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ABSTRACT | Speech production can be regarded as a process

where a time-varying vocal tract system (filter) is excited by

a time-varying excitation. In addition to its linguistic message,

the speech signal also carries information about, for example,

the gender and age of the speaker. Moreover, the speech signal

includes acoustical cues about several speaker traits, such as

the emotional state and the state of health of the speaker. In

order to understand the production of these acoustical cues

by the human speech production mechanism and utilize this

information in speech technology, it is necessary to extract

features describing both the excitation and the filter of the

human speech production mechanism. While the methods to

estimate and parameterize the vocal tract system are well

established, the excitation appears less studied. This article

provides a review of signal processing approaches used for

the extraction of excitation information from speech. This

article highlights the importance of excitation information in

the analysis and classification of phonation type and vocal

emotions, in the analysis of nonverbal laughter sounds, and

in studying pathological voices. Furthermore, recent develop-

ments of deep learning techniques in the context of extraction

and utilization of the excitation information are discussed.
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N O M E N C L AT U R E

CCD Complex cepstrum decomposition.
CP Closed phase.
CPP Cepstral peak prominence.
ClQ Closing quotient.
CNN Convolutional neural network.
dEGG Derivative of the EGG signal.
DNN Deep neural network.
DRF Dominant resonance frequency.
DYPSA Dynamic programming phase slope algo-

rithm.
EGG Electroglottography.
EoE Energy of excitation.
FFNN Feedforward neural network.
F0 Fundamental frequency.
GCI Glottal closure instant.
GOI Glottal opening instant.
GIF Glottal inverse filtering.
GMM Gaussian mixture model.
GNE Glottal-to-noise excitation.
H1-H2 Amplitude difference between the first and

second harmonics.
HNR Harmonic-to-noise ratio.
HRF Harmonic richness factor.
HSV High-speed video endoscopy.
IAIF Iterative adaptive inverse filtering.
ILPR Integrated linear prediction residual.
LFSD Low-frequency spectral density.
LoMA Lines of maximum amplitude.
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LP Linear prediction.
LPCCs Linear prediction cepstral coefficients.
LSTM Long short-term memory.
MBSC Multiband summary correlogram.
MDQ Maximum dispersion quotient.
MFCCs Mel-frequency cepstral coefficients.
MLP Multilayer perceptron.
NAQ Normalized amplitude quotient.
OQ Open quotient.
PLP Perceptual linear prediction.
PS Peak slope.
PSP Parabolic spectral parameter.
QCP Quasi-closed phase.
QOQ Quasi-open quotient.
QPR Quadratic programming.
RAPT Robust algorithm for pitch tracking.
RNN Recurrent neural network.
SEDREAMS Speech event detection using the

residual excitation and a mean-based
signal.

SFF Single frequency filtering.
SHRP Subharmonics-to-harmonics ratio.
SIFT Simplified inverse filter tracking.
SNR Signal-to-noise ratio.
SoE Strength of excitation.
SRH Summation of residual harmonics.
SQ Speed quotient.
STFT Short-time Fourier transform.
SVM Support vector machine.
SWIPE Sawtooth waveform inspired pitch

estimator.
YAGA Yet another GCI algorithm.
YAAPT Yet another algorithm for pitch tracking.
ZFF Zero-frequency filtering.
ZTW Zero-time windowing.
ZZT Zeros of the z transform.

I. I N T R O D U C T I O N
Speech is the most sophisticated means of communication
among people. The carrier of speech is the acoustic speech
pressure signal. In the speech, a small number of basic
elements, such as phones or syllables, are combined to
form a large number of units, such as words and phrases.
The complexity of speech is due to the many-to-one
relationship between the speech sound and its perceived
counterpart in the way that several phonetic contrasts can
be produced by the same acoustic cue. Conversely, several
acoustic cues may indicate the same phonetic contrast.
In addition, the phonemic cues in conversational speech
are enriched by characteristics, such as vocal emotions.
Thus, the information conveyed through the speech signal
is related not only to what is said but also how the
spoken message is conveyed. While the former is useful in
situations, such as information announcements, the latter
is important in casual conversations.

Speech is produced by the physiological apparatus of
the human speech production system. The function of this

system can be divided into two main parts: excitation,
the major component of it is generated at the larynx,
and filtering, which refers to the effects of the dynamic
articulators on the excitation during speech production.
The characteristics of the excitation vary depending on the
speech sound to be produced. For the most prevalent cat-
egory of speech sounds in most languages, voiced sounds
(such as the vowel [a] and the nasal [n]), the excitation
is the air flow waveform generated by the vibration of
the vocal folds. This excitation is called the glottal flow
due to the air passing through the orifice between the two
vibrating vocal folds at the glottis (see Fig. 1). The filtering
process extends from the vocal folds to the lips and nostrils.
It is influenced by the positioning of the tongue, the degree
of opening of the mouth, and the movement of the lips. By
varying the acoustical properties of the excitation, humans
are capable of changing some essential cues of speech, such
as pitch (e.g., generating low or high voices) and voice
quality (e.g., coloring speech to sound breathy or pressed).
By changing the articulators, humans can produce sounds
(called phones) representing different phonemes (e.g., /a/
or /i/). Among the three (voiced, unvoiced, and plosive)
categories of speech sounds, voiced sounds are of special
interest in speech science [1], [2].

There are many situations where the decomposition of
the speech signal into the excitation and filter compo-
nents is needed. The source-filter decomposition helps
to model the two components effectively in several
speech technology applications, such as speech synthesis
[3], [4], enhancement [5], [6], and coding [7]–[10].
Decomposition of speech signal helps to improve our
understanding of the human speech production mecha-
nism. Studies have shown that understanding the exci-
tation component helps in generating acoustical cues of
different voice qualities [11]–[13] and vocal emotions
[14]–[20], as well as in the production of different par-
alinguistic and nonverbal sounds [21]–[23]. The excitation
information is also useful for providing complementary
information to the more widely used vocal tract spectral
features to improve, for example, the detection of speech
disorders [24]–[27]. The relatively less effort in the study
of the excitation component is due to difficulty in the
decomposition of the signal into the excitation compo-
nent even though its importance is well established in
many areas of speech science and technology [28]–[30].
The decomposition is difficult, for example, in expressive
speech because of large variations in the characteristics
of speech sounds. In addition, the nonstationarity of the
speech production process compounds the difficulty. The
speech production process also involves nonlinearities
[31]–[33] that cannot be handled using linear source-filter
models.

This article is a review of the methods to extract and
utilize the excitation component of mainly voiced speech.
An important and widely studied example of such a fea-
ture is the inverse of the glottal cycle duration, that is,
the instantaneous fundamental frequency (F0). In addition
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Fig. 1. Demonstration of the production of voiced speech in two phonation types: normal (left) and breathy (right). The upper part of the

figure shows three time-domain waveforms (the speech pressure signal, the glottal flow estimated by GIF, and the glottal area function) and

the lower part shows images of the vocal folds. The gray vertical lines show the instants when the images of the vocal folds were taken by

the transoral high-speed digital videoendoscopy system (adopted from [38]).

to F0, one of the most important features is the strong
impulse-like component that is present in each cycle of
the glottal flow waveform in the production of voiced
speech. This impulse-like component is caused by the
sudden deceleration of the air flow in the vicinity of the
GCI due to adduction of the vocal folds. The character-
istics of this impulse-like event in the excitation wave-
form, particularly its sharpness, are closely associated with
several important speech attributes, such as voice quality
[11], [34] and loudness [35], [36]. The excitation infor-
mation also includes identifying the locations of GOIs,
where secondary excitation of the vocal tract might take
place. Furthermore, excitation information also involves
estimating the entire excitation waveform from the micro-
phone speech signal and then expressing this time-domain
signal (or its spectrum) with a few parameters to quantify,
for example, time ratios between the opening and closing
phases of the glottal flow waveform.

The extraction of speech excitation information has been
previously addressed in three review articles, which are
more than five years old. In [30] and [37], the review
focused on GIF and its applications. The review in [29]
studied the GCI detection methods, F0 extraction, and
GIF methods, as well as applications for speech synthesis,
speaker recognition, expressive speech processing, and
biomedical applications. In this article, a more holistic
review of the recent advances in extraction and utilization
of excitation information is provided by studying different
types of GIF methods, F0 extraction methods, and GCI
and GOI extraction methods. Furthermore, this review
highlights the extraction and utilization of the excitation
information based on recent developments in deep learn-
ing, an issue that is absent from all the previous reviews.
In addition, the utilization of excitation information in
speech-based biomarking of human health, an area that
has become increasingly important in recent years, is

discussed especially from the point of view of the detection
of neurodegenerative diseases.

The organization of this article is given as follows.
Section II describes the generation of speech signals by
the physiological human speech production mechanism.
Section III briefly describes the extraction of excitation
information using nonacoustic techniques. In Section IV,
the extraction of excitation information is studied by
describing the estimation of glottal flow using GIF and
describing the most important features of the excitation,
namely, F0, GCI, and GOI, and the issues underlying their
extraction. Section V describes how excitation information
has been used in four specific areas of speech research
by addressing the study of phonation types, vocal emo-
tions, laughter sounds, and pathological voices. Section VI
describes recent trends in this area by discussing the use
of deep learning in GIF and the extraction of F0 and GCI,
as well as the utilization of excitation information in the
detection of neurological diseases. Finally, conclusions are
given and future directions are discussed in Section VII.

The topics addressed in this article are thematically
described in Table 1 (ranging from the speech production
mechanism to the utilization of excitation information).
The list of abbreviations used in this article is given in
Nomenclature.

II. H U M A N S P E E C H P R O D U C T I O N
M E C H A N I S M
The speech production mechanism allows humans to pro-
duce a vast range of sounds ranging from verbal sounds
(normal speech) to nonverbal sounds (laughter, cry, and so
on) and sounds of different voice qualities and emotions.
Understanding the physiological speech production mech-
anism helps in the analysis of speech signals. A simplified
schematic presentation of the speech production system is
shown in Fig. 2. The system consists of many organs, which
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Table 1 Topics Addressed in This Article

can be categorized into three main groups: the lungs (the
subglottal system), larynx, and vocal tract (the supraglottal
system) [39], [40].

The lungs serve as the source of energy for the speech
production process generating pressure in the larynx due
to airflow. The (mean) lung pressure, also called subglot-
tal pressure, is controlled by the speakers for producing
sounds of different vocal intensity levels and phonation
types. It has been found that lung pressure can rise to
values as high as 6 kPa (60 cm of H2O) in loud singing
voices [41]. However, in the production of speech signals,
lung pressure is typically much lower. For example, the
measured lung pressure values in [42] were below 1 kPa
(10 cm of H2O) for most vowels of soft or normal loudness
and lung pressure rose to larger values (around 4 kPa,
that is, 40 cm of H2O) only in loud and very loud speech
signals.

During the production of voiced speech, the pressure
from the lungs causes vibration of the vocal folds. The
vocal folds (see Fig. 1), located in the larynx, are the key
physiological organs in the production of voiced speech.
The vocal folds have a layered structure consisting of five
layers (for more details, see [43]). The vibration of the

vocal folds forms the acoustical excitation signal for voiced
speech, called glottal volume velocity waveform or simply
glottal flow. Fig. 1 demonstrates the production of voiced
speech in two phonation types: normal (left) and breathy
(right). The figure shows the speech signal, the glottal
flow estimated by GIF, the glottal area function, and the
images of the vocal folds. The gray vertical lines show the
instants when the images of the vocal folds were taken by
the transoral high-speed digital videoendoscopy system.

There are two other types of excitation during speech
production resulting in unvoiced and plosive sounds. The
unvoiced sounds (e.g., [s] and [f]) are generated by
forming a constriction at some point along the vocal
tract and forcing air through this constriction to gener-
ate turbulence. Plosive sounds are generated by abruptly
releasing the air pressure building behind closure along
the vocal tract. These sounds are also called stops. Plo-
sives can be both unvoiced (e.g., [k] and [t]) and voiced
(e.g., [g] and [d]). The vocal tract system (consisting of
the oral, nasal, and pharyngeal resonant cavities) shapes
the excitation signal, and the resulting air flow sig-
nal is radiated at the lips to form the speech pressure
signal.

The production of speech can be considered as exciting
a filter (the vocal tract system) by an excitation. This is
called the source-filter model of speech production. In the
source-filter model, the source and filter are assumed to
be independent. It is worth emphasizing that, even though
the assumed independence of the source and filter enables
using more straightforward technologies, for example, in
speech analysis and synthesis, there is coupling between
the source and tract in the production of speech as reported
in many studies (e.g., [31]–[33]). In summary, according
to the way the excitation signal of the human speech pro-
duction system is generated, the produced speech signals
can be roughly divided into the following three categories:

1) voiced sounds (excited by the quasi-periodic glottal
flow);

2) unvoiced sounds (excited by aperiodic noise-type
flow);

3) plosive sounds (excited by burst-type flow).

Production of these three broad categories of sounds
is shown in the simplified diagram in Fig. 2. The current
review focuses on the excitation information in the voiced
sounds.

The source-filter model of speech production [shown
schematically in Fig. 3(a)] can be expressed mathemati-
cally in the time domain as follows:

s[n] = e[n] ∗ v[n] (1)

where s[n] is the speech signal, e[n] is the excitation (i.e.,
the derivative of the glottal flow waveform), v[n] is the
impulse response of the vocal tract (filter), and ∗ denotes
convolution operation. In the z-domain, the corresponding
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Fig. 2. Schematic presentation of the human speech production mechanism (adopted from [39]). Left: three excitation waveforms. Right:

corresponding speech waveform.

equation is given as follows:

S(z) = E(z)V (z) (2)

where S(z), E(z), and V (z) correspond to the z transforms
of the speech signal, source, and filter, respectively.

Given the speech signal (s[n]), the excitation can be
obtained as follows:

E(z) =
1

V (z)
S(z). (3)

Equation (3) shows that the excitation can be computed
by canceling the effect of the vocal tract filter (1/V (z))
from the speech signal [see Fig. 3(b)]. This forms the
basis for the GIF method for the extraction of excitation
information (discussed in Section IV-A1). The objective of
this review is to discuss signal processing approaches to
extract information in the excitation signal e[n], given the
speech signal s[n].

III. E X T R A C T I O N O F E X C I TAT I O N
I N F O R M AT I O N U S I N G
N O N A C O U S T I C A L T E C H N I Q U E S
In this section, three nonacoustical techniques to extract
excitation information (EGG, HSV, and videokymography)
are briefly discussed. These techniques have been used to
obtain the ground truth for the excitation features, such
as F0, GCI, and GOI. The ground truth is useful for the
evaluation of the methods developed for extracting these
features from speech.

EGG is an electrical method to study voice production
by feeding high-frequency-modulated current through two
electrodes placed on either side of the glottis [45]. The
electrical impedance between the electrodes decreases as

the vocal folds adduct, and the impedance increases when
the vocal folds abduct. Hence, the EGG signal provides
information about the area of contact between the vocal
folds during the production of voiced speech. As a method
to compute the ground truth, EGG benefits from being a
low-cost approach and can be applied not only for isolated
sounds but also for continuous speech.

Fig. 4 shows the EGG signal in one glottal cycle. The
EGG signal consists of four distinct phases [46]: the closing
phase, the CP, the opening phase, and the open phase. In the
closing phase (between t1 and t3), the vocal folds first start
contacting at the lower margins (between t1 and t2) and
then moving the contact to the upper margins (between t2
and t3). Generally, the closing of the vocal folds is faster
than the opening, and the instant of the maximum slope
occurs at t2, which can be seen as a prominent negative
peak in the dEGG shown in Fig. 4(b). The vocal folds are
in full contact during the CP (between t3 and t4), blocking
the passage of air through the glottis. In the opening
phase (between t4 and t6), the lower margins of the vocal
folds begin to separate slowly from each other (between
t4 and t5), followed by separation along the upper margins
of the vocal folds (between t5 and t6). The instant of the

Fig. 3. (a) Source-filter model of speech production. (b) Extraction

of excitation using inverse filtering.
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Fig. 4. Segment of (a) EGG signal and (b) corresponding dEGG

signal. Four parts of the glottal cycle are defined as follows: the

closing phase (from t1 and t3), the CP (from t3 and t4), the opening

phase (from t4 to t6), the open phase (from t6 and t7), and the pitch

period (from t1 to t7) [44].

maximum slope occurs at t5, which can be seen as the
positive peak in the dEGG signal [see Fig. 4(b)]. The vocal
folds are apart during the open phase (between t6 and t7).

The locations of the peaks in the dEGG signal, i.e.,
the negative peak at t2 and the positive peak at t5, are
considered to be GCI and GOI, respectively. F0 is estimated
as the inverse of the time difference between two con-
secutive GCIs. The values of F0, GCI, and GOI extracted
from dEGG are used as the ground truth in evaluating the
corresponding features extracted from the acoustic speech
signal. In general, the glottal opening is a relatively slow
phenomenon compared to the glottal closing. Therefore,
the glottal opening may not appear in the dEGG as a
clear impulse. Note that the EGG signal does not carry any
information about the variations in the acoustic pressure
signal [47]. A recent review of EGG for applications,
including basic voice science, clinical practice, and singing,
is given in [48].

In addition to EGG, laryngeal imaging methods, such as
HSV and videokymography, have been used to compute
the ground truth for the evaluation of various methods
to extract excitation information from speech [49]. HSV
is a technology to extract 2-D images from the motion
of the vibrating vocal folds, and it is widely used in
voice clinics. Videokymography is a simplified version of
HSV based on high-speed imaging of the vocal folds at
a specifically selected location along a horizontal line.
For more details on HSV, the reader is referred to the
review article published in [50], and for more details on
videokymography, the reader is referred to the reviews
published in [51] and [52]. Compared to EGG, the use
of HSV and videokymography is more challenging in the
computation of the ground truth because both of these
methods require expensive equipment. Also, the obtained

imaging data might be of low temporal and spatial res-
olution, and the methods do not enable a noninvasive
analysis of voice production. Laryngeal imaging has been
used jointly with acoustical analysis of speech excitation
information in studying, for example, glottic cancer [53],
diplophonia [54], and phonation onsets [55]. For visual-
ization, simultaneously recorded HSV and EGG signals are
shown in Fig. 5 for the closing and opening phases for a
nonpathological vowel production by a male speaker.

IV. E X T R A C T I O N O F E X C I TAT I O N
I N F O R M AT I O N F R O M
S P E E C H S I G N A L S
In this section, the extraction of excitation information
from speech signals is described by first discussing the
estimation of the glottal flow waveform using GIF and the
parameterization methods developed to express excitation
information from the glottal flow waveforms. Next, the
most important excitation information features, which can
be extracted directly from speech signals, such as F0, GCI,
and GOI, are discussed.

A. Extraction of Excitation Information Using GIF

GIF refers to the approach to estimate the glottal
source from speech signals. In this section, we will first
give an overview of the GIF methods and then describe
the parameters derived from the estimated glottal source
waveforms.

1) GIF Methods: The estimation of the glottal source
waveform by GIF is based on estimating the vocal tract
filter. The effect of the vocal tract resonances is reduced
by filtering the speech signal through the inverse of the
estimated vocal tract transfer function. The idea of GIF was
proposed in the 1950s [56] using analog antiresonance
circuits. Since the 1970s, GIF methods are using digital
signal processing tools. These methods differ mainly in the
way the vocal tract transfer function is estimated. Most
methods are based on LP analysis, which assumes that the
vocal tract transfer function can be approximated by an all-
pole filter [57]. A widely used LP-based GIF method, i.e.,
the CP analysis, was proposed in [58]. The CP analysis is
based on computing the vocal tract transfer function with
LP using the covariance criterion that is computed from
speech samples in the CP of the glottal cycle (i.e., this
method calls for the extraction of GCI and GOI). Another
popular GIF method is the IAIF [57]. In this method, the
average effect of the glottal source on the speech spectrum
during the open phase and CP of the glottal cycle is first
estimated with a low-order all-pole filter. By removing this
estimated average effect of the glottal source, a vocal tract
model is computed without using the knowledge of GCI or
GOI.

More recent GIF methods are based on the QCP analy-
sis [59] and QPR [60]. In the former, the CP analy-
sis is replaced by a temporally weighted LP analysis,
called weighted LP. QPR together with physically motivated
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Fig. 5. Visualization of the closing and opening phases of the glottal cycle by simultaneous electroglottographic and high-speed

recordings. Vertical bars to the EGG and dEGG signals indicate the moment in time at which the visual image occurs. The EGG sampling

frequency is 44444 Hz, and the high-speed camera sampling frequency is 3704 frames/s (reproduced from [46] with permission of the

publisher, the Acoustical Society of America).

optimization (e.g., the flatness of the CP) is used to model
jointly the vocal tract and the lip radiation.

GIF methods have also been developed based on the
joint optimization of the source and filter [61]–[64].
In these methods, glottal source models, such as the
Liljencrants–Fant (LF) [65] model and the Rosenberg–Klatt
(RK) model [30], [66], are used to represent the glottal
flow pulse or its derivative in a parametric form. Due to the
use of predefined mathematical functions for the glottal
source, these GIF methods are limited in their ability
to capture the behavior of the glottal source in natural
speech, particularly for phonation types. Moreover, the use
of multiparameter source models usually prohibits the use
of classical optimization methods due to the nonconvex
nature of the error surface, thus increasing the computa-
tional complexity [62]. The joint optimization of the source
and filter has also been applied in GIF using acoustical tube
models of the vocal tract [67]. The GIF proposed in [67]
uses state-space modeling based on a concatenated tube
model of the vocal tract and the LF model of the source.
By optimizing the model using extended Kalman filtering,
estimates of the glottal source and intermediate pressure
values within the vocal tract are obtained.

GIF methods have also been developed using a combina-
tion of causal (minimum phase) and anticausal (maximum
phase) components of the speech signal. The ZZT method
[68], [69] and the CCD method [70] are two methods
in this category. In these methods, the response of the
vocal tract and the return phase of the glottal flow are
considered as causal signals, and the open phase of the
glottal flow is considered as an anticausal signal. These

signals are separated by the mixed-phase decomposition
using analysis synchronized with the GCIs. The perfor-
mances of the ZZT and CCD methods are limited due
to the use of short speech segments and also due to
computational cost [69], [70]. Moreover, the assumption
that speech can be expressed as a combination of causal
and anticausal components may not hold when the speech
data are degraded due to noise.

In all GIF methods, the ultimate goal is to try to estimate
the ground truth, that is, the true glottal volume velocity
waveform produced by the vocal folds, with maximum
accuracy. Unfortunately, noninvasive recording of the true
glottal flow is not possible in the natural production of
speech. This absence of the ground truth is an inher-
ent obstacle in the assessment of all GIF methods. The
problem has been circumvented in some studies by syn-
thetic test vowels generated using artificial glottal flow
waveforms, such as the LF model [61], [67]. In addi-
tion, some studies have used physical modeling of the
human voice production [59], [71]–[73]. In this approach,
the test data are generated by simulating physical laws
in sound production and transmission, instead of using
preselected artificial source waveforms, which are linearly
filtered with digital vocal tract models. A few recent studies
[74], [75] proposed using a physical apparatus, where
synthetic speech signals are produced by using known
voice source waveforms as inputs. The physical vocal tract
replica is made of stacked plexiglass disks or 3-D-printed
in plastic using MRI images of the true vocal tract. In
the above studies, the glottal flow estimated by GIF was
compared with the information of the glottal area. There
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Fig. 6. Computation of time-based and amplitude-based

parameters from (a) glottal pulse and (b) its first time-derivative.

The ac-flow (fac), minimum flow (fmin), and the minimum of the

derivative (dmin).

are many recent investigations where GIF methods have
been studied jointly with glottal area information extracted
using HSV or with physical models of voice production.
These investigations have addressed issues, such as the
relationship between the glottal flow and glottal area in
the presence of source-filter interaction [76], [77] and in
phonation onsets [55], the computation of parameter val-
ues for physical models [78], [79], and the estimation of
subglottal pressure, laryngeal muscle activation, and vocal
fold contact pressure [80]. We argue that the strategy used
in these investigations to study excitation information of
speech (i.e., using GIF jointly with HSV and with physical
modeling approaches) will become increasingly important
and also increasingly feasible in the future due to the
progress in HSV [50], [81], physical modeling [82], [83],
and GIF [59], [67], [71].

2) Parameterization of the GIF-Based Glottal Flow Esti-
mates: Glottal flows estimated by GIF are parameterized
by expressing some important features in a compressed
numerical form. Methods for parameterization of the glot-
tal flow estimates can be grouped into time- and frequency-
domain methods.

a) Time-domain parameterization methods: The tradi-
tional way to parameterize the glottal flow waveform in
the time domain is to compute time-based quotients. This
involves measuring ratios of time durations of different
phases of glottal flow waveform in one cycle. These time-
based measures require the identification of GCI and GOI
in the estimated glottal waveforms. For illustration, one
cycle of the estimated glottal flow and its derivative are
shown in Fig. 6(a) and (b), respectively. In the figure, the
glottal pulse is divided into three parts: the CP (Tc), the
opening phase (To), and the closing phase (Tcl). The most
widely used time-domain parameters are the OQ, SQ, and

ClQ, which are defined as follows:

OQ =
To + Tcl

T
(4)

SQ =
To

Tcl
(5)

ClQ =
Tcl

T
(6)

where T = Tc + To + Tcl is the period of the glottal cycle.
Time-domain parameters are affected by distortions,

such as ripple, caused by incomplete canceling of for-
mants. To counter the effects of the ripple, time-domain
parameters are sometimes computed by replacing the true
closure and opening instants with the time instants when
the glottal flow crosses a level, which is set to a value
between the minimum and maximum amplitudes of the
glottal pulse [84].

The time-domain parameterization of the glottal flow
can also be computed using amplitude-based measures.
The most widely used amplitude-based time-domain para-
meterization methods take advantage of two prominent
amplitude values of the glottal flow and its derivative: the
ac amplitude of the glottal flow pulse and the amplitude of
the negative peak of the flow derivative [65], [85]–[87].
An amplitude-based parameter called the NAQ proposed
in [86] is given by

NAQ =
fac

dmin · T . (7)

b) Frequency-domain parameterization methods:
Frequency-domain parameters of the glottal flow are
obtained from the Fourier transform of the estimated
glottal flow. In practice, only the power spectrum
is used to derive the frequency-domain parameters.
A widely used frequency-domain parameter is the alpha
ratio, which measures spectral tilt by computing the
ratio between the spectral energies below and above
a certain frequency (typically ≤1 kHz) [88]. Another
frequency-domain glottal flow parameter is the HRF [89].
The HRF measures the tilt of the glottal flow spectrum as
the ratio between the sum of the amplitudes of harmonics
above F0 and the amplitude of F0. Another measure for
the spectral tilt of the glottal flow is the dB difference
between the amplitude of the fundamental and the second
harmonic, i.e., H1-H2 [90]. It is also possible to quantify
the glottal flow using the ratio between the harmonic and
nonharmonic components of the glottal flow spectrum,
which is referred to as the HNR [91], [92].

B. Extraction of F0

F0 of the vocal fold vibration is one of the important
components of excitation information in voiced speech.
The value of F0 varies from about 60 Hz in low-pitched
male voices to about 1500 Hz in sopranos’ singing
voices [93]. The temporal variation of F0 corresponds to
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intonation, which contributes to vocal emotions [94]. The
factors affecting the performance of F0 estimation methods
are the effects of vocal tract resonances, the rapid variation
of F0 (e.g., in emotional speech and children’s speech), and
signal degradation due to noise and reverberation.

In the production of some speech sounds, the glottal
excitation is inherently aperiodic containing more noise
(such as in breathy phonation) or diplophony (such as
in vocal fry) [95], which needs further investigation. As
F0 extraction is covered in several tutorials/books, this
topic is not handled in detail in this review article, but
we, instead, discuss the general aspects of F0 extraction
briefly here and focus more on recent deep learning-based
progress of the topic in Section VI-A. For more details on F0

extraction, please see [96]–[104], where various methods
are reviewed by for the study of clean and noisy speech, as
well as singing voices.

The F0 extraction methods can be grouped into three
broad categories: 1) time-domain; 2) frequency-domain;
and 3) time–frequency-domain methods. Time-domain
methods take advantage of the periodicity of the speech
signal or the LP residual. In this category, autocorrelation-
based methods are popular due to their simplicity. The
autocorrelation function measures the degree of similarity
between a signal and its delayed version [105]. An esti-
mate of the pitch period, i.e., the inverse of F0, is obtained
by using the location of the peak in the autocorrelation
function computed from a segment of speech or LP resid-
ual. This approach is used in many F0 extraction methods,
such as SIFT [97], [106], RAPT [107], YAAPT [108], and
PRAAT [109]. Several modifications to the autocorrelation-
based methods were proposed in the YIN method [93].

The spectra of periodic time-domain signals consist of
high-energy amplitude components, located at F0 and its
harmonics. This property forms the basis for frequency-
domain methods. Examples of methods belonging to this
category are the SHRP [110], the SRH [111], the summa-
tion of impulse-sequence harmonics [104], the method of
dominant harmonics [112], and the SWIPE [113].

In the time–frequency-domain methods, the speech sig-
nal is first decomposed into several frequency bands,
and then, the time-domain methods are applied to each
subband signal. The auditory-model correlogram-based
algorithm [114] is a popular method, in which speech is
decomposed using an auditory filter bank, and an auto-
correlation function is computed for each subband signal.
MBSC-based F0 estimation [115] uses four wideband FIR
filters to capture multiple harmonics in every subband. Dif-
ferent weighting schemes are used to obtain the peak of the
enhanced summary correlogram for robust F0 estimation.

C. Extraction of GCI

The derivative of the glottal flow waveform estimated
from natural speech typically shows a prominent negative
peak during the closing phase [28], [86]. This negative
peak serves as the main excitation of the vocal tract system

in each glottal cycle. The time instant of the negative peak
is called GCI. The GCI is used in different areas of speech
research, such as study of glottal activity [116], estimation
of pitch [104], [117]–[119] and formants [120], [121],
and the analysis of loudness [36] and nonverbal sounds
(such as laughter [23] and shouting [122]). GCIs are
also used in the time delay estimation [123]–[125], in
determining the number of speakers from mixed signals
[126], speech enhancement [5], [6], multispeaker sep-
aration [127], prosody modification [128], and speech
synthesis [3], [4].

The widely used GCI detection methods are grouped
into three categories [129]. The first category is based
on processing the excitation signal, the second category
involves processing the speech signal, and the third cate-
gory uses both the speech signal and the excitation signal.

1) Methods Based on Processing the Excitation Signal: The
methods in this category use the excitation signal derived
from the speech signal after removing the contribution
of the vocal tract. This is usually carried out by using
the LP analysis. The location of the large error value in
the LP residual within a glottal cycle corresponds to the
GCI. Identification of GCI locations from the LP residual
is sometimes difficult due to the polarity of the residual
values around the GCI. To overcome this difficulty, the use
of the Hilbert envelope of the LP residual was proposed
in [130]. In [131], the Gabor filtering of the Hilbert
envelope of the LP residual was used to detect GCIs. Some
methods use the group delay function of the LP residual to
locate the GCIs [131], [132]. It was found in [133] that
the group delay-based methods gave high false alarms.
Dynamic programming-based techniques were proposed
to reduce false alarms. Methods in [134] and [135] use
the glottal flow waveform instead of the LP residual to
detect the GCIs. The ILPR was used to detect the GCIs
by searching for transients in the ILPR using the dynamic
plosion index [136].

2) Methods Based on Processing the Speech Signal: Ear-
lier methods for GCI detection were based on short-time
energy of the speech signal in the time–frequency repre-
sentation [137]. For the energy computation and the time–
frequency representation, block processing of the speech
signal is required, which may affect the accuracy of the
GCI detection. In [138], GCIs were detected by searching
for the maximum of the determinant of the autocovariance
matrix of the speech signal.

Some methods exploit the properties of the impulse-like
excitation present in the speech signal due to GCI. ZFF
is one such method that takes advantage of the nature
of the impulse-like excitation. In ZFF, the speech signal is
filtered around 0 Hz using a cascade of two digital res-
onators [139]. The negative-to-positive zero crossings of
the ZFF signal correspond to GCIs for a signal with positive
polarity [140]. Another technique in this category is the
LoMA method, which uses the time-scale representation
to locate GCIs [141]. The idea of the LoMA method is
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that discontinuities in the speech signal at GCIs and GOIs
are reflected as amplitude maxima at each scale of the
wavelet transform. Within a pitch period, an optimal LoMA
is computed using dynamic programming to detect the
GCIs. In [142], singularity/discontinuity behavior present
in the speech signal was exploited using a nonlinear tech-
nique, called the microcanonical multiscale formalism, for
GCI detection. The method was shown to be robust in
conditions of low SNR. Recently, the magnitude spectral
properties of the time-domain impulses were exploited
to detect the GCIs using the SFF method [143]–[145].
The method was shown to be robust in detecting GCIs in
emotional speech and telephone quality speech.

3) Methods Based on Processing Both Speech Signal and
Excitation Signal: In this category, the methods use the
speech signal to first identify possible GCI locations within
a certain interval. After this, discontinuities in the exci-
tation signal are used to locate the GCIs. SEDREAMS is
one such method [146]. SEDREAMS uses the mean-based
signal to find the possible GCI locations in an interval,
after which the peak of the LP residual in the interval is
used to detect the GCI. The mean-based signal oscillates
around the local pitch period, thus guaranteeing good
performance in terms of reliability, i.e., reduction in the
number of false alarms and misses. In [147], SEDREAMS
was modified to handle speech of different voice qualities.
This method uses postprocessing techniques and dynamic
programming, in addition to SEDREAMS. Other methods,
such as DYPSA [133] and YAGA [134], use the excitation
signal (LP residual in DYPSA and glottal flow waveform
in YAGA), wavelet transform, group delay, and dynamic
programming by minimizing various cost functions. The
cost function consists of various elements, such as the
interpulse similarity, normalized energy values, pitch devi-
ation, costs derived from the projected phase slope, and
deviations from an ideal phase slope function. More details
on the GCI detection methods and the GCI-based analysis
of speech processing can be found in [28], [29], [129],
[146], and [148].

D. Extraction of GOI

In comparison to the detection of GCIs, the detection
of GOIs is generally more difficult from speech signals
because the abduction of the vocal folds is typically a more
gradual phenomenon compared to the abduction of the
vocal folds [28]. Methods for the detection of GOIs are
mainly based on first detecting the GCIs, after which a
suitable duration is assumed for the open phase, either
by fixing a value or by using a ratio with respect to the
pitch period. The detection of GOIs is needed for the CP
analysis and characterizing speech production using the
OQ [149], [150].

It is to be noted that there is no unique definition for
GOI [134]. Three main definitions of GOI are reported in
the literature [134]. Each one of these definitions is limited
to a specific application of interest. In the first definition,

the GOI occurs at the end of the CP, where an increase in
the LP residual error occurs [58], [134]. This definition is
used in the estimation of the glottal flow with the CP analy-
sis. The second definition is based on the dEGG signal,
where the GOI is identified as the location of the maximum
value of the dEGG signal, corresponding to the maxi-
mum rate of change of the glottal impedance/conductance
[46], [151]. This definition has been used to compute the
OQ to describe pathological voices [149], [150]. The third
definition of GOI is based on the EGG signal, by defining
GOI as the time instant where the amplitude of the EGG
signal is equal to a given percentage of the maximum value
of the EGG signal within the glottal cycle [152]. Since
the glottal opening is typically more gradual compared to
glottal closing, it is appropriate to define the GOI as an
interval within a glottal cycle rather than a time instant.

In [153], the Hilbert envelope of the LP residual was
used for the detection of GOIs, after first detecting GCIs.
In [134], [154], and [155], the multiscale product of the
decomposed wavelet signals was shown to be effective
for the GCI/GOI detection from speech and EGG signals.
In [134], the YAGA method was proposed for the detection
of GCIs/GOIs using wavelet transform, group delay, glottal
flow waveform, and dynamic programming. SEDREAMS
uses the LP residual and mean-based signal to detect
GCIs/GOIs [146].

From the speech production’s point of view, when the
vocal folds are completely open in a glottal cycle, the
subglottal system is maximally coupled to the supraglottal
system, and the resultant vocal tract is longer compared
to the tract during the CP. The effect of opening on the
response of the vocal tract system is different during
different stages of the open phase. When the glottis
starts to open, the bandwidth of the first formant of the
supraglottal vocal tract begins to increase. On the other
hand, at the end of the opening phase, the effective vocal
tract length will be larger due to coupling, and therefore,
the center frequency of the lowest resonance will decrease
and its bandwidth will increase. This results in the
increased spectral flatness of the response of the vocal
tract system. Motivated by this phenomenon, the lower
DRF is used for deriving the open phase using the ZTW
method [156], [157]. The glottal open phase is determined
using a threshold value of 0.5 over the normalized DRF
contour. The interval below this threshold is identified as
the open phase and the remaining part of the glottal cycle
as the CP. It was shown in [145] that the spectral flatness
computed at each instant of the ZTW spectrum highlights
glottal opening, as the effective vocal tract length is longer
in the glottal open phase, which increases the bandwidths
of the resonances, making the spectrum flatter, compared
to the CP. In [145], the open phase is identified as the
interval between the peak in the spectral flatness plot
within a glottal cycle to the following GCI.

Research has also been conducted to extract impulse-
like sequences and their relative strengths in each
glottal cycle directly from the speech signal [23], [158].
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Fig. 7. Illustration of some excitation features. (a) Speech signal. (b) dEGG signal. (c) LP residual. (d) Glottal flow derivative.

(e) Instantaneous F�.

In [9], [159], [160], the excitation component was
represented as a multiple-pulse sequence for the purpose
of speech synthesis. For this, the LP analysis and synthesis
methods were used to determine the locations and
strengths of the impulses by considering one pulse at a
time or by jointly optimizing the strengths of several pulses
(such as the regular pulse excitation and the random pulse
excitation). In a more recent study [158], a method was
proposed to extract a sequence of impulses from the signal
by modifying the ZFF method using various levels of trend
removals. This approach is justified by the pitch perception
of expressive voices [104], [161]–[163]. However, there
is a need for signal processing techniques that can exploit
the impulse-like sequences derived directly from the input
signal without using block processing and vocal tract
system characteristics.

In addition to the issues described above, some studies
have been proposed for extracting the excitation informa-
tion using features, such as the strength of the impulse-
like excitation at glottal closure (as in NAQ) and the
sharpness or the abruptness of glottal closure [36], [164].
Fig. 7 illustrates some of the excitation features extracted
from the speech signal. In Fig. 7, (a) shows a segment
of voiced speech, (b) shows the dEGG signal, (c) shows
the LP residual, (d) shows the glottal flow derivative, and
(e) shows the instantaneous F0.

V. U T I L I Z AT I O N O F E X C I TAT I O N
I N F O R M AT I O N I N D I F F E R E N T A R E A S
O F S P E E C H R E S E A R C H
In this section, we discuss how the excitation information
is utilized in different areas of speech research. The section
is divided into four research areas, where extraction of
excitation information plays a significant role:

1) study of phonation types;
2) study of vocal emotions;
3) study of laughter sounds;
4) study of pathological voices.

A. Study of Phonation Types

Humans are capable of coloring their speech by chang-
ing phonation type, i.e., the vibration mode of the vocal
folds. The analysis and classification of different phona-
tion types are needed in applications, such as in speech
synthesis and modification systems [89], [165], [166], and
tagging expressive speech corpora [167]. Furthermore, the
identification of phonation type is useful in the assessment
of the cognitive load of the speaker, speaker recognition,
emotion recognition, and speech recognition [14], [17],
[29], [168]–[173].

Generally, three broad phonation types are considered.
They are breathy, modal (or normal), and pressed (or
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tense). When phonation type changes from breathy to
modal and pressed, the characteristics of the glottal flow
pulse change considerably. The glottal flow pulse changes
from a smooth symmetric waveform in breathy phonation
to an asymmetric waveform with sharp edges in pressed
phonation [11], [174]. This variation in the time domain
is reflected as the decrease in the decay of the spectral
envelope of the glottal pulse in the frequency domain
[175], [176].

Glottal source parameters were explored for discriminat-
ing breathy, modal, and tense voices in [11] and [147].
Frequency-domain parameters, such as H1-H2 [176],
HRF [89] and the PSP [177], were used for the discrim-
ination task. In addition, time-domain parameters, such as
ClQ, QOQ, OQ, and SQ, and amplitude-based parameters,
such as NAQ, were also used [11], [30], [86]. Some studies
measured the amount of aspiration noise present in the
signal for detection of breathy voice based on the obser-
vation that breathy voices are noisier compared to modal
voices [176], [178]. In [179] and [180], parameters were
derived for various voice qualities by fitting the estimated
glottal source waveform with the LF model.

In [164] and [175], it was observed that H1-H2 and
NAQ were the best parameters for discrimination of dif-
ferent phonation types. However, it was observed that
the accuracy of the estimated glottal source parameters
reduces for high-pitched voices and expressive voices
[29], [30]. To overcome this, attempts have been made
recently to extract the excitation information directly from
the speech signal. In [164], a parameter called the MDQ
was proposed to capture the sharp changes in the glottal
closure characteristics from the LP residual. In [175], using
the spectral parameter LFSD, it was observed that pressed
voices show smaller OQ, and breathy voices show higher
OQ. The effect of the subglottal system on the spectrum
is stronger for breathy voices due to larger OQ compared
to the pressed voices. Larger OQ results in the increase
in LFSD for breathy voices, typically around the region of
the glottal formant (which is lower in frequency than the
first formant). In [175], it was observed that LFSD and
MDQ are close to NAQ, and HNR seems to provide poor
discrimination for the three phonation types. However,
HNR was shown to provide good discrimination of breathy
and modal voices compared to pressed and modal voices.
It was observed that H1-H2 performs poorly for female
speakers, and it is as good as NAQ for male speakers. This
may be due to the overlap of the second harmonic with the
first formant for female voices. In general, it was observed
that no single parameter performed consistently well for
all the speakers in the discrimination of phonation type.

Kadiri et al. [34], Kadiri and Yegnanarayana [182],
[183], and Kadiri and Alku [184] explored the features
derived from the ZFF, ZTW, and SFF methods for dis-
criminating phonation types. In these studies, cepstral
coefficients were obtained from the spectra estimated by
the three methods, and the cepstral coefficients were
used in addition to excitation information scalar features

Table 2 Trend in Spectral Features of Emotional Utterances With Respect

to Neutral State Utterance (Increase: ↑ and Decrease: ↓) [185], [186]

(such as spectral statistics). Recently, in [184], the MFCCs
computed from the glottal source waveforms estimated by
the QCP method and the ZFF method were shown to be
effective for the classification of different phonation types
from speech signals.

B. Study of Vocal Emotions

The features used for emotion recognition can be
broadly characterized as spectral and prosodic features.
The general trend of four spectral features, i.e., changes in
the lowest two formant frequencies, the bandwidth of the
first formant (F1), and spectral tilt, is indicated in Table 2
for anger, happiness, and sadness [185], [186]. The trend
is indicated as an increase or decrease in the parameter
value relative to the neutral state. Similarly, the trend of
prosodic features, i.e., F0, energy, and speaking rate, is
indicated in Table 3 [185], [186].

The basic technological principles of emotion recog-
nition systems are similar to those used in speech and
speaker recognition, as well as in language identifica-
tion [187]–[189]. In most emotion recognition studies,
short segments of speech are represented in terms of
spectral features, such as MFCCs or LPCCs, prosody fea-
tures, and their statistics [185], [187], [190]–[194]. These
features are available in open toolkits, such as openS-
MILE [192], [195]–[197]. The features extracted from
the emotional speech are used to develop nondiscrim-
inative/discriminative models, such as GMMs, FFNNs,
and DNNs [187], [198]–[200]. Binary classification tech-
niques, such as SVMs and Bayesian logistic regression,
have been used for the multiclass problem by adopting
them in hierarchical binary decision tree framework [188],
[196], [201].

Emotion recognition systems generally use the features
representing the vocal tract system characteristics. There
are fewer studies of emotional speech involving the
use of excitation information [14]–[17], [199], [202],
[203]. Most of these studies use the voice source features
computed from a specific category of speech sounds,
such as vowels [14], [15], [17], [202], [204]. In [15]
and [16], the role of the voice source in the perception

Table 3 Trend in Prosody Features of Emotional Utterances With Respect

to Neutral State Utterance (Increase: ↑ and Decrease: ↓) [185], [186]
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of emotional arousal (active and passive) and valence
(positive and negative) attributes was studied from short
vowels (with a duration of 150 ms). The results showed
that NAQ correlates better with arousal than valence
for both genders. Similarly, in [14], emotions in short
vowel segments of [a :] in the continuous speech were
analyzed. Significant differences were found in NAQ
between most emotions. Even though NAQ correlates with
emotions and voice quality changes, it was found that
NAQ by itself is not sufficient for discriminating between
emotions accurately [14]. The interdependencies among
glottal source features were studied in [17] between five
emotions using six glottal source parameters extracted
from the glottal flows estimated by GIF [17]. In [202]
and [204], the robustness of the glottal source features
was examined across databases for four emotions (anger,
happiness, neutral state, and sadness).

Studies (e.g., [18]–[20], [206], and [207]) have investi-
gated excitation features derived directly from the speech
signal. Gangamohan et al. [18] examined four excitation
features (F0, the SoE, the EoE, and loudness) for discrim-
inating different emotions. These features were used to
build emotion detection [206] and emotion recognition
systems [19], [20], [205]. The effectiveness of excitation
during the production of emotional speech was examined
in [207]–[209] using prosody modification to convert neu-
tral speech to emotional speech.

C. Study of Laughter Sounds

Nonverbal sounds, such as laughter, convey nonlin-
guistic information. Production of these sounds is typi-
cally involuntary and spontaneous. Nonverbal sounds do
not have any clear description of articulation. In laugh-
ter, changes occur in the excitation due to involuntary
bursts of activity. Laughter conveys a variety of functions,
such as indication of affection, aggressive behavior (laugh
in someone’s face), bonding behavior (such as in early
infancy), or appeasement behavior (such as in situations
of dominance) [210]. Detection of laughter can help in
understanding the emotional state of a speaker [211].
The analysis of laughter also helps in spotting regions of
laughter in continuous speech. Characterization of laugh-
ter helps in laughter synthesis.

Laughter sounds have been classified in different ways
in different studies. In [212], laughter was classified into
three classes: 1) spontaneous laughter; 2) voluntary laugh-
ter; and 3) speaking or singing laughter. In spontaneous
laughter, there is an urge to laugh without restraining its
expression. Voluntary laughter is a kind of fake laugh-
ter to produce a sound pattern that is similar to that
in natural laughter. The laughter in speaking/singing is
not based on forced breathing but on well-dosed air
supply, which results in breathiness and aspiration. The
continuum from speech to laughter was divided into
three categories [213], [214]: speech, speech–laughter,
and laughter. The duration of vocalization was observed to

increase in speech–laughter. This is likely due to changes in
one/more features of vowel elongation, pitch, breathiness,
and syllabic pulsation [213]. Voiced laughter was shown
to induce a significantly more positive emotional response
in listeners compared to unvoiced laughter [215].

In [216], laughter analysis was carried out using
features, such as F0, time duration, root mean square
amplitude, and formant frequencies. It was observed that
laughter has significantly longer unvoiced regions com-
pared to voiced regions. The mean F0 of laughter sounds
was reported to be 472 Hz for (Italian and German) female
speakers, and the F0 values ranged between 246 and
1007 Hz [210], [217]. The average F0 of normal speech
sounds was reported to be 214 and 124 Hz for female and
male speakers, respectively. A group of acoustic features,
including F0, the number of calls per bout, formant clus-
ters (F1 versus F2), and spectrograms, were investigated
in [218] to analyze temporal features of laughter, their
production modes, and source-filter effects. Their study
proposed a subclassification of F0 contours in each laugh-
ter call into rising, falling, flat, sinusoidal, and arched.
The acoustic features of laughter–speech continuum, such
as the pitch range, voice quality, and formant space,
were studied in [214]. Two specific acoustic features (the
rhythm and the change in F0) of the laughter series were
investigated in [219]. In [211], combinations of several
features (pitch, energy, voicing features, modulation spec-
trum, and PLP features) were used to model laughter and
speech. The voice source characteristics were investigated
using the OQ along with spectral tilt in [214]. Voice source
features, including the instantaneous pitch period, the SoE
at glottal closure, and their slopes and ratio, were used for
the analysis of laughter in [218] and [221].

D. Study of Pathological Voices

Excitation information of speech is also used in studying
pathological voices. Voice pathologies are disorders in
which the phonation process in the larynx is disturbed
due to, for example, dysphonia, polyps, and vocal nodules
[221], [222]. Voice disorders are complex, and they often
do not have a single etiology [221]. Voice pathologies arise
due to infections, psychogenic, and physiological causes,
and due to vocal misuse, which is prevalent in professions,
such as teaching, singing, and client service representatives
[223], [224]. Change in voice from normal to patholog-
ical may indicate early neurodegenerative disease, such
as Parkinson’s disease [225]. The utilization of excitation
information of speech has attracted increasing interest in
the area of speech-based detection of neurodegenerative
diseases (discussed in Section VI-B). Automatic detection
of voice pathology is important because it enables early
intervention for the diagnosis.

The features used in investigating pathological voices
can be generally classified into the following three cate-
gories [226], [227]: 1) perturbation measures; 2) spectral
and cepstral measures; and 3) complexity measures. The
perturbation measures aim to capture the presence of
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aperiodicity and aspiration noise in the voice signals that
occur due to irregular movements of the vocal folds and
incomplete glottal closure. The most widely used parame-
ters in this category are jitter, shimmer, HNR, normalized
noise entropy, and GNE ratio [228]–[240]. The popular
features in the category of spectrum/cepstrum measures
are MFCCs [227], [241]–[243]. In addition, LPCCs [229],
[244], [245] and PLP [227], [246] have been used in voice
pathology detection. The complexity measures have been
proposed to capture nonlinearity and nonstationarity of
voice signals using estimators based on nonlinear dynamic
analysis [231], [247]–[252]. The popular features in this
category are computed using the fractal and correlation
dimension [246], [247], [253]–[255]. More details on the
features used for pathology detection can be found in
recent review articles [227], [256].

Since voice pathologies may affect different parts of
the speech production mechanism, both the vocal tract
system and the glottal source need to be parameterized
for the analysis and detection. Existing studies have cap-
tured the characteristics of the vocal tract effectively by
utilizing spectral and cepstral features (such as MFCCs
and PLPs). However, there is less research in the analysis
and detection of voice pathologies using glottal source
features. Recently, a systematic analysis of glottal source
features in normal and pathological voices was carried
out in [24]. In that study, the glottal source features
were derived from the ZFF signal and the glottal flow
waveform estimated using the QCP method [59]. The
features derived from the ZFF signal consisted of the SoE,
EoE, loudness measure, and ZFF signal energy [34], [181],
[182]. The glottal flow signals estimated using QCP were
parameterized in terms of time- and frequency-domain
glottal features [30], [257]. In addition to these, features
derived directly from speech signals that capture the spe-
cific property of the glottal source were also studied. These
features were the CPP [176], PS [258], MDQ [164], and
Rd shape parameter [259], [260]. Furthermore, MFCCs
derived from the glottal source waveforms were shown
to be effective for voice pathology detection. In [26],
[262], and [263], it was shown that glottal source fea-
tures were useful in the automatic detection of dysarthria
and also in the assessment of intelligibility in speakers
with dysarthria. In [263], glottal parameters computed by
GIF were used to identify pathophysiological phonatory
mechanisms for phonotraumatic and nonphonotraumatic
vocal hyperfunction. In [264], detection of pathological
voices caused by vocal nodules was investigated using
several glottal parameters and a classifier based on a
genetic algorithm. In [265], automatic detection of voice
pathology was studied by using a random forest classi-
fier and including several voice disorders, both functional
and organic pathologies. The study compared glottal flow
features with the widely used openSMILE feature set
[266]. The results indicated that the best detection accu-
racy was obtained by combining glottal features with the
openSMILE features. Similar results have been obtained

in recent investigations on automatic speech-based
detection of diseases, such as heart disease [267] and
specific language impairment [268].

VI. R E C E N T T R E N D S I N E X T R A C T I O N
A N D U T I L I Z AT I O N O F E X C I TAT I O N
I N F O R M AT I O N
This section describes recent developments in the
extraction and utilization of excitation information. The
section addresses the issue in two parts by first describing
the use of deep learning for GIF and extraction of F0 and
GCI. In the second part, the utilization of the excitation
information in a popular health topic, the automatic
detection of neurodegenerative diseases from speech
signals, is discussed.

A. Deep Learning for GIF and for
Extraction of F0 and GCI

Inspired by the success of deep learning in many areas of
speech technology, the extraction of excitation information
has been recently studied using approaches based on deep
learning both in GIF and the detection F0 and GCI. It
is known that signal processing-based GIF methods are
affected by distortions in the speech signal due to ambient
noise, the poor audio quality of the recording equipment,
and compression and bandwidth limitation caused by
speech transmission [30], [269]. To address this issue,
a few recent studies [269]–[271] have proposed using
DNN-based methods for estimation of the glottal source
waveform. In [269], coded telephone quality speech was
studied using a DNN-based GIF method by using both clean
and coded speech in training. DNN was used to map the
speech features (line spectral frequencies) extracted from
the coded speech to the time-domain glottal flow wave-
forms estimated from the corresponding clean speech. The
glottal flow estimated from clean speech (using an existing
signal processing-based GIF method and the QCP method)
was used to train the DNN. It was observed that the
DNN-based GIF method showed good performance in the
estimation of glottal flows under the coded condition for
both high- and low-pitched vowels.

As described in Section IV-B, the existing F0 extraction
methods are based on handcrafted signal processing
frameworks working in the time-domain and/or
frequency-domain. These signal processing approaches
are known to be prone to pitch doubling/halving errors. In
[102] and [273]–[275], machine learning models for F0

extraction were proposed. The method proposed in [272]
first extracts spectral domain features (the normalized
log-frequency power spectrogram) and then adopts a
neural network to compute the F0 estimate. To capture
the variation of F0, RNNs were explored. Specifically, the
authors investigated both DNN- and RNN-based methods
to produce reasonably accurate probabilistic outputs
for pitch. From the pitch probability in each frame, a
Viterbi decoding algorithm was used to derive continuous
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pitch contour. By removing feature extraction and Viterbi
decoding modules, mapping the raw waveform directly
to the F0-corresponded states was proposed in [275].
In [276], the CREPE model, which is an end-to-end CNN
that uses the raw waveform, was proposed. The network
is trained in a supervised fashion by minimizing the
cross-entropy loss between the output of the model and
the ground-truth pitch. In [102], a voicing detection was
proposed as a classification problem and pitch estimation
as a regression problem. For both tasks, various acoustic
features and traditional machine learning methods were
used. In [277], vocoder-based modifications for speech
data augmentation for neural network estimation (such as
CREPE) of F0 were explored.

As described in Section IV-C, existing robust GCI detec-
tion methods use a two-stage approach. The initial stage
involves the transformation of speech into a representative
excitation signal (such as an LP residual), where GCIs can
be localized better. The later stage involves the detection
of locations of the GCIs. The initial stage uses signal
processing approaches based on, for example, the source-
filter model of speech production, and the later stage
adopts algorithms, such as peak picking and dynamic pro-
gramming. Recent developments in the area of data-driven
representation learning have shown that it is possible to
operate directly on the raw speech signal, and let the
learning algorithm learn the abstract representations of the
underlying task. As an example of this kind of approach,
CNNs were utilized in [278] for the GCI detection by
operating on low-pass filtered speech and regarding the
negative peaks of the filtered signal as the correct GCIs. In
[279], the GCI detection was posed as a temporal event
detection problem, relaxing the constraints used in [278].
In [279] and [280], the GCI detection was formulated
using a representation learning perspective, where an
appropriate representation is implicitly learned from the
raw signal. In [281] and [282], a deep CNN-based GCI
detection method was proposed by fusing raw speech and
LP residual features. In [283] and [284], classification-
based data-driven algorithms were studied for the GCI
detection, using conventional machine learning methods,
such as SVMs, extremely randomized trees, k-nearest
neighbors, and MLP with handcrafted features extracted
from speech. In these studies, the problem was viewed
as a two-class classification problem, where a peak in the
speech signal could either correspond or not correspond
to GCI. The handcrafted features are peak-based features
comprising the amplitudes of the negative peak and the
neighboring negative peaks, the time difference between
the negative peak and each of the neighboring negative
peaks, the amplitudes of the neighboring positive peaks,
the width of the negative peak and each of the neigh-
boring negative peaks, and the correlation of the signal
around each of the neighboring negative peaks. In [285],
features, such as voiced/unvoiced, harmonic/noise, and
spectral features, were added to the handcrafted features
for improving the performance of GCI detection.

B. Utilization of Excitation Information for
Detection of Neurodegenerative Diseases

Neurodegenerative diseases, particularly Parkinson’s
disease and Alzheimer’s disease, are becoming increas-
ingly prevalent globally due to the aging of the popu-
lation. The early detection of these diseases is essential,
and speech provides an effective means of biomarking
these diseases at an early stage of the disease’s progress.
Speech-based detection of neurodegenerative diseases has
attracted increasing interest as an automatic, low-cost, and
easy-to-administer method [231], [286]. The detection
methods proposed can be divided into traditional pipeline
systems and modern end-to-end systems. In the former,
selected handcrafted features are computed from speech
to train classifiers (such as SVMs) to predict one of the two
labels (disordered versus healthy). Many different speech
features have been used in these studies. In the detection
of PD, speech has been parameterized with handcrafted
features based on articulation, phonation, and prosody
[287]–[289]. In the end-to-end systems, the use of hand-
crafted features is replaced by training deep learning net-
works that directly map the raw speech signal waveform
(or its spectrogram) to the output labels (disordered versus
healthy). Deep learning models, such as CNNs, MLPs, and
LSTM [288], [290]–[292], for example, have been used
for this purpose.

Since neurodegenerative diseases affect phonation,
obtaining parameters based on speech excitation informa-
tion is a justified approach to build traditional pipeline
systems for the detection of neurodegenerative diseases
from speech signals. A few recent studies [27], [293] have
investigated the use of speech excitation information in
the detection of PD with the traditional pipeline approach
by estimating the glottal flow using the IAIF method
(as described in Section IV-A1) and by training SVM clas-
sifiers using the computed parameters. These studies indi-
cated that glottal parameters carry useful information to
improve detection accuracy. In [294], excitation informa-
tion was studied in PD by first estimating the glottal flow
from speech using GIF, after which parameters of a biomed-
ical two-mass model were determined by fitting the glottal
flow spectrum to the model. The study showed that the
biomedical model can be used to measure the instability of
phonation, and the features are good biomarkers of PD.

Some recent investigations have studied the use of time-
domain excitation information to build end-to-end systems
for the detection task. In this approach, voice excitation
information is represented by the estimated glottal flow
waveform, which is then used as input to a deep learning-
based end-to-end system. There are two justifications for
studying this kind of end-to-end system for the detection of
neurodegenerative diseases. First, the glottal flow captures
the phonation information, which is known to be affected
by neurodegenerative diseases [287]–[289]. Second, com-
pared to the speech signal, which is the default input
in most of the end-to-end detection systems, the glottal
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flow is a more basic signal due to the absence of vocal
tract resonances. Using such time-domain signals, deep
learning systems can be trained with smaller amounts of
training data, as indicated in [295]. This is particularly
useful because long voice recordings cannot be obtained
from patients easily. The end-to-end systems were recently
studied in the detection of voice pathologies [25]. The
data for this study included voice pathologies caused by
different diseases, including neurodegenerative ALS dis-
ease. The study indicated improvements in the detection
accuracy when the glottal flow was used as input to deep
learning-based classifiers, instead of the speech signal.
Similar results were recently reported in [296] for the
detection of PD.

VII. C O N C L U S I O N A N D D I R E C T I O N S
F O R F U T U R E R E S E A R C H
In this article, a review was provided on the extraction and
utilization of the excitation information of speech signals.
First, the motivation of the topic was explained. Second,
the functioning of the human speech production mech-
anism was briefly described. Third, the extraction of the
main components of excitation information was presented
by describing the GIF-based estimation of the glottal flow,
the underlying excitation information parameters, and the
extraction of F0, GCI, and GOI. Fourth, the utilization of
excitation information in various speech processing tasks
was discussed by including analysis and classification of
phonation type, the study of emotional speech, the study
of nonverbal laughter sounds, and the study of patho-
logical voices. Finally, recent trends of the review topic
were discussed by addressing two issues, the utilization
of deep learning in GIF, the extraction of F0 and GCI,
and the utilization of excitation information in studying
neurodegenerative diseases.

Even though the fundamental theory underlying the
review topic, that is, the linear source-filter theory of
speech production [297], [298], has been known for
more than five decades, the technologies discussed in
the review are still topical, and the utilization of speech
excitation information has attracted increasing interest in
a few areas in recent years. One such area is speech-based
biomarking of the state of health, especially the auto-
matic detection and classification of neurodegenerative
diseases. This research topic has gained momentum due
to the aging of the population, a recognized global grand
challenge. In the area of speech-based classification of
neurodegenerative diseases, the traditional model-driven
systems consisting of separate feature and classification
stages are currently increasingly replaced with data-
driven end-to-end systems based on deep learning. The
end-to-end approach is attractive because it enables
building health monitoring systems that do not need any
domain expertise in the system training phase. It can,
however, be argued that, when the traditional approach
is used together with effective speech excitation para-
meters (e.g., those discussed in Section IV), the analysis

benefits from its better capability to demonstrate which
particular functions of the speech production mechanism
have been affected by the underlying disease. This demon-
stration capability of traditional speech excitation fea-
tures can be easily taken advantage of by clinicians and
speech-language pathologists. Even though the end-to-
end approach has shown better accuracy compared to
the traditional, feature-based approach in a few studies
[288], [290], [292], the end-to-end technology can be crit-
icized for providing a black box-type of solution with poor
interpretability to the detection task [299]. Moreover, the
end-to-end approach requires larger amounts of training
data than the traditional feature-based pipeline approach.
Collecting large amounts of speech data from patient pop-
ulations is not as easy as it is from healthy speakers.

In addition to the health-related research area described
above, we argue that the methods to extract excitation
information from acoustic speech signals discussed in this
review can be used to improve our knowledge of human
speech production, particularly when these methods are
used jointly with the latest imaging technologies and phys-
ical modeling approaches of voice production. In this area,
we emphasize, particularly, the recent progress in HSV
(e.g., [81]) and GIF (e.g., [59] and [67]), which, in princi-
ple, enables obtaining glottal area and glottal flow signals
with good spatial and time resolutions from natural voice
production, not only for isolated vowel sounds but also for
continuous speech. Information extracted jointly by HSV
and GIF can be used both to acquire new fundamental
research knowledge about the human speech production
process and compute parameter values for physical models
of voice production.

The review shows that, despite the fact that many
methods have been developed over the past few decades
to extract excitation information from speech, the develop-
ment of new methods is still continuing, and new research
is needed in order to tackle known limitations in current
methods. One such limitation is related to the extraction of
GCI where the performance of the state-of-art methods is
good, but the performance is limited by the need for issues,
such as the computation of the average pitch period and
the use of block processing. The limitation of the perfor-
mance of the GCI extraction due to these issues is severe,
particularly in the analysis of expressive voices due to rapid
variations in F0 and source-filter coupling. In addition,
improved robustness is needed in GCI extraction methods
to enable their utilization in realistic environments with
noise and reverberation. The second topic that calls for
new research is the extraction of GOI. The performance of
existing GOI extraction methods is poor because the glottal
opening is a relatively slow phenomenon (compared to
glottal closing), and therefore, it manifests itself weakly in
the amplitude characteristics of the speech signal. Hence,
a more fine-grained detection of excitation components
within a glottal cycle (including instants of secondary
excitation near the glottal opening) is needed because they
contribute, in addition to the major excitation at the
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instant of glottal closure, to the production and percep-
tion characteristics of speech signals. Moreover, improved
robustness of GIF analysis to noise and other nonideal
recording conditions is still needed, despite it having been
shown recently in [270] and [296] that conducting inverse
filtering with DNNs helps to improve the robustness of GIF.
To improve robustness further, deep learning architectures
other than DNNs, such as CNNs and LSTMs, could be
studied as computational inverse networks of the vocal
tract. Furthermore, features that better reflect the physical

functioning of the vocal folds in the production of patho-
logical speech or different vocal emotions, for example,
need to be developed further to enhance speech analysis
and classification, as well as the general understanding of
human speech production.
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