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that can accelerate the fusion of heterogeneous remote sensing and social media data is

proposed by decomposing large data sets into small ones and processing

them in parallel.
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ABSTRACT | Despite the wide availability of remote sens-
ing big data from numerous different Earth Observation (EO)
instruments, the limitations in the spatial and temporal res-
olution of such EO sensors (as well as atmospheric opacity
and other kinds of interferers) have led to many situations
in which using only remote sensing data cannot fully meet
the requirements of applications in which a (near) real-time
response is needed. Examples of these applications include
floods, earthquakes, and other kinds of natural disasters, such
as typhoons. To address this issue, social media data have
gradually been adopted to fill possible gaps in the analysis
when remote sensing data are lacking or incomplete. In this
case, the fusion of heterogeneous big data streams from
multiple data sources introduces significant demands from a
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computational viewpoint. In order to meet these challenges,
distributed computing is increasingly viewed as a feasible
solution to parallelize the analysis of massive data coming from
different sources (e.g., remote sensing and social media data).
In this article, we provide an overview of available and new
distributed strategies to address the computational challenges
brought by massive heterogeneous data processing and fusion
for real-time environmental monitoring and decision-making.
The 2013 Boulder (Colorado) flood event is taken as a case
study to evaluate several new distributed data fusion frame-
works. Experimental results demonstrate that the proposed
distributed frameworks are suitable in terms of response time
and computational requirements for fusing large-volume het-
erogeneous data sources.

KEYWORDS | Data fusion; parallel and distributed computing;
remote sensing; social media.

I.INTRODUCTION

Due to the limitations in the spatial and temporal
resolutions of Earth Observation (EO) instruments, there
is a need to integrate remote sensing data with other
sources for EO applications, especially in the area of
emergency response [1]. With the rapid development and
availability of social media data, it has gradually become
a complement to fill possible gaps in remotely sensed
data [2]. However, methods for fusing heterogeneous
remote sensing and social media data (e.g., domain
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adaptation techniques [3]) are computationally expensive,
leading to the fact that the associated time constraints limit
their applicability (especially, in the context of emergency
response applications [4], [5]). Distributed computing,
which has already been adopted in many remote sensing
big data applications [6]-[8], is increasingly viewed as a
feasible strategy to address the computational challenges
brought by massive multisource data processing and
fusion techniques [9]-[12].

In this work, we specifically focus on distributed com-
puting techniques for the fusion of remote sensing data and
social media data. The motivation of our work lies in two
main aspects. On the one hand, this article gives a com-
prehensive overview of massive heterogeneous data fusion
and its distributed computing implementations. On the
other hand, we explore the feasibility of developing dis-
tributed parallel methods to address the computationally
challenging problem of fusing heterogeneous data sources
based on domain adaptation, providing an example of the
distributed fusion of remote sensing and social media data
during floods. The most relevant research objectives and
contributions of our work can be summarized as follows.

1) We provide an overview of techniques for parallel
and distributed fusion of heterogeneous big data
from multiple data sources. Although there are some
reviews on parallel and distributed computing for
remote sensing data processing [7], [13], a specific
review focused on the distributed fusion of remote
sensing data and other sources data has not been
published before in the literature and represents a
completely novel contribution.

2) Based on our review of parallel and distributed tech-
niques for fusing heterogeneous big data in remote
sensing, new distributed fusion frameworks are pro-
posed. The proposed frameworks can accelerate the
fusion of heterogeneous remote sensing and social
media data by decomposing large datasets into small
ones and processing them simultaneously.

3) Last but not least, we present a case study of
the 2013 floods in Boulder, Colorado, to explore
the performance and advantages of the domain
adaptation-based distributed fusion frameworks
in a real scenario.

The remainder of this article is organized as follows.
We first review existing techniques and applications to
fuse remote sensing data with other data sources in
Section II. Section III provides an overview of parallel
and distributed fusion of remote sensing and other data
sources. Section IV presents a case study to demonstrate
the practical advantages of the fusion of heterogeneous
remote sensing and social media data. Section V concludes
this article with some remarks.

II. DATA FUSION BASED ON REMOTE
SENSING AND OTHER SOURCES DATA
In this section, we provide an overview of available tech-
niques and applications for fusing remote sensing and

other sources of data. First, we describe available research
using multisource remote sensing data. Then, we review
some works that combine remote sensing and other kinds
of auxiliary data. Finally, we focus on specific techniques
and applications based on the fusion of remote sensing and
social media data and also summarize the computational
limitations inherent to the fusion of big heterogeneous
data streams.

A. Multisource Remote Sensing Data

There have been many techniques based on multisource
remote sensing data fusion for EO applications. This is
mainly due to the wide availability of a diversity of remote
sensing datasets from numerous sensors (multimodality).
In the following, we structure the most relevant works
according to their application to different areas of EO.

1) Land-Use and Land-Cover Classification: The fusion
of multisource remote sensing data has been extensively
used to improve land-use and land-cover (LULC) classi-
fication. In [14], a new framework based on a Bayesian
formulation to fuse Landsat TM images and ERS-1 SAR
images is proposed for land-use classification. Compared to
conventional classifiers (based on a single remote sensing
data source), the proposed framework could significantly
improve the classification accuracy. The study in [15]
integrated multisource remote sensing data into a homo-
geneous time series of land-cover maps by equalizing the
levels of thematic content and spatial details. In [16],
an optimized data mining classification approach was used
to fuse SPOT-6, RADARSAT-2, and derived datasets for
land-cover classification. Compared with two nonparamet-
ric classifiers [e.g., support vector machine (SVM) and
random forest (RF)], the proposed approach produced
classification results with higher accuracy. The research
presented in [17] first fused RADARSAT-2 images with
Thaichote (THEOS) and Landsat 8 OLI images through
a principal component analysis (PCA) technique. Then,
a new technique combining genetic algorithms (GAs) and
SVM was proposed to improve land-use classification,
which outperformed the traditional grid search approach.
The work in [18] explored knowledge transfer between
multiple remote sensing images for land-use classification.
The focus was on the statistical alignment of the image
of interest and another image with available ground-truth
information. In [19], an orthogonal total variation compo-
nent analysis (OTVCA)-based feature fusion method was
adopted to fuse spectral, spatial, and elevation information
extracted from hyperspectral images and light detection
and ranging (LiDAR) measurements. The results showed
that OTVCA-fusion could produce more accurate classi-
fication maps while using fewer features compared with
RF and SVM classifiers. Similar studies for the fusion of
hyperspectral images and LiDAR data were also given
in [20]-[22].

2) Urban Monitoring: Urban environmental changes can
be monitored and evaluated more accurately through
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multisource remote sensing data, which is of great sig-
nificance to the sustainability of cities [23]. The work
in [24] developed a comprehensive evaluation index to
assess the urban environmental change in China from
2000 to 2012, considering three remote sensing indicators
(e.g., PM2.5 concentration, land surface temperature, and
vegetation cover) based on multisource remote sensing
data. Another similar study exploring the interannual vari-
ations and trends in the urban environment of 17 megac-
ities in Eurasia was the one in [25]. The research in [26]
combined vegetation information from MODIS-NDVI data
with urban socioeconomic information from the DMSP-
OLS data to generate annual human settlement index
(HSI) images. A linear least-squares model was fit between
the mean MODIS-LST and HSIs to analyze the spatial and
temporal changes of urban heat islands (UHIs). In [27],
initial impervious surface area (ISA) data were generated
based on the integration of the Visible Infrared Imag-
ing Radiometer Suite Day/Night Band (VIIRS DNB) and
Moderate Resolution Imaging Spectroradiometer (MODIS)
data through a thresholding approach. Then, the normal-
ized difference vegetation index (NDVI) and the normal-
ized difference water index (NDWI) derived from Landsat
images were used to remove vegetation and water areas
from the initial ISA data, in order to construct the ISA
mapping at 30-m spatial resolution in China.

3) Vegetation Mapping: Vegetation mapping is an EO
area where the fusion of multisource remote sensing data
has been widely applied. The work in [28] investigated
different numerical combinations of integration techniques
to fuse ERS-1 SAR geocoded images with Landsat TM
data for vegetation cover monitoring and assessment.
In [29], Landsat TM images were combined with ERS-
1 SAR images through geometrical coregistration and
resampling. Multilayer perceptron neural networks were
used to identify eight different types of forests based on the
integrated dataset. The research in [30] proposed a novel
method for aboveground biomass (AGB) estimation of for-
est based on the structural analysis of mixed pixels and the
RF model. Specifically, a correction factor estimated from
MODIS data was used to create a model that scales from
fine-resolution data (SPOT 5) to coarse-resolution data
(MODIS). In [31], a wide range of vegetation and textural
indices extracted from optical (Landsat and MODIS) and
radar (ALOS-1 PALSAR and Sentinel-1) remote sensing
data were imported into an RF regression model for AGB
mapping of forests.

4) Disaster Monitoring: The integration of multisource
remote sensing data can effectively improve disaster mon-
itoring and assessment [32]. The work in [33] detected
the spatial distribution of surface rupture zones after
earthquakes by integrating multisource remote sensing
images collected using different sensors (Landsat, SPOT,
and ASTER). In [34], change detection and pansharpening
were employed to monitor landslides at a regional scale
using multitemporal SPOT images and IKONOS images.
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Another work focused on landslide analysis was presented
in [35], in which geographic information system (GIS)-
based statistical models [including analytical hierarchy
process (AHP), weighted linear combination (WLC), and
spatial multicriteria evaluation (SMCE) models] were used
to identify the relationship between landslide locations
and landslide-related factors extracted from SAR data and
also from SPOT 5 and WorldView-1 images. Due to bad
weather during a flood event, SAR images have been
widely used for flood monitoring. For instance, in [36],
a ranking matrix in 3-D multiplication mode was adopted
to assess flood hazards using SAR and optical remote sens-
ing images. In this method, flood-affected frequency and
flood depth (obtained from the SAR images) were used as
hydrologic parameters. Elevation heights, land cover clas-
sification, geomorphic division, and drainage network data
obtained from optical remote sensing instruments were
used through a GIS-based approach. The work presented
in [37] monitored grassland snow disasters based on the
combination of MODIS data and passive microwave AMSR-
E data. Specifically, the snow map obtained by AMSR-E was
resampled to the same spatial resolution as the snow map
generated by MODIS in order to synthesize the missing
pixel values of the MODIS area occluded by clouds.

5) Other Applications: There has also been a significant
amount of research based on multisource remote sensing
data for other applications. In [38], phenological features
and backscattering features generated from Sentinel-1
images were combined with spectral features extracted
from Sentinel-2 and Landsat 8 OLI images to construct
multisource feature sets for crop mapping. The work pre-
sented in [39] described that freely available multisource
data (e.g., Landsat TM, ETM+ imagery, JERS-1 active
radar L-band imagery, and elevation data) contributed to
a tree bagging classification procedure for wetland map-
ping. The research in [40] applied a genetic programming
approach to fuse MODIS and Landsat TM/ETM+ data
for water quality assessment. In [41], the SVM regres-
sion algorithm and artificial neural networks (ANNs) were
employed to estimate soil salinity based on the model
parameters extracted from multisource remote sensors
(e.g., Sentinel-1A, Landsat 8 OLI, and MODIS). In [42],
daily snow data from MODIS and snow classification
results based on Landsat MSS and TM/ETM+ images
were used along with supervised classification methods
to monitor the changes in snow and glacier coverage.
The work in [43] fused high-resolution SAR and optical
images for the reconstruction of urban topography, using
a hypothesis based on the greatest SAR-optical similarity.
The work in [44] proved that multi-image fusion was able
to improve cloud detection performance. In [45], a novel
pansharpening method named SparseFI was developed by
exploring the sparse representation of multispectral image
patches with high and low spatial resolutions. Compared
with conventional pansharpening methods, the proposed
method was more robust and exhibited fewer spectral
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distortions. The work presented in [46] proposed a semisu-
pervised manifold alignment method to align multisource
remote sensing images, which was suitable for images with
different spectral or spatial resolutions.

As shown in the aforementioned works, the fusion of
multisource remote sensing data can provide important
complementarities in terms of spectral, spatial, and tem-
poral resolutions. In addition, using additional EO data
sources often generates an increase in data volume, speed,
and variety. The combination of remote sensing and other
sources of data provides unprecedented opportunities for
advanced EO and monitoring.

B. Remote Sensing and Auxiliary Data

There has also been a large amount of research based
on the combination of remote sensing and auxiliary data.
Auxiliary data mainly include EO data collected from
stations, sensors, model simulations, and so on. Generally,
auxiliary data have been used as input to improve the
performance of remote sensing strategies. In the following,
we summarize the most important works according to their
different EO applications.

1) Ecological Monitoring: The combination of remote
sensing and auxiliary data enables large-scale ecosys-
tem monitoring while maintaining accuracy at the local
scale [47]. In [48], the regression tree model was used to
create ecosystem component predictions combining exten-
sive ground measurements, remote sensing images from
high-resolution satellites, and Landsat 8. In [49], multiple
linear regression (MLR) analyses were used to estimate
natural grassland biomass based on field and remote sens-
ing data. The study presented in [50] generated a contin-
uous 33-year 1-km net primary productivity (NPP) time
series with the Carnegie-Ames—Stanford Approach (CASA)
model by fusing multisource remote sensing data and
station data. The research presented in [47] compared sur-
face and regression methods for upscaling field-sampled
aboveground carbon data using fine spatial resolution
remote sensing data as auxiliary data. The results showed
that the optimized integration of field data and multiscale
remote sensing data could obtain a detailed mapping of
aboveground carbon in heterogeneous landscapes. The
work in [51] combined a large number of ground obser-
vations, MODIS data, and forest coverage/acquisition/loss
to develop a novel AGB mapping method with a spatial
resolution of 1 km.

2) Air Monitoring: Combining remote sensing and data
from other sources has also been used to monitor air qual-
ity more quickly and accurately. The study in [52] devel-
oped a country-scale geographically weighted regression
(GWR) model, which used fused satellite AOD as the main
predictor to estimate China’s daily PM2.5 concentration.
The results show that the performance of the proposed
model could be greatly improved by combining meteoro-
logical and land-use data. The research in [53] mapped

hyperlocal air temperatures by integrating Sentinel, Land-
sat, and LiDAR data with crowd-sourced air temperatures
data from private weather stations through RF regression
models. In [54], a five-layer structured deep belief network
(DBN) was employed to capture the complex and nonlin-
ear relationship between remote sensing data and ground
observation data for air temperature mapping. The work
in [55] studied the concentration, physical properties, and
chemical composition of aerosols by exploring the syner-
gies between field measurement data and remote sensing
images.

3) Disaster Monitoring: Various auxiliary sources of data
have been gradually combined with multisatellite sensor
data and applied to monitor different natural disasters.
The work in [56] adopted a GIS-based arithmetic overlay
approach to integrate multisource data (e.g., remote sens-
ing images, topographic maps, and field data) for land-
slide susceptibility mapping. The results showed that the
generated sensitivity maps exhibited close agreement with
existing field instability conditions. In a related fashion,
a landslide location map was generated by integrating
satellite data, aerial photographs, and field observations,
such as static and dynamic factors of the universal soil
loss equation (USLE) index model. The study in [57]
explored the complementary nature of remote sensing
and ground observatory data through temporal analysis
and revealed the changes in surface, air, atmosphere, and
meteorological parameters after the Wenchuan Earthquake
in 2018. In [58], a supervised classification technique was
used to estimate the flooded extent based on RADARSAT
remote sensing data, GIS data, and ground data. In [59],
meteorological data and remote sensing data were used to
derive drought prediction models, such as autoregressive
integrated moving average (ARIMA), RE and SVM. The
results showed that integrated multisource data can help
monitor and predict droughts with great accuracy.

4) Other Applications: There are other applications
based on the integration of remote sensing and auxiliary
data sources. The paper presented in [60] proposed a fuzzy
approach to explore the inherent ambiguity of remote sens-
ing data and ground data for the classification of suburban
land cover. In [61], the layers of the total arable land
and sown area of 17 major crops from the county-level
agricultural census are overlapped with the land cover
map derived from Landsat TM images, thus generating
a distribution map of rice agriculture (with a resolution
of 0.5°) in mainland China. In [62], a nonlinear ANN was
developed for the classification of understorey vegetation
(e.g., bamboo). In this method, a limited set of ground data
were used for training, and widely available Landsat TM
data were used as the input. The work in [63] analyzed the
regression Kriging method that combines SPOT images and
ground measurement data for soil salinity mapping. Com-
pared with the purely regressive approaches, the regres-
sion Kriging method could monitor the soil salinity in arid
areas more accurately using multisources data.
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From the aforementioned works, we can conclude that
the Earth can now be observed and modeled with unprece-
dented spectral ranges and spatiotemporal scales due to
the wide availability of large EO datasets from numerous
sensors and auxiliary data sources. However, in real appli-
cations, multisource remote sensing data and general in
situ observations might be unavailable at the most urgent
times and locations.

C. Remote Sensing and Social Media Data

With the rapid development and availability of social
media data, its fusion with remote sensing data has
recently attracted widespread attention. Meanwhile, pub-
licly available social media data can complement and
fill the gaps in remote sensing data. There has been a
significant increase in research based on remote sensing
and social media data. In the following, we describe the
most relevant techniques categorized in terms of their EO
applications.

1) Disaster Monitoring: The fusion of remote sensing
and social media data can provide fast and effective mon-
itoring of natural disasters, which is of great significance
for disaster prevention and mitigation. The study in [64]
imported geotagged photographs from social media, opti-
cal remote sensing, and high-resolution terrain data into a
developed Bayesian statistical model in order to estimate
the probability of flood inundation. The work in [65] first
applied a kernel density smoothing operation to each layer
of nonauthoritative data, including Twitter data, geolo-
cated photographs, and online news. Then, a weighted
sum overlay approach was used to integrate these layers
with an RGB composite photograph, SAR imagery, digital
elevation models (DEMs), and water height data to provide
an estimation of flood extent. A similar study (based on
general kernel density estimation) was the one in [66],
in which a flood disaster map generation method using
remote sensing and volunteered geographic data (e.g.,
Google News, videos, and photographs) was proposed.
The results showed that even a small amount of voluntary
ground data could significantly improve flood mapping
precision. In related fashion, in [67], a novel method was
developed to fuse NDWI extracted from remote sensing
data with real-time volunteered geographic information
(VGI) based on a Gaussian kernel function.

Detecting reliable information from massive social
media data for emergency response is a very challeng-
ing task. In this context, text mining and natural lan-
guage processing (NLP) techniques have been adopted.
The study given in [68] grouped the detection methods
of crisis-related Twitter messages into three categories,
based on characteristics, crowdsourcing, and machine
learning techniques, respectively. In [69], a deep learning
method, e.g., convolutional neural network (CNN), was
employed to filter disaster-related tweets. Based on filter-
ing tweets, the work in [70] reconstructed the spatial and
temporal distribution characteristics of natural disasters
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by combining clustering methods. The research in [71]
presented a scalable system to enrich satellite imagery
information in emergency situations (such as wildfires,
earthquakes, or floods) by crawling and analyzing multi-
media contextual content from social media. In [72], a sys-
tem was proposed, which could automatically collect social
media data related to natural disasters and automatically
link it to remote sensing data through the text analysis in
local languages. In order to improve the existing keyword-
based NLP methods or machine learning algorithm meth-
ods that only rely on text, an enhanced text mining
framework is proposed in [73]. The proposed framework
combined location information from social media and
remote sensing datasets to detect disaster-related social
media posts. In addition to text mining, spatial mining has
also been used. For instance, the work in [1] presented
a cloud-based framework that integrates multisource data
(e.g., social media, remote sensing, Wikipedia, and the
Web) and analyzes the spatiotemporal patterns of each
disaster type through spatial data mining and text mining
techniques. The proposed framework could support rapid
disaster analysis of historical and future events and provide
flexibility in terms of computing and storage.

The fusion of heterogeneous remote sensing and social
media data generally suffers from the fact that the prob-
ability density functions may differ in different data
sources [74]. Therefore, some research works explore
domain adaptation techniques to align the representations
of heterogeneous remote sensing and social media data.
For instance, the work in [3] proposed an optimal transport
(OT) strategy for both semisupervised and unsupervised
cases, which could perform the alignment of the rep-
resentations in the source and target domains. In [75],
a robust theoretical framework was proposed to solve the
inherent limitations of sensors and realize flood density
estimation in near real time by using the OT algorithm. The
framework was able to develop feasible flood maps in areas
with the great impact of environmental hazards, such as
hurricanes or severe weather. A more specific application-
oriented study was given in [76], in which a new model
called geographic OT (GOT) was developed. Compared
with OT, the GOT model is able to simultaneously align
representations and geolocations by considering two new
forms of remote sensing features in flood events.

2) Disaster Assessment: Timely disaster assessment is
essential for the coordination of disaster relief opera-
tions, the prioritizing of resource allocation, and the
establishment of evacuation and supply routes [77]. The
work in [78] overlaid three layers, including flooding
areas extracted from Landsat 8 OLI images, a flood-
ing and damage surface generated from tweets and
geolocated photographs, and road networks for trans-
portation infrastructure assessment during floods. The
results showed that, when remote sensing data were
missing or unavailable, social media data could provide
effective information for evaluation. In [79], the Kriging
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interpolation was used to fuse crowdsourced, remote sens-
ing, and social media data during and after Hurricane
Sandy for transportation infrastructure assessment. It was
proven that nonauthoritative data could be used to fill
the gaps in remote sensing data. A similar study for the
assessment of transportation infrastructure was also pre-
sented in [80]. The study in [81] first analyzed the spatial
relationship between the brightness change of the satellite
nightlight images and the density of power-related tweets.
On this basis, the assessment of power outage information
at a street-level resolution during Hurricane Sandy was
realized.

3) Urban Land-Use Classification: Social media data can
provide socioeconomic and demographic characteristics
of urban land, thereby contributing to accurate remote
sensing land-use mapping in complex urban systems [82].
In [83], a novel scene classification framework to identify
dominant urban land-use type was proposed. In this frame-
work, a land-use word dictionary was constructed by fus-
ing natural-physical features from high spatial resolution
images and socioeconomic semantic features from social
media data. In related fashion, the study in [84] proposed
a per-field classification approach to automatically map
fine-grained urban land use. Specifically, the physical and
socioeconomic information extracted from GF-2 imagery,
points of interest (POIs), and geotagged Weibo posts was
fused in an optimized RF model. The research in [85]
developed a Crowd4RS system to generate labels of land
use for remote sensing data. The proposed system com-
bined the semantics of location-based social media pho-
tographs and big data analysis techniques (active learning,
deep learning, clustering algorithms, and so on).

4) Urban Functional Zone Classification: Since human
activities have a significant impact on urban morphol-
ogy, social media data that can record information about
human activities have been fused with remote sensing
data for the division of urban functional zones [86]. For
instance, in [87], a hierarchal clustering method was used
to integrate landscape metrics from SPOT-5 images and
human activity metrics from mobile phone positioning
data for urban functional zones identification. The work
in [88] presented a new method to identify the main
center and subcenters of a polycentric city using nighttime
light (NTL) imagery, social media data, cluster analysis,
and GWR. In [89], the light gradient boosting machine
(LightGBM) was used to fuse dual-modal data of high-
resolution remote sensing images and user behavior data
for urban functional zone classification. The study in [90]
proposed a novel end-to-end deep learning-based remote
and social sensing data fusion model. The proposed model
mainly solved the asynchrony of the two data sources
through enforcing cross-modal feature consistency (CMFC)
and cross-modal triplet (CMT) constraints.

5) Other Applications: There have also been relevant
works focused on the fusion of remote sensing and social

media data in other application domains. For instance,
the work presented in [91] proposed a new population
mapping method by integrating the International Space
Station (ISS) photography NTL data, POI data, and social
media data through an RF model. The paper in [92]
explored the potential of geotagged tweets to improve the
quality of NTL images using an upsampling strategy for
more accurate estimation of socioeconomic factors (e.g.,
personal incomes). In [93], a population-weighted metric
was adopted to estimate dynamic population exposure to
PM2.5, combining satellite-derived dynamic changes in
PM2.5 concentrations and population distribution from
social media data.

As it can be concluded from the aforementioned works,
the fusion of heterogeneous remote sensing and social
media data exhibits huge potential for different applica-
tions, especially for problems in which (near) real-time
response is needed. Generally, the fusion of big heteroge-
neous data streams coming from various sensors is compu-
tationally very expensive. Therefore, such fusion demands
effective parallel and distributed computing implementa-
tions, especially in the context of time-critical applications.
III. PARALLEL AND DISTRIBUTED
COMPUTING IMPLEMENTATIONS OF
TECHNIQUES COMBINING REMOTE
SENSING AND OTHER DATA SOURCES
Currently, there are few research efforts devoted to the
fusion of remote sensing and social media data using high-
performance computing technologies. However, there have
been several techniques and applications exploiting remote
sensing and other sources of data independently using
parallel and distributed computing. It has been proven
that distributed computing is a feasible solution for the
fusion of remote sensing big data. In a similar fashion,
distributed computing may also be exploited to address
the computational challenges brought by fusing remote
sensing and social media data. In the following, we provide
a literature review of existing techniques and applications.
First, we focus on the most relevant efforts exploiting
multisource remote sensing data. Then, we introduce some
of the most important related works that are based on
fusing remote sensing and other sources of information
(e.g., traffic-site, climate, and social media data).

A. Multisource Remote Sensing Data

Fusing multisource remote sensing data can provide
significant improvements in different applications. How-
ever, since the spatial, spectral, and temporal resolu-
tions of remotely sensed data are continuously increas-
ing, their size is becoming extremely large. Therefore,
it generally takes a significant amount of time to fuse
remote sensing data collected by different sensors. In turn,
time-critical applications (such as damage assessment)
require immediate responses [94]. To ensure high accuracy
without compromising execution time, many researchers
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have been devoted to utilizing high-performance com-
puting architectures to improve the computational per-
formance of remote sensing techniques. Generally, there
are two types of high-performance computing methods
involved: parallel and distributed techniques. On the
one hand, parallel computing (in a single computer)
can be summarized into two categories: 1) computing
based on multicore central processing units (CPUs) and
2) computing based on CPU processors plus accelera-
tors, such as graphical processing units (GPUs). The for-
mer is called homogeneous parallel computing, while the
latter is called heterogeneous parallel computing. Par-
allel computing on multicore CPUs is normally imple-
mented via programming languages and libraries, such
as message passing interface (MPI)! or OpenMPR? For
instance, Yang et al. [95] used MPI to implement a par-
allel pansharpening algorithm for SPOT-5 multispectral
and panchromatic images. The results demonstrated that
the parallel algorithm, implemented on a computer with
two CPU cores, was much faster than the serial version.
In addition, the fusion results of the different versions
had no obvious differences. The compute unified device
architecture (CUDA)? is another programming model for
parallel computing based on CPU + GPU hybrid heteroge-
neous architectures. This model has been used to acceler-
ate many data-intensive algorithms, such as the intensity
hue saturation (IHS) or the Y (perceived luminance), I,
Q (color/luminance information)—YIQ—transform-based
multisource remote sensing data fusion algorithms [96],
[97]. Finally, distributed computing mainly includes clus-
ter and cloud computing. Compared to parallel com-
puting on a single computer, distributed computing
needs additional computing resources but also provides
more computing power and memory. In the following,
we give a short survey of these architectures and related
applications.

1) Cluster Computing: We can categorize cluster
computing systems into two kinds: homogeneous and
heterogeneous. A cluster system consists of at least one
computing node. A typical homogeneous cluster is the CPU
cluster system. Each computing node of a CPU cluster
system has independent memory and may include multiple
CPU processors. All the CPU processors can execute in
parallel if the computing task of each CPU processor is
independent of others. For instance, fusion algorithms
using multisource remote sensing images can be indepen-
dently executed for each pixel of a target remote sens-
ing image. Therefore, it is suitable to perform parallel
data fusion in CPU cluster systems. Experimental results
in [98]-[100] showed that CPU-based cluster comput-
ing could significantly reduce the elapsed running time
of fusion algorithms when the size of the datasets was
large. However, if the size of the datasets was too small,

Thttps:/computing 1Inl.gov/tutorials/mpi/
Zhttps://www.openmp.org/
3https://developer.nvidia.com/CUDA-zone
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the parallel performance generally decreases [101]. Unlike
homogeneous cluster systems, heterogeneous clusters are
equipped with different kinds of computing processors
(e.g., CPUs and GPUs). MPI + CUDA is a typical dis-
tributed programming framework for GPU cluster sys-
tems. In [102], this framework was used to address the
time-series quantitative retrieval problem, which could be
implemented using multilevel parallelism including fine-
grained parallelism (using the GPU) and coarse-grained
parallelism (across CPUs). A similar study based on MPI +
CUDA was presented in [103]. The results showed that the
combination of MPI and CUDA in the discussed implemen-
tation could significantly speed up the oil detection process
and provide a rapid response.

2) Cloud Computing: Compared to cluster comput-
ing systems, cloud computing systems provide comput-
ing resources in an easy-to-use and cheap way while
managing and storing huge amounts of data in distrib-
uted, fault-tolerant environments. Therefore, these sys-
tems [e.g., Apache Spark and Google Earth Engine (GEE)]
are suitable for parallel processing of massive volumes of
multisource remote sensing data. For instance, the work
in [104] implemented a novel remote sensing data flow
(RESFlow) on Apache Spark for advancing machine learn-
ing to compute with 21 028 TB of remotely sensed imagery.
The experimental results demonstrated that cloud com-
puting could improve the efficiency of the algorithms that
were based on a large amount of multisource remote sens-
ing data. Moreover, the framework in [105] incorporated a
task scheduling strategy to further exploit the parallelism
of multispectral pansharpening algorithms. The algorithm
was executed on the Apache Spark platform. In addition,
the work in [106] proposed a cloud-based automatic
remote sensing production system. This program sup-
ported storing and processing massive multisource remote
sensing data, obtaining various remote sensing products.
In addition to processing multisource remote sensing data,
cloud computing has also been widely used in many
other applications. For example, in [107], a framework
using cloud computing was proposed, which could provide
effective drought monitoring, evaluation, and prediction.
Then, Mahdianpari et al. [108] produced a high-resolution
10-m wetland inventory map of Canada using multiyear,
multisource (Sentinel-1 and Sentinel-2) EO data on the
GEE. Also, based on the GEE, the study in [109] ana-
lyzed the influence of different physical surface properties
using Landsat imagery collected between 1985 and 2018.
In addition, the work in [110] developed a new cloud
computing infrastructure for environmental monitoring
using interagency EO data. Another related work based
on a Hadoop cloud computing platform for drought moni-
toring was presented in [111]. The authors first proposed
an abstract data format to achieve the unified descrip-
tion of remote sensing data. The data abstraction was
intended to discretize multidimensional remote sensing
data for simplified distributed storage and computation.
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Table 1 Advantages and Limitations of Existing Parallel and Distributed Computing Technologies

Advantages

Limitations

Process-level parallelism within a single computer or

Processes shared results through communication functions;

MPI ) LR T s T Speedup limited by communication cost problems

Capable of tackling large scale data-intensive problems P P Y P
Thread-level fine-grained parallelism within a single computer;

. : ) . Cannot resolve large-scale problems

OpenMP The results of computation between threads can be shared; due to memory insufficient of a sinele computer

The modification of code is limited Ty s sng P
. . . L . Computing with multiple conditional branches is slow;
CUDA ezl prelslim viiha o GIAU: Data transfers between GPU and CPU are costly;

Capable of accelerating deep learning models

Limited memory of GPU

Google Earth Engine

Capable of processing peta-byte scale data in parallel

Internet required; Less security
Limited size of uploaded user data

Then, they resolved the complexity of remote sensing algo-
rithms using MapReduce in a Hadoop distributed environ-
ment. Moreover, the research in [112] provided a detailed
description of a web platform that offered an integrated
framework for disaster monitoring using cloud computing.

B. Multisource Remote Sensing Data and
Auxiliary Data

There has been a significant amount of research based
on exploiting multisource remote sensing data and aux-
iliary data using parallel and distributed computing. For
instance, in [9], a parallel Markov model was presented
for land-use prediction based on MapReduce, a distributed
parallel framework. The experimental datasets included
Landsat remote sensing images, traffic-site data, road
networks, and location-address data. In [113], global
positioning system (GPS) and position and orientation
(POS) data were used to preprocess images collected by
UAVs. Then, in order to shorten the time to find the
relative and global orientation, the Levenberg-Marquard
algorithm was parallelized on multicore CPUs. In order
to reduce the computation cost of object-based image
analysis (OBIA) for quick earthquake damage assessment,
a distributed OBIA approach was used in [114]. After
splitting the images (including Quickbird, DEM, LiDAR,
and thematic maps) of a large study area into small subim-
ages, two or more computers could be used in parallel
for analyzing the subimages. A CPU + GPU heterogeneous
parallel technique was used to implement deep learning
algorithms for applications based on multisource data.
The paper in [115] presented a 3-D virtual urban scene
reconstruction method based on CNNs by combining maps,
satellite optical images, and digital terrain models (DTMs).
The CNN model was trained on a GPU. In [10], MODIS
NDVI data, ground data, and climate data were used for
investigating drought-vulnerable regions in North Korea.
The climate data were downloaded from the Climate
Engine, a web-based parallel cloud computing platform
for processing climate and remote sensing datasets in real
time [116]. The research in [11] used Landsat satellite
and climate data to quantify the effectiveness of riparian
restoration. The climate data were also downloaded from
Climate Engine. A similar study for cloud-based remote
sensing applications was proposed in [1]. This work pur-
sues historical disaster analysis based on multisource data

(e.g., social media, remote sensing, Wikipedia, and the
Worldwide Web). The work in [12] mapped major land
cover dynamics in Beijing with Landsat images and NVDI
using GEE. The GEE platform provides many different
source datasets and supports high-performance comput-
ing. Therefore, it can help researchers to address issues
related to natural disasters, such as monitoring, predic-
tion, evaluation, and prevention. For instance, the work in
[117] presented an algorithm that exploited all available
Sentinel-1 SAR images (in combination with historical
Landsat and other auxiliary data sources hosted on the
GEE) to rapidly map surface inundation during flood
events. The authors also assessed their algorithm using
three recent flood events with coincident VHR imagery and
operational flood maps.

The advantages and limitations of existing parallel and
distributed technologies for the fusion of remote sens-
ing and other data sources are summarized in Table 1.
Similarly, the fusion of remote sensing and social media
data using high-performance computing capabilities can be
conducted by combining suitable parallel and distributing
technologies.

IV. CASE STUDY: HETEROGENEOUS
DATA FUSION USING DISTRIBUTED
COMPUTING

As a follow-up to Section III, we discuss a case study
related to a flood event in Boulder (2013), which is
addressed via distributed fusion of heterogeneous data.
Specifically, the goal of this section is to discuss (with
an example) how to fuse heterogeneous remote sensing
and social media data by combining domain adaptation
(i.e., GOT [76]) and distributed computing techniques
(i.e., MPI [95] and OpenMP [118]). In the following,
we first introduce the dataset used in our case study,
and then, the considered frameworks for the distrib-
uted fusion of heterogeneous data are illustrated in
detail.

A. Data Collection

In this study, the considered distributed fusion frame-
works for heterogeneous data fusion are evaluated using
the 2013 flood event in Boulder. During this disastrous
event, the local rainfall exceeded 17 in, and nearly one
year worth of rainfall was received in just eight days in
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Fig. 1. Study area and its location in Boulder and Colorado.

the Boulder area [119]. In total, the widespread flooding
led by continuous rainfall killed three people, evacuated
more than 1600 people, and caused significant infrastruc-
ture damage [120]. The study area (with a total area
of 180 km?) and its location are shown in Fig. 1.

1) Remote Sensing Data: The remote sensing data used
in our study comprise two multispectral Landsat 8 opera-
tional land imager (OLI) images, which were completely
cloud-free in the city of Boulder. Specifically, the images
obtained on May 12 and September 17, 2013, can provide
high-quality optical data before and after the flood event,
respectively. These images are publicly available from the
United States Geological Survey (USGS) website* with
a fine spatial resolution of 30 m. In addition, the Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm was adopted for atmospheric correc-
tion of the Landsat 8 OLI images [121]. In this context,
remote sensing features (capable of characterizing floods)
can be calculated for subsequent data fusion.

2) Social Media Data: Twitter is one of the largest
social networking sites, providing microblogging services.
Users can send and receive short messages through the
Twitter website of mobile phones or computers. Due
to the extensive coverage and real-time nature of these
messages (called “tweets”), information can be quickly
disseminated by both official government agencies and
the public during emergencies and disasters [122]. The
hashtags prefixed with the sign # are usually used to
search and filter massive information from tweets [120].
In this study, the tweets containing hashtags of #boul-
derflood, #flood, or #coflood during September 11-18,
2013, were filtered. A total of 2254 geotagged tweets were
harvested using Twitter APIs, extending from 105°18'2” to
105°10°40” W and 39°55'54" to 40°5'8” N [see Fig. 2(a)]. It
is worth noting that, since geotagged tweets are generally

“http://www.earthexplorer.usgs.gov
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sent from relatively safe places rather than directly on
the flood sites, they tend to suffer a problem of spatial
bias. Such biased geotagged tweets are used as the source
distribution for data fusion purposes.

3) Historical Flood Data and Ground Truth: The special
flood hazard area (SFHA) shown on the flood insurance
rate maps (FIRMs) is defined as the area that has a 1%
chance of being inundated in any given year. Generally,
the SFHA is considered as the base flood or 100-year flood,
which can well represent historical flood areas. The related
data of SFHA in the city of Boulder can be downloaded
from the website of the Federal Emergency Management
Agency.’ Fig. 2(a) illustrates the corresponding SFHA for
Boulder.

In the weeks and months following the flood event,
the spatial distribution of the floods was identified by
combining hand-held GPS devices and photographs from
communities. Then, an urban flood extent (UFE) map
[see Fig. 2(b)] was constructed to describe the accurate
inundated regions in the city of Boulder, which is publicly
available on the website of Boulder city.® The UFE can be
used as the ground truth to evaluate the data fusion.

B. Heterogeneous Data Fusion

Multisource data fusion can provide more accurate and
reliable information, exhibiting significant advantages and
potential for emergency response (e.g., flood monitoring)
[120]. As mentioned earlier, the geotagged tweets that
indicate floods are usually spatially biased. In this case,
the flood-related applications will no doubt be affected

Shttp://www.fema.gov
Shttp://www.bouldercolorado.gov

Legend .
* Tweets WEISFHA WEUFE

(a)

Fig. 2. Spatial distribution of the geotagged tweets, history flood
data, and UFE for the 2013 Boulder flood event [76]. (a) Tweets and
special flood hazard area. (b) Urban flood extent.



Li et al.: Distributed Fusion of Heterogeneous Remote Sensing and Social Media Data

when using such geotagged tweets directly. Therefore,
the task of data fusion needs to relocate the biased geo-
tagged tweets to the flooded areas (i.e., the UFE), in the
combination of the prior flood information (i.e., the SFHA)
and remote sensing features (capable of characterizing
floods). It should be pointed out that domain adaptation
techniques have been proven as effective means for rep-
resentation alignment of multisource data in Section II-C,
including the OT method [3], [75]. Compared with the OT,
the GOT method in [76] achieved more remarkable results
in the context of heterogeneous remote sensing and social
media data fusion. In addition, the GOT method is able to
simultaneously align representations and geolocations of
multimodal data. Therefore, we adopt GOT for heteroge-
neous data fusion in this study.

Following Liu et al. [76], the main function of GOT for
data fusion can be expressed as

T (zi) = argminc(mfﬁc;) (1)
x;eﬁp

where z; denotes a source element in the source distri-
bution P, and z} denotes a target element in the target
distribution P;. P; denotes the empirical distribution of
P, when P, is only accessible through discrete samples.
c(xi,x%) represents the cost to move a probability mass
from z; to x§ Following Liu et al. [76], the transport cost
c(x3, x%) also considers distance and two kinds of remote
sensing features (i.e., NDVI [123] and NDWI [124]) in
this study. Specifically, the cost function considers the
squared Euclidean distance between z; and z!, aimed at
transporting the source to the target within a relatively
small distance. As for the cost of remote sensing fea-
tures, two new forms of features are derived based on
NDVI and NDWI: NDVI difference and NDWI difference
(considering the times before and after a flood event).
Both NDVI difference and NDWI difference used in the
transport cost ¢(z, z%) are bounded by extreme inundated
scenarios, in order to transport sources to flooded areas.
In this context, the spatially biased geotagged tweets can
be relocated to the floods within a relatively small distance
by combining the transport cost of distance and the afore-
mentioned remote sensing features.

C. Distributed Frameworks

As mentioned before, distributed computing techniques
have been widely applied to the fusion of remote sensing
and other data sources. However, there are few research
studies on the distributed fusion of remote sensing and
social media data. Here, we introduce our newly pro-
posed distributed fusion frameworks for heterogeneous
data based on the aforementioned GOT. The main func-
tion of GOT [i.e., (1)] can be divided into three main
parts: 1) computing array ¢ (for i = 1,...,ns and j =
1,...,n:); 2) computing array T (fori = 1,...,ns); and 3)
other computations. After the profiling results of the GOT

Table 2 Profiling Results of the GOT Algorithm

Name Occupation
Computing array c 81.16%
Computing array 7' | 10.59%
Others 8.25%

algorithm in Table 2, we find out that the time-consuming
parts are the calculations of arrays ¢ and 7T'. To calculate
array c, we need to use the function dist() in the library
of OT to calculate the Euclidean distance matrix between
the source samples and the target samples. It is obvious
that computing ¢ with different z;’s is an independent
operation. Therefore, we can split the array z° into smaller
ones and then compute c in parallel. In a similar fashion,
we can also compute 7 in parallel. According to the
comparisons of existing parallel computing technologies
for heterogeneous data fusion in Table 1, we employ an
MPI + OpenMP hybrid programming model to implement
this procedure. This model combines the advantages of
MPI and OpenMP to implement two levels of parallelism
(i.e., fine-grained parallelism within computing nodes and
coarse-grained parallelism across nodes) for the computa-
tion of cand T

MPI is a communication protocol for distributed com-
puting based on distributed memory, which can be binded
to Python language by using the mpi4py package [125].
MPI employs built-in functions to implement communica-
tions between processes. Gatherv () of MPI.Comm class
is a communication function for gathering results, which
can gather different lengths of the array to the root process
from each process. OpenMP is a thread-level parallel
programming model based on shared memory. However,
OpenMP does not provide the corresponding version of
Python. We use the thread class of the threading’ package
to implement thread-level parallelism, such as OpenMP
Thus, we denote this distributed computing method as
“MPI-Thread.” The pseudocode of our parallel implemen-
tation for the computation of array ¢ and T is shown in
Algorithm 1. First, the array (z°)"* is decomposed into K
blocks, each with a size of (ns/K). If n, is not divisible
by K, the rest will be computed by the last process.
Then, the computation of array 7' and c is parallelized
by K processes, each of which is executed by a single
computing node. Meanwhile, the array (z°*)"s/* (assigned
to a process) is further divided into k blocks, while T
and c are concurrently computed by k threads, each of
which is executed by a single CPU core of a computing
node. Finally, we gather the results in the root process
by using Gatherv (). In addition, we also use MPI and
threads to parallelize the GOT algorithm. Especially, when
using the threads method to parallelize the GOT algorithm,
we divide the array assigned to a thread into small ones
and then calculate them serially on a single thread (mainly
because the memory of one thread is limited).

"https://docs.python.org/3/library/threading.html
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Algorithm 1 Pseudocode of the Parallel Algorithm for

Computing Arrays ¢ and T'

Input: Size of the source distribution: ng,
Array: 2°[0: ng], Number of processes: K, Number
of threads: k

Output: Array: c[0: ng, 0: n], T[0: ng, 2]
bsize — ns//K
big «— process rank
tiq < thread id
Gsize < bsizellk
Parallel for by < K-1 do

Parallel for t;y < k-1 do

compute clsizeXnt

. append . )
local_dis +— argmln(ctsm e XMt )

end Parallel for
end Parallel for
if bid == K — 1 then
Parallel for t;; < k-1 do
compute cleizeXm

> Obtain by MPI.Comm.rank()

local_dis 227" argmin(ctsizexmt)
end Parallel for
end if
MPI.Comm.gatherv(local_dis, T'[0: ns, 2])

Table 3 Evaluation of the GOT Algorithm Implemented Using Different
Distributed Computing Strategies

Method Times(s)
None 15.19
MPI 4.88
Thread 13.65
MPI-Thread 3.47

D. Experimental Results

Here, we explore the performance of the proposed
frameworks for distributed heterogeneous data fusion. The
experiments have been run on a CPU cluster called TianHe-
2,8 which is a distributed cluster system equipped with
many computing nodes. Each computing node is equipped
with multiple CPU cores. Multiple processes can be run on
multiple nodes simultaneously. Multiple threads can run on
multiple CPU cores at once. We first perform a quantitative
evaluation of the GOT combining with different distributed
computing strategies for the 2013 Boulder flood event. The
datasets used here include 2254 tweets and two multispec-
tral Landsat 8 OLI images with an area of 180 km?. Table 3
shows the obtained results in terms of time consumption.
Regarding the running time (in seconds), the heteroge-
neous data fusion framework requires 15 s. After paralleliz-
ing the computation of ¢ and 7', the proposed distributed
data fusion frameworks based on MPI and MPI-Thread are
much faster (only 4.88 and 3.47 s, respectively). Notice
that the amount of tweets involved in this case study is only
2254. To reduce the time of opening and closing multiple
processes, the MPI and MPI-Thread methods developed in

Shttp://en.nscc-gz.cn/
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Fig. 3. Evaluation of the proposed distributed fusion frameworks
after simulating different numbers of tweets.

this study use five processes. Correspondingly, the Thread
and MPI-Thread methods both use five threads.

Furthermore, we perform additional experiments con-
sidering a large amount of social media data. Specifically,
we artificially expanded the number of tweets for the
2013 Boulder flood to 10 000, 50 000, 100 000, 500 000,
and 1 000 000, respectively, to simulate and test the perfor-
mance of our distributed fusion frameworks. The results of
the simulated experiments are shown in Fig. 3. Concerning
the time consumption (in seconds), several conclusions
can be obtained. First, the difference between the adopted
data fusion framework (GOT) and the proposed distrib-
uted data fusion frameworks is relatively small when the
number of tweets is less than 100 000. This is reasonable
due to the inefficiency of distributed computing when con-
sidering small volumes of data [101]. In addition, with the
increase in the number of tweets, the performance of our
distributed frameworks increases significantly. Specifically,
the proposed distributed data fusion framework using
MPI-Thread exhibits the best computing performance. The
running time of the MPI-Thread implementation is only
171 s when simulating 1000000 tweets, which is one-
seventh of the total time taken by GOT. It should be
pointed out that, with the expansion of remote sensing
and social media data volumes, our proposed distributed
data fusion frameworks can significantly scale in terms of
computational efficiency.

V. CONCLUSION

In this article, we have presented a comprehensive review
of the state of the art in remote sensing techniques and
applications that use various data sources. First, we have
focused on research efforts that are based on fusing remote
sensing and other sources of data for EO applications.
Next, we give an overview of parallel and distributed
fusion implementations of techniques using multisource
remote sensing data and other sources of data. In order
to present a realistic case study of distributed fusion of
heterogeneous remote sensing and other sources of data,



a real flood event is discussed in detail. According to our
experiments, the proposed distributed data fusion frame-
works (exploiting both remote sensing and social media
data) exhibit high processing efficiency and the potential
for rapid computation in real scenarios. In future research,
large-volume multisource remote sensing data should be
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