrate successes in animating paintings or graffiti
instead of real humans, as shown in Figure [18 which is not
possible with the previous subject-dependent approaches.
However, while these methods have achieved great results
in synthesizing people talking under natural motions, they
usually struggle to generate satisfying outputs under ex-
treme poses or uncommon expressions, especially when the
target pose is very different from the original one. Moreover,
synthesizing complex regions such as hair or background is
still hard. This is indeed a very challenging task that is still
open to further research. A summary of different categories
of face reenactment methods can be found in Table 2l

6.2 Pose Transfer

Pose transfer techniques aim at transferring the body pose
of one person to another person. It can be seen as the
whole body counterpart of face reenactment. In contrast to
the talking head generation, which usually shares similar
motions, body poses have more varieties and are thus much
harder to synthesize. Early works focus on simple pose
transfers that generate low resolution and lower quality
images. They only work on single images instead of videos.
Recent works have shown their capability to generate high
quality and high-resolution videos for challenging poses
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Fig. 17. Face reenactment using 3D face models [87]. These methods first construct a 3D model for the person to be synthesized, so they can
easily animate the model with new expressions. Images are from Kim et al. [87].

Source Target — Landmarks — Result
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Fig. 18. Few-shot face reenactment methods which require only a 2D image as input [238]. The driving expressions are usually represented by

facial landmarks or keypoints. Images are from Zakharov et al. [238].

TABLE 2
Categorization of face reenactment methods. Subject-specific models
can only work on one subject per model, while subject-agnostic models
can work on general targets. Among each of them, some frameworks
only focus on the inner face region, so they can only transfer
expressions, while others can also transfer head movements. Works
with * do not use GANs in their framework.

Target  Transferred Methods
subject region
F 1 *
Specific a?e ony I
Entire head
General Face only

Entire head

but can only work on a particular person per model. Very
recently, several works attempt to perform subject-agnostic
video synthesis. A summary of the categories is shown in
Table 3} Below we introduce each category in more detail.

Subject-agnostic image generation. Although we focus on
video synthesis in this section, since most of the existing mo-
tion transfer approaches only focus on synthesizing images,
we still briefly introduce them here ( [10], [44], [46]), [61], [82],
[247], [256]). Ma et al. adopt a two-stage coarse-to-fine

approach using GANs to synthesize a person in a different
pose, represented by a set of keypoints. In their follow-
up work [130], the foreground, background, and poses
in the image are further disentangled into different latent

TABLE 3
Categories of pose transfer methods. Again, they can be classified
depending on whether one model can work for only one person or any
persons. Some of the frameworks only focus on generating single
images, while others also demonstrate their effectiveness on videos.
Works with * do not use GANs in their framework.

Target Output
subject type Methods
e Vi (200, (2171, [26, 3], [183]", 251),
Specific Videos (116], [115)
General Images

Videos

codes to provide more flexibility and controllability. Later,
Siarohin et al. introduce deformable skip connections
to move local features to the target pose position in a U-
Net generator. Similarly, Balakrishnan et al. decompose
different parts of the body into different layer masks and
apply spatial transforms to each of them. The transformed
segments are then fused together to form the final output.

The above methods work in a supervised setting where
images of different poses of the same person are avail-
able during training. To work in the unsupervised setting,
Pumarola et al. render the synthesized image back to
the original pose, and apply cycle-consistency constraint on
the back-rendered image. Lorenz et al. decouple the
shape and appearance from images without supervision by
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Fig. 19. Subject-agnostic pose transfer examples [256]. Using only
a 2D image and the target pose to be synthesized, these methods
can realistically generate the desired outputs. Images are from Zhu et
al. [256).

adopting a two-stream auto-encoding architecture, so they
can re-synthesize images in a different shape with the same
appearance.

Recently, instead of relying on 2D keypoints solely, some
frameworks choose to utilize 3D or 2.5D information. For
example, Zanlfir et al. [239] incorporate estimating 3D para-
metric models into their framework to aid the synthesis
process. Similarly, Li et al. [108] predict 3D dense flows to
warp the source image by estimating 3D models from the
input images. Neverova et al. [146] adopt the DensePose [63]]
to help warp the input textures according to their UV-
coordinates and inpaint the holes to generate the final result.
Grigorev et al. [61] also map the input to a texture space and
inpaint the textures before warping them back to the target
pose. Huang et al. [71] combine the SMPL models [123]
with the implicit field estimation framework [172] to rig
the reconstructed meshes with desired motions. While these
methods work reasonably well in transferring poses, as
shown in Figure directly applying them to videos will
usually result in unsatisfactory artifacts such as flickering
or inconsistent results. Below we introduce methods specif-
ically targeting video generation, which work on a one-
person-per-model basis.

Subject-specific video generation. For high-quality video
synthesis, most methods employ a subject-specific model,
which can only synthesize a particular person. These ap-
proaches start with collecting training data of the target
person to be synthesized (e.g. a few minutes of a subject per-
forming various motions) and then train a neural network or
infer a 3D model from it to synthesize the output. For exam-
ple, Thies et al. [200] extend their previous face reenactment
work [199] to include shoulders and part of the upper body
to increase realism and fidelity. To extend to whole-body
motion transfer, Wang et al. [217] extend their image synthe-
sis framework [218] to videos and successfully demonstrate
the transfer results on several dancing sequences, opening
the era for a new application (Figure . Chan et al. [26] also
adopt a similar approach to generate many dancing exam-
ples, but using a simple temporal smoothing on the inputs
instead of explicitly modeling temporal consistency by the
network. Following these works, many subsequent works
improve upon them [3], [115], [116], [183], [251], usually by
combining the neural network with 3D models or graphics
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Fig. 20. Subject-specific pose transfer examples for video genera-
tion [217]. For each image friplet, left: the driving sequence, middle:
the intermediate pose representation, right: the synthesized output. By
using a model specifically trained on the target person, it can synthesize
realistic output videos faithfully reflecting the driving motions. Images
are from Wang et al. |217].

engines. For example, instead of predicting RGB values
directly, Shysheya et al. [183] predict DensePose-like part
maps and texture maps from input 3D keypoints, and adopt
a neural renderer to render the outputs. Liu et al. [116] first
construct a 3D character model of the target by capturing
multi-view static images and then train a character-to-image
translation network using a monocular video of the target.
The authors later combine the constructed 3D model with
the monocular video to estimate dynamic textures, so they
can use different texture maps when synthesizing different
motions to increase the realism [115].

Subject-agnostic video generation. Finally, the most gen-
eral framework would be to have one model that can work
universally regardless of the target identity. Early works
in this category synthesize videos unconditionally and do
not have full control over the synthesized sequence (e.g.,
MoCoGAN [205]). Some other works such as as [232] have
control over the appearance and the starting pose of the
person, but the motion generation is still unconditional.
Due to these factors, the synthesized videos are usually
shorter and of lower quality. Very recently, a few works
have shown the ability to render higher quality videos for
pose transfer results [121]], [166], [184], [185], [216], [223].
Weng et al. [223] reconstruct the SMPL model [123] from
the input image and animate it with some simple motions
like running. Liu et al. [121]] propose a unified framework
for pose transfer, novel view synthesis, and appearance
transfer all at once. Siarohin et al. [184], [185] estimate
unsupervised keypoints from the input images and predict
a dense motion field to warp the source features to the target
pose. Want et al. [216] extend vid2vid [217] to the few-shot
setting by predicting kernels in the SPADE [156] modules.
Similarly, Ren et al. [166] also predict kernels in their local
attention modules using the input images to adaptively
select features and warp them to the target pose. While
these approaches have achieved better results than previous
works (Figure [21), their qualities are still not comparable to
state-of-the-art subject-specific models. Moreover, most of
them still synthesize lower resolution outputs (256 or 512).
How to further increase the quality and resolution to the
photorealistic level is still an open question.

7 NEURAL RENDERING

Neural rendering is a recent and upcoming topic in the
area of neural networks, which combines classical rendering
and generative models. Classical rendering can produce
photorealistic images given the complete specification of the
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Fig. 21. Subject-agnostic pose transfer videos [216]. Given an example
image and a driving pose sequence, the methods can output a se-
quence of the person performing the motions. Images are from Wang

et al. [216].

world. This includes all the objects in it, their geometry,
material properties, the lighting, the cameras, etc. Creat-
ing such a world from scratch is a laborious process that
often requires expert manual input. Moreover, faithfully
reproducing such data directly from images of the world
can often be hard or impossible. On the other hand, as
described in the previous sections, GANs have had great
success in producing photorealistic images given minimal
semantic inputs. The ability to synthesize and learn material
properties, textures, and other intangibles from training data
can help overcome the drawbacks of classical rendering.

Neural rendering aims to combine the strengths of the
two areas to create a more powerful and flexible framework.
Neural networks can either be applied as a postprocessing
step after classical rendering or as part of the rendering
pipeline with the design of 3D-aware and differentiable
layers. The following sections discuss such approaches and
how they use GAN losses to improve the quality of out-
puts. In this paper, we focus on works that use GANs to
train neural networks and augment the classical rendering
pipeline to generate images. For a general survey on the use
of neural networks in rendering, please refer to the survey
paper on neural rendering by Tewari et al. [196].

We divide the works on GAN-based neural rendering
into two parts: 1) works that treat 3D to 2D projection
as a preprocessing step and apply neural networks purely
in the 2D domain, and 2) works that incorporate layers
that perform differentiable operations to transform features
from 3D to 2D or vice versa (3D <+ 2D) and learn some
implicit form of geometry to provide 3D understanding to
the network.

7.1 3D to 2D projection as a preprocessing step

A number of works [109], [132], [135], [139], [158] improve

upon traditional techniques by casting the task of rendering
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into the framework of image-to-image translation, possibly
unimodal, multimodal, or conditional, depending on the
exact use-case. Using given camera parameters, the source
3D world is first projected to a 2D feature map containing
per-pixel information such as color, depth, surface normals,
segmentation, efc. This feature map is then fed as input to a
generator, which tries to produce desired outputs, usually
a realistic-looking RGB image. The deep neural network
application happens in the 2D space after the 3D world is
projected to the camera view, and no features or gradients
are backpropagated to the 3D source world or through the
camera projection. A key advantage of this approach is that
the traditional graphics rendering pipeline can be easily
augmented to immediately take advantage of proven and
mature techniques from 2D image-to-image translation (as
discussed in Section [d), without the need for designing and
implementing differentiable projection layers or transforma-
tions that are part of the deep network during training. This
type of framework is illustrated in Figure [22](a).

Martin-Brualla et al. introduce the notion of re-
rendering, where a deep neural network takes as input
a rendered 2D image and enhances it (improving colors,
boundaries, resolution, etc.) to produce a re-rendered image.
The full pipeline consists of two steps—a traditional 3D
to 2D rendering step and a trainable deep network that
enhances the rendered 2D image. The 3D to 2D rendering
technique can be differentiable or non-differentiable, but
no gradients are backpropagated through this step. This
allows one to use more complex rendering techniques. By
using this two-step process, the output of a performance
capture system, which might suffer from noise, poor color
reproduction, and other issues, can be improved. In this
particular work, they did not see an improvement from
using a GAN loss, perhaps because they trained their system
on the limited domain of people and faces, using carefully
captured footage.

Meshry et al. and Li et al. extend this approach
to the more challenging domain of unstructured photo col-
lections. They produce multiple plausible views of famous
landmarks from noisy point clouds generated from internet
photo collections by utilizing Structure from Motion (SfM).
Meshry et al. generate a 2D feature map containing per-
pixel albedo and depth by splatting points of the 3D point
cloud onto a given viewpoint. The segmentation map of the
expected output image is also concatenated to this feature
representation. The problem is then framed as a multimodal
image translation problem. A noisy and incomplete input
has to be translated to a realistic image conditioned on a
style code to produce desired environmental effects such as
lighting. Li et al. use a similar approach, but with multi-
plane images and achieve better photo-realism. Pittaluga et
al. tackle the task of producing 2D color images of the
underlying scene given as input a sparse SfM point cloud
with associated point attributes such as color, depth, and
SIFT descriptors. The input to their network is a 2D feature
map obtained by projecting the 3D points to the image plane
given the camera parameters. The attributes of the 3D point
are copied to the 2D pixel location to which it is projected.
Mallya et al. precompute the mapping of the 3D world
point cloud to the pixel locations in the images produced by
cameras with known parameters and use this to obtain an
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Fig. 22. The two common frameworks for neural rendering. (a) In the first set of works [109], [132], [135], [139], [158], a neural network that purely
operates in the 2D domain is trained to enhance an input image, possibly supplemented with other information such as depth, or segmentation
maps. (b) The second set of works [147], [148], [178], [187], [224] introduces native 3D operations that produce and transform 3D features. This

allows the network to reason in 3D and produce view-consistent outputs.

estimate of the next frame, referred to as a ‘guidance image’.
They learn to output video frames consistent over time and
viewpoints by conditioning the generator on these noisy
estimates.

In these works, the use of a generator coupled with
an adversarial loss helps produce better-looking outputs
conditioned on the input feature maps. Similar to appli-
cations of pix2pixHD [218], such as manipulating output
images by editing input segmentation maps, Meshry et
al. are able to remove people and transient objects from
images of landmarks and generate plausible inpainting. A
key motivation of the work of Pittaluga et al. was to
explore if a user’s privacy can be protected by techniques
such as discarding the color of the 3D points. A very in-
teresting observation was that discarding color information
helps prevent accurate reproduction. However, the use of
a GAN loss recovers plausible colors and greatly improves
the output results, as shown in Figure. GAN losses might
also be helpful in cases where it is hard to manually define
a good loss function, either due to the inherent ambiguity
in determining the desired behavior or the difficulty in fully
labeling the data.

7.2 3D < 2D transform as a part of network training

In the previous set of works, the geometry of the world
or object is explicitly provided, and neural rendering is
purely used to enhance the appearance or add details to the
traditionally rendered image or feature maps. The works in
this section [147], [148], [178], [187], introduce native
3D operations in the neural network used to learn from and
produce images. These operations enable them to model the
geometry and appearance of the scene in the feature space.
The general pipeline of this line of works is illustrated in
Figure [22| (b). Learning a 3D representation and modeling
the process of image projection and formation into the

i
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Fig. 23. Inverting images from 3D point clouds and their associated
depth and SIFT attributes [158]. The top row of images are produced
by a generator trained without an adversarial loss, while the bottom row
uses adversarial loss. Using an adversarial loss helps generates better
details and more plausible colors. Images are from Pittaluga et al. [158].

network have several advantages: the ability to reason in
3D, control the pose, and produce a series of consistent
views of a scene. Contrast this to the neural network shown
in Figure 22| (a), which purely operates in the 2D domain.
DeepVoxels learns a persistent 3D voxel feature
representation of a scene given a set of multi-view images
and their associated camera intrinsic and extrinsic parame-
ters. Features are first extracted from the 2D views and then
lifted to a 3D volume. This 3D volume is then integrated into
the persistent DeepVoxels representation. These 3D features
are then projected to 2D using a projection layer, and a new



view of the object is synthesized using a U-Net generator.
This generator network is trained with an ¢; loss and a GAN
loss. The authors found that using a GAN loss accelerates
the generation of high-frequency details, especially at earlier
stages of training. Similar to Deep Voxels [187], Visual Object
Networks (VONSs) [255] generate a voxel grid from a sample
noise vector and use a differentiable projection layer to map
the voxel grid to a 2.5D sketch. Inspired by classical graphics
rendering pipelines, this work decomposes image formation
into three conditionally independent factors of shape, view-
point, and texture. Trained with a GAN loss, their model
synthesizes more photorealistic images, and the use of the
disentangled representation allows for 3D manipulations,
which are not feasible with purely 2D methods.

HoloGAN [147] proposes a system to learn 3D voxel fea-
ture representations of the world and to render it to realistic-
looking images. Unlike VONSs [255], HoloGAN does not
require explicit 3D data or supervision and can do so using
unlabeled images (no pose, explicit 3D shape, or multiple
views). By incorporating a 3D rigid-body transformation
module and a 3D-to-2D projection module in the network,
HoloGAN provides the ability to control the pose of the
generated objects. HoloGAN employs a multi-scale feature
GAN discriminator, and the authors empirically observed
that this helps prevent mode collapse. BlockGAN [148] ex-
tends the unsupervised approach of the HoloGAN [147] to
also consider object disentanglement. BlockGAN learns 3D
features per object and the background. These are combined
into 3D scene features after applying appropriate trans-
formations before projecting them into the 2D space. One
issue with learning scene compositionality without explicit
supervision is the conflation of features of the foreground
object and the background, which results in visual artifacts
when objects or the camera moves. By adding more power-
ful ‘style” discriminators (feature discriminators introduced
in [147]) to their training scheme, the authors observed that
the disentangling of features improved, resulting in cleaner
outputs.

SynSin [224] learns an end-to-end model for view syn-
thesis from a single image, without any ground-truth 3D
supervision. Unlike the above works which internally use a
feature voxel representation, SynSin predicts a point cloud
of features from the input image and then projects it to
new views using a differentiable point cloud renderer. 2D
image features and a depth map are first predicted from the
input image. Based on the depth map, the 2D features are
projected to 3D to obtain the 3D feature point cloud. The
network is trained adversarially with a discriminator based
on the one proposed by Wang et al. [218].

One of the drawbacks of voxel-based feature repre-
sentations is the cubic growth in the memory required
to store them. To keep requirements manageable, voxel-
based approaches are typically restricted to low resolutions.
GRAF [178] proposes to use conditional radiance fields,
which are a continuous mapping from a 3D location and
a 2D viewing direction to an RGB color value, as the
intermediate feature representation. They also use a single
discriminator similar to PatchGAN [75], with weights that
are shared across patches with different receptive fields. This
allows them to capture the global context as well as refine
local details.
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TABLE 4
Key differences amongst 3D-aware methods. Adversarial losses are
used by a range of methods that differ in the type of 3D feature
representation and training supervision.

3D feature

. Supervision Methods
representation
Radiance field GRAF [178]
None HoloGAN [147]
BlockGAN [148]
Voxel 3D supervision VON:s [255] -

Input-Output DeepVoxels [187]

pose

Point cloud .
transformation

SynSin [224]

As summarized in Table [4] the works discussed in this
section use a variety of 3D feature representations, and
train their networks using paired input-output with known
transformations or unlabeled and unpaired data. The use
of a GAN loss is common to all these approaches. This is
perhaps because traditional hand-designed losses such as
the ¢, loss or even perceptual loss are unable fully to capture
what makes a synthesized image look unrealistic. Further,
in the case where explicit task supervision is unavailable,
BlockGAN [148] shows that a GAN loss can help in learning
disentangled features by ensuring that the outputs after
projection and rendering look realistic. The learnability and
flexibility of the GAN loss to the task at hand helps provide
feedback, guiding how to change the generated image, and
thus the upstream features, so that it looks as if it were
sampled from the distribution of real images. This makes
the GAN framework a powerful asset in the toolbox of any
neural rendering practitioner.

8 LIMITATIONS AND OPEN PROBLEMS

Despite the successful applications introduced above, there
are still limitations of GANs needed to be addressed by
future work.

Evaluation metrics. Evaluate and comparing different GAN
models is difficult. The most popular evaluation metrics are
perhaps Inception Score (IS) [176] and Fréchet Inception
Distance (FID) [67], which both have many shortcomings.
The Inception Score, for example, is not able to detect
intra-class mode collapse [23]. In other words, a model
that generates only a single image per class can obtain
a high IS. FID can better measure such diversity, but it
does not have an unbiased estimator [19]. Kernel Inception
Distance (KID) [19] can capture higher-order statistics and
has an unbiased estimator but has been empirically found
to suffer from high variance [165]. In addition to the above
measures that summarize the performance with a single
number, there are metrics that separately evaluate fidelity
and diversity of the generator distribution [97], [143], [173].

Instability. Although the regularization techniques intro-
duced in section [3.3| have greatly improved the stability of
GAN training, GANSs are still much more unstable to train
than supervised discriminative models or likelihood-based
generative models. For example, even the state-of-the-art
BigGAN model would eventually collapse in the late stage



of training on ImageNet [24]. Also, the final performance is
generally very sensitive to hyper-parameters [96], [126].

Interpretability. Despite the impressive quality of the gen-
erate images, there has been a lack of understanding of
how GANSs represent the image structure internally in the
generator. Bau et al. visualize the causal effect of different
neurons on the output image [13]]. After finding the semantic
meaning of individual neurons or directions in the latent
space [53], [76], [180]], one can edit a real image by inverting
it to the latent space, edit the latent code according to
the desired semantic change, and regenerate it with the
generator. Finding the best way to encode an image to
the latent space is, therefore, another interesting research
direction [1]], [2], [14], [72], 86, [252].

Forensics. The success of GANs has enabled many new
applications but also raised ethical and social concerns
such as fraud and fake news. The ability to detect GAN-
generated images is essential to prevent malicious usage
of GANs. Recent studies have found it possible to train
a classifier to detect generated images and generalize to
unseen generator architectures [25], [215], [244]. This cat-
and-mouse game may continue, as generated images may
become increasingly harder to detect in the future.

9 CONCLUSION

In this paper, we present a comprehensive overview of
GANs with an emphasis on algorithms and applications
to visual synthesis. We summarize the evolution of the
network architectures in GANs and the strategies to sta-
bilize GAN training. We then introduce several fascinating
applications of GANSs, including image translation, image
processing, video synthesis, and neural rendering. In the
end, we point out some open problems for GANs, and we
hope this paper would inspire future research to solve them.
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