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This article deals with application of deep learning techniques to anomaly detection.
Furthermore, connections between classic “shallow” and novel deep approaches are
established, and it is shown how this relation might cross-fertilize or extend

both directions.
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ABSTRACT | Deep learning approaches to anomaly detec-
tion (AD) have recently improved the state of the art in
detection performance on complex data sets, such as large
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collections of images or text. These results have sparked a
renewed interest in the AD problem and led to the introduction
of a great variety of new methods. With the emergence of
numerous such methods, including approaches based on gen-
erative models, one-class classification, and reconstruction,
there is a growing need to bring methods of this field into a
systematic and unified perspective. In this review, we aim to
identify the common underlying principles and the assump-
tions that are often made implicitly by various methods. In par-
ticular, we draw connections between classic “shallow” and
novel deep approaches and show how this relation might
cross-fertilize or extend both directions. We further provide
an empirical assessment of major existing methods that are
enriched by the use of recent explainability techniques and
present specific worked-through examples together with prac-
tical advice. Finally, we outline critical open challenges and
identify specific paths for future research in AD.

KEYWORDS | Anomaly detection (AD); deep learning; explain-
able artificial intelligence; interpretability; kernel methods;
neural networks; novelty detection; one-class classifica-
tion; outlier detection; out-of-distribution (OOD) detection;
unsupervised learning.

NOMENCLATURE
AD Anomaly detection.
AE Autoencoder.
AP Average precision.
AAE Adversarial AE.
AUPRC  Area under the precision-recall curve.
AUROC Area under the ROC curve.
CAE Contrastive AE.
DAE Denoising AE.
DGM Deep generative model.
DSVDD  Deep support vector data description.
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DSAD Deep semisupervised AD.

EBM Energy-based model.

ELBO Evidence lower bound.

GAN Generative adversarial network.

GMM Gaussian mixture model.

GT Geometric transformation.

iForest Isolation forest.

KDE Kernel density estimation.

k-NN k-nearest neighbors.

kPCA Kernel principal component analysis.

LOF Local outlier factor.

LPUE Learning from positive and unlabeled
examples.

LSTM Long short-term memory.

MCMC Markov chain Monte Carlo.

MCD Minimum covariance determinant.

MVE Minimum volume ellipsoid.

00D Out-of-distribution.

OE Outlier exposure.

OC-NN One-class neural network.

OC-SVM  One-class support vector machine.

pPCA Probabilistic principal component analysis.

PCA Principal component analysis.

pdf Probability density function.

PSD Positive semidefinite.

RBF Radial basis function.

RKHS Reproducing kernel Hilbert space.

rPCA Robust PCA.

SGD Stochastic gradient descent.

SGLD Stochastic gradient Langevin dynamics.

SSAD Semisupervised AD.

SVDD Support vector data description.

VAE Variational AE.

VQ Vector quantization.

XAI Explainable Al

LINTRODUCTION

An anomaly is an observation that deviates considerably
from some concept of normality. Also known as outlier
or novelty, such an observation may be termed unusual,
irregular, atypical, inconsistent, unexpected, rare, erro-
neous, faulty, fraudulent, malicious, unnatural, or simply
strange—depending on the situation. AD (or outlier detec-
tion or novelty detection) is the research area that studies
the detection of such anomalous observations through
methods, models, and algorithms based on data. Classic
approaches to AD include PCA [1]-[5], the OC-SVM [6],
SVDD [7], nearest neighbor algorithms [8]-[10], and
KDE [11], [12].

What the above methods have in common is that they
are all unsupervised, which constitutes the predominant
approach to AD. This is because, in standard AD set-
tings, labeled anomalous data are often nonexistent. When
available, it is usually insufficient to fully characterize all
notions of anomalousness. This typically makes a super-
vised approach ineffective. Instead, a central idea in AD
is to learn a model of normality from normal data in an
unsupervised manner so that anomalies become detectable
through deviations from the model.

The study of AD has a long history and spans multiple
disciplines, including engineering, machine learning, data
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mining, and statistics. While the first formal definitions of
so-called “discordant observations” date back to the 19th
century [13], the problem of AD has likely been studied
informally even earlier since anomalies are phenomena
that naturally occur in diverse academic disciplines, such
as medicine and the natural sciences. Anomalous data may
be useless, for example, when caused by measurement
errors, or maybe extremely informative and hold the key to
new insights, such as very long-surviving cancer patients.
Kuhn [14] claimed that persistent anomalies drive scien-
tific revolutions (see [14, Section VI]).

AD today has numerous applications across a variety of
domains. Examples include intrusion detection in cyber-
security [15]-[20], fraud detection in finance, insurance,
healthcare, and telecommunication [21]-[27], industrial
fault and damage detection [28]-[36], the monitoring of
infrastructure [37], [38] and stock markets [39], [40],
acoustic novelty detection [41]-[45], medical diagnosis
[46]-[60] and disease outbreak detection [61], [62], event
detection in the earth sciences [63]-[68], and scientific
discovery in chemistry [69], [70], bioinformatics [71],
genetics [72], [73], physics [74], [75], and astronomy
[76]-[79]. The data available in these domains is continu-
ally growing in size. It is also expanding to include complex
data types, such as images, videos, audios, text, graphs,
multivariate time series, and biological sequences, among
others. For applications to be successful in such complex
and high-dimensional data, a meaningful representation of
the data is crucial [80].

Deep learning [81]-[83] follows the idea of learning
effective representations from the data itself by training
flexible, multilayered (“deep”) neural networks and
has greatly improved the state of the art in many
applications that involve complex data types. Deep
neural networks provide the most successful solutions
for many tasks in domains, such as computer vision
[84]1-[93], speech recognition [94]-[103], or natural
language processing [104]-[113] and have contributed
to the sciences [114]-[123]. Methods based on deep
neural networks are able to exploit the hierarchical or
latent structure that is often inherent to data through
their multilayered, distributed feature representations.
Advances in parallel computation, SGD optimization, and
automated differentiation make it possible to apply deep
learning at scale using large data sets.

Recently, there has been a surge of interest in
developing deep learning approaches for AD. This is
motivated by a lack of effective methods for AD tasks
that involve complex data, for instance, cancer detection
from multigigapixel whole-slide images in histopathology
[124]. As in other adoptions of deep learning, the goal
of deep AD is to mitigate the burden of manual feature
engineering and to enable effective, scalable solutions.
However, unlike supervised deep learning, it is less clear
what useful representation learning objectives for deep
AD are, due to the mostly unsupervised nature of the
problem.
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Fig. 1. AD approaches arranged in the plane spanned by two
major components (model and feature map) of our unifying view.
Based on shared principles, we distinguish one-class classification,
probabilistic models, and reconstruction models as the three main
groups of approaches that all formulate shallow and deep models
(see Nomenclature for a list of abbreviations). These three groups
are complemented by purely distance-based methods. Besides
model and feature map, we identify loss, regularization, and
inference mode as other important modeling components of the
AD problem.

The major approaches to deep AD include deep AE
variants [44], [51], [54], [125]-[135], deep one-class
classification [136]-[145], methods based on DGMs,
such as GANs [50], [56], [146]-[151], and recent
self-supervised methods [152]-[156]. In comparison to
traditional AD methods, where a feature representation
is fixed a priori (e.g., via a kernel feature map), these
approaches aim to learn a feature map of the data
¢w : * — ¢u(x), a deep neural network parameterized
with weights w, as part of their learning objective.

Due to the long history and diversity of AD
research, there exists a wealth of review and survey
literature [157]-[176] and books [177]-[179] on the
topic. Some very recent surveys focus specifically on
deep AD [180]-[182]. However, an integrated treatment
of deep learning methods in the overall context of AD
research—in particular, its kernel-based learning part [6],
[71, [183]—is still missing.

In this review article, we aim to fill this gap by pre-
senting a unifying view that connects traditional shallow
and novel deep learning approaches. We will summarize
recent exciting developments, present different classes of
AD methods, provide theoretical insights, and highlight
the current best practices when applying AD. Fig. 1 gives
an overview of the categorization of AD methods within
our unifying view. Note, finally, that we do not attempt
an encyclopedic treatment of all available AD literature;
rather, we present a slightly biased point of view (drawing
from our own work on the subject), illustrating the main
topics, and provide ample reference to related work for
further reading.

I. AN INTRODUCTION TO ANOMALY

DETECTION
A. Why Should We Care About Anomaly

Detection?

Though we may not realize it, AD is part of our
daily life. Operating mostly unnoticed, AD algorithms are
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continuously monitoring our credit card payments, our
login behaviors, and companies’ communication networks.
If these algorithms detect an abnormally expensive pur-
chase made on our credit card, several unsuccessful login
attempts made from an alien device in a distant country,
or unusual FTP requests made to our computer, they will
issue an alarm. While warnings, such as “someone is trying
to login to your account,” can be annoying when you are
on a business trip abroad and just want to check your
e-mails from the hotel computer, the ability to detect such
anomalous patterns is vital for a large number of today’s
applications and services, and even small improvements in
AD can lead to immense monetary savings.'

In addition, the ability to detect anomalies is also
an important ingredient in ensuring fail-safe and robust
design of deep learning-based systems, for instance,
in medical applications or autonomous driving. Vari-
ous international standardization initiatives have been
launched toward this goal (e.g., ITU/WHO FG-AI4H,
ISO/IEC CD TR 24029-1, or IEEE P7009).

Despite its importance, discovering a reliable distinction
between “normal” and “anomalous” events is a challeng-
ing task. First, the variability within normal data can be
very large, resulting in misclassifying normal samples as
being anomalous (type I error) or not identifying the
anomalous ones (type II error). Especially in biological or
biomedical data sets, the variability between the normal
data (e.g., person-to-person variability) is often as large
or even larger than the distance to anomalous samples
(e.g., patients). Preprocessing, normalization, and feature
selection are potential means to reduce this variability and
improve detectability [179], [184], [185]. If such steps
are neglected, the features with wide value ranges, noise,
or irrelevant features can dominate distance computations
and “mask” anomalies [165] (see VIII-A). Second, anom-
alous events are often very rare, which results in highly
imbalanced training data sets. Even worse, in most cases,
the data set is unlabeled so that it remains unclear which
data points are anomalies and why. Hence, AD reduces to
an unsupervised learning task with the goal to learn a valid
model of the majority of data points. Finally, anomalies
themselves can be very diverse so that it becomes difficult
to learn a complete model for them. Likewise, the solu-
tion is again to learn a model for the normal samples
and treat deviations from it as anomalies. However, this
approach can be problematic if the distribution of the
normal data changes (nonstationarity), either intrinsically
or due to environmental changes (e.g., lighting conditions
and recording devices from different manufacturers).

As exemplified and discussed above, we note that AD
has broad practical relevance and impact. Moreover, (acci-
dentally) detecting the unknown unknowns [186] is a
strong driving force in the sciences. If applied in the sci-
ences, AD can help us to identify new, previously unknown

Tn 2019, U.K.’s online banking fraud has been estimated to be
111.8 million GBP (source: https://www.statista.com/).



patterns in data, which can lead to novel scientific insights
and hypotheses.

B. Formal Definition of Anomaly Detection

In the following, we formally introduce the AD problem.
We first define in probabilistic terms what an anomaly is,
explain what types of anomalies there are, and delineate
the subtle differences between an anomaly, an outlier, and
a novelty. Finally, we present a fundamental principle in
AD—the so-called concentration assumption—and give a
theoretical problem formulation that corresponds to den-
sity level set estimation.

1) What Is an Anomaly?: We opened this review with
the following definition:

An anomaly is an observation that deviates con-
siderably from some concept of normality.

To formalize this definition, we here specify two aspects
more precisely: a “concept of normality” and what
“deviates considerably” signifies. Following many previous
authors [13], [177], [187]-[189], we rely on probability
theory.

Let X C RP be the data space given by some task
or application. We define a concept of normality as the
distribution P* on X that is the ground-truth law of normal
behavior in a given task or application. An observation that
deviates considerably from such a law of normality—an
anomaly—is, then, a data point « € X (or set of points)
that lies in a low probability region under P*. Assuming
that P* has a corresponding pdf p*(x), we can define a set
of anomalies as

A={zeX|p'(x)<7}, 72>0 (1)

where 7 is some threshold such that the probability of A
under P* is “sufficiently small” that we will specify further
in the following.

2) Types of Anomalies: Various types of anomalies have
been identified in the literature [161], [179]. These
include point anomalies, conditional or contextual anom-
alies [169], [171], [191]-[195], and group or collective
anomalies [146], [193], [196]-[199]. We extend these
three established types by further adding low-level sensory
anomalies and high-level semantic anomalies [200], a dis-
tinction that is particularly relevant for choosing between
deep and shallow feature maps.

A point anomaly is an individual anomalous data point
x € A, for example, an illegal transaction in fraud detec-
tion or an image of a damaged product in manufacturing.
This is arguably the most commonly studied type in AD
research.

A conditional or contextual anomaly is a data instance
that is anomalous in a specific context, such as time, space,
or the connections in a graph. A price of $1 per Apple Inc.
stock might have been normal before 1997 but, as of today
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(2021), would be an anomaly. A mean daily temperature
below freezing point would be an anomaly in the Amazon
rainforest but not in the Antarctic desert. For this anomaly
type, the normal law P* is more precisely a conditional
distribution P* = P% |, with conditional pdf p*(z |¢) that
depends on some contextual variable 7. Time-series anom-
alies [169], [195], [201]-[204] are the most prominent
example of contextual anomalies. Other examples include
spatial [205], [206], spatiotemporal [192], or graph-based
[171], [207], [208] anomalies.

A group or collective anomaly is a set of related or
dependent points {x; € X | j € J} that are anomalous,
where J C N is an index set that captures some relation
or dependence. A cluster of anomalies, such as similar or
related network attacks in cybersecurity, forms a collective
anomaly, for instance [18], [208], [209]. Often, collec-
tive anomalies are also contextual, such as anomalous
time (sub)series or biological (sub)sequences, for example,
some series or sequence {x, ..., T¢+s—1} of length s € N.
It is important to note that although each individual point
x; in such a series or sequence might be normal under
the time-integrated marginal p*(x) = [p*(x,t)d¢ or
under the sequence-integrated, time-conditional marginal
p* (x| t) given by

/'-'/p+(:17t,...,:17t+571|t)dﬂ§t-"d217j71 dﬂ?j+1-"d33t+571

the full series or sequence {x:,...,x:ys—1} can
be anomalous under the joint conditional density
p*(xe,...,@i4s—1|t), which properly describes the

distribution of the collective series or sequences.

In the wake of deep learning, a distinction between low-
level sensory anomalies and high-level semantic anomalies
[200] has become important. Low and high here refer
to the level in the feature hierarchy of some hierarchical
distribution, for instance, the hierarchy from pixel-level
features, such as edges and textures to high-level objects
and scenes in images or the hierarchy from individual
characters and words to semantic concepts and topics
in text. It is commonly assumed that data with such a
hierarchical structure is generated from some semantic
latent variables Z and Y that describe higher level factors
of variation Z (e.g., the shape, size, or orientation of an
object) and concepts Y (e.g., the object class identity)
[80], [210]. We can express this via a law of normality with
conditional pdf p*(x | z,y), where we usually assume Z to
be continuous and Y to be discrete. Low-level anomalies
could be texture defects or artifacts in images, or character
typos in words. In comparison, semantic anomalies could
be images of objects from nonnormal classes [200], for
instance, or misposted reviews and news articles [140].
Note that semantic anomalies can be very close to normal
instances in the raw feature space X. For example, a dog
with a fur texture and color similar to that of some cat
can be more similar in raw pixel space than various cat
breeds among themselves (see Fig. 2). Similarly, low-level
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Fig. 2.
single anomalous point. A contextual point anomaly occurs if a point
deviates in its local context, here a spike in an otherwise normal

Hlustration of the types of a li a point lyisa

time series. A group anomaly can be a cluster of anomalies or some
series of related points that are anomalous under the joint series
distribution (contextual group anomaly). Note that both contextual

a lies have val, that fall into the global (time-integrated)

range of normal values. A low-level sensory anomaly deviates from
the low-level features, here a cut in the fabric texture of a carpet
[190]. A semantic anomaly deviates in high-level factors of variation
or semantic concepts, here a dog among the normal class of cats.
Note that the white cat is more similar to the dog than to the other
cats in low-level pixel space.

background statistics can also result in a high similarity
in raw pixel space even when objects in the foreground
are completely different [200]. Detecting semantic anom-
alies is, thus, innately tied to finding a semantic feature
representation (e.g., extracting the semantic features of
cats, such as whiskers, slit pupils, and triangular snout),
which is an inherently difficult task in an unsupervised
setting [210].

3) Anomaly, Outlier, or Novelty?: Some studies make a
concrete (albeit subtle) distinction between what is an
anomaly, an outlier, or a novelty. While all three refer
to instances from low probability regions under P* (i.e.,
are elements of A), an anomaly is often characterized as
being an instance from a distinct distribution other than P*
(e.g., when anomalies are generated by a different process
than the normal points), an outlier as being a rare or
low-probability instance from P*, and a novelty as being
an instance from some new region or mode of an evolving,
nonstationary P*. Under the distribution P* of cats, for
instance, a dog would be an anomaly, a rare breed of cats,
such as the LaPerm, would be an outlier, and a new breed
of cats would be a novelty. Such a distinction between
anomaly, outlier, and novelty may reflect slightly different
objectives in an application: while anomalies are often
the data points of interest (e.g., a long-term survivor of
a disease), outliers are frequently regarded as “noise” or
“measurement error” that should be removed in a data
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preprocessing step (“outlier removal”), and novelties are
new observations that require models to be updated to the
“new normal.” The methods for detecting points from low
probability regions, whether termed “anomaly,” “outlier,”
or “novelty,” are essentially the same, however. For this
reason, we make no distinction between these terms and
call any instance « € A an “anomaly.”

4) Concentration Assumption: While, in most situations,
the data space X C RP is unbounded, a fundamental
assumption in AD is that the region where the normal data
lives can be bounded. That is, there exists some threshold
7 > 0 such that

X\A={z e X |[p"(z) >} 2)

is nonempty and small (typically, in the Lebesgue-measure
sense, which is the ordinary notion of volume in
D-dimensional space). This is known as the so-called con-
centration or cluster assumption [211]-[213]. Note that
the concentration assumption does not imply that the full
support supp(p*) = {x € X |p*(x) > 0} of the normal law
P* must be bounded; only that some high-density subset of
the support is bounded. A standard univariate Gaussian’s
support is the full real axis, for example, but approximately
95% of its probability mass is contained in the interval
[-1.96,1.96]. In contrast, the set of anomalies .4 need not
be concentrated and can be unbounded.

5) Density Level Set Estimation: A law of normality P*
is only known in a few application settings, such as for
certain laws of physics. Sometimes, a concept of normality
might also be user-specified (as in juridical laws). In most
cases, however, the ground-truth law of normality P* is
unknown because the underlying process is too complex.
For this reason, we must estimate P* from data.

Let P be the ground-truth data-generating distribution
on data space X C R with corresponding density p(z),
that is, the distribution that generates the observed data.
For now, we assume that this data-generating distribu-
tion exactly matches the normal data distribution, that is,
P=P* and p = p*. This assumption is often invalid in
practice, of course, as the data-generating process might
be subject to noise or contamination, as we will discuss in
Section II-C.

Given data points z1,...,z, € X generated by P
(usually assumed to be drawn from i.i.d. random variables
following P), the goal of AD is to learn a model that
allows us to predict whether a new test instance £ € X
is an anomaly or not, that is, whether # € .A. Thus,
the AD objective is to (explicitly or implicitly) estimate the
low-density regions (or equivalently high-density regions)
in data space X’ under the normal law P*. We can formally
express this objective as the problem of density level set
estimation [214]-[217], which is equivalent to minimum
volume set estimation [218]-[220] for the special case
of density-based sets. The density level set of P for some
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threshold 7 > 0 is given by C = {x € X |p(x) > 7}. For
some fixed level o € [0, 1], the a-density level set C\, of
distribution P is then defined as the smallest density level
set C' that has a probability of at least 1 — o under P, that
is,

3
!

= argcinf {AC) | P(C)>1—a}

={z € X[p(x) > 7} 3)

where 7, > 0 denotes the corresponding threshold and
A is typically the Lebesgue measure. The extreme cases
of a = 0 and a — 1 result in the full support Co =
{z € X|p(x) > 0} = supp(p) and the most likely modes
argmax, p(x) of P, respectively. If the aforementioned
concentration assumption holds, there always exists some
level « such that a corresponding level set C,, exists and
can be bounded. Fig. 3 illustrates some density level sets
for the case that P is the familiar standard Gaussian distri-
bution. Given a level set C.,, we can define a corresponding
threshold anomaly detector ¢, : X — {£1} as

e = {1

6) Density Estimation for Level Set Estimation: An obvi-
ous approach to density level set estimation is through
density estimation. Given some estimated density model
p(x) = p(x; ¢1,...,xs) =~ p(x) and some target level
a € [0,1], one can estimate a corresponding threshold 7,
via the empirical p-value function

ifx e C,

ifx & Ch. @

To = inf {720

1 n
- D Lo pa () >1- a} ®)
i=1

where 1 4(-) denotes the indicator function for some set A.
Using 7. and p(x) in (3) yields the plug-in density level
set estimator C., which can be used in (4) to obtain
the plug-in threshold detector é.(x). Note, however, that
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density estimation is generally the most costly approach to
density level set estimation (in terms of samples required)
since estimating the full density is equivalent to first esti-
mating the entire family of level sets {Cy | a € [0, 1]} from
which the desired level set for some fixed « € [0, 1] is then
selected [221], [222]. If there are insufficient samples, this
density estimate can be biased. This has also motivated the
development of one-class classification methods that aim
to estimate a collection [222] or single-level sets [6], [7],
[223], [224] directly, which we will explain in Section IV
in more detail.

7) Threshold Versus Score: The previous approach to
level set estimation through density estimation is rela-
tively costly, yet results in a more informative model
that can rank inliers and anomalies according to their
estimated density. In comparison, a pure threshold
detector as in (4) only yields a binary prediction.
Menon and Williamson [222] proposed a compromise by
learning a density outside the level set boundary. Many AD
methods also target some strictly increasing transforma-
tion T : [0,00) — R of the density for estimating a model
(e.g., log-likelihood instead of likelihood). The resulting
target T'(p(x)) is usually no longer a proper density but still
preserves the density ranking [225], [226]. An anomaly
score s : X — R can then be defined by using an addi-
tional order-reversing transformation, for example, s(x) =
—T'(p(x)) (e.g., negative log-likelihood) so that high scores
reflect low-density values, and vice versa. Having such
a score that indicates the “degree of anomalousness” is
important in many AD applications. As for the density
in (5), of course, we can always derive a threshold from
the empirical distribution of anomaly scores if needed.

8) Selecting a Level o: As we will show, there are many
degrees of freedom when attacking the AD problem, which
inevitably requires making various modeling assumptions
and choices. Setting the level « is one of these choices
and depends on the specific application. When the value
of « increases, the anomaly detector focuses only on the
most likely regions of P. Such a detector can be desir-
able in applications where missed anomalies are costly
(e.g., in medical diagnosis or fraud detection). On the
other hand, a large « will result in high false alarm rates,
which can be undesirable in online settings where lots
of data is generated (e.g., in monitoring tasks). We pro-
vide a practical example for selecting « in Section VIII.
Choosing « also involves further assumptions about the
data-generating process P, which we have assumed here
to match the normal data distribution P*. In Section II-C,
we discuss the data settings that can occur in AD that may
alter this assumption.

C. Data Set Settings and Data Properties

The data set settings (e.g., unsupervised or semisuper-
vised) and data properties (e.g., type or dimensionality)
that occur in real-world AD problems can be diverse.
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We here characterize these settings, which may range
from the standard unsupervised to semisupervised and
supervised settings, and list further data properties that are
relevant for modeling an AD problem. However, before we
elaborate on these, we first observe that the assumptions
made about the distribution of anomalies (often implicitly)
are also crucial to the problem.

1) Distribution of Anomalies?: Let P~ denote the ground-
truth anomaly distribution and assume that it exists on
X C RP. As mentioned above, the common concentra-
tion assumption implies that some high-density regions of
the normal data distribution are concentrated, whereas
anomalies are assumed to be not concentrated [211],
[212]. This assumption may be modeled by an anomaly
distribution P~ that is a uniform distribution over the
(bounded?) data space X [224]. Some well-known unsu-
pervised methods, such as KDE [12] or the OC-SVM [6],
implicitly make this assumption that P~ follows a uniform
distribution that can be interpreted as a default uninfor-
mative prior on the anomalous distribution [212]. This
prior assumes that there are no anomalous modes and that
anomalies are equally likely to occur over the valid data
space X. Semisupervised or supervised AD approaches
often depart from this uninformed prior and try to make
a more informed a priori assumption about the anomalous
distribution P~ [212]. If faithful to P~, such a model based
on a more informed anomaly prior can achieve better
detection performance. Modeling anomalous modes can
also be beneficial in certain applications, for example, for
typical failure modes in industrial machines or known
disorders in medical diagnosis. We remark that these prior
assumptions about the anomaly distribution P~ are often
expressed only implicitly in the literature though such
assumptions are critical to an AD model.

2) Unsupervised Setting: The unsupervised AD setting is
the case in which only unlabeled data

,Lp € X ©6)

Liy...

are available for training a model. This setting is arguably
the most common setting in AD [159], [161], [165],
[168]. We will usually assume that the data points have
been drawn in an i.i.d. fashion from the data-generating
distribution P. For simplicity, we have so far assumed that
the data-generating distribution is the same as the normal
data distribution P = P*. This is often expressed by the
statement that the training data is “clean.” In practice,
however, the data-generating distribution P may contain
noise or contamination.

Noise, in the classical sense, is some inherent source
of randomness ¢ that is added to the signal in the
data-generating process, that is, samples from P have the

2Strictly speaking, we are assuming that there always exists some
data-enclosing hypercube of numerically meaningful values such that the
data space X" is bounded and the uniform distribution is well-defined.
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form x + ¢, where  ~ P*. Noise might be present due to
irreducible measurement uncertainties in an application,
for example. The greater the noise, the harder it is to
accurately estimate the ground-truth level sets of P* since
informative normal features get obfuscated [165]. This is
because added noise expands the regions covered by the
observed data in input space X. A standard assumption
about noise is that it is unbiased (E[¢] = 0) and spherically
symmetric.

In addition to noise, the contamination (or pollution) of
the unlabeled data with undetected anomalies is another
important source of the disturbance. For instance, some
unnoticed anomalous degradation in an industrial machine
might have already occurred during the data collection
process. In this case, the data-generating distribution P is
a mixture of the normal data and the anomaly distribu-
tion, that is, P = (1 — n)P* + nP~ with contamination
(or pollution) rate n € (0,1). The greater the contamina-
tion, the more the normal data decision boundary will be
distorted by including the anomalous points.

In summary, a more general and realistic assumption is
that samples from the data-generating distribution P have
the form of « + ¢, where  ~ (1 — ) P* + n P~ and ¢ is the
random noise. Assumptions on both the noise distribution
¢ and contamination rate n are crucial for modeling a
specific AD problem. Robust methods [5], [127], [227]
specifically aim to account for these sources of disturbance.
Note also that, by increasing the level « in the density
level set definition above, a corresponding model generally
becomes more robust (often at the cost of a higher false
alarm rate) since the target decision boundary becomes
tighter and excludes the contamination.

3) Semisupervised Setting: The SSAD setting is the case
in which both unlabeled and labeled data

w17...,wn€X and (i17g1)7.‘.,(i7yl7gm) eXx)i (7)

are available for training a model with ) = {£1}, where
we denote § = +1 for normal and §y = —1 for anom-
alous points, respectively. Usually, we have m <« n in
the semisupervised setting, that is, most of the data are
unlabeled and only a few labeled instances are available,
since labels are often costly to obtain in terms of resources
(time, money, and so on). Labeling might, for instance,
require domain experts, such as medical professionals
(e.g., pathologists) or technical experts (e.g., aerospace
engineers). Anomalous instances, in particular, are also
infrequent by nature (e.g., rare medical conditions) or very
costly (e.g., the failure of some industrial machine). The
deliberate generation of anomalies is mostly not an option.
However, including known anomalous examples, if avail-
able, can significantly improve the detection performance
of a model [144], [224], [228]-[231]. Labels are also,
sometimes, available in the online setting where alarms
raised by the anomaly detector have been investigated to



determine whether they were correct. Some unsupervised
AD methods can be incrementally updated when such
labels become available [232]. A recent approach called
Outlier Exposure (OE) [233] follows the idea of using
large quantities of unlabeled data that are available in
some domains as auxiliary anomalies (e.g., online stock
photos for computer vision or the English Wikipedia for
NLP), thereby effectively labeling this data with § = —1.
In this setting, we frequently have that m > n, but this
labeled data have increased uncertainty in the labels as
the auxiliary data may not only contain anomalies and
may not be representative of test time anomalies. We will
discuss this specific setting in Sections IV-E and IX-E in
more detail. Verifying unlabeled samples as indeed being
normal can often be easier due to the more frequent nature
of normal data. This is one of the reasons why the special
semisupervised case of LPUE [234]-[236], that is, labeled
normal and unlabeled examples, is also studied specifically
in the AD literature [148], [161], [237]-[239].

Previous work [161] has also referred to the special
case of learning exclusively from positive examples
as the “SSAD” setting, which is confusing terminol-
ogy. Although meticulously curated normal data can,
sometimes, be available (e.g., in open-category detec-
tion [240]), such a setting in which entirely (and confi-
dently) labeled normal examples are available is rather
rare in practice. The analysis of this setting is rather
again justified by the assumption that most of the given
(unlabeled) training data are normal but not the absolute
certainty thereof. This makes this setting effectively equiv-
alent to the unsupervised setting from a modeling per-
spective, apart from maybe weakened assumptions on the
level of noise or contamination, which previous works also
point out [161]. We, therefore, refer to the more general
setting as presented in (7) as the SSAD setting, which
incorporates both labeled normal and anomalous examples
in addition to unlabeled instances, since this setting is
reasonably common in practice. If some labeled anom-
alies are available, the modeling assumptions about the
anomalous distribution P~, as mentioned in Section II-C1,
become critical for effectively incorporating anomalies into
training. These include, for instance, whether modes or
clusters are expected among the anomalies (e.g., group
anomalies).

4) Supervised Setting: The supervised AD setting is the
case in which completely labeled data

(ihgl)w"a(iﬂwgm)GXXy (8)

are available for training a model, where, again, Y =
{£1} with § = 41 denoting normal instances and § =
—1 denoting anomalies, respectively. If both the normal
and anomalous data points are assumed to be represen-
tative for the normal data distribution P* and anomaly
distribution P7, respectively, this learning problem is equiv-
alent to supervised binary classification. Such a setting
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would, thus, not be an AD problem in the strict sense
but rather a classification task. Although anomalous modes
or clusters might exist, that is, some anomalies might be
more likely to occur than others, anything not normal is,
by definition, an anomaly. Labeled anomalies are therefore
rarely fully representative of some “anomaly class.” This
distinction is also reflected in modeling: in classification,
the objective is to learn a (well-generalizing) decision
boundary that best separates the data according to some
(closed set of) class labels, but the objective in AD remains
the estimation of the normal density level set bound-
aries. Hence, we should interpret supervised AD problems
as label-informed density level set estimation in which
confident normal (in-distribution) and anomalous out-of-
distribution (OOD) training examples are available. Due
to the above and also the high costs often involved with
labeling, the supervised AD setting is the most uncommon
setting in practice.

Finally, we note that labels may also carry more granular
information beyond simply indicating whether some point
Z is normal (§j = +1) or anomalous (§ = —1). In OOD
detection [241] or open-category detection [240] prob-
lems, for example, the goal is to train a classifier while also
detecting examples that are not from any of the known
training set classes. In these problems, the labeled data
(Z1,91),-- -, (Bm,Jm) with § € {1,...,k} also hold infor-
mation about the k (sub)classes of the in-distribution P*.
Such information about the structure of the normal data
distribution has been shown to be beneficial for semantic
detection tasks [242], [243]. We will discuss such specific
and related detection problems later in Section IX-B.

5) Further Data Properties: Besides the settings
described above, the intrinsic properties of the data itself
are also crucial for modeling a specific AD problem.
We give a list of relevant data properties in Table 1 and
present a toy data set with a specific realization of these
properties in Fig. 4, which will serve us as a running
example. The assumptions about these properties should
be reflected in the modeling choices, such as adding
context or deciding among suitable deep or shallow
feature maps, which can be challenging. We outline these
and further challenges in AD in the following.

D. Challenges in Anomaly Detection

We conclude our introduction by briefly highlighting
some notable challenges in AD, some of which directly
arise from the definition and data characteristics detailed
above. Certainly, the fundamental challenge in AD is
the mostly unsupervised nature of the problem, which
necessarily requires assumptions to be made about the
specific application, the domain, and the given data. These
include assumptions about the relevant types of anomalies
(see Section II-B2), possible prior assumptions about the
anomaly distribution (see Section II-C1) and, if available,
the challenge of how to incorporate labeled data instances
in a generalizing way (see Sections II-C3 and II-C4).
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Table 1 Data Properties Relevant in AD

Data Property Description

Size n +m Is algorithm scalability in dataset size critical? Are
there labeled samples (m > 0) for (semi-)supervision?

Dimension D Low- or high-dimensional? Truly high-dimensional or
embedded in some higher dimensional ambient space?

Type Continuous, discrete, or categorical?

Scales Are features uni- or multi-scale?

Modality Uni- or multimodal (classes and clusters)? Is there a
hierarchy of sub- and superclasses (or -clusters)?

Convexity Is the data support convex or non-convex?

Correlation Are features (linearly or non-linearly) correlated?

Manifold Has the data a (linear, locally linear, or non-linear)
subspace or manifold structure? Are there invariances
(translation, rotation, etc.)?

Hierarchy Is there a natural feature hierarchy (e.g., images,
video, text, speech, etc.)? Are low-level or high-level
(semantic) anomalies relevant?

Context Are there contextual features (e.g., time, space, se-
quence, graph, etc.)? Can anomalies be contextual?

Stationarity Is the distribution stationary or non-stationary? Is a
domain or covariate shift expected?

Noise Is the noise level € large or small? Is the noise type
Gaussian or more complex?

Contamination  Is the data contaminated with anomalies? What is the
contamination rate n?

Further questions include how to derive an anomaly score
or threshold in a specific task (see Section II-B7)? What
level o (see Section II-B8) strikes a balance between false
alarms and missed anomalies that is reasonable for the
task? Is the data-generating process subject to noise or
contamination (see Section II-C2), that is, is robustness
a critical aspect? Moreover, identifying and including the
data properties given in Table 1 into a method and model
can pose challenges as well. The computational complexity
in both the data set size n + m and dimensionality D,
as well as the memory cost of a model at training time,
but also at test time, can be a limiting factor (e.g., for
data streams or in real-time monitoring [244]). Is the
data-generating process assumed to be nonstationary
[245]-[247] and are there distributional shifts expected at
test time? For (truly) high-dimensional data, the curse of
dimensionality and the resulting concentration of distances
can be a major issue [165]. Here, finding a representation
that captures the features that are relevant for the task and
meaningful for the data and domain becomes vital. Deep
AD methods further entail new challenges, such as an
increased number of hyperparameters and the selection of
suitable network architecture and optimization parameters
(learning rate, batch sizes, and so on). In addition,
the more complex the data or a model is, the greater the
challenges of model interpretability (e.g., [248]-[251])
and decision transparency become. We illustrate some
of these practical challenges and provide guidelines with
worked-through examples in Section VIII.

Considering the various facets of the AD problem that
we have covered in this introduction, it is not surprising
that there is a wealth of literature and approaches on the
topic. We outline these approaches in the following, where
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Ground-truth normal law P* Observed data from P = P* 4 ¢

Fig. 4.
real-valued ground-truth normal law P* that is composed of two 1-D
manifolds (bimodal, two-scale, and nonconvex). The unlabeled

Two-dimensional Big Moon, Small Moon toy example with

training data (n — 1000 and m — 0) are generated from P — P* + ¢,
which is subject to Gaussian noise . These toy data are
nonhierarchical, context-free, and stationary. Anomalies are
off-manifold points that may occur uniformly over the displayed
range.

we first examine density estimation and probabilistic mod-
els (see Section III), followed by one-class classification
methods (see Section IV), and, finally, reconstruction mod-
els (see Section V). In these sections, we will point out
the connections between deep and shallow methods. Fig. 5
gives an overview and intuition of the approaches. After-
ward, in Section VI, we present our unifying view, which
will enable us to systematically identify open challenges
and paths for future research.

III. DENSITY ESTIMATION AND
PROBABILISTIC MODELS

The first category of methods that we introduce predicts
anomalies through estimation of the normal data probabil-
ity distribution. The wealth of existing probability models
is, therefore, a clear candidate for the task of AD. This
includes classic density estimation methods [252] and
deep statistical models. In the following, we describe the
adaptation of these techniques to AD.

A. Classic Density Estimation

One of the most basic approaches to multivariate AD is
to compute the Mahalanobis distance from a test point to
the training data mean [253]. This is equivalent to fitting a
multivariate Gaussian distribution to the training data and
evaluating the log-likelihood of a test point according to
that model [254]. Compared to modeling each dimension
of the data independently, fitting a multivariate Gaussian
captures linear interactions between pairs of dimensions.
To model more complex distributions, nonparametric den-
sity estimators have been introduced, such as KDE [12],
[252], histogram estimators, and GMMs [255], [256].
The KDE is arguably the most widely used nonparamet-
ric density estimator due to theoretical advantages over
histograms [257] and the practical issues with fitting and
parameter selection for GMMs [258]. The standard KDE,
along with a more recent adaptation that can deal with
modest levels of outliers in the training data [259], [260],
is, therefore, a popular approach to AD. A GMM with
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Classification Probabilistic Reconstruction Shallow vs. Deep

decision function
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Shallow anomaly
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Fig. 5. Overview of the different approaches to AD. Top: typical decision functions learned by the different AD approaches, where white
corresponds to normal and red to anomalous decision regions. One-class classification models typically learn a discriminative decision
boundary, probabilistic models a density, and reconstruction models some underlying geometric structure of the data (e.g., manifold or
prototypes). Right: deep feature maps enable to learn more flexible, nonlinear decision functions suitable for more complex data. Bottom:
diagrams of architectures for a selection of different methods with deep and shallow feature maps. Points (i)-(v): locations in input space,
where we highlight some model-specific phenomena. (i) Too loose, the biased one-class boundary may leave anomalies undetected.

(ii) Probabilistic models may underfit (or overfit) the tails of a distribution. (iii) Manifold or prototype structure artifacts may result in a good

reconstruction of anomalies. (iv) Simple shallow models may fail to fit complex, nonlinear distributions. (v) Compression artifacts of deep

feature maps may create “blind spots” in input space.

a finite number of K mixtures can also be viewed as
a soft (probabilistic) clustering method that assumes K
prototypical modes (see Section V-A2). This has been used,
for example, to represent typical states of a machine in
predictive maintenance [261].

While classic nonparametric density estimators perform
fairly well for low-dimensional problems, they suffer noto-
riously from the curse of dimensionality: the sample size
required to attain a fixed level of accuracy grows exponen-
tially in the dimension of the feature space. One goal of
deep statistical models is to overcome this challenge.

B. Energy-Based Models

Some of the earliest deep statistical models are EBMs
[262]-[264]. An EBM is a model whose density is charac-
terized by an energy function Fy(x) with

L exp(—Eo(x))

70 ©)

po(xz) =

where Z(0) = [ exp(—Es(x)) de is the so-called partition
function that ensures that py integrates to 1. These models
are typically trained via gradient descent, approximating

the log-likelihood gradient Vg log pe(x) via MCMC [265]
or SGLD [266], [267]. While one typically cannot evaluate
the density py directly due to the intractability of the
partition function Z(0), the function Fy can be used as an
anomaly score since it is monotonically decreasing as the
density py increases.

Early deep EBMs, such as deep belief networks [268]
and deep Boltzmann machines [269], are graphical mod-
els consisting of layers of latent states followed by an
observed output layer that models the training data. Here,
the energy function depends not only on the input z, but
also on a latent state z, so the energy function has the
form FEy(x, z). While including latent states allows these
approaches to richly model latent probabilistic depen-
dencies in data distributions, these approaches are not
particularly amenable to AD since one must marginalize
out the latent variables to recover some value related
to the likelihood. Later studies replaced the probabilistic
latent layers with deterministic ones [270] allowing for
the practical evaluation of Ey(x) for use as an anomaly
score. This sort of model has been successfully used for
deep AD [271]. Recently, EBMs have also been suggested
as a framework to reinterpret deep classifiers where the
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energy-based training has shown to improve robustness
and OOD detection performance [267].

C. Neural Generative Models (VAEs and GANSs)

Neural generative models aim to learn a neural network
that maps vectors sampled from a simple predefined source
distribution Q, usually a Gaussian or uniform distribu-
tion, to the actual input distribution P*. More formally,
the objective is to train the network so that ¢, (Q) =~ P*,
where ¢.,(Q) is the distribution that results from pushing
the source distribution Q through neural network ¢,,. The
two most established neural generative models are VAEs
[272]-[274] and GANs [275].

1) VAEs: VAEs learn deep latent-variable models where
the inputs x are parameterized on latent samples z ~ Q
via some neural network, so as to learn a distribution
po(x | z) such that po(xz) ~ p*(z). A common instan-
tiation of this is to let Q be an isotropic multivariate
Gaussian distribution and let the neural network ¢q. =
(p,,0.) (the decoder) with weights w parameterize the
mean and variance of an isotropic Gaussian distribution,
so po(x|z) ~ N(z;p,(2),02(2)I). Performing maxi-
mum likelihood estimation on 6 is typically intractable.
To remedy this, an additional network ¢, .- (the encoder)
is introduced to parameterize a variational distribution
qor(z| ), with ¢’ encapsulated by the output of ¢,
to approximate the latent posterior p(z | ). The full model
is then optimized via the ELBO in a variational Bayes
manner

max —Dxr(gor (2]2)[P(2)) + Eq,, 21 [log po(@[2)]. (10)

Optimization proceeds using stochastic gradient
variational Bayes [272]. Given a trained VAE, one
can estimate py(x) via Monte Carlo sampling from the
prior p(z) and computing E,.,.)[pe(x|z)]. Using this
score directly for AD has a nice theoretical interpretation,
but experiments have shown that it tends to perform worse
[276], [277] than alternatively using the reconstruction
probability [278], which conditions on x to estimate
Eq,/ (z|x)[log po(x|2)]. The latter can also be seen as a
probabilistic reconstruction model using a stochastic
encoding and decoding process (see Section V-C).

2) GANs: GANSs pose the problem of learning the target
distribution as a zero-sum-game: a generative model is
trained in competition with an adversary that challenges
it to generate samples whose distribution is similar to
the training distribution. A GAN consists of two neural
networks, a generator network ¢, Z — X, and a
discriminator network v, : X — (0,1) that are pitted
against each other so that the discriminator is trained to
discriminate between ¢, (z) and  ~ P*, where z ~ Q.
The generator is trained to fool the discriminator network,
thereby encouraging the generator to produce samples
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more similar to the target distribution. This is done using
the following adversarial objective:

min max Eg ~p+ [log ¥,/ ()]

i T Exollog(l — g (6u(2))). (1)

Training is typically carried out via an alternating optimiza-
tion scheme, which is notoriously finicky [279]. There exist
many GAN variants, for example, the Wasserstein GAN
[280], [281], which is frequently used for AD methods
using GANSs, and StyleGAN, which has produced impres-
sive high-resolution photorealistic images [92].

Due to their construction, GAN models offer no way to
assign a likelihood to points in the input space. Using the
discriminator directly has been suggested as one approach
to use GANs for AD [138], which is conceptually close to
one-class classification (see Section IV). Other approaches
apply optimization to find a point z in latent space Z
such that & = ¢, (2) for the test point &. The authors of
AnoGAN [50] recommend using an intermediate layer of
the discriminator, f,., and setting the anomaly score to
be a convex combination of the reconstruction loss ||z —
¢ (Z)|| and the discrimination loss || f../ (&) — fu/ (9w (2))]|-
In AD-GAN [147], the authors recommend initializing the
search for latent points multiple times to find a collec-
tion of m latent points Zi,..., 2, while simultaneously
adapting the network parameters w; individually for each
z; to improve the reconstruction and using the mean
reconstruction loss as an anomaly score

2 = R a2

Viewing the generator as a stochastic decoder and the
search for an optimal latent point z as an (implicit)
encoding of a test point &, utilizing a GAN this way with
the reconstruction error for AD is similar to reconstruction
methods, particularly AEs (see Section V-C). Later GAN
adaptations have added explicit encoding networks that
are trained to find the latent point 2. This has been
used in a variety of ways, usually again incorporating the
reconstruction error [56], [148], [151].

D. Normalizing Flows

Like neural generative models, normalizing flows
[282]-[284] attempt to map data points from a source
distribution 2z ~ Q (usually called base distribution for nor-
malizing flows) so that = ¢.,(z) is distributed according
to p*. The crucial distinguishing characteristic of normal-
izing flows is that the latent samples are D-dimensional,
so they have the same dimensionality as the input space,
and the network consists of L layers ¢; ., : R® — RP,
SO ¢ = Pr,wy, © -+ O P1,u,, Where each ¢; ., is designed
to be invertible for all w;, thereby making the entire
network invertible. The benefit of this formulation is that



Gaussian (AUC=74.3) RealNVP (AUC=96.3)

KDE (AUC=81.8)

Fig. 6. Density estimation models on the Big Moon, Small Moon
toy example (see Fig. 4). The parametric Gaussian model is limited
to an ellipsoidal (convex, unimodal) density. KDE with an RBF kernel
is more flexible, yet tends to underfit the (multiscale) distribution
due to a uniform kernel scale. RealNVP is the most flexible model,
yet flow architectures induce biases as well, here a connected
support caused by affine coupling layers in RealNVP.

the probability density of & can be calculated exactly via a
change of variables

L
pe(®) = p= (65" () [ [ | det Jois, ()] (13)
=1
where z;, = = and =, = ¢}/, o -+ 0 ¢ '(x) other-

wise. Normalizing flow models are typically optimized to
maximize the likelihood of the training data. Evaluating
each layer’s Jacobian and its determinant can be very
expensive. Consequently, the layers of flow models are
usually designed so that the Jacobian is guaranteed to
be upper (or lower) triangular or have some other nice
structure such that one does not need to compute the full
Jacobian to evaluate its determinant [282], [285], [286]
(see [287] for an application in physics).

An advantage of these models over other methods is that
one can calculate the likelihood of a point directly without
any approximation while also being able to sample from
it reasonably efficiently. Because the density p.(xz) can be
computed exactly, normalizing flow models can be applied
directly for AD [288], [289].

A drawback of these models is that they do not per-
form any dimensionality reduction, which argues against
applying them to images where the true (effective) dimen-
sionality is much smaller than the image dimensionality.
Furthermore, it has been observed that these models often
assign a high likelihood to anomalous instances [277].
Recent work suggests that one reason for this seems to
be that the likelihood in current flow models is dominated
by low-level features due to specific network architecture
inductive biases [243], [290]. Despite present limitations,
we have included normalizing flows here because we
believe that they may provide an elegant and promising
direction for future AD methods. We will come back to this
in our outlook in Section IX.

E. Discussion

Above, we have focused on the case of density esti-
mation on ii.d. samples of low-dimensional data and
images. For comparison, we show in Fig. 6 three canonical
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density estimation models (Gaussian, KDE, and RealNVP)
trained on the Big Moon, Small Moon toy data set, each of
which makes use of a different feature representation (raw
input, kernel, and neural network). It is worth noting that
there exist many deep statistical models for other settings.
When performing conditional AD, for example, one can
use GAN [291], VAE [292], and normalizing flow [293]
variants that perform conditional density estimation. Like-
wise, there exist many DGMs for virtually all data types,
including time-series data [292], [294], text [295], [296],
and graphs [297]-[299], all of which may potentially be
used for AD.

It has been argued that full density estimation is not
needed for solving the AD problem since one learns all
density level sets simultaneously when one really only
needs a single density level set [6], [7], [216]. This violates
Vapnik’s principle: “[W]hen limited amount of data is
available, one should avoid solving a more general prob-
lem as an intermediate step to solve the original problem”
[300]. The methods in Section IV seek to compute only
a single density level set, that is, they perform one-class
classification.

IV. ONE-CLASS CLASSIFICATION
One-class classification [223], [224], [301]-[303], occa-
sionally also called single-class classification [304], [305],
adopts a discriminative approach to AD. Methods based
on one-class classification try to avoid a full estimation
of the density as an intermediate step to AD. Instead,
these methods aim to directly learn a decision boundary
that corresponds to a desired density level set of the
normal data distribution P*, or more generally, to produce
a decision boundary that yields a low error when applied
to unseen data.

A. One-Class Classification Objective

We can see one-class classification as a particularly
tricky classification problem, namely as binary classifica-
tion where we only have (or almost only have) access
to data from one class—the normal class. Given this
imbalanced setting, the one-class classification objective
is to learn a one-class decision boundary that minimizes:
1) falsely raised alarms for true normal instances (i.e.,
the false alarm rate or type I error) and 2) undetected or
missed true anomalies (i.e., the miss rate or type II error).
Achieving a low (or zero) false alarm rate is conceptually
simple: given enough normal data points, one could just
draw some boundary that encloses all the points, for
example, a sufficiently large ball that contains all data
instances. The crux here is, of course, to simultaneously
keep the miss rate low, that is, to not draw this boundary
too loosely. For this reason, one usually a priori specifies
some target false alarm rate o € [0, 1] for which the miss
rate is then sought to be minimized. Note that this precisely
corresponds to the idea of estimating an a-density level set
for some a priori fixed level « € [0, 1]. The key question in
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one-class classification, thus, is how to minimize the miss
rate for some given target false alarm rate with access to
no (or only a few) anomalies.

We can express the rationale above in terms of the
binary classification risk [212], [222]. Let Y € {1} be
the class random variable, where again Y = +1 denotes
normal and Y = —1 denotes anomalous points, so we
can then identify the normal data distribution as P* =
Px|y—+1 and the anomaly distribution as P~ = Px|y—_1,
respectively. Furthermore, let ¢ : R x {1} — R be a binary
classification loss and f : X — R be some real-valued score
function. The classification risk of f under loss £ is then
given by

R(f) = Ex~p [((f(X), +1)] + Ex~p- [((f(X), —1)]. (14)

Minimizing the second term—the expected loss of classi-
fying true anomalies as normal—corresponds to minimiz-
ing the (expected) miss rate. Given some unlabeled data
Ti,...,Zn € X and, potentially, some additional labeled
data (Z1,%1),.- ., (&m, Im), we can apply the principle of
empirical risk minimization to obtain

7;) +R. (15)

e

This solidifies the empirical one-class classification objec-
tive. Note that the second term is an empty sum in the
unsupervised setting. Without any additional constraints
or regularization, the empirical objective (15) would then
be trivial. We add R as an additional term to denote
and capture regularization, which may take various forms
depending on the assumptions about f but critically also
about P~. Generally, the regularization R = R(f) aims to
minimize the miss rate (e.g., via volume minimization and
assumptions about P~) and improve generalization (e.g.,
via smoothing of f). Furthermore, note that the pseudola-
beling of y = +1 in the first term incorporates the assump-
tion that the n unlabeled training data points are normal.
This assumption can be adjusted, however, through specific
choices of the loss (e.g., hinge) and regularization, for
example, requiring some fraction of the unlabeled data to
get misclassified to include an assumption about the conta-
mination rate 7 or achieve some target false alarm rate a.

B. One-Class Classification in Input Space

As an illustrative example that conveys useful intu-
ition, consider the simple idea from above of fit-
ting a data-enclosing ball as a one-class model. Given

T1,...,Zn € X, we can define the following objective:
1 n
. 2
min R — ;
Roc.€ ton ;&
st e —c| <R*+6&, &>0 Vi (16)
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In other words, we aim to find a hypersphere with radius
R > 0 and center ¢ € X that encloses the data
(l&; — ¢||*> < R?). To control the miss rate, we mini-
mize the volume of this hypersphere by minimizing R? to
achieve a tight spherical boundary. Slack variables & > 0
allow some points to fall outside the sphere, thus making

the boundary soft, where hyperparameter v € (0, 1] bal-
ances this tradeoff.

Objective  (16) exactly corresponds to SVDD
applied in the input space X, motivated above
as in [7], [223], and [224]. Equivalently, we can
derive (16) from the binary classification risk.
Consider the (shifted, cost-weighted) hinge loss
L(s,y) defined by {(s,+1) = (1/(1+v))max(0,s)
and /(s,—1) = (v/(1 +v)) max(0, —s) [222]. Then, for a

hypersphere model fy(x) = H:v—c||2 R? with parameters
0 = (R,c), the corresponding classification risk (14) is
given by

min Expe [max(0, | X — el - R)]

+v Ex~p-[max(0, R? - [IX — CH2)]

a7
We can estimate the first term in (17) empirically from
x1,...,Tn, again assuming that (most of) these points
have been drawn from P*. If labeled anomalies are
absent, we can still make an assumption about their
distribution P~. Following the basic, uninformed prior
assumption that anomalies may occur uniformly on X
(i.e., P = U(X)), we can examine the expected value in
the second term analytically:

EXNL{(X)[maX (0,R* — | X —c|?)]

/ max(0, R> — ||z — ¢|*) d\(z)

o < g2

SE X S

(18)

where Br(c) C X denotes the ball centered at ¢ with
radius R and ) is again the standard (Lebesgue) measure
of volume.? This shows that the minimum volume principle
[218], [220] naturally arises in one-class classification
through seeking to minimize the risk of missing anomalies,
here illustrated for an assumption that the anomaly
distribution P~ follows a uniform distribution. Overall,
from (17), we, thus, can derive the empirical objective

mm R? + — Zmax 0, |z — ¢||* — R?) (19)

which corresponds to (16) with the constraints directly
incorporated into the objective function. We remark
that the cost-weighting hyperparameter v € (0,1] is

3 Again note that we assume A\(X) < oo here, that is, the data space
X can be bounded to numerically meaningful values.



purposefully chosen here since it is an upper bound on the
ratio of points outside and a lower bound on the ratio of
points inside or on the boundary of the sphere [6], [137].
We can, therefore, see v as an approximation of the false
alarm rate, that is, v ~ a.

A sphere in the input space X is, of course, a very limited
model and only matches a limited class of distributions
P* (e.g., an isotropic Gaussian distribution). MVEs [178],
[306] and the MCD estimator [307] are a generalization
to nonisotropic distributions with elliptical support. Non-
parametric methods, such as one-class neighbor machines
[308], provide additional freedom to model multimodal
distributions having nonconvex support. Extending the
objective and principles above to general feature spaces
(e.g., [211], [300], and [309]) further increases the flexi-
bility of one-class models and enables decision boundaries
for more complex distributions.

C. Kernel-Based One-Class Classification

The kernel-based OC-SVM [6], [310] and SVDD
[7]1, [224] are perhaps the most well-known one-class
classification methods. Let £ : X x X — R be some
PSD kernel with associated RKHS F;, and corresponding
feature map ¢ : X — Fi, so k(z,z) = (¢r(x), ¢u(Z))
for all z,Z € X. The objective of (kernel) SVDD is again
to find a data-enclosing hypersphere of minimum volume.
The SVDD primal problem is the one given in (16) but with
the hypersphere model fs(x) = ||¢x () — ¢||* — R? defined
in feature space Fj, instead. In comparison, the OC-SVM
objective is to find a hyperplane w € Fj that separates
the data in feature space F;, with maximum margin from
the origin

1 5 1 —
min 5] —p+%;§i

stop—(du(@:),w) <&, &>0 Vi (20)

Thus, the OC-SVM wuses a linear model fyp(z) =
p — (¢r(x),w) in feature space F;, with model parameters
6 = (w, p). The margin to the origin is given by (p/|lw||),
which is maximized via maximizing p, where ||w|| acts as
a normalizer.

Both the OC-SVM and SVDD can be solved in their
respective dual formulations that are quadratic programs
that only involve dot products (the feature map ¢y is
implicit). For the standard Gaussian kernel (or any kernel
with constant norm k(z,z) = ¢ > 0), the OC-SVM and
SVDD are equivalent [224]. In this case, the corresponding
density level set estimator defined by

Cy={x € X|fo(x) <0} @1

is, in fact, an asymptotically consistent v-density level set
estimator [311]. The solution paths of hyperparameter v
have been analyzed for both the OC-SVM [312] and
SVDD [313].
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Kernel-induced feature spaces considerably improve the
expressive power of one-class methods and allow learning
well-performing models in multimodal, nonconvex, and
nonlinear data settings. Many variants of kernel one-class
classification have been proposed and studied over the
years, such as hierarchical formulations for nested density
level set estimation [314], [315], multisphere SVDD [316],
multiple kernel learning for OC-SVM [317], [318],
OC-SVM for group AD [197], boosting via L,-norm reg-
ularized OC-SVM [319], one-class kernel Fisher discrimi-
nants [320]-[322], Bayesian data description [323], and
distributed [324], incremental learning [325], or robust
[326] variants.

D. Deep One-Class Classification

Selecting kernels and handcrafting relevant features
can be challenging and quickly become impractical for
complex data. Deep one-class classification methods
aim to overcome these challenges by learning useful
neural network feature maps ¢, : X — Z from the
data or transferring such networks from related tasks.
Deep SVDD [137], [144], [145], [327] and deep
OC-SVM variants [136], [328] employ a hypersphere
model fo(x) = ||pu(x) —c||> — R* and linear model
fo(x) = p — (¢u(x),w) with explicit neural feature
maps ¢.(-) in (16) and (20), respectively. These methods
are typically optimized with SGD variants [329]-[331],
which, together with GPU parallelization, makes them
scale to large data sets.

The one-class Deep SVDD [137], [332] has been intro-
duced as a simpler variant compared to using a neural
hypersphere model in (16), which poses the following
objective:

1 5
min g;m(m—cn +R. (22)

Here, the neural network transformation ¢.(-) is learned
to minimize the mean squared distance over all data points
to center ¢ € Z. Optimizing this simplified objective has
been found to converge faster and be effective in many
situations [137], [144], [332]. In light of our unifying
view, we will see that we may interpret one-class Deep
SVDD also as a single-prototype deep clustering method
(see Sections V-A2 and V-D).

A recurring question in deep one-class classification is
how to meaningfully regularize against a feature map
collapse ¢, = c. Without regularization, minimum vol-
ume or maximum margin objectives, such as (16), (20),
or (22), could be trivially solved with a constant mapping
[137], [333]. Possible solutions for this include adding
a reconstruction term or architectural constraints [137],
[327], freezing the embedding [136], [139], [140], [142],
[334], inversely penalizing the embedding variance [335],
using true [144], [336], auxiliary [139], [233], [332],
[337], or artificial [337] negative examples in training,
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MVE (AUC=74.7)

SVDD (AUC=90.9)  DSVDD (AUC=97.5)

Fig. 7. One-class classification models on the Big Moon, Small
Moon toy example (see Fig. 4). An MVE in input space is limited to
enclose an ellipsoidal, convex region. By (implicitly) fitting a
hypersphere in kernel feature space, SVDD enables nonconvex
support estimation. Deep SVDD learns an (explicit) neural feature
map (here with smooth ELU activations) that extracts multiple data
scales to fit a hypersphere model in feature space for support
description.

pseudolabeling [152], [153], [155], [335], or integrat-
ing some manifold assumption [333]. Further variants of
deep one-class classification include multimodal [145] or
time-series extensions [338] and methods that employ
adversarial learning [138], [141], [339] or transfer
learning [139], [142].

Deep one-class classification methods generally offer
greater modeling flexibility and enable the learning or
transfer of task-relevant features for complex data. They
usually require more data to be effective though or must
rely on some informative domain prior (e.g., some pre-
trained network). However, the underlying principle of
one-class classification methods—targeting a discrimina-
tive one-class boundary in learning—remains unaltered,
regardless of whether a deep or shallow feature map
is used. We show three canonical one-class classification
models (MVE, SVDD, and DSVDD) trained on the Big
Moon, Small Moon toy data set, each using a different
feature representation (raw input, kernel, and neural net-
work), in Fig. 7 for comparison.

E. Negative Examples

One-class classifiers can usually incorporate labeled
negative examples (y = —1) in a direct manner due to
their close connection to binary classification, as explained
above. Such negative examples can facilitate an empirical
estimation of the miss rate [see (14) and (15)]. We here
recognize three qualitative types of negative examples that
have been studied in the literature, which we distinguish
as artificial, auxiliary, and true negative examples that
increase in their informativeness in this order.

The idea to approach unsupervised learning problems
through generating artificial data points has been around
for some time (see [340, Section 14.2.4]). If we assume
that the anomaly distribution P~ has some form that we
can generate data from, one idea would be to simply train
a binary classifier to discern between the normal and the
artificial negative examples. For the uniform prior P~ =
U(X), this approach yields an asymptotically consistent
density level set estimator [212]. However, classification
against uniformly drawn points from a hypercube quickly
becomes ineffective in higher dimensions. To improve
over artificial uniform sampling, more informed sampling

770 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

strategies have been proposed [341], such as resampling
schemes [342], manifold sampling [343], and sampling
based on local density estimation [344], [345], as well
as active learning strategies [346]-[348]. Another recent
idea is to treat the enormous quantities of data that are
publicly available in some domains as auxiliary negative
examples [233], for example, images from photo-sharing
sites for computer vision tasks and the English Wikipedia
for NLP tasks. Such auxiliary examples provide more
informative domain knowledge, for instance, about the
distribution of natural images or the English language,
in general, as opposed to sampling random pixels or words.
This approach, called OE [233], which trains on known
anomalies, can significantly improve deep AD performance
in some domains [153], [233]. OE has also been used with
density-based methods by employing a margin loss [233]
or temperature annealing [243] on the log-likelihood
ratio between positive and negative examples. The most
informative labeled negative examples are ultimately
true anomalies, for example, verified by some domain
expert. Access to even a few labeled anomalies has been
shown to improve detection performance significantly
[144], [224], [229]. There also have been active learning
algorithms proposed, which includes subjective user
feedback (e.g., from an expert) to learn about the
user-specific informativeness of particular anomalies in
an application [349]. Finally, we remark that negative
examples have also been incorporated heuristically into
reconstruction models via using a bounded reconstruction
error [350] since maximizing the unbounded error for
negative examples can quickly become unstable. We will
turn to reconstruction models next.

V.RECONSTRUCTION MODELS

Models that are trained on a reconstruction objective are
among the earliest [351], [352] and most common
[180], [182] neural network approaches to AD.
Reconstruction-based methods learn a model that is
optimized to well-reconstruct normal data instances,
thereby aiming to detect anomalies by failing to accurately
reconstruct them under the learned model. Most of these
methods have a purely geometric motivation (e.g., PCA or
deterministic AEs), yet some probabilistic variants reveal
a connection to density (level set) estimation. In this
section, we define the general reconstruction learning
objective, highlight common underlying assumptions,
present standard reconstruction-based methods, and
discuss their variants.

A. Reconstruction Objective

Let oo X — X,x — ¢o(x) be a feature map
from the data space X onto itself that is composed of
an encoding function ¢. : X — Z (the encoder) and a
decoding function ¢, : Z — X (the decoder), that is,
®o = (¢pa © ¢c)o, where 0 holds the parameters of both
the encoder and the decoder. We call Z the latent space
and ¢.(z) = z the latent representation (or embedding or



code) of x. The reconstruction objective then is to learn
¢o such that ¢g(x) = ¢a(pe(x)) = & =~ =, that is, to find
some encoding and decoding transformation so that x is
reconstructed with minimal error, usually measured in the

Euclidean distance. Given unlabeled data x1,...,z, € X,
the reconstruction objective is given by
) 1 n
min 53 llei— (@aoddo(@)I +R @)

where R again denotes the different forms of regulariza-
tion that various methods introduce, for example, on the
parameters 6, the structure of the encoding and decod-
ing transformations, or the geometry of latent space Z.
Without any restrictions, the reconstruction objective (23)
would be optimally solved by the identity map ¢y = id, but
then, of course, nothing would be learned from the data.
In order to learn something useful, structural assump-
tions about the data-generating process are, therefore,
necessary. We here identify two principal assumptions: the
manifold and the prototype assumptions.

1) Manifold Assumption: The manifold assumption
asserts that the data lives (approximately) on some lower
dimensional (possibly nonlinear and nonconvex) mani-
fold M that is embedded within the data space X, that
is, M C X with dim(M) < dim(X). In this case, X is,
sometimes, also called the ambient or observation space.
For natural images observed in pixel space, for instance,
the manifold captures the structure of scenes, variation due
to rotation and translation, and changes in color, shape,
size, texture, and so on. For human voices observed in
audio-signal space, the manifold captures variation due
to the words being spoken and person-to-person varia-
tion in the anatomy and physiology of the vocal folds.
The (approximate) manifold assumption implies that there
exists a lower dimensional latent space Z and functions
¢e : X — Z and ¢4 : Z — X such that, for all z € X,
z = ¢a(¢e(x)). Consequently, the generating distribution
P can be represented as the push-forward through ¢, of a
latent distribution Pz. Equivalently, the latent distribution
P is the push-forward of P through ¢..

The goal of learning is, therefore, to learn the pair
of functions ¢. and ¢4 so that ¢q(pe(X)) =~ M C X.
Methods that incorporate the manifold assumption usu-
ally restrict the latent space Z C R?% to have much
lower dimensionality d than the data space X C RP”
(i.e., d < D). The manifold assumption is also widespread
in related unsupervised learning tasks, such as manifold
learning itself [353], [354], dimensionality reduction [3],
[355]-[357], disentanglement [210], [358], and represen-
tation learning, in general [80], [359].

2) Prototype Assumption: The prototype assumption
asserts that there exists a finite number of prototypi-
cal elements in the data space X that characterize the
data well. We can model this assumption in terms of a
data-generating distribution that depends on a discrete
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latent categorical variable Z € Z = {1,..., K} that cap-
tures some K prototypes or modes of the data distribution.
This prototype assumption is also common in clustering
and classification when we assume a collection of prototyp-
ical instances represent clusters or classes well. With the
reconstruction objective under the prototype assumption,
we aim to learn an encoding function that, for x € X,
identifies a ¢.(x) = k € {1,...,K} and a decoding
function k — ¢4(k) = ci that maps to some kth prototype
(or some prototypical distribution or mixture of prototypes
more generally) such that the reconstruction error ||z — cx||
becomes minimal. In contrast to the manifold assumption
where we aim to describe the data by some continuous
mapping, under the (most basic) prototype assumption,
we characterize the data by a discrete set of vectors
{c1,...,ex} C X. The method of representing a data
distribution by a set of prototype vectors is also known as
VQ [360], [361].

3) Reconstruction Anomaly Score: A model that is
trained on the reconstruction objective must extract salient
features and characteristic patterns from the data in
its encoding—subject to imposed model assumptions—
so that its decoding from the compressed latent repre-
sentation achieves low reconstruction error (e.g., feature
correlations and dependencies, recurring patterns, clus-
ter structure, and statistical redundancy). Assuming that
the training data zi,...,z, € X include mostly normal
points, we, therefore, expect a reconstruction-based model
to produce a low reconstruction error for normal instances
and a high reconstruction error for anomalies. For this
reason, the anomaly score is usually also directly defined
by the reconstruction error

s(@) = [|& = (¢a 0 de)o(2)]|”. 24)
For models that have learned some truthful manifold struc-
ture or prototypical representation, a high reconstruction
error would then detect off-manifold or nonprototypical
instances.

Most reconstruction methods do not follow any
probabilistic motivation, and a point x gets flagged anom-
alous simply because it does not conform to its ‘ideal-
ized’ representation ¢4(¢e(x)) = & under the encoding
and decoding processes. However, some reconstruction
methods also have probabilistic interpretations, such as
PCA [362], or even are derived from probabilistic objec-
tives, such as Bayesian PCA [363] or VAEs [272]. These
methods are again related to density (level set) estimation
(under specific assumptions about some latent structure),
usually in the sense that a high reconstruction error indi-
cates low-density regions, and vice versa.

B. Principal Component Analysis

A common way to formulate the PCA objective is to
seek an orthogonal basis W in data space X C RP”
that maximizes the empirical variance of the (centered)
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dataxi,...,z, € X

max ;HW:&H st WWw' =1 (25)

Solving this objective results in a well-known eigenvalue
problem since the optimal basis is given by the eigen-
vectors of the empirical covariance matrix where the
respective eigenvalues correspond to the componentwise
variances [364]. The d < D components that explain most
of the variance—the principal components—are then given
by the d eigenvectors that have the largest eigenvalues.

Several works have adapted PCA for AD [77],
[365]-[370], which can be considered the default recon-
struction baseline. From a reconstruction perspective,
the objective to find an orthogonal projection W'W to
a d-dimensional linear subspace (which is the case for
W e R¥™P with WW T = I) such that the mean squared
reconstruction error is minimized

. T 2 T_
mml/nZH:m W Wa|* st WW' =1 (26)

i=1

yields exactly the same PCA solution. Thus, PCA opti-
mally solves the reconstruction objective (23) for a linear
encoder ¢.(x) = Wz = z and transposed linear decoder
#a(z) = Wz with constraint WW T = I. For linear PCA,
we can also readily identify its probabilistic interpreta-
tion [362], namely that the data distribution follows from
the linear transformation X = W' Z+¢ of a d-dimensional
latent Gaussian distribution Z ~ A(0,I), possibly with
added noise ¢ ~ N (0,062 I) so that P = N (0,WTW +
o I). Maximizing the likelihood of this Gaussian over the
encoding and decoding parameter W again yields PCA
as the optimal solution [362]. Hence, PCA assumes that
the data live on a d-dimensional ellipsoid embedded in
data space X C RP. Standard PCA, therefore, provides an
illustrative example for the connections between density
estimation and reconstruction.

Linear PCA, of course, is limited to data encodings that
can only exploit linear feature correlations. kPCA [3] intro-
duced a nonlinear generalization of component analysis
by extending the PCA objective to nonlinear kernel feature
maps and taking advantage of the “kernel trick.” For a PSD
kernel k(x, &) with feature map ¢y, : X — Fy, kPCA solves
the reconstruction objective (26) in feature space Fy :

min > llgr(a) =W Weon(m)|* st WW' =1 (27)
=1

which results in an eigenvalue problem of the kernel
matrix [3]. For kPCA, the reconstruction error can again
serve as an anomaly score. It can be computed implicitly
via the dual [4]. This reconstruction from linear prin-
cipal components in feature space F; corresponds to a

772 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

PCA (AUC=66.8)

kPCA (AUC=94.0) AE (AUC=97.9)

Fig. 8.
example (see Fig. 4). PCA finds the linear subspace with the lowest
reconstruction error under an orthogonal projection of the data.

Reconstruction models on the Big Moon, Small Moon toy

kPCA solves (linear) component analysis in kernel feature space,
which enables an optimal reconstruction from (kernel-induced)
nonlinear components in input space. An AE with 1-D latent code
learns a 1-D, nonlinear manifold in input space having minimal
reconstruction error.

reconstruction from some nonlinear subspace or manifold
in input space X [371]. Replacing the reconstruction
WTWéi(x) in (27) with a prototype ¢ € F yields a
reconstruction model that considers the squared error to
the kernel mean since the prototype is optimally solved by
c=(1/n) 3", ¢(x;) for the L*-distance. For RBF kernels,
this prototype model is (up to a multiplicative constant)
equivalent to KDE [4], which provides a link between ker-
nel reconstruction and nonparametric density estimation
methods. Finally, rPCA variants have been introduced as
well [372]-[375], which account for data contamination
or noise (see Section II-C2).

C. Autoencoders

AEs are reconstruction models that use neural networks
for the encoding and decoding of data. They were
originally introduced during the 1980s [376]-[379]
primarily as methods to perform nonlinear dimensionality
reduction [380], [381], yet they have also been studied
early on for AD [351], [352]. Today, deep AEs are among
the most widely adopted methods for deep AD in the
literature [44], [511, [54], [125]-[135] likely due to
their long history and easy-to-use standard variants. The
standard AE objective is given by

) 1 n
min ; lzi — (paode)w(@)|® +R (28)

which is a realization of the general reconstruction
objective (23) with § = w, that is, the optimization is
carried out over the weights w of the neural network
encoder and decoder. A common way to regularize
AEs is by mapping to a lower dimensional “bottleneck”
representation ¢.(x) = z € Z through the encoder
network, which enforces data compression and effectively
limits the dimensionality of the manifold or subspace to be
learned. If linear networks are used, such an AE, in fact,
recovers the same optimal subspace as spanned by the PCA
eigenvectors [382], [383]. In Fig. 8, we show a comparison
of three canonical reconstruction models (PCA, kPCA, and
AE) trained on the Big Moon, Small Moon toy data set, each
using a different feature representation (raw input, kernel,
and neural network), resulting in different manifolds.



Apart from a “bottleneck,” a number of different ways
to regularize AEs have been introduced in the literature.
Following ideas of sparse coding [384]-[387], sparse
AEs [388], [389] regularize the (possibly higher
dimensional, overcomplete) latent code toward sparsity,
for example, via L' Lasso penalization [390]. DAEs [391],
[392] explicitly feed noise-corrupted inputs £ = x + ¢ into
the network, which is then trained to reconstruct the orig-
inal inputs x. DAEs, thus, provide a way to specify a noise
model for e (see Section II-C2), which has been applied for
noise-robust acoustic novelty detection [42], for instance.
In situations in which the training data are already
corrupted with noise or unknown anomalies, robust deep
AEs [127], which splits the data into well-represented and
corrupted parts similar to rPCA [374], have been proposed.
Contractive AEs (CAEs) [393] propose to penalize the
Frobenius norm of the Jacobian of the encoder activations
with respect to the inputs to obtain a smoother and more
robust latent representation. Such ways of regularization
influence the geometry and shape of the subspace or man-
ifold that is learned by the AE, for example, by imposing
some degree of smoothness or introducing invariances
toward certain types of input corruptions or transforma-
tions [131]. Hence, these regularization choices should
again reflect the specific assumptions of a given AD task.

Besides the above deterministic variants, probabilistic
AEs have also been proposed, which again establish a
connection to density estimation. The most explored class
of probabilistic AEs are VAEs [272]-[274], as introduced in
Section III-C1, through the lens of neural generative mod-
els, which approximately maximizes the data likelihood (or
evidence) by maximizing the ELBO. From a reconstruction
perspective, VAEs adopt a stochastic autoencoding process,
which is realized by encoding and decoding the parameters
of distributions (e.g., Gaussians) through the encoder and
decoder networks, from which the latent code and recon-
struction then can be sampled. For a standard Gaussian
VAE, for example, where q¢(z|z) ~ N(u,,diag(c2)),
p(z) ~ N(0,I), and p(z|z) ~ N(m,,I) with encoder
¢e,w' () = (g, 0z) and decoder ¢gq,.,(z) = p,, the empir-
ical ELBO objective (10) becomes

n M

min ~3° 3"

i=1 j=1

1, 2
Sz =

+ DxL (N (2ij; iy, diag(oz,)) |V (2:5;0,1)) | (29)

where z;1,...,2;m are M Monte Carlo samples drawn
from the encoding distribution z ~ ¢(z|x;) of ;. Hence,
such a VAE is trained to minimize the mean reconstruction
error over samples from an encoded latent Gaussian that
is regularized to be close to a standard isotropic Gaussian.
VAEs have been used in various forms for AD [276],
[278], [394], for instance, on multimodal sequential data
with LSTMs in robot-assisted feeding [395] and for new
physics mining at the Large Hadron Collider [74]. Another
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class of probabilistic AEs that has been applied to AD are
AAEs [44], [51], [396]. By adopting an adversarial loss
to regularize and match the latent encoding distribution,
AAEs can employ any arbitrary prior p(z), as long as
sampling is feasible.

Finally, other AE variants that have been applied to
AD include RNN-based AEs [194], [231], [397], [398],
convolutional AEs [54], AE ensembles [126], [398], and
variants that constrain the gradients [399] or actively
control the latent code topology [400] of an AE. AEs also
have been utilized in two-step approaches that use AEs for
dimensionality reduction and apply traditional methods on
the learned embeddings [136], [401], [402].

D. Prototypical Clustering

Clustering methods that make the prototype assump-
tion provide another approach to reconstruction-based
AD. As mentioned above, the reconstruction error here is
usually given by the distance of a point to its nearest proto-
type, which ideally has been learned to represent a distinct
mode of the normal data distribution. Prototypical cluster-
ing methods [403] include the well-known VQ algorithms
k-means, k-medians, and k-medoids that define a Voronoi
partitioning [404], [405] over the metric space where they
are applied—typically the input space X. Kernel variants
of k-means have also been studied [406] and considered
for AD [316]. GMMs with a finite number of k£ mixtures
(see Section III-A) have been used for (soft) prototypical
clustering as well. Here, the distance to each cluster (or
mixture component) is given by the Mahalanobis distance
that is defined by the covariance matrix of the respective
Gaussian mixture component [261].

More recently, deep learning approaches to clustering
have also been introduced [407]-[410], some also
based on k-means [411], and adopted for AD [129],
[401], [412]. As in deep one-class classification
(see Section IV-D), a persistent question in deep clustering
is how to effectively regularize against a feature map col-
lapse [413]. Note that, while, for deep clustering methods,
the reconstruction error is measured in latent space Z,
for deep AEs, it is measured in the input space X after
decoding. Thus, a latent feature collapse (i.e., a constant
encoder ¢. = ¢ € Z) would result in a constant decoding
(the data mean at optimum) for an AE, which, generally,
is a suboptimal solution of (28). For this reason, AEs seem
less susceptible to a feature collapse though they have also
been observed to converge to bad local optima under SGD
optimization, specifically if they employ bias terms [137].

VI. UNIFYING VIEW OF ANOMALY
DETECTION

In this section, we present a unifying view of the AD
problem. We identify specific AD modeling components
that allow us to characterize the many methods discussed
above in a systematic way. Importantly, this view reveals
connections that enable the transfer of algorithmic ideas
between existing AD methods. Thus, it uncovers promising
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Table 2 AD Methods Identified With Our Unifying View (Last Column Contains Representative References)

Method Loss £(s,y) Model fo(a) Feature Map ¢(x) ~ Parameter 6 Regularization R(f, ¢, 0) Bayes?  References
Parametric Density —log(s) p(8) z (input) 6 choice of density class {pg |6 € ©} x [414], [415]
Gaussian/Mahalanobis log(s) N (x|, Z) z Ginput)  (k, ) = x [414], [415)
GMM —log(s) Sk N (@, Sx) @ (input) (7,1, ) number of mixture components K latent [416]
KDE —log(s) exp(—||¢x () — pl|?) fr(x)  (kemel) p kernel hyperparameters (e.g., bandwidth h) x [255], [256]
EBMs —log(s) gy xp(~E(@(@), 2 6)) G(x)  (various) latent prior p(z) latent  [264], [271]
Normalizing Flows —log(s) p=(¢5" (@) |det J, 1 ()] fu(®)  (neural) w base distribution pz (2): diffeomorphism architecture X [283], [288]
GAN (D-based) —log(s) o((w, (@) Yo() (neural)  (w,w) adversarial training x [561. [339]
Min. Vol. Sphere max(0, s) lz — ¢||? — R? z (inpu) (¢, R) vR? x [224]
Min. Vol. Ellipsoid max(0, s) (x—c)TSY(z—c) - R? 3 (input) (¢, R, %) v(IZI13, + R?) X [307]
SVDD max(0, s) [l () — || — R? fr(x)  (kemel)  (c,R) vR? x m
Semi-Sup. SVDD max(0, ys) [lpx () — cl|? — R? fr(x)  (kemel) (c,R) vR? x [71. [229]
Soft Deep SVDD max(0, s) [|pw(x) — || — R? ¢u(x) (neural) (¢, R,w) vR?; weight decay; collapse reg. (various) X [137]
OC Deep SVDD s [l () — €| fu(®)  (eural)  (c,w) weight decay: collapse reg. (various) x [137]
Deep SAD sY [[pw(x) — | du(®) (neural)  (c,w) weight decay X [144]
OC-SVM max(0, 5) p—(w, d(x)) ¢(z)  (kemel)  (w,p) v(3|lwl? - p) x (6]
OC-NN max(0, s) p—(w, du()) fu(®)  (neural)  (w,p,w) v($|w|[2 ~ p): weight decay X [328]
Bayesian DD max(0, s) [|px () — cl|> — R? ¢i(x)  (kemel) (¢, R) =3, aigp (@) with prior o ~ N (g, %) fully [323]
GT —log(s) T ok ((w, 6o (Tk ()))) fu(®)  (neural)  (w,w) transformations T = {T1,..., Tk} for self-labeling X [152], [153]
GOAD (CE) —log(s) Tk ok (=16 (Ti () — exl?) fu(®) (meural)  (c1,...,cx,w) transformations T = {T1,..., T} for self-labeling X [155]
BCE (supervised) —ylog(s)— 5L log(1—s)  o((w, pu(x))) fu(®)  (meural)  (w,w) weight decay x [3321
BNN (supervised) —ylog(s)— 5% log(1-s)  o((w, pu())) fu(®)  (meural)  (w,w) prior p(w, w) fully [417], [418)
PCA s le — WTWe|3 z (inpuy W wwT =1 x [365]
Robust PCA s lz — WTWea|1 z (inpuyy W WWT =1 x 13721
Probabilistic PCA —log(s) N (|0, WTW +0%1) z Gnpuy (W, 0?) linear latent Gauss model @ = Wz + ¢ latent [362]
Bayesian PCA log(s) N ([0, WTW + 021) p(W|eax) z (input) (W, 0?) linear latent Gauss model with prior p(W |cr) fully [363]
Kernel PCA s [lr () — W T Wy ()| én(@) (kemel) W wwT =1 x [31. [4]
Autoencoder s [lz — ¢ ()13 fu(®)  (eural)  w advers. (AAE), contract. (CAE), denois. (DAE), etc. X [127], [135)
VAE —log(s) po., (2|2) fo(@)  (meural) w latent prior p(z) latent  [274], [278]
GAN (G-based) —log(s) po., (2|2) fu(®)  (neural) w adversarial training and latent prior p(z) latent  [S0]. [147]
k-means s | — argmin, ||z - cx 213 z (input)  (e1,...,ex) number of prototypes K x [403], [416]
k-medians s | — argmin,., ||z — 1]l z (inpu)  (c1,...,ex) number of prototypes K x [403]
vQ s [l — pq(argming, [lde(x) — ekl d() (various) (1, ..., cx) number of prototypes K’ X [360], [361]

directions for future research, such as transferring concepts
and ideas from kernel-based AD to deep methods, and
vice versa.

A. Modeling Dimensions of the AD Problem

We identify the following five components or modeling
dimensions for AD:

D1 Loss :RXY =R (s,y)— L(s,y)
D2 Model fo: X =Rz fo(x)

D3 Feature Map x — ¢(x)

D4 Regularization  R(f,,0)

D5 Inference Mode Frequentist or Bayesian 6 ~ p(6)

Dimension D1 Loss is the (scalar) loss function that is
applied to the output of some model fy(x). Semisupervised
or supervised methods use loss functions that incorpo-
rate labels, but, for the many unsupervised AD methods,
we have {(s,y) = £(s). D2 Model defines the specific
model f, that maps an input € X to some scalar value
that is evaluated by the loss. We have arranged our previ-
ous three sections along this modeling dimension where
we covered certain groups of methods that formulate
models based on common principles, namely probabilistic
modeling, one-class classification, and reconstruction. Due
to the close link between AD and density estimation (see
Section II-B5), many of the methods formulate a likeli-
hood model fy(x) = po(x|D,) with negative log-loss
£(s) = —log(s), that is, they have a negative log-likelihood
objective, where D,, = {z1,...,x,} denotes the training
data. Dimension D3 captures the Feature Map x — ¢(x)
that is used in a model fy. This could be an (implicit)
feature map ¢ (x) defined by some given kernel & in kernel
methods, for example, or an (explicit) neural network
feature map ¢.(x) that is learned and parameterized
with network weights w in deep learning methods. With
dimension D4 Regularization, we capture various forms of
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regularization R(f, ¢, 0) of the model fy, the feature map
¢, and their parameters 6 in a broader sense. Note that
here may include both model parameters and feature map
parameters, thatis, § = (6, 6,), in general. 6 could be the
distributional parameters of a parametric density model,
for instance, and 6, the weights of a neural network.
Our last modeling dimension D5 describes the Inference
Mode, specifically whether a method performs Bayesian
inference [416].

The identification of the above modeling dimensions
enables us to formulate a general AD learning objective
that encompasses a broad range of AD methods:

min TS (fo(@)v) A R 60). )
=il

Denoting the minimum of (x) by 6*, the anomaly score
of a test input & is computed via the model fo«(Z).
In the Bayesian case, where the objective in (x) is the
negative log-likelihood of a posterior p(f|D,) induced
by a prior distribution p(0), we can predict in a fully
Bayesian fashion via the expected model Eg..,¢ | p,.) fo(Z).
In Table 2, we describe many well-known AD methods
using our unifying view.

B. Comparative Discussion

In the following, we compare the various approaches
in light of our unifying view and discuss how this view
enables the transfer of concepts between existing AD
methods. Table 2 shows that the probabilistic methods
are largely based on the negative log-likelihood objec-
tive. The resulting negative log-likelihood anomaly scores
provide a (usually continuous) ranking that is generally
more informative than a binary density level set detec-
tor (see Section II-B7). Reconstruction methods provide
such a ranking as well, with the anomaly score given by
the difference of a data instance and its reconstruction



under the model. Besides ranking and detecting anomalies,
such scores make it possible to also rank inliers, which
can be used, for example, to judge cluster memberships
or determine prototypes (see Section V-D). Reconstruc-
tion is particularly well suited when the data follow
some manifold or prototypical structure (see Section V-A).
In comparison, standard one-class classification methods,
which aim to estimate a discriminative level set boundary
(see Section IV), usually do not rank inliers. This is typi-
cally incorporated into the learning objective via a hinge
loss, as can be seen in Table 2. One-class classification
is generally more sample-efficient and more robust to
a nonrepresentative sampling of the normal data (e.g.,
a sampling bias toward specific normal modes) [224] but
is consequentially also less informative. However, an inlier
ranking for one-class classification can still be obtained
via the distance of a point to the decision boundary, but
such an approximate ranking may not faithfully repre-
sent in-distribution modes and so on. In addition to the
theoretical comparison and discussion of AD methods in
regard to our unifying view, we will present an empirical
evaluation that includes methods from all three groups
(probabilistic, one-class classification, and reconstruction)
and three types of feature maps (raw input, kernel, and
neural network) in Section VII-C, where we find that the
detection performance in different data scenarios is very
heterogeneous among the methods (with an advantage for
deep methods on the more complex, semantic detection
tasks). This exemplifies the fact that there is no simple
“silver bullet” solution to the AD problem.

In addition to providing a framework for comparing
methods, our unifying view also allows us to identify
concepts that may be transferred between shallow and
deep AD methods in a systematic manner. We discuss a
few explicit examples to illustrate this point here. Table 2
shows that both the (kernel) SVDD and Deep SVDD employ
a hypersphere model. This connection can be used to
transfer adaptations of the hypersphere model from one
world to another (from shallow to deep, or vice versa).
The adoption of semisupervised [144], [229], [419] or
multisphere [145], [155], [316] model extensions give
successful examples for such a transfer. Next, note in
Table 2, that deep AEs usually consider the reconstruction
error in the original data space X after a neural network
encoding and decoding. In comparison, kPCA defines the
error in kernel feature space F. One might ask whether
using the reconstruction error in some neural feature
space may also be useful for AEs, for instance, to shift
detection toward higher level feature spaces. Recent work
that includes the reconstruction error over the hidden
layers of an AE [135], indeed, suggests that this concept
can improve detection performance. Another question one
might ask when comparing the reconstruction models
in Table 2 is whether including the prototype assumption
(see Section V-A2) could also be useful in deep autoencod-
ing and how this can be achieved practically. The VQ-VAE
model, which introduces a discrete codebook between the
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neural encoder and decoder, presents a way to incorporate
this concept that has shown to result in reconstructions
with improved quality and coherence in some settings
[408], [409]. Besides these existing proofs of concept for
transferring ideas, which we have motivated here from our
unifying view, we outline further potential combinations to
explore in future research in Section IX-A.

C. Distance-Based Anomaly Detection

Our unifying view focuses on AD methods that for-
mulate some loss-based learning objectives. Apart from
these methods, there also exists a rich literature on purely
“distance-based” AD methods and algorithms that have
been studied extensively in the data mining community,
in particular. Many of these algorithms follow a lazy
learning paradigm, in which there is no a priori training
phase of learning a model, but, instead, new test points
are evaluated with respect to the training instances only
as they occur. We here group these methods as “distance-
based” without further granularity but remark that various
taxonomies for these types of methods have been proposed
[161], [179]. Examples of such methods include nearest-
neighbor-based methods [8], [9], [420]-[422], such as
LOF [10] and partitioning tree-based methods [423], such
as iForest [424], [425]. These methods usually also aim to
capture the high-density regions of the data in some man-
ner, for instance, by scaling distances in relation to local
neighborhoods [10], and, thus, are most consistent with
the formal AD problem definition presented in Section II.
The majority of these algorithms have been studied and
applied in the original input space X. Few of them have
been considered in the context of deep learning, but some
hybrid AD approaches exist, which apply distance-based
algorithms on top of deep neural feature maps from pre-
trained networks (e.g., [426]).

VII. EVALUATION AND EXPLANATION
The theoretical considerations and unifying view above
provide useful insights about the characteristics and
underlying modeling assumptions of the different AD
methods. What matters the most to the practitioner,
however, is to evaluate how well an AD method performs
on real data. In this section, we first present different
aspects of evaluation, in particular, the problem of building
a data set that includes meaningful anomalies, and the
problem of robustly evaluating an AD model on the
collected data. In the second step, we will look at the
limitations of classical evaluation techniques, specifically
their inability to directly inspect, and verify the exact
strategy employed by some model for detection, for
instance, which input variables that a model uses for
prediction. We then present “XAI” approaches for enabling
such deeper inspection of a model.

A. Building Anomaly Detection Benchmarks

Unlike standard supervised data sets, there is an intrin-
sic difficulty in building AD benchmarks: anomalies are
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Table 3 Existing AD Benchmarks

k-classes-out  (Fashion-)MNIST, CIFAR-10, STL-10, ImageNet

MNIST-C [428], ImageNet-C [429],
[429], TmageNet-O [434]

Industrial: MVTec-AD [190], PCB [435]

Medical: CAMELYON16 [60], [436], NIH Chest X-
ray [60], [437], MOOD [438], HCP/BRATS [51],
Neuropathology [59], [124]

Security: Credit-card-fraud [439], URL [440], UNSW-
NBI15 [441]

Time series: NAB [442], Yahoo [443]

Misc.: Emmott [433], ELKI [444], ODDS [445], UCI
[446], [447]

Synthetic ImageNet-P

Real-world

rare, and some of them may have never been observed
before they manifest themselves in practice. Existing
anomaly benchmarks typically rely on one of the following
strategies.

1) k-classes-out: Start from a binary or multiclass data
set and declare one or more classes to be normal
and the rest to be anomalous. Due to the semantic
homogeneity of the resulting “anomalies,” such a
benchmark may not be a good simulacrum of real
anomalies. For example, simple low-level anomalies
(e.g., additive noise) may not be tested for.

2) Synthetic: Start from an existing supervised or unsu-
pervised data set and generate synthetic anomalies
(e.g., [427]1-[429]). Having full control over anom-
alies is desirable from a statistical viewpoint, to get
robust error estimates. However, the characteristics
of real anomalies may be unknown or difficult to
generate.

3) Real-world: Consider a data set that contains anom-
alies and have them labeled by a human expert. This
is the ideal case. In addition to the anomaly label,
the human can augment a sample with an annotation
of which exact features are responsible for the anom-
aly (e.g., a segmentation mask in the context of image
data).

We provide examples of AD benchmarks and data sets
falling into these three categories in Table 3.

Although all three approaches are capable of producing
anomalous data, we note that real anomalies may exhibit
much wider and finer variations compared to those in the
data set. In adversarial cases, anomalies may be designed
maliciously to avoid detection (e.g., in fraud and cyberse-
curity scenarios [204], [347], [430]-[433]).

B. Evaluating Anomaly Detectors

Most applications come with different costs for false
alarms (type I error) and missed anomalies (type II error).
Hence, it is common to consider the dec