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ABSTRACT | Network function virtualization (NFV) has been

promising to improve the availability, programmability, and

flexibility of network function deployment and communica-

tion facilities. Meanwhile, with the advancements of cloud

technologies, there has been a trend to outsource network
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functions through virtualization to a cloud service provider,

so as to alleviate the local burdens on provisioning and man-

aging such hardware resources. Promising as it is, redirecting

the communication traffic to a third-party service provider

has drawn various security and privacy concerns. Traditional

end-to-end encryption can protect the traffic in transmit, but

it also hinders data usability. This dilemma has raised wide

interests from both industry and academia, and great efforts

have beenmade to realize privacy-preserving network function

outsourcing that can guarantee the confidentiality of network

communications while preserving the ability to inspect the

traffic. In this article, we conduct a comprehensive survey of

the state-of-the-art literature on network function outsourcing,

with a special focus on privacy and security issues. We first

give a brief introduction to NFV and pinpoint its challenges and

security risks in the cloud context. Then, we present detailed

descriptions and comparisons of existing secure network func-

tion outsourcing schemes in terms of functionality, efficiency,

and security. Finally, we conclude by discussing possible future

research directions.

KEYWORDS | Network function outsourcing; network function

virtualization (NFV); privacy preservation.

I. I N T R O D U C T I O N
The traditional telecommunication industry heavily
depends on various specialized hardware equipment of
different manufacturing standards, which leads to an
unfriendly product development cycle. Early in 2012, the
world-leading European Telecommunications Standards
Institute Industry Specification Group (ETSI ISG)
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Fig. 1. Many representative applications of NFV.

worked out the framework of network function
virtualization (NFV) and proposed accordingly the white
paper [1]. NFV relieves the burden of the complicated
deployments of networking and communication hardware
infrastructures by transferring the communication data
to standard hardware (e.g., standard high volume
servers, switches, and storage) in the network nodes.
It also simplifies the design and operation of network
functions, and increases flexibility, programmability,
and expansibility of network functions [1]–[3]. Fig. 1
summarizes many representative applications of NFV,
as also suggested in [1]. With the increasing demand for
advanced network infrastructures, the global NFV market
size is expected to grow to $36.3 billion by 2024 [4].

Meanwhile, with the rapid development of cloud tech-
nologies [5]–[8], individuals and enterprises are tending
to outsource virtualized network functions to the cloud,
so as to mitigate the local burdens on provisioning and
managing specialized hardware resources. As of today, net-
work functions, also known as middleboxes, such as fire-
walls, deep packet inspection (DPI), load balancers (LBs),
can be easily implemented on cloud platforms. Many cloud
platforms have publicly offered the services of in-the-cloud
network functions, e.g., Amazon CloudFront [9], Microsoft
Azure cloud firewalls [10], and Google’s networking ser-
vices [11], including cloud NAT, cloud load balancing, and
cloud router. Very recently, VMware Inc. announced that
they had enhanced their VMware Ready for Telco Cloud
to enable virtualized network functions with their VMware
Telco Cloud platform [12].

The powerful computing capabilities of cloud infrastruc-
ture can provide much-improved high-performance packet
processing demanded in various network functions. Indi-
viduals and enterprises will no longer suffer from cumber-
some network hardware configurations and management,
especially for the inconvenient network function updates.

Though promising, it is worth noting that, once the
network function is outsourced, and the traffic is redirected
to the cloud, the cloud server then has the root access to
both the outsourced functions and communication traffic,
which may raise severe security concerns. The cloud, with
its nature of outsourced service offering, can be vulner-
able to internal threats (e.g., abuse of the root access)
and high-value target of external threats (e.g., various
malicious attacks) [64]. The communication traffic over
the network may carry confidential information, and thus,
directly redirecting the packets to the cloud will violate the
user’s privacy. Furthermore, the outsourced function itself
(e.g., the inspection rules for intrusion detection systems
(IDSs), which may be generated by a third-party profes-
sional service provider, such as McAfee [65]) might contain
proprietary assets. These commercially sensitive data could
be exposed if deployed in the environment without security
attestation. Today’s secure communication practices often
employ end-to-end encryption to protect data-in-transit.
However, such a practice inevitably hinders the processing
and computation of the packets and rules at the middlebox.
To better support the middlebox functionality, it may have
to require the traffic to be decrypted in the middlebox,
which would violate the end-to-end security [66]. In light
of this need, there has been a relevant research line
to design new transport layer security (TLS) protocols
that are compatible with middleboxes [67]–[70]. These
protocols enable traffic-owner-controlled decryption at the
middleboxes. In other words, the traffic is visible to the
middleboxes to some extent. This line of work has great
significance in practical and systematic aspects but does
not target the security level that we discuss in this article.
In our survey, we focus on the designs where middleboxes
are never supposed to learn the plaintext content in the
traffic but can still inspect the encrypted traffic. As we show
later, how to process encrypted packets with respect to pro-
tected rules without revealing any confidential information
about the communication remains a big challenge.

Network functions can be described as matching and
computing on the network flows with pregenerated rules
and, finally, getting the action to be performed on the
packets [37]. With regard to the secure in-the-cloud net-
work functions, the first challenge lies in how to sup-
port enriched operations on encrypted data. It is easy to
complete the operations of matching and computation on
the plaintext traffic. However, even the simplest single
pattern matching can be costly to perform on encrypted
traffic. Therefore, before diving into the specific privacy-
preserving techniques, it is important to categorize the
network functions from the perspective of matching versa-
tility. For example, the matching rule can be classified into
equality matching and more enriched ones, such as range
matching and regular expression matching. Furthermore,
some network functions may also require modification on
packets [48] (e.g., the network address translation (NAT)
protocol) and inspection over stateful packets [15], [37].
Besides functionality, privacy issues are also important in
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Table 1 Development on Different Categories of Secure In-the-Cloud Network Functions

cloud scenarios. The traffic should be kept private, and the
inspection rules are commercially sensitive. Therefore, it is
essential to build market-compliant outsourcing protocols
to protect both of them [25], [71]. Furthermore, untrusted
cloud servers or even malicious ones possibly with financial
incentives, which may deliberately miscalculate results to
reduce costs or disobey the procedures to obtain more
confidential information, should also be considered [58],
[59]. In conclusion, the goals of outsourcing network
functions in a privacy-preserving way are to: 1) complete
general network functions; 2) preserve the privacy of the
traffic and/or rules; and 3) enable verifiable computation
on the cloud middleboxes.

We summarize the development and roadmaps of note-
worthy secure in-the-cloud network functions over the
period of 2012–2021 in Table 1. From the perspective
of functionality, we categorize the solutions into differ-
ent types of middleboxes, e.g., DPI/IDS, firewalls, and
NAT. The pioneering work, BlindBox [24], first enabled
an outsourced middlebox for DPIs without decrypting the
traffic in the middle by using the technology of garbled
circuit (GC) [72]. Follow-up works based on different
cryptographic tools can achieve more enriched network

functions, such as range matching [26], [37], [40] and
wildcard matching [38], [39]. The outsourced middle-
boxes based on the trusted hardware can achieve more
general network functions [13]–[16] and also enable the
verification. Up until now, efforts have been made to pro-
mote the development of in-the-cloud network functions,
but there still remains much room to explore. Hence,
we believe that it is necessary to give a comprehensive
study on the current progress of network function out-
sourcing, so as to make the remaining challenges and
opportunities clearer to interested researchers.

A. Related Work

To the best of our knowledge, we are the first to pro-
vide a deep insight into the topic of outsourcing network
functions from the aspect of protecting the privacy of the
communication traffic. There are surveys about the issues
of NFV [1]–[3], [73] and SDN [74], [75], which mainly
focuses on the challenges, technologies, and implemen-
tations of NFV and SDN and do not consider the issues
of privacy. Pattaranantakul et al. [73] take the security
issues into consideration. However, this survey focuses on
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the security of the process on the virtual machine of the
service provider, and the privacy problem is out of scope.
Zave and Rexford [76] focus on very general security issues
of network interactions. Therefore, the complementary
viewpoints [73], [76] are orthogonal to ours.

The most related works are [77]–[79]. Compared to our
work, the surveys [77], [78] discussed a smaller portion
of research on network function outsourcing and did not
classify and conclude the state of the arts as extensively as
we do. Poh et al. [79] have surveyed a larger scale of solu-
tions than [77] and [78] from the perspective of different
techniques. Unlike [79], our survey presents existing works
in a new light, i.e., from the perspective of the complexity
of network functions. Our angle focuses more on the prob-
lems than the solutions, which may give the researchers a
clearer understanding of the challenges and corresponding
privacy protection mechanisms. Besides, the comparisons
among the solutions and cryptographic tools in our survey
are much more diversified, and we also give metrics to
evaluate the effectiveness of existing mechanisms. There-
fore, our work presents a more in-depth tutorial that can
help interested researchers quickly grasp the motivations,
challenges, and techniques of the fast-rolling in-the-cloud
network function.

B. Contribution

In this article, we systematically survey the problems
and solutions of the in-the-cloud network functions over
the period of 2012–2021. Our contributions are listed in
the following.

1) We, for the first time, extensively survey the privacy
and security issues of in-the-cloud network functions
from the perspective of function complexity. We sys-
tematically classify network functions into equality
matching, function-enriched matching, and general
functions, and summarize corresponding outsourcing
mechanisms with pros and cons.

2) We introduce detailed definitions of NFV architecture,
outsourcing model, usage scenarios, and the threat
model, providing a concrete description of the issues
of secure network function outsourcing. We also give
a rich background of virtualized network functions
and cryptographic techniques, which can help lay
out the comprehensive ground field for subsequent
research.

3) We give metrics to evaluate existing mechanisms
and carry out meticulous comparisons among the
privacy preservation techniques from the perspectives
of functionality, security, and efficiency. We also pro-
vide possible future research directions on this topic
to encourage readers to explore more practical and
secure outsourcing constructions.

C. Organization

The organization of the remainder is shown as follows.
Section II introduces the background of NFV and the

related outsourcing practice, including the definitions
and examples of NFV and the explanation of pattern
matching and range matching in the cloud settings.
Section III discusses the security issues, including
the introduction to the cryptographic tools and the
detailed description of the threat model of in-the-cloud
middleboxes. In Section IV, we introduce the state of
the arts from the perspective of functional completeness,
such as equality matching, function-enriched matching,
and general network function. Section V provides a deep
comparison among the state of the arts on functionality,
security, and efficiency. Finally, open research directions
are proposed in Section VI.

II. N F V A N D T H E O U T S O U R C I N G
P R A C T I C E
In this section, we start by introducing the concepts of NFV
and several examples of network functions. Then, we cat-
egorize the outsourced network functions and introduce
the outsourcing model. Finally, we present three represen-
tative usage scenarios of outsourcing network functions.

A. Network Function Virtualization

Traditional network architecture suffers from the
incompatibility of diverse network hardware appliances.
Middleboxes are designed and implemented under differ-
ent standards, which dramatically hinders network appli-
cation development and maintenance. It is also difficult
and costly to implement new network functions by adding
new middleboxes in an existing network architecture with
incumbent hardware settings.

NFV is proposed to solve the above problem. It aims to
standardize network middleboxes by consolidating various
networking equipment, e.g., servers, switches, and stor-
ages, in network nodes and datacenters [1]. As shown
in Fig. 2, a typical NFV architecture includes three com-
ponents: 1) virtualized network functions; 2) the NFV
infrastructure, including virtual compute, virtual storage,
virtual network, and related hardware resources; and 3)
NFV management and orchestration. In the following,
we present several typical examples of network functions.

1) Deep Packet Inspection: DPI is a network traffic analy-
sis technique that performs traffic analysis, inspection,
and filtering [80], [81]. The rule generator determines
inspection rules in middleboxes. Different from common
filtering functions that only detect the IP header; the rules
in DPI may involve the features of both the header and the
application layer payload. A DPI middlebox will compare
the incoming packets with the inspection rules. If there is
a match, the middlebox will perform certain actions to the
packets, such as accept and drop, according to the rules.
DPI can be used for malicious network traffic detection,
precise advertising, and so on.

2) Intrusion Detection System: IDS is a network
function that can prevent malicious access to
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Fig. 2. Architecture and examples of NFV [1]. The hardware-based middlebox (left) can be realized in an NFV architecture as virtualized

network functions (right). The architecture can be divided into three levels: the network functions, the NFV infrastructure, including virtual

compute, virtual storage, virtual network, and related hardware resources, and the NFV management and orchestration.

internal networks [82]–[84]. IDS has three variations:
1) signature-based detection, which utilizes the pattern
match to detect malicious traffic; 2) anomaly-based
detection, which relies on machine learning to train
a model to differentiate good or bad traffic; and
3) reputation-based detection, which scores each
traffic flow to recognize potential threats. The widely
used signature-based approach includes two steps:
preprocessing and attack signature matching. The
packets are first decoded and reassembled into IP packet
fragments. When the flow is acquired, the IDS will first
conduct the multistring pattern matching to detect specific
keywords (or key ports). If nothing is found, the flow is
tagged as “innocent.” If there is a match, IDS will further
perform signature detection, which includes the metadata
pattern match (e.g., IP range), string pattern, or binary
pattern match in the payload.

3) Firewall: The firewall is a widely used network func-
tion that monitors and controls the network traffic between
the internal network and the external network [85]. Tradi-
tional firewalls run on a specialized middlebox and work as
a packet filter based on the ruleset. According to the rule-
set, the firewall checks the five tuples in the header, i.e.,
the source IP address, the destination IP address, the
source port number, the destination port number, and the
protocol, to decide whether to accept or block the packet.
To tackle the problem that traditional firewalls do not
keep the track of packet contexts, stateful firewalls have
been proposed [86], [87]. A stateful firewall maintains
a state table to store the context of each packet so that
new connection requests can be associated with previous
connections [88]. In this way, stateful firewalls can support

more expressive policies and provide a stronger security
guarantee.

4) Network Address Translation: NAT is typically
deployed at network edges to allow a large number
of hosts to connect to the Internet with the same IP
addresses [89], [90]. When a user in an internal network
wants to communicate with the Internet, the NAT gateway
replaces the internal address with a public IP address
according to the mapping table. NAT shields the internal
network such that all computers within the intranet are
invisible to the public network. NAT mitigates the problem
of IP address exhaustion by enabling multiple computers
to share Internet connections.

5) Load Balancer: LB assigns the incoming traffic to
multiple network devices (e.g., firewalls) or links, which
effectively improves the processing capability while guar-
anteeing high reliability. The LB acts as a scheduler in
a server cluster, who first receives all requests from the
clients and then assigns the requests to the backend servers
according to the load condition of each server to optimize
the overall network performance [91]–[93].

6) Content Delivery Networks: Content delivery networks
(CDNs) [94], [95] aim to deliver large-scale content, e.g.,
video streams. CDN is a distributed network consisting
of proxy servers and data centers that can improve the
response speed and hit ratio of users. Through load bal-
ancing, content distribution, scheduling, and other func-
tions of the central data centers, CDN relies on the proxy
servers deployed in various places to enable users to
get the required content nearby. In-network caching and
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Table 2 Examples of Different Matching Types in the Style of Snort Rules

redundancy elimination (RE) [96] can be leveraged to
increase the efficiency of content delivery.

B. Outsourcing Network Functions

In an NFV architecture, network functions are
performed on virtual machines, making it suitable to lever-
age cloud services. Outsourcing network functions to a
cloud server can relieve the local computational burden
and reduce the costs of deploying network equipment.
Nonetheless, the traffic of clients has to be transmitted to
the untrusted cloud. The clients should encrypt the packets
before sending them to the cloud to preserve the privacy of
the traffic.

The studies of traditional NFV do not specifically classify
the network functions from the perspective of matching
granularity. However, the operations on encrypted traf-
fic are much more complicated than those on plaintext.
To distinguish the difficulty of realizing different network
functions on encrypted traffic, we need to classify the net-
work functions from the terms of the computational effort.
Following [24] and [77], we classify the general network
functions into two classes: equality matching and function-
enriched matching. The function-enriched matching-based
network functions can be further divided into range match,
substring match, wildcard match, and regular expression
match. We present a toy example of matching types in
the style of Snort rules in Table 2. In addition to the
basic matching, stateful matching and packet modification
are also common in network functions. In the context of
outsourced network function, stateful match and packet
modification can be regarded as advanced functions.
Besides, according to Chiosi et al. [1], NFV is applicable to
switching elements like routers and router functions. Thus,
we can also regard routing as a network function from a
high level of view. The explanations of the above functions
are listed in the following.

• Equality match checks whether a packet contains
one or more specific keywords (e.g., signatures or

watermark) and matches the keywords with an
action, such as drop or accept.

• Function-enriched match supports various expressive
matches beyond equality match, such as range, sub-
set, wildcards, offset, and regular expression.

• Stateful match checks the relationship between the
packets and can monitor dynamic network states.

• Modification: Some network functions require modifi-
cation on certain fields in packets, e.g., NAT.

• Routing requires certain computations to determine
the best routing strategies.

C. Outsourcing Model

There are two types of outsourcing models [26], [60]:
the bounce model [97] (also called APLOMB system)
and the go-through model [24] (also called NFV system).
As shown in Fig. 3, in the bounce model, when interacting
with external sites, the gateway “bounces” the traffic to
the service provider to perform network functions, after
which the middlebox sends back the traffic to the gateway.
The rules in the middlebox are generated by the enter-
prise (or the gateway) who requests the network function
outsourcing service. The go-through model includes four
parties: the sender, the receiver (or the server), the rule
generator, and the service provider. In the setup phase, the
rule generator outsources the rules to the middlebox. The
rule generator can be a third-party professional corpora-
tion, such as McAfee or an intranet administrator. During
the communication, the sender directs the traffic to the
middlebox that runs outsourced network functions, and
the middlebox sends the traffic to the receiver.

D. Usage Scenarios

To clarify the motivation of outsourcing network func-
tions to the cloud in a privacy-preserving way, we further
introduce three representative usage examples.
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Fig. 3. Two types of network function outsourcing models [26]: (a) bounce model and (b) go-through model. In the bounce model, the

gateway sends the traffic to the service provider, and the traffic will be sent back to the gateway after detection. In the go-through model,

the traffic is processed in the middlebox between the sender and the receiver.

1) Parental Controls: This example is first introduced
in [24]. Alice has registered for parental control services
from an Internet service provider (ISP) to monitor the
traffic and filter adult content for her kids. However, Alice
is concerned that the ISP would sell her personal communi-
cation data to other organizations. Therefore, Alice would
like the ISP to inspect her encrypted traffic instead.

2) Enterprise Network Monitoring: Bob’s company has
subscribed to an Azure Firewall [10] for real-time mali-
cious traffic filtering with high availability. However, Bob
is not comfortable to expose his commercially sensitive
data to Azure or the possible eavesdroppers from rival
companies. In such a scenario, a privacy-preserving in-the-
cloud firewall will meet Bob’s requirements.

3) Video Applications: Hulu is an American video
platform that offers live TV streams [98]. To achieve a
better user experience, Hulu subscribes to Amazon Cloud-
Front, a fast and programmable CDN running on Amazon
cloud [9]. In a CDN, the video contents are stored in
distributed edge servers to enable quick video delivery.
However, Hulu is worried that their clients may be unsatis-
fied that their private data (e.g., video access history) are
exposed to other parties. Hence, Hulu would like to keep
their data encrypted in the edge servers, while the CDN
in the cloud can still eliminate redundant network traffic,
distribute the video contents, and so on.

III. S E C U R I T Y I S S U E S O F
O U T S O U R C I N G
In this section, we introduce the privacy and security
issues regarding network function outsourcing. We for-
mally define the threat model to address the challenges
of outsourcing network functions. We also present several
cryptographic tools that are commonly utilized to design
outsourced middleboxes for privacy preservation.

A. Threats in the Outsourcing Practice

Outsourcing network functions to remote cloud bene-
fits a lot in alleviating local computation resources, but,
in the meantime, it brings in the risk of exposing sensi-
tive data of both the traffic and the network functions.

Here, we introduce possible threats that the clients (or
enterprises) may encounter when outsourcing their traffic
and network functions, especially from the perspective of
privacy. Specifically, we describe the threats from three
aspects: adversaries in different network domains, attack
surfaces in different network layers, and the attack means.
Note that, since this article focuses on the privacy and
security issues of building in-the-cloud network functions,
we especially discuss the threats arising from the out-
sourcing practice, where network functions are deployed
at untrusted settings. Generally speaking, our considered
security and privacy threats are also relevant to other
network function deployment scenarios where the context
of the deployment might not necessarily be in the trusted
domain.

1) Threats in Different Network Domains: From the per-
spective of administrative domains, threats may come from
different network entities involved in the communication
process. We consider three types of threats: 1) adversaries
residing at the cloud; 2) malicious endpoints, and 3) eaves-
droppers in the communication channel.

a) Threats in the cloud: In the outsourcing model, the
third-party cloud can get full access to the traffic and the
function. There are two types of cloud servers: honest-
but-curious servers and malicious ones [59]. An honest-
but-curious server strictly follows the protocols but tries
to infer as much private information as possible from the
traffic, outsourced functions, and processing results [24],
[26]. For example, some companies who provide cloud
services are reported to sell the clients’ private data [99].
More seriously, the cloud is under various external
threats, e.g., frequent cloud data breaches [100]. To tackle
such a threat, encrypting private data is essential. Mali-
cious cloud servers may disobey the protocol, forge the
results to avoid computational expenses, or even learn
more sensitive information. In face of a malicious server,
a computational verification mechanism is required to
ensure the correctness of the results [101], [102].

b) Threats on the endpoints: This type of threat is
the same as that considered by traditional network func-
tions, i.e., the original adversaries considered by regular
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network functions, such as IDS [24]. A malicious endpoint
may send illegal packets to try to pass network func-
tions like DPI and firewalls. Traditional intrusion detection
assumes that at least one of the endpoints is honest [82],
[83]. Similarly, in the outsourcing context, at least one
of the endpoints will actively use the outsourcing service,
which we regard as fully trusted. The case of two malicious
endpoints is generally not considered in today’s literature
study. If both endpoints are malicious, they can commu-
nicate with each other with a secret encryption key in
some secret channel without using NFV. Detecting such
kind of encrypted communication requires traffic pattern
analysis [103]–[105], which is orthogonal to the topic of
this survey.

c) Threats in the channel: The cloud and the com-
munication channels are vulnerable to eavesdroppers. The
eavesdroppers may intend to snoop on client traffic or even
jam some packets [106]. Encrypting traffic and network
function strategies is the most common countermeasure
to defend against such threats. For example, security pro-
tocols, such as TLS, can defend against eavesdroppers
by encrypting the communication traffic. In the design
of privacy-preserving network functions, the traffic and
the functions are kept encrypted in the communication
channel to prevent eavesdroppers from learning private
information.

2) Attack Surfaces in Different Network Layers: Since we
focus on privacy issues, the attack surface here especially
refers to the privacy vulnerabilities of network flows. To be
more specific, the private information includes contents
in the transportation-layer (i.e., L4) payloads and other
header information in the data link and network layers
(i.e., L2 and L3). Ideally, the design of the outsourced
network functions should keep all the private information
from the adversaries and enable specific computation in
corresponding fields. Following Duan et al. [20], we also
divide the private information into two aspects: L2–L4
headers and L4 payload.

a) Private information in L2–L4 headers: The most
important information in L2–L4 headers is the five
tuples, i.e., the source IP address/port number, destination
IP address/port number, and the protocol. It is obvious
that such data in plaintext can reveal the identity of the
sender and the receiver. Sometimes, clients may not want
their private information (e.g., destination addresses) to be
exposed to the cloud server or the adversaries in the com-
munication channel. The problem is that it seems to make
no sense to forward a packet without letting the routers
learn the destination IP address in the actual network
architecture. However, in the bounce outsourcing model
[see Fig. 3(a)], the real destination IP address is encrypted
and forwarded to the in-the-cloud middlebox to perform
network functions, such as firewalls and NAT [26]. Such
a process protects the private information in the header
from the in-the-cloud middleboxes and does not involve
physical routers in the path of the sender and the receiver.

With regard to defending against the eavesdroppers in
the communication channel, the clients can use security
protocols like IPsec [107] and TCPcrypt [108] to protect
the private data in the headers.

b) Private information in L4 payloads: The L4 payloads
carry the specific contents in the communication, and the
adversaries strive to learn as much as sensitive information
from them. The goal of designing an in-the-cloud network
function is to protect private information while preserving
the cloud’s ability to inspect the traffic.

3) Attack Means: When outsourcing the network func-
tions, we should consider two types of attacks: 1) the orig-
inal attacks against entire traditional network functions
and 2) the attacks on the primitives used to realize compu-
tation on encrypted data. The former includes the spying
and tempering attacks, the denial-of-service (DoS) attacks,
and so on. The latter includes the side-channel attacks on
trusted hardware, the cryptanalysis-based attack against
customized cryptographic techniques, and so on.

a) Spying attack: In this attack, the adversaries listen
to the communication traffic of two innocent end-users,
trying to extract as much private information as possi-
ble [76]. We have detailed the private information in
Section III-A2, and encrypting the traffic can well protect
such private information. Preventing spying attacks is the
basic security goal of the network function designs.

b) Denial-of-service attack: The DoS attack has a wide
category, with the goal of making the target network
service unavailable [109]. In DoS attacks, the adver-
saries strive to exhaust the target network’s bandwidth
by controlling botnets to launch the User Datagram Pro-
tocol (UDP) flood, the Internet Control Message Proto-
col (ICMP) flood, the Domain Name System (DNS) flood,
the HTTP flood, and so on. Many traditional network
functions can prevent the DoS attacks, e.g., firewalls, IDS,
and DPI. Fayaz et al. [110] also proposed to leverage the
SDN/NFV techniques to defend against the DoS attacks.
As for the outsourced network functions, whether a design
can detect or prevent the DoS attacks can be regarded as
an advanced feature [25], [111].

c) Side-channel attack: A line of research on out-
sourced network functions relies on trusted hardware,
especially the Intel SGX. However, SGX is vulnerable to
various side-channel attacks [112]. For example, in SGX,
the memory pages need to be loaded into EPC with
limited memory. Since the operating system has direct
access to memory management, the malicious OS can
decide whether to flush the translation lookaside buffer
(TLB). Thus, the adversary can analyze the code of SGX
applications to locate the attack address and then learn
what the SGX has accessed by flushing the TLB and record-
ing the memory footprint. Unfortunately, most existing
hardware-based outsourced network function designs do
not consider side-channel attacks. For security considera-
tions, we emphasize that it is essential to consider such
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attacks when applying the outsourced network functions
in practice.

d) Cryptanalysis-based attack: Besides the trusted
hardware, another line is to utilize customized crypto-
graphic tools, which may face potential security threats
of cryptanalysis. Take the brute-force attacks for example.
In this attack, the adversaries analyze the cryptographic
protocols by exhausting the input space. Ideally, the cryp-
tographic protocols are secure against brute-force attacks.
However, the design of the cryptography-based outsourced
network functions may have defects when applying the
encryption schemes. For example, Ning et al. [34] pointed
out that PrivDPI [32] is vulnerable to the brute-force
guessing when the rule set is small.

B. Privacy and Security Goals

In the paradigm of outsourcing the network functions,
both the traffic and the outsourced functions (rules) should
be protected from the cloud server and other possible
adversaries.

1) Rule Privacy: Typical rules contain inspection strate-
gies, such as the filtering rules in DPI/IDS or firewalls [84]
and the export policy in routing [42]. With the rules,
the middlebox calculates and compares the content of
the packet to match the corresponding rule and, finally,
informs the gateway what action it should take on the
packet. Disclosing rules to adversaries will cause significant
potential risks to network security. With the knowledge of
the rules, attackers can deliberately construct malicious
traffic that can circumvent these rules or even infer the
contents of the packet from the results of the inspection
process.

There are three types of rule generators: 1) the receiver;
2) the administrator of the sender; and 3) a professional
third-party corporation. In all cases, the rules should be
kept private from the in-the-cloud middleboxes. The cloud
server can only perform the virtualized network functions
without knowing the content of the rules. For the first
two cases, one of the endpoints can learn the rules, but
the other endpoint should not learn them. If the rules are
generated by a third-party (i.e., case 3), the rules are trade
secrets in this sense, so they should not be revealed to both
the endpoints and the cloud middlebox [71].

2) Packet Privacy: The privacy goal of network function
outsourcing is that the private information in packets
(as discussed in Section III-A2) should not be known to
third parties other than the sender and receiver [24],
[67]. Therefore, outsourced network functions will be per-
formed on encrypted packets. For outsourcing, the encryp-
tion scheme of the packets should be designed together
with that of the function to enable computation and com-
parison. One of the tremendous challenges is the allocation
of keys. The endpoints can encrypt the packets, but the
secret key should not be revealed to the rule generator
who encrypts the rules. The one who encrypts the rules

Table 3 Abbreviations of the Security Primitives

should not decrypt the packets with the rule keys, either.
Hence, it is necessary to support middlebox functions over
encrypted packets and rules using different keys.

C. Cryptographic Primitives and Trusted
Hardware

To enable privacy-preserving computation on encrypted
data, cryptographic tools, such as searchable encryp-
tion [113]–[115], homomorphic encryption (HE) [116],
[117], secure multiparty computation (MPC) [72], [118],
and trusted hardware [119], can be used as the building
blocks. Although these tools have been well studied in the
field of cryptography, how to apply them in the context of
network functions remains to be fully explored. To help
the readers better understand the privacy-preserving net-
work function outsourcing designs, we briefly overview
a comprehensive list of security and cryptographic tools
that could be used to enable privacy-preserving network
functions without exposing the packet content and/or the
rules. A summary of the abbreviations is presented in
Table 3.

1) Oblivious Transfer: Oblivious transfer (OT) [118],
[120], [121] solves the problem that a party A wants
to share one of the dataset D = (D1,D2, . . . ,Dn) with
another party B who wants Db. A does not want to share
other data than Db, and B does not want to reveal b.
OT ensures that B will obtain Db without learning D\Db
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or revealing b. OT can be built on asymmetric primitives,
such as RSA [122].

2) Garbled Circuit: The notion of GC was first proposed
by Yao [72] to enhance secure MPC (SMPC). A GC allows
two parties to compute results jointly without revealing
their own inputs. At a high level, a GC protocol includes
two steps: 1) GC preparation and 2) circuit evaluation.
In the preparation phase, one party generates the circuit
according to the functions. Afterward, the other party
evaluates the GC by her choice of the input and the
generator’s input keys The evaluated results are sent back
to the generator to get the final results. Note that the
evaluator will obtain the keys obliviously with the auxiliary
of OT. Thus, the generator will not learn the input of the
evaluator.

3) Homomorphic Encryption: HE is a class of public-key
encryption schemes with homomorphic properties [123],
where the operations (i.e., addition, multiplication,
or both) on the ciphertext will exactly match the same
operations on the plaintext. There are roughly three types
of HE systems: partially HE (PHE), somewhat HE (SHE),
and fully HE (FHE). In PHE, the operations on plain-
text correspond to either standard arithmetic addition or
standard arithmetic multiplication e.g., the famous Pallier
cryptosystem [116]. In SWHE, the operations are limited
to some “low-degree” polynomials, e.g., the famous BGV
system [117]. In FHE, the operations can be arbitrary
composition of addition and multiplication [124]–[128].

4) Multilinear Map: The multilinear map is an extension
of the bilinear map. Multilinear maps of the symmetric
form and the asymmetric form were first realized in [129]
from the ideal lattice. Later, Coron et al. [130] brought
about multilinear maps over integers. Shortly afterward,
Gentry et al. [131] came up with a scheme from general
lattices. Braderski and Rothblum [132] proposed construc-
tion based on the asymmetric multilinear map to obfuscate
conjunctions.

5) Order-Preserving Encryption: Order-preserving
encryption (OPE) [133] is designed to map the
nonuniform distributed plaintext data into ciphertext
intervals that are uniformly distributed such that the
characteristics of data distribution can be hidden. In OPE,
the order relation of the ciphertexts is the same as that
of the plaintexts. However, it reveals the original order.
Therefore, OPE is vulnerable to statistical inference
attacks [134]. According to Cash et al. [135], OPE reveals
more information than plaintexts order. In the literature,
many schemes have been devoted to improving the
security of OPE [136], [137].

6) Order-Revealing Encryption: Order-revealing encryp-
tion (ORE), also known as efficiently orderable encryp-
tion, is symmetric encryption, such as OPE, which can
be used for range search on the ciphertext. Compared
with OPE, ORE achieves stronger security by obscuring

the order relations of the plaintexts. Chenette et al. [138]
and Lewi and Wu [139] proposed modified solutions to
have its security ensured. Cash et al. [135] presented the
first ORE construction with the bilinear map to reduce
the leakage of sensitive information rather than the mul-
tilinear map [140]. Nevertheless, Grubbs et al. [141] and
Durak et al. [142] demonstrated that ORE could be under
the latest leakage-abuse attacks.

7) Searchable Symmetric Encryption: Searchable sym-
metric encryption (SSE) [113]–[115], [143]–[145] was
first introduced by Song et al. [143]. Searchable encryption
allows the client to outsource his/her private data while
preserving the ability to search on the encrypted database.
Curtmola et al. [113] further defined the formal security
model of SSE and proposed an SSE scheme of optimal
search complexity (which is linear with the number of the
matched results). Later, Kamara et al. [114] proposed a
dynamic SSE based on the work of Curtmola et al. [113].
Typically, an SSE scheme is built on symmetric primitives,
such as pseudorandom functions (PRFs) and pseudoran-
dom permutations (PRPs). Thus, SSE has the advantages
of lightweight computation and high run-time efficiency.
In an SSE scheme, the dataset is first parsed as a keyword-
identifier index, which is called an inverted index, and
then, the index is encrypted and uploaded to the server.
The encrypted index is generated with trapdoors for later
search. With the search token (trapdoor), the server can
search encrypted data containing the related keyword
without learning either the keyword or the data. Similar to
OPE and ORE, recent results have shown that certain SSE
constructions may be subject to leakage-abuse attacks with
various underlying adversarial assumptions [146]–[150].

8) Trusted Hardware: Trusted hardware, also known
as a trusted execution environment (TEE), provides con-
fidentiality and integrity guarantees for processes run-
ning inside the specific hardware. Here, we introduce a
typical TEE design, i.e., Intel Software Guard Extension
(SGX). SGX is a set of special CPU instructions along
with a specially designed CPU architecture called secure
enclave (enclave for short). Enclave mainly refers to a
particular container with software codes, confidential data,
and memory stacks. SGX places confidential information
inside the CPU package, where the data and codes are
transparent to the inside software, and the integrity of the
software can be verified remotely. The container cannot be
accessed or tampered with by either malicious adversaries
or curious infrastructure owners unless opening the CPU
package [119].

The enclave cannot be accessed or tempered because of
its special hardware design. In SGX, there is a special mem-
ory region inside a CPU package called EPC [119]. EPC can
only be accessed from the inside of the enclave. However,
EPC has a constrained 256-MB space as of today. To run
the normal application inside the enclave, SGX leverages
the memory encryption engine to handle the data swap-
ping between untrusted memory and EPC. The memory
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Fig. 4. Comparison between TCB with SGX and without SGX. The

gray blue area stands for TCB.

encryption engine encrypts traffic between the processor
package and main memory and verifies its integrity. The
sophisticated hardware design of SGX makes its trusted
computing base (TCB) smaller than the vanilla approach.
The TCB of the SGX-based approach is the enclave and the
hardware itself, while the traditional application includes
an operating system and virtual machine monitor inside its
TCB. Fig. 4 shows the TCB area of both approaches. Pro-
grams running inside the enclave must be trustworthy to
ensure that the secrets are not leaked. To achieve this, SGX
leverages the attestation and sealing technology [151].
The instantiation of the enclave program can be attested
at the very beginning of the deployment process, which
makes the following confidential information transported
to the enclave securely.

IV. P R I V A C Y P R E S E R V I N G N E T W O R K
F U N C T I O N S
To preserve the privacy of network communication, the
clients should encrypt the packets before transmission.
In the early years, to perform network functions on the
encrypted traffic, the traffic is decrypted in the middle by
mounting the man-in-the-middle attack on the middlebox,
and then, the middlebox can inspect the decrypted traf-
fic [66]. Although this method is intuitive and effective,
decryption in the middle of the communication violates
end-to-end security, which leads to privacy information
leakage and brings security risks.

Network functions can be extracted as inputs that
include packet contents and predefined rules and outputs
that include the actions for the packet. Most network
functions require matching on the packets and rules,
or computation on the header of the packets. Functions
such as NAT also require modification on the header.
In this section, we introduce state-of-the-art approaches
that achieve network functions in a privacy-preserving way
by using cryptographic tools, such as symmetric encryp-
tion, HE, and MPC, and trusted hardware, such as, Intel
SGX. We give an overview of the properties of the network
function outsourcing schemes in Table 4.

A. Equality Match

Equality (pattern) matching is one of the most
basic functions. Network functions, such as signa-
ture/watermark detection in DPI or exact IP matching in
firewalls, require exact string match over a packet and pre-
defined rules in the middlebox. Besides, matching can also
be performed between packets, e.g., in-network caching
for content delivery. Table 5 summarizes the main charac-
teristics of the representative equality matching schemes.

1) Packet-Rule Matching: Generally, the rules, which
can be regarded as sensitive keyword–action pairs in
Snort [84], are tokenized, encrypted, and outsourced to
the middlebox in the setup phase. Then, the traffic is
also tokenized and encrypted by the sender. There are
generally two types of packet parsing methods: delimiter-
based segmentation used in [24] and window-based n-
gram used in [25] and [27]. In some schemes, additional
information, such as the offset of tokens, is attached to the
tokens to fit more complex rules, such as multikeyword
matching and domain matching. The middlebox performs
the inspection on the encrypted rule database. Actions,
such as accept or drop, will then be matched, and the
middlebox will inform the result to the gateway of the
receiver.

The main challenge of packet-rule matching is to encrypt
the rules and packets while preserving the data associ-
ation between the packets and rules. An intuitive idea
is to encrypt the rule (watermark/signature) tokens and
the packet tokens, respectively, and then compare the
packet tokens with the rule tokens. In the following discus-
sions, we introduce the OT-based schemes and searchable
encryption-based schemes in detail.

a) Secure computation-based method: OT and GC can
be used to exchange data privately. Sherry et al. [24] first
introduced the GC to perform DPI on encrypted traffic
without decrypting the packet. As shown in Fig. 5, the
traffic is first tokenized and then encrypted through a
deterministic symmetric encryption scheme, such as AES.
The middlebox needs to encrypt the rules in the same way
without learning the secret key of the packet. To hide the
secret key from the middlebox, BlindBox designs a GC [72]
to encrypt the rules by AES. Then, the encrypted rule
tokens are kept in a search tree that enables logarithmic
lookups. For single keyword matching, e.g., document
watermarking, the middlebox checks whether there is a
match between the search token and the rules in the
search tree. For multiple-keyword matching, additional
information, such as absolute and relative offset, is sent
together with the token to the middlebox to check if the
offset is a match. However, it has disadvantages on long
setup time and the exposure of inspection rules to the
middlebox.

To reduce the setup time in BlindBox [24],
Lin et al. [152] replaced the AES GC with one-way
hash functions and XOR functions to encrypt the rules and
messages. During the setup phase, the sender randomly
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Table 4 Properties of the Representative Privacy-Preserving Network Function Designs

generates m pairs of strings (k0, k1) for every rule of m
bits. Then, the middlebox uses the OT protocol [118]
to obliviously get the random strings in the rule sets
and encrypts the rule by XOR the strings. The packet
is encrypted similarly. Different from BlindBox, the
middlebox obliviously obtains the keys from the sender
and encrypts the rules by itself, not from the GC. The

encryption needs no interaction, and the shared keys
do not reveal the content of the forwarding packet.
However, the search tree cannot be used in the process
phase because the rule tokens cannot be preprepared.
The matching procedure needs to compute the one-way
hash and XOR function on the encrypted rules, other
than checking the equivalence of the rule token and the
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Table 5 Approaches of Equality Matching

message token, thus leading to a longer detection time
compared with BlindBox.

A recent work, PrivDPI [32], also managed to lower
the overhead caused by the one-time GC in BlindBox by
providing a reusable encrypted rule generation method
following the idea of a practical and simple OT proto-
col [154]. In PrivDPI, the encrypted packet tokens in a

new session can be derived from the encrypted tokens
in the last session by preserving a count table, which
makes the encrypted ruleset in the middlebox reusable.
However, according to Ning et al. [34], PrivDPI is vulner-
able to brute-force attacks, where the middlebox can forge
any encrypted rules by itself and then infer the content
of the encrypted traffic. Ning et al. [34] then proposed

Fig. 5. Architecture of BlindBox [24]. In the setup phase, the endpoint prepares a garbled AES embedded with the encryption key on the

tokens. With the garbled AES, the middlebox can encrypt the rules with the secret key of the tokens. The traffic is then tokenized, encrypted,

and transmitted to the middlebox for inspection. In addition, for correctness assurance, the encrypted tokens and traffic will then be sent to

the receiver to validate the tokens in case the sender may be malicious.
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an improved scheme called Pine, which is more efficient
and secure than PrivDPI. Pine also supports updatable rule
sets, i.e., additions on the rules after the prepossessing
step.

b) Searchable encryption-based method: For virtual
network functions that mainly focus on pattern matching
and filtering, searchable encryption can be used to perform
matching operations directly on encrypted traffic. Search-
able encryption, especially the index-based SSE, is efficient
to search for specific keywords in an encrypted rule index
while preserving both the privacy of keywords and the
content of the packet.

When checking whether the content of a packet includes
a malicious signature, the middlebox needs to search for
the malicious rule tokens in the payload tokens. Decrypt-
able searchable encryption (DSE) [155] can be leveraged
to solve this problem in a privacy-preserving way. DSE can
detect whether a particular token is in a given ciphertext
by using a bilinear map and XOR the results. However,
once there is a match, the plaintext of the token (the
keyword) would be revealed. BlindIDS [71] fixes this
weakness by adding a secret key and makes sure that there
is no leakage over the rules (or the keywords). During
the detection, the middlebox compares every token in
the encrypted traffic with each preuploaded rule token
on a DSE-based construction. Unfortunately, this method
suffers from considerable detection time due to the one-to-
one comparison and the private-key setting. Nonetheless,
compared to BlindBox [24], the above two designs, indeed,
reduce the setup time by encrypting the patterns only once
for all connections.

Index-based searchable encryption [114], [115],
[143]–[145] is suitable and efficient for exact signature
matching because of the sublinear search on the encrypted
index. Yuan et al. [25] first used an index-based SE to real-
ize the single keyword match on encrypted traffic. In their
method, an admin server parses the rules as string–action
pairs and encrypts them with trapdoors in a way that the
trapdoors can be searched later. The encrypted rule index
is built based on cuckoo hashing [156], [157]. The pairs
are stored in two hash tables, and the locations of the pairs
in the hash tables serve as the trapdoors, which can be
generated from the encrypted strings in the traffic. The
payloads in the traffic are parsed into strings based on pre-
defined principles. Then, the string is transformed into a
random token using a PRF with a pregenerated secret key.
When the middlebox receives both the encrypted traffic
and tokens, it can search for the tokens on the encrypted
rule index in the middlebox. Once a token matches an
entry in the filter, the middlebox takes the result action on
the encrypted traffic, e.g., dropping the packet. Note that
the cryptographic primitives are all symmetric so that their
method can be quite efficient. Nonetheless, the encrypted
rule index is static, and only equality-match rules are
supported.

In the dynamic network environment, updatable rule
index is essential for enterprises to upgrade their network

Fig. 6. Architecture of RE.

functions, such as firewalls and DPI. Guo et al. [30]
extended the broadcast encryption (BE) construction to
support updates on the rule index, i.e., the rules for DPI
can be added or deleted dynamically. However, updates
may lead to more leakage than static searchable encryption
schemes [148], [158]. Guo’s method achieves forward pri-
vacy [159] (which prevents adversaries from inferring the
keywords in newly added data with search tokens). Their
scheme consists of two noncolluding servers: a rule server
and a filter server. The rules are encrypted as a search-
able index. During the inspection, the gateway parses the
packet as a header and a message, then generates the
search token, and delivers the token to the rule server to
search for an encrypted message. If there is a match, the
filter server will check the corresponding action and inform
the gateway. For forward privacy, the entries for a string
will be reencrypted under a fresh key when it appears
in a newly added rule. The disadvantage of this work is
that it considers watermark-like rules, and string-like rules
(e.g., watermark fragments of different lengths) are not
supported.

2) Packet-Packet Matching: In-network caching can be
well leveraged to increase the efficiency of content deliv-
ery, especially scalable media, such as images and videos.
In-network caching is helpful to mitigate a large amount
of video traffic. However, the cache-enabled routers are
vulnerable to potential attacks and, thus, threaten the
privacy of user data. Secure transport protocols, such as
HTTPs, bring difficulty in leveraging in-network caching,
for the confusion caused by the encryption over the traffic.
Different from functions such as DPI, there is no specific
rule in an in-network caching scheme, and only match-
ing between packets is required. Generally, packets are
processed and outsourced on middleboxes, such as routers,
and then, they are compared with subsequent packets.

RE, which was first introduced in [96], is one of the
essential functions of efficient video delivery. The archi-
tecture of RE is illustrated in Fig. 6. The video trunks are
cached in a router. When the client requests a certain video
trunk, he/she can first check whether there is a preloaded
trunk in the router. If there is a match, the client can
directly download the trunk without having to request
from the video provider. Technically, the middlebox first
generates fingerprints for incoming packets, tokenizes the
traffic with a fixed-length sliding window before hashing
each token, and, then, checks if the subset of fingerprints
of a packet can match one in the fingerprint cache. If so,
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the corresponding packet should be taken out from the
packet cache to maximize the matching region. Otherwise,
the fingerprints and the packet should be put into the
cache. Taking privacy into consideration, the client may
be reluctant to expose the content of the requested video
to the middlebox. Thus, it is crucial to design a secure
RE method to protect privacy while preserving the search
function.

In the early days, Misra et al. [52] utilized BE to control
access to the encrypted video trunks in nearby routers for
different clients. Wu et al. [53] protected the confidential-
ity of the scalable video coding videos by attribute-based
encryption in a content centralized network. These are the
earliest attempts to achieve secure video delivery. However,
Misra’s work is not designed for general contexts but only
for its specific content centralized network, and Wu’s work
does not leverage the efficient in-network cache.

Yuan et al. [54] first combined searchable encryption
with efficient video delivery. They proposed a secure RE
method to perform high-efficiency video delivery through
encrypted in-network caching without revealing sensitive
information about the videos. To ideally make use of the
in-network caching, video chunks should be encrypted in
a way that the routers can locate and access them easily
without learning the content of the video. An encrypted
fingerprint index is generated in advance by the applica-
tion server, e.g., YouTube, and stored in a middle semi-
honest request handler. The encrypted index is built from
a cuckoo hashing-like method. Each video chunk has a
pseudonym that will be inserted in the hash tables. The
address in the hash tables is calculated by the video finger-
print and several PRFs, which can be used as the search
token for the handler to locate the pseudonym in the
encrypted index. When the handler succeeds in locating
the related pseudonyms, it looks up the addressing table
for the pseudonyms and sends the pseudonyms along with
the user addresses to targeted routers. Then, the routers
can forward the requested chunks to the users.

Fan et al. [56] proposed REET, which can support both
intrauser and interuser REs over encrypted network traf-
fic. As shown in Fig. 7, the sender encrypts fingerprints
and payloads with two-layer encryption. During the first
encryption, the sender uses AES to encrypt every chunk
of the fingerprints. As for the second layer, the sender
continues random encryption on the payload chunks. This
framework uses the public-key traitor tracing scheme pro-
posed in [160] and extends the present BE algorithm to
deliver the content only to legitimate users with high-level
security. Besides, they managed to cache the content at a
nearby router such that valid users can receive the content
even when the providers are offline.

Near-duplicate detection (NDD) is a general data
caching function that can help to reuse near-duplicate data
and alleviate network traffic congestion. Cui et al. [55],
[57] proposed a secure NDD function by resorting to multi-
key searchable encryption (MKSE) [161] to enable queries
on encrypted content uploaded from multiple users under

Fig. 7. System model of REET [56].

different secret keys. Using MKSE, the service provider
can transform the user’s query encrypted with her own
secret key into the form of different content providers’
keys. Besides, their method adopts the locality-sensitive
hashing (LSH) functions [162] to label the data items,
which can be regarded as the keywords in MKSE. Because
LSH may bring false positives, a secure two-party com-
putation protocol based on Yao’s GC is implemented to
determine whether the difference between the candidate
fingerprints and the query item is small enough (i.e., the
distance between the hashes generated from LSH is under
an expected threshold). However, due to the one-time
security of the GC, the GC needs to be refreshed every time,
thus leading to a long detection delay.

B. Function-Enriched Matching

While the equality match is adequate for certain appli-
cations, it is essential to support more enriched functions,
such as range match [26], [37], [40], [41], [163], [164],
substring match [27]–[29], [33], wildcard match [27],
[36], [38], [39], and regular expression match [28]. The
rules that require enriched matching are much more com-
plicated than single keyword matching. A simple solution
is to decrypt the suspicious traffic and perform the reg-
ular expression on the plaintext, as introduced in Blind-
Box [24]. However, this solution discloses the content
of the packet to the middlebox. In this section, we will
introduce several methods that succeed in performing the
function-enriched matching on encrypted packets without
leaking the private data. Table 6 illustrates the main char-
acters of the approaches of enriched matching.
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Table 6 Approaches of More Enriched Matching

1) Range Matching: Range match is a common function
in firewalls, NAT, and DPI, which checks whether the
value in a field matches a predefined range. For example,
a firewall may have a policy that requires dropping the
packets whose port number is between 0 and 2048.

Khakpour and Liu [163] first attempted to outsource
the firewall to the cloud privately. They proposed Ladon,
a design leveraging bloom filter [165] as an efficient tool
to anonymize the firewall rules. The bloom filter is a binary
vector data structure that can be used to detect whether
an element is a member of a set or not. The bloom filter
maps data to bit vectors by multiple hash functions, with
the corresponding position being 1. Ladon is built on a new
data structure named the Bloom Filter Firewall Decision
Diagram (BFFDD), which is a range-based decision tree
generated from the general firewall decision diagrams
(FDDs) [166]. Fig. 8 shows the process of BFFDD. The key
idea of Ladon is to use a bloom filter to represent the edge
sets in an FDD constructed from a given ACL such that
the ISPs could only access anonymized firewall policies.
Another work [164], however, points out that, although

the cloud service providers cannot learn the exact informa-
tion of the original firewall policies, they are still aware of
the final decision of a certain packet. In this case, the cloud
service provider can know whether a packet is good or not
in a period anyway. Instead of building a set of BFFDDs to
eliminate the ambiguities as Ladon did, Kurek et al. [164]
decided to use a single BFFDD and get multiple decisions
on purpose. Afterward, the packets resulting in the same
decisions are processed as they are supposed to be, while
packets resulting in multiple decisions need to be filtered
additionally in the private cloud.

Embark [26] is the first system designed to support
outsourcing a wide range of network functions. Compared
with BlindBox, Embark enables more middleboxes, such
as firewalls, NAT, and HTTP proxies, to be outsourced with
the privacy protected using a combination of three cryp-
tographic tools, namely, traditional AES, KeywordMatch
from the BlindBox construction in [24], and their innova-
tive scheme PrefixMatch. PrefixMatch allows an encrypted
value to be compared with the encrypted endpoints of a
certain range using the operators ≤ and ≥ so that the

Vol. 109, No. 12, December 2021 | PROCEEDINGS OF THE IEEE 1903



Jiang et al.: Building In-the-Cloud Network Functions: Security and Privacy Challenges

Fig. 8. Flowchart of BFFDD [163].

middlebox can decide if the encrypted value is situated
in the encrypted range. Specifically, when the prefixes are
encrypted, the endpoints of prefixes or ranges [si, e1] are
arranged in increasing order, and each pair of endpoints
divides P0 = [0, 2len − 1], where len is the size of the
endpoints, into several nonoverlapping intervals Ii. The
interval belonging to the same set of prefixes is assigned
with one encrypted prefix, which is a random value with
the same size as the prefixes. This encrypted prefix of the
interval Ii is also assigned to the value v ∈ I , and the
suffix of v is randomly chosen. From the perspective of
performance, it is discussed in [26] that the long-lived
connection between the gateway and the in-cloud mid-
dlebox saves time of handshake. In addition, compared
with existing schemes based on OPE [137], [167], Embark
achieves significantly better performance with a higher
security level. However, we should not underestimate the
prohibitive cost of rule updates in Embark, as it is possible
that the new prefixes or ranges overlap with the old ones.

However, the prefix match in Embark becomes ineffec-
tive if the filtering rules cannot be represented in the form
of a prefix. To tackle this issue, Guo et al. [40], [41]
proposed an efficient ORE scheme to realize more general
range matching with limited leakage. In their schemes,
the header strings and rules are decoded as data values
and encrypted into blocks with their order information
preserved. Guo et al. [40], [41] also protect the location
information of the blocks by randomly permuting them
with searchable encryption. The extension version [41]
improves the efficiency of range matching for contiguous
rules. The key idea is to formulate range matching as a
fuzzy search problem. The contiguous range is represented
as wildcards and encrypted by fuzzy searchable encryption
(FSE) [168]. The wildcard-based design only needs one
round of fuzzy search, improving the efficiency greatly.

2) Substring Matching: Some rules have particular con-
structions, where multiple segments of unequal lengths in
different locations in a packet are required to inspect [84].
For such rules, the construction information is also needed
to be securely outsourced. One idea is to outsource the
construction information on an encrypted index, which is
similar to equality matching. SPABox [28] supports many
keyword-based functions over encrypted data, including

single keyword matching, keyword sequence matching
(i.e., rule matching), and regular expression matching. The
substring matching uses a hierarchical hash table to build
the encrypted rule index. The first level restores the first
five bytes in the first keyword in every rule. The value
contains a pointer to another hash table whose entries are
related to all possible following keyword tokens. If there
is a match through all the tables, the packet is related
to some rules. Compared to [24], [25], and [30], the
matching process is linear with the rule size, which may
be inefficient when dealing with large rule sets. For more
general regular expression matching, SPABox adopts the
technique of garbled-DFA [169] to do the RE matching
on the receiver side without letting the receiver learn the
rules.

A similar rule outsourcing method is CloudDPI [27],
which uses the reversible sketch instead of cuckoo hashing
to avoid insertion failures, compared to [25]. CloudDPI
parses a rule into several fragments by the wildcards
defined in ClamAV [170] and uses a sliding window of
a specific size to segment the fragments into tokens. The
tokens are then restored in the reversible sketch. Before
the insertion, the hash bucket is checked through a bloom
filter to ensure that the bucket is available. Each hashed
token is associated with a pointer list of related signature
fragments, each of which is stored together with pointers
to a rule, and the previous and next fragments. The pointer
lists are uploaded to the middlebox for fragment checking
and rule checking. Thus, the relationship between the
rules, fragments, and hashed tokens is revealed. Using the
pointer lists, CloudDPI achieves complex rule types, such
as substring matching and wildcards. However, CloudDPI
reveals too much information about the rules, e.g., the
number and repetition of fragments in a rule, and the
co-occurrence of the same fragment in different rules.
As an extended version of CloudDPI, Li et al. [33] further
extended the famous ac pattern matching algorithm [171],
[172] to operate on encrypted data. They replace the
plaintext character, which is the input to the goto function,
with the hashed token, and then, every ending state is asso-
ciated with a pointer to the related signature fragment list.
Because of the adoption of a finite-state pattern machine,
the inspection throughput is independent of the size of the
ruleset. However, the storage in the middlebox becomes
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larger as the ruleset grows. Similar to CloudDPI, it also
suffers from the leakage of the rule structure.

To solve the pattern matching problem where the
search tokens may require arbitrary keywords of arbitrary
lengths, Desmoulins et al. [29] designed a new searchable
encryption mechanism, named Searchable Encryption with
Shiftable Trapdoors (SEST). SEST is a public searchable
encryption scheme that deals with substring search. Given
a ciphertext and an appropriate search token, SEST can
return whether the corresponding substring is in the cor-
responding plaintext and the positions where the pattern
appears. The scheme is constructed by bilinear groups that
consist of three cyclic groups and a bilinear map. The
plaintext string is encrypted character by character. Every
element in a string has a corresponding secret key and
a public key. Based on the properties of bilinear groups,
the encrypted string and keyword (in other words, the
trapdoor) remain the relationship that can be elegantly
designed to check the occurrence of these patterns. One
of the benefits of SEST is that it can generate arbitrary
trapdoors after the encryption of the original string. The
search tokens can be universal because they can be gener-
ated from arbitrary keywords and used for arbitrary cipher-
texts. However, the size of secret keys and public keys is
linear in the plaintext size, and asymmetric cryptographic
primitive is not as efficient as symmetric ones in [25]
and [30]. To address this problem, Lai et al. [35] proposed
a practical matching protocol, SHVE+, based on sym-
metric hidden vector encryption (SHVE) [173]. SHVE+

encodes the encrypted messages into query trapdoors of
SHVE and lets the middlebox search the trapdoors on the
precomputed encrypted rulesets. SHVE+ achieves better
inspection performance than SEST [29] and supports a
wider range of matching functions than [25], [30].

3) Wildcard Matching: There are a large number of
matching rules with wildcards in firewall policies. A naive
way is to label the positions of the wildcards explic-
itly and skip the labeled positions when matching [27],
which will expose the location of wildcards. Based on
the multilinear map, Shi et al. [36] built a framework
in SDN, named Secure framework for Outsourcing Fire-
wAll (SOFA). In SOFA, middleboxes are obfuscated by the
cryptographic multilinear map before outsourcing so that
the policies remain confidential from the service providers.
There are two basic phases in SOFA: the obfuscation phase
and the execution phase. In the obfuscation phase, the
local control plane sets up parameters of the multilinear
map to construct an obfuscator. In the execution phase,
the cloud service provider filters inbound and outbound
network traffics to execute corresponding functionality,
with the detailed configurations confidentiality preserved.
Sheng et al. [38] and Wei et al. [39] leverage HE to
encrypt the firewall policies and support wildcard match-
ing. In their designs, the rules are abstracted as r =

(v,W,A), where v denotes the bitwise value of the rule,
W is the set of wildcard positions, and A is the action.

Fig. 9. Example of the wildcard matching scheme [38] that applies

PHE to bit-level representation for the rules and packets with

respect to wildcards.

For every bit in v, the client who generates the rules
needs to precompute all possible results for the corre-
sponding value in the packet and calculate trapdoors for
values 0 and 1. When obfuscating the firewall, the client
will choose the same trapdoor of 0 and 1 for the bit in
wildcard set W . An illustrative example is shown in Fig. 9.
To hide the action, the schemes split the cloud middlebox
into two: one for packet matching and the other for the
action process. The packet is transmitted to the matching
middlebox (which is loaded with obfuscated policies) in
plaintext. If there is a match, the encrypted action will
be sent to the action middlebox for decryption. The main
disadvantage of the above schemes is that the content
of the packet is disclosed. Furthermore, the two clouds
cannot collude. Otherwise, the adversary can observe the
packets, matching results, and actions to infer the policies.

C. Routing

Unlike network functions that are mainly based on
rule matching (such as IDS), secure routing involves
computation on the outsourced rules and encrypted
packets. Here, we specifically discuss the progress on
secure routing, i.e., realizing the Boarder Gateway Proto-
col (BGP) on encrypted data. Although the widely used
BGP can well manage available routings among differ-
ent groups, i.e., corporations and administrations, it has
disadvantages in reliability [174], efficiency [175], and
privacy [176]. For example, information such as routing
policies can be inferred from BGP settings [177]. Inter-
net eXchange Points (IXPs) provide a centralized route
server (RS) service for ranking, selecting, and distributing
BGP routes [178]. However, IXP members may be reluctant
to distinctly forward their private routes to an RS. For
ideal privacy concerns, both the routing results and the
routing policies should be kept from the IXPs. Generally,
route policies include import policy, next-hop policy (which
includes the local preference and the shortest path com-
putation), and export policy. The challenges lie in how
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Table 7 Approaches of Secure Routing

to preserve both the routing policies (e.g., the local route
preference) and communication information (e.g., topol-
ogy information, destination, and distance information)
while obtaining the best choice of routing. Different from
network functions, such as DPI and firewalls, the routing
function requires computation on the packets and policies,
other than simple matching. Thus, most schemes are based
on SMPC and HE. Table 7 demonstrates the characteristics
of several representative schemes of privacy-preserving
routing.

1) Secure Computation-Based Methods: In the very early
years, Gupta et al. [42] first introduced SMPC to solve
the secure interdomain routing problem. They elaborate
on the advantages and challenges of the problem and
explore a common cryptographic scheme to implement
it. This work presents a heuristic idea. However, it does
not meet practical needs. Asharov et al. [45] took a more
in-depth insight into secure interdomain routing. They
use a two-party secure Boolean circuit, Goldreich–Micali–
Wigderson (GMW) [179], to calculate the routes. The
GMW protocol can efficiently evaluate the same subcircuits
in parallel. Asharov et al. [45] converted two interdo-
main BGP routing algorithms into MPC-based ones, which
supports two routing policies: the neighbor relation-base
policy [180] and neighbor preference-based policy [42].
The routing choices are calculated by precomputed AND

and MUX gates implemented on GWM. Different from the
above schemes, instead of designing a substitute solution
for BGP, SIXPACK [46] focused more on privacy issues on
IXPs. In SIXPACK, there are two noncolluding RSs: one is
performed on the IXP, and the other is outside the IXP but
locally close to it. The application of MPC makes sure that
the RSs do not learn anything about the input and the out-
put of the route computation, e.g., the route exportation
and route selection. The routing procedure can be divided
into three phases. First, taking the route policies and BGP
routes as input, the RSs compute all exportable routes
using the ABY framework [181] and forward the result
routes to the members. Then, the members locally rank the
routes and forward the ranking values to RSs. Finally, the
RSs select the best route according to the next-hop ranking

and their performance-related information using a MaxIdx
tree circuit [182]. SIXPACK relieves the computation bur-
den by performing the most complex ranking computation
on plaintext in the IXP member instead of in the RSes
where more rounds are required.

MPC-based schemes can handle various functions in
routing (e.g., shortest path computation) while preserving
the privacy of the routes. However, MPC-based schemes
incur complex setup and bandwidth overhead due to large
circuit size and the usage of OT, which could hurt the
scalability of the routing designs.

2) Homomorphic Encryption-Based Methods: To deal with
the shortest path computation, Henecka and Roughan [43]
proposed the Secure Transitive Routing Information Pro-
tocol (STRIP), a privacy-preserving interdomain routing
protocol, which allows participants (routers) to find the
shortest path in a network without learning the topology
information. To conceal the path lengths, the authors use
the additive HE to compute the weight-sum in the shortest
path computation approach, path-vector protocols (PVPs).
When the origin router receives announcements from its
neighbors, it sends a probe message, including essential
information to all the neighbors who have announced a
route to probe the path. In the path, every intermediate
router adds this path length (encrypted by Paillier [116],
an HE scheme) to the original one. When the destination
router receives all the probe massages arriving in a limited
time, it decrypts the sum of the lengths using the secret key
to find the smallest one. Then, it sends a response along the
shortest path until the original router receives it. In this
scheme, the intermediate routers only know their last and
next hops and the lengths from themselves to the next
router. As for the destination router, it can only learn the
last hop and the distance of the paths. In this way, topology
information is protected. Besides, the distance information
is also private because no one knows the distance of the
paths except the destination router. Though STRIP ensures
strong privacy of the routes and routing rules, it only
realizes limited routing protocols, that is, it cannot cover
as many routing functions as BGP does. Moreover, the HE

1906 PROCEEDINGS OF THE IEEE | Vol. 109, No. 12, December 2021



Jiang et al.: Building In-the-Cloud Network Functions: Security and Privacy Challenges

system, Paillier, introduces 20% extra overhead over PVP,
which heavily impacts the efficiency of STRIP.

While the above schemes focus on interdomain routing,
Chen et al. [44] proposed PYCRO, a secure cross-domain
routing design that supports policy-compliant shortest
path computing. To compute the shortest path, PYCRO
constructs an equivalent cost graph for the significant
nodes and builds a privacy-preserving shortest path tree
whose root is the source switch using the cost graph. All
the domain controllers use the additively HE to encrypt
intradomain path lengths in their own domain and inter-
domain link lengths from their own domain. Then, they
send them to the source domain controller to perform
subsequent computation. Note that the operations above
only involve addition computation and rerandomization
based on the “secure-if” operation proposed by the authors
(which allows choosing two options based on a condition
in a privacy-preserving way). Finally, the tree is leveraged
to establish the shortest path. In this protocol, only the
distances from the source node to every significant node
and the parent node are leaked. Similar to STRIP, PYCRO
also suffers from a long delay. The extended version of
PYCRO [47] improves the efficiency by performing a one-
time off-line preprocessing. In this way, the execution time
is reduced to 20 ms, and the computation cost is signifi-
cantly saved. The communication cost is reduced since the
online part is reduced to 1 kB.

D. Stateful Matching and Packet Modification

In this section, we further introduce more advanced
functions, e.g., stateful matching and packet modification.

1) Stateful Packet Inspection: Stateful packet inspec-
tion, e.g., stateful firewall, is an advanced function that can
inspect the traffic to detect wider illegal packets according
to dynamic network states.

Melis et al. [37] utilized public-key encryption with
keyword search (PEKS) to handle the stateful network
function. The state table describing the traffic context can
be regarded as a dynamic rule–action pairs, where the
rules contain additional virtual fields, including “timeout”
(which records the valid time of the packets) and “state”
(e.g., new arriving or established). The client maintains the
dynamic encrypted state table by PEKS when the network
state changes. To keep the cloud from learning the packets
and rules, the client (rule generator) will compute the
trapdoor for necessary fields, shuffle them, and encrypt the
state and action. Receiving the trapdoors, the cloud will
create an entry in the encrypted state table and return the
entry identifier to the client. The client can then decrypt
the packet and check the ACK and FIN flags. Based on the
changes in the flag, the client tells the cloud middlebox to
update or delete the state table entry.

PEKS is based on asymmetric cryptographic primitives,
which does not meet practical efficiency requirements.
Trusted hardware is a more efficient tool and can achieve
general functions. However, considerable effort is needed

Fig. 10. System model of Splitbox [48].

when dealing with the stateful process. SGX-Box [15] inte-
grated mOS [88], which is a networking stack monitoring
the stateful flow, inside the system to support stateful flow-
level processing. An mOS built-in event is triggered every
time the flow is changed. SGX-Box, thus, gains the ability
to handle stateful processing. LightBox [20] stores the
enormous states inside the disk encrypted and develops a
special data structure to index and search for the needed
flow table entries on disk while making the most required
entries available inside EPC (a protected memory region
inside CPU). With the performance bump, LightBox can
perform the stateful process at near-native speed.

Note that both SGX-Box [15] and LightBox [20] rely on
the trusted hardware, in particular, Intel SGX, to achieve
secure network functions. As such, they are capable to
support arbitrary network functions as in the plaintext
domain, to be discussed in Section IV-E.

2) Packet Modification: Network functions, such as NAT,
require modification on the packet. Intuitively, it is hard
to modify an encrypted packet. To address this issue,
Splitbox [48] realized modification on the content by
splitting the packets into many parts and forwarding them
to different middleboxes, as shown in Fig. 10. The entry
middlebox A encrypts the traffic and splits the packet
into t pieces and forward them to a distributed set of
middleboxes. The distributed middleboxes B(t) perform
the matching and action process collaboratively by a t-out-
of-t secret sharing scheme. The match rule is preencrypted
by a trusted middlebox C (the client’s middlebox) and
forwarded to A, so the matching pattern is hidden. The
ruleset is described as a tree, where each edge denotes
a matching function m : {0, 1}n −→ {0, 1}, and each
node denotes an action function a : {0, 1} −→ {0, 1}. The
opposite result of the matching function is denoted as m̄.
C also splits the actions using the secret-sharing method
and forwards the pieces to B(t). Thus, the action (how to
modify the packet) is hidden. During the inspection, each
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middlebox B(t) will traverse the policy tree by calculating
each matching result (the edge). If m(x) is 1, then traverse
to the left node; otherwise, traverse to the right node to
perform x = a(x). Finally, the final action function outputs
the final packet x. The results of the middleboxes will
be merged in middlebox C. Splitbox can support network
function chaining due to the policy tree. However, Splitbox
does not tackle the issue of packet privacy protection since
the entry middlebox can directly obtain the plaintext of the
traffic.

E. Generic Network Functions

Generic network functions refer to the design of the
middlebox that can handle arbitrary network functions.
General privacy-preserving computation tools include HE
and trusted hardware, such as Intel SGX. Here, we intro-
duce existing designs based on FHE and trusted hardware.

1) Homomorphic Encryption-Based Method: Melis et al.
[37] put forward ways to address the private issue of
general network functions. The authors abstract network
functions (e.g., firewall, LB, carrier-grade NAT, IDS, and
simple DPI) as a function ψ(x), where the input x rep-
resents the original packet, and the output vector ψ(x)

represents the packet processed by the function ψ. ψ is split
into a pair of functions: (m,a), where m(x) denotes the
match process and a(x) denotes the action part. The goal of
network function is that, when the result of m(x) is valid,
we can obtain the final result of the network functions from
a(x). The above ψ can be represented with the formula

ψ(x) = m(x) · a(x) + (1 −m(x)) · x.

Based on the above presentation of network function,
Melis et al. [37] proposed a general private NFV (PNFV)
system on FHE, with the goal of protecting the inspection
rules and results. With the nature of FHE, all the compu-
tations can be performed on ciphertexts without revealing
the content of the rules and results. However, in the design
of PNFV, the cloud middlebox is assumed to obtain packets
in plaintext to lighten the computation on the client side.
Hence, the packets are not protected in this work.

2) Trusted Hardware-Based Method: Trusted hardware
enables hardware support for applications to run securely.
Migrating network function toward trusted hardware is
natural, considering the efficiency and security of TEEs.
Among the various TEE designs, Intel SGX provides a
state-of-the-art choice, which includes a smaller TCB and
better efficiency [119]. However, the limitation lies in
the relatively small enclave space. Applications running
in the secure enclave suffer from the performance penalty
whenever it exceeds the space limitation.

The common workflow of network function on SGX
is depicted in Fig. 11. The service provider deploys the
network function application into the remote service ven-
dor host enclave [119]. After finishing deploying a basic

Fig. 11. Workflow of network functions on SGX.

application (which is open to the public and can be verified
by everyone), the service provider requests an attestation
from the targeted enclave. Moreover, the enclave makes
a report of its metadata and sends it to the Intel Quoting
Enclave. The quoting enclave then verifies the report with
its report key. Obtaining the quote, the service provider
verifies the legitimation of the quote and establishes a
secret channel with the enclave. Through this channel, the
service provider secretly sends the configuration and secret
information.

Table 8 summarizes the main characteristics of several
representative SGX-based designs. Kim et al. [13] took the
first step toward leveraging a hardware-assisted approach
to solve the problem of efficiency. SGX is used to verify the
promise while keeping its privacy intact. Kim et al. [13]
also demonstrated the usability of SGX in in-network func-
tionalities of TLS sessions. They break a TLS session into
two sessions. Each endpoint exchanges a unique session
key with the middlebox and, thus, makes the middlebox
“the Man in the Middle.” Both key exchanges are finished
inside the enclave and stored in a special memory region,
EPC. Every packet is decrypted inside the enclave. Thus,
arbitrary functions can be enforced on the payload of
traffic. All packets will be encrypted and sent back to the
network. Fig. 12 shows the general system model of an
SGX-based scheme.

Secure as it is, the man-in-the-middle approach breaks
the end-to-end encryption, which leads to a considerable
modification to existing utilities. PRI [14], SGXBox [15],
and TrustedClick [16] establish a secure channel between
a single endpoint and the middlebox, share the session
key through the secure channel with the other endpoint,
and, thus, ensure the end-to-end policy. EVE [23] provides
programmer-friendly Rust APIs, which makes it flexible to
set the client’s own strategies. These approaches follow the
privacy-preserving manner and simplify the workloads to
modify TLS. A very recent work, Phoenix [22], explored
the possibility of achieving secure CDNs from a new per-
spective, i.e., protecting session keys. Phoenix is the first
keyless CDN that protects both sensitive key materials
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Table 8 Comparison Among Trusted Hardware-Based Approaches

and web content. Phoenix is built on a novel design
called conclaves, i.e., containers of enclaves, which enables
Phoenix to perform on multiple processes and realizes the
scalability. It also supports web-application firewalls and
multitenancy, with only minor efforts to modify existing
web architectures.

Aside from payloads, many network functions are per-
formed on the header. Modification has to be made to
enable hardware-assisted designs to support general net-
work functions. Take the routing function as an example.

Fig. 12. General architecture of SGX-based schemes.

Trusted Click [16] and EndBox [111] leveraged the Click
modular router to make header reading and modification
possible, where Click is a tool containing network elements
to perform various tasks, such as IP tunneling config-
uration and ethernet switches. Trusted Click integrates
the trusted hardware into Click to support arbitrary NFV
applications. Protecting the sensitive information of header
and metadata is essential. The work of [18] adds security
extension to traditional IP and MAC protocol, providing
network and link layer end-to-end security. SafeBricks [19]
leverages the IPSec tunnel to protect the header. The work
of Mastorakis et al. [18] and SafeBricks [19] use a similar
approach to protect forwarding IP and MAC addresses.
However, they both leak some metadata, such as packet
size, count, and timestamps unprotected, which leads
to potential exploits. LightBox [20] segments the flow
into indistinguishable parts and encapsulates them into
a secure tunnel, thus eliminating the possible metadata
leakage.

Secure NFV chaining lets SGX-based middlebox
achieve better performance and provide rich functions.
Trach et al. [17] and Mastorakis et al. [18] leverage
the Intel Data Plane Development KIT (DPDK) [183]
feature to establish a secure channel between middlebox
instances. LightBox [20] designed etap (enclave tap,
a virtual network device similar to tun/tap) to enable
NFV multithreading while tracking the flow states without
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data racing. Though different network function instances
are running independently on each socket, they share
huge memory pages on untrusted memory. These designs
adopt packet buffers stored on the shared memory
page. Each network function instance gets a new packet
from the receiving (Rx) rings and writes the packet
back to transmitting (Tx) rings. Rx ring can be chained
with Tx rings if the NF functions are chained together.
SafeBricks [19] achieved NFV chaining from a different
perspective. SafeBricks utilizes the Rust programming
language to isolate different network functions. Rust, with
a reliable compiler, makes it impossible for the irrelevant
code to access private data, thus isolating different
network functions inside a single enclave instance. The
approach reduces extra overhead by eliminating the
unnecessary process via the exchange of information
inside a single enclave.

Trusted hardware-based methods preserve security and
privacy while maintaining decent performance compared
to software-based methods. However, due to the limitation
of SGX, these approaches are vulnerable to side-channel
attacks and may also suffer from the complicated imple-
mentation of existing network architecture. Specifically,
SGX-based methods may require modification on the com-
mon network protocols to fit inside the enclave, which
leads to an extra pile of deployment workloads.

F. Verifiable Network Functions

When the server is malicious, the middlebox may not
be always faithful to follow the protocols, for the mali-
cious intentions, such as saving computing costs or even
stealing more private information. Fayazbakhsh et al. [59]
first considered the problem conceptually and proposed
a verifiable network function outsourcing design, vNFO.
vNFO mainly consists of two parts, a trusted shim running
inside the TPM of the cloud and a trusted central logging
entity (CLE). The trusted shim samples the inward and
outwards traffic and generates reports about traffic. The
CLE instrument each shims instances to work properly,
collects the reports, and sends them back to the consumer.
As a conceptual design, vNFO does not intend to meet
practical efficiency requirements.

Among the literature, there have been software and
hardware methods to guarantee the integrity of network
functions. The trusted hardware-based methods naturally
support verification with the help of attestation and sealing
technology. For example, the work of Kim et al. [13] runs
the traditional verification program in the secure enclave.
Yuan et al. [60], [61] utilized lightweight cryptographic
primitives, such as hashing and PRFs, to assure the cor-
rectness of the inspection results and, thus, improve the
likelihood that the middlebox captures the malicious pack-
ets. They proposed a ringer-based construction, which is a
cryptographic sampling method to probabilistically check
the correctness [184]. Ren et al. [63] designed a two-layer
architecture with two noncollusion servers. In their design,

a large scale of packets is first filtered by bloom filter, and
the middlebox verifies the tokens based on an efficient
no-dictionary verifiable SSE scheme [185]. The above
works are practical due to the use of lightweight primi-
tives. However, they only support verification on pattern
matching.

As for more advanced middleboxes, Zhang et al. [50],
[51] considered outsourced virtualized service function
chaining (vSFC) and proposed the first scheme that could
verify the correctness of the path traversal in vSFC hop
by hop. This work focuses on path verification, and the
correctness of the execution on middleboxes is not con-
sidered. A recent work [62] further explored the verifica-
tion of stateful middleboxes. To deal with dynamic states,
it adopts stateful sampling to capture the packets of the
same state and then replays the packet samples locally. It is
worth noting that existing works have not covered all the
middleboxes, e.g., middleboxes that perform in-network
caching and content delivery.

V. S Y S T E M AT I C C O M P A R I S O N S F R O M
U S A B I L I T Y, P E R F O R M A N C E , A N D
S E C U R I T Y
In this section, we carry out meticulous comparisons
among the privacy preservation techniques and give met-
rics to evaluate the outsourcing network function designs.
We particularly compare the techniques (e.g., crypto-
graphic tools, such as HE and searchable encryption, and
the trusted hardware, such as SGX) from usability, per-
formance (including computational cost, communication
cost, and storage problem), and security.

A. Usability

Functional property is one of the primary factors to be
considered when designing a scheme. NFV includes many
functions, such as firewall, DPI, NAT, and load balance.
When outsourcing a network function, middleboxes may
operate on the header (for functions such as firewalls,
routing, and NAT), the payload (for functions such as
in-network caching), or both (for functions such as DPI
and IDS). Interestingly, these functions all contain the
matching process. Middleboxes match the data in some
field of the packet with the outsourced rules and then
make the corresponding action on the packets according
to the matching result. To divide the functions by the
complexity of the rules, as introduced in Section IV, there
are equality matching and more enriched matching, such
as range matching and stateful matching.

Schemes introduced in Section IV can cover these func-
tions in different degrees. Here, we further introduce the
capability of the tools. Intuitively, methods can use crypto-
graphic tools, such as deterministic encryption, to encrypt
sensitive information to let the middlebox perform simple
equality matching rules according to the hidden infor-
mation and the encrypted rules on the middlebox [49].
Using more complicated multilevel encryption with the
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Table 9 Estimated Performance of Different Privacy Preservation Technologies

basic deterministic AES encryption, the work of [56] can
realize RE, i.e., equality matching on the packet level. Sim-
ilar to deterministic encryption, index-based SSE, which
is naturally suitable for searching on encrypted traffic,
can be utilized to perform the equality search, such as
watermark and signature matching in DPI and in-network
caching. However, it is difficult for AES or index-based
SSE schemes to more function-enriched matching (e.g.,
range matching), which are, however, quite common in
many network functions, such as port and IP address range
matching in the firewall. The bloom filter [163], [164] can
check whether an element is included in a set, which can
be modified to judge whether the data in a specific field of
a packet are in the ruleset, or whether the data in a field
are within a range. Prefixmatch, OPE, and ORE can reserve
certain information in plaintext and, thus, can be extended
to range match by encrypting the endpoints of the range
and comparing the encrypted boundary with the traffic.
Besides matching, sometimes, it needs more complicated
computations over the traffic and the rules, e.g., network
routing. HE can directly perform calculations, such as
addition and multiplication on ciphertext, so it can be used
to compute the shortest path and bandwidth allocation for
the route decision. Also, SMPC can be utilized to calculate
the routings or filtering results by multiple cooperative and
middleboxes without collusion. GC and OT can provide
secure information exchange among the middleboxes. The
methods mentioned above are based on software, while,
with the auxiliary of the secure running context provided
by secure hardware, such as Intel SGX, more general func-
tions can be performed securely. Intuitively, the packets
can be decrypted and processed in the enclave. With

SGX, almost all the functions can be achieved, including
general DPI, NAT, and routing on L2 (data link layer) and
L3 (IP layer).

Remark: We can evaluate a network function outsourc-
ing design from a functional perspective, i.e., whether
the design can achieve equality matching, more enriched
matching, stateful matching, or general function. We con-
clude that the techniques of trusted hardware, HE, and
MPC are more suitable for general and complex network
functions. Other lightweight primitives can only handle
relatively simple network functions. Hence, when design-
ing in-the-cloud middleboxes, we can choose appropriate
techniques according to the complexity of the network
function.

B. Performance

Generally speaking, the performance of a network func-
tion is twofold: computation cost and communication cost.
Besides, in the context of NF outsourcing, the storage
occupation on the middlebox also needs consideration.
In this section, we compare the state of the arts from the
perspective of computation, communication, and storage
cost, and summarize the results in Table 9.

1) Computation Cost: Computation cost mainly includes
precomputation time in advance of all communication con-
nections, setup time, and processing time during a connec-
tion. The middlebox needs to be configured in advance,
e.g., the rules may be encrypted and uploaded at the begin-
ning, which forms the precomputation time. The precom-
putation time does not affect the real-time performance
for communication, while the latency strongly influences
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the communication efficiency and the user experience.
Latency consists of the setup time to establish a secure
connection or prepare for secure data exchange and the
processing time, i.e., inspection time in functions, such as
DPI and firewalls, and computation time in functions, such
as secure routing.

For different applications, such as long- or short-lived
instant connections, the requirements for the setup time
are different. Long-lived connections are more tolerable
for longer setup time, while the short-lived ones are sen-
sitive to setup time. For example, the pioneering work of
outsourcing DPI, BlindBox [24], suffers from a long setup
time due to the preparation for AES GC. There are lots of
works aiming to achieve lower setup time. Embark [26],
for example, reduces the average setup time by preserving
a long-lived connection between the gateways and middle-
boxes instead of changing the encryption keys for every
connection between the clients, which needs a fresh setup
every time there is a connection. Besides, the proposed
PrefixMatch in Embark is four orders of magnitude faster
than OPE. In SGX-based methods [13], [17], there is
a necessary remote attestation for enclave initialization,
which accounts for approximately 10% of the latency in
the setup phase. For example, according to the experiments
in ShieldBox [17], the latency of SGX remote attestation
takes about 26.4 ms.

The computational complexity of the processing phase is
generally related to the number of rules. In many crypto-
based schemes, the middlebox needs to match the packets
with the outsourced rules one by one, i.e., linear inspec-
tion complexity [29], [37]–[39]. Sublinear matching is an
advantage of index-based searchable encryption methods.
For example, in BlindBox, the encrypted rules are stored
in a tree-based structure, thus leading to a search time
logarithmic with the number of rules. Other index-based
methods [25], [28], [30] utilize hash tables to store the
rules to enable sublinear inspection. Besides the time of
inspection for a packet, the latency of each matching
operation will also affect the processing efficiency. Gen-
erally, the SSE-based method is much more efficient than
the HE-based method because SSE is based on symmet-
ric cryptographic primitives, such as PRF. For example,
the latency of index-based methods [24], [25], [28] for
processing one packet over thousands of rules is within
milliseconds. The HE-based method [37] takes seconds for
processing a packet with five fields on ten policies, which
is slower than the index-based methods. The SGX-based
approach LightBox [20] takes about 20 μs to inspect a
1500-byte packet over a 5000-sized ruleset, which achieves
near-native speed. Moreover, SGX-based approaches can
scale linearly according to the core count. SEC-IDS [186]
shows, in the experiments, that, with a limited number of
flows, SEC-IDS dual-core performance is almost twice of
its single core. Mastorakis et al. [18] demonstrated similar
performance scalability with up to four enclaves running
simultaneously.

2) Communication Cost: Excessive communication costs
will occupy network resources, thus affecting overall effi-
ciency. For example, one disadvantage of the GC-based
BlindBox is that it uses OT for data exchange. The size
of a 128-AES-circuit is about 500 kB, which brings much
bandwidth for a large ruleset. Compared to BlindBox, DPF-
ET replaces the GC with XOR, which reduces the bandwidth
of AES-circuit, but the OT still consumes higher bandwidth
than the lightweight cryptographic primitives. SSE-based
approaches require additional transfers of tokens of the
packets, which are related to the size of the packets and
the tokenization method. Tokens are generally encrypted
by PRF, so the size of each token is relatively small.
Besides the inherent communication costs brought by the
primitives, some designs also introduce multiple servers to
cooperatively perform the functions, which also introduced
extra communication [38], [48].

3) Storage Cost: The storage cost on the middlebox
is another performance indicator. In general, outsourced
rules will be kept on the storage in the middlebox. For
software-based schemes, the storage requirements are not
very strict because the cost of memory is not high for
cloud servers. Here, we discuss the storage problem of
SGX, whose memory is limited. In SGX, the programs
are split into the public and secret parts, as adopted in
S-NFV [187] and SheildBox [17]. LightBox [20] considers
how to reduce the consumption caused by EPC paging.
In LightBox, the state of each flow is tracked, and the tem-
porarily unnecessary parts are placed outside the enclave.
Meanwhile, the authors utilized a dual lookup design with
cuckoo hashing, which significantly reduces the lookup
time consumption due to EPC paging.

Remark: Both computational cost and communication
cost are important indicators for evaluating the perfor-
mance of the designs. We can measure the computa-
tion cost from three parts: the precomputation time for
rule generation, the setup time for connections, and the
processing time. As for communication cost, we can mea-
sure the additional bandwidth caused by search tokens in
SSE, exchange messages in GC, and configuration data in
SGX. When designing in-the-cloud middleboxes, we should
strive to minimize the computational and communication
overhead. The ultimate goal is to achieve the performance
on par with local middleboxes performing on plaintext
traffic.

C. Privacy and Security

The issues on privacy and security are twofold: 1) the
protection of sensitive information, such as inspection
rules and packets and 2) the security problems of the
techniques themselves.

1) Privacy: According to Sections III-A2 and III-B, the
privacy information includes the rule privacy and traf-
fic privacy. The traffic privacy can be further subdivided
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into header privacy and payload privacy. Table 41

presents the protection coverage of the representative
privacy-preserving network functions, i.e., the protection
of header/payload and the protection of rules from the
endpoints/middleboxes.

In the context of network function outsourcing, the rules
are generally generated by a third-party rule provider.
Hence, ideally, the inspection rules should be kept from
both the middlebox and the clients to protect trade secrets.
BlindBox [24] protects the rules from the clients by
adopting an AES-GC. However, it reveals the rules to the
middlebox. In the SSE-based schemes [25], [28]–[30],
the rules are encrypted and kept in hash tables to hide
the private information. Note that some designs, such
as [25], [26], and [48], do not explicitly protect the rules
from the endpoints because the rules are generated by
one of the trusted endpoints. In the context of routing,
the privacy issue of rules can be further refined into three
aspects: the protection of the destination address [42],
topological information [43], and the routing policies,
including the ranking of routes [43], [45], the shortest
path [43], and export policy [42], [44], [47]. The above-
mentioned designs all managed to protect the rules from
the middleboxes.

As for packets, both the information in the header
and the content in the payload should be protected. It is
easy to protect the payload, while, for the header and
the metadata, especially in the bottom layer, encryption
makes it hard for the middleboxes to transfer the packets.
The payload can be easily protected by encryption with-
out affecting the low-layer packet forwarding. However,
the protection of the header information is complicated.
Recall that there are two outsourcing models of network
functions, i.e., the go-through model and the bounce
model. In the bounce model, the encrypted header can
be inspected in the cloud-side middlebox and then sent
back to the client’s gateway. Thus, the five tuples (i.e., the
source/destination IP address, the source/destination port
number, and the protocol) of the original packets can be
freely encrypted and filtered. The designs using the bounce
model can protect the full information in the header from
the cloud [36], [41]. However, in the go-through model,
the packets need to be forwarded in real-world network
routers. Encrypting the destination address will make it
hard for the routers to forward the packets. Nonetheless,
many works have managed to protect other fields in the
header in different scenarios. For example, Embark [26]
hides the source IP for NAT middleboxes and the URIs for
HTTP headers. The HTTP header protection has a weaker
security guarantee because the comparison information
between the fields is revealed. SHVE+ [35] hides specific
fields in the header, for example, the HTTP method for
HTTP headers. In some SGX-based methods, the MAC

1Table 4 is the overview of the properties of the designs. Since the
part of the protection can well help the security analysis here, we do
not add a duplicate table in this section.

and IP addresses are replaced with the addresses of the
middlebox [18], [20]. Besides, to hide the metadata (e.g.,
packet size), LightBox [20] reorganizes the packet, fixes
the size of each packet, and uses a streaming manner to
forward the packets.

2) Security: The security of cryptographic primitives or
trusted hardware is another factor affecting the security
of the whole system. For example, OPE is proven to be
insecure for the disclosure of the order of the encrypted
fields and is vulnerable to brute force attacks [26]. SSE is
a promising lightweight cryptographic technique with high
efficiency. However, efficient SSE schemes generally leak
access patterns and query patterns, which may disclose
the linkage between the tokens in the packets and the
frequency of the words in the packets and the inspection
rules. Due to such leakage, SSE schemes are vulnerable to
the leakage-abuse attacks [146]–[150]. It is also reported
that PrivDPI [32] is vulnerable to brute-force attacks when
the space of the rule set is small [34].

Different from the cryptographic primitives, SGX-based
approaches are mainly faced with the problems that the
system calls may be issued from an untrusted host, and
the system clock may cause security flaws. As a result of
the design of SGX, the attacker can easily get the enclave
memory mapping. SGX-Box [15] proposed a new program-
ming abstraction called SB lang, which encapsulates the
underlying C and C++ languages, and ensures that the API
does not contain any insecure pointers that are vulnerable
to cache overflow attacks. As for the problem of the system
clock, LightBox [20] and ShieldBox [17] adopt the etap
clock and the NIC clock to avoid the attacks brought by the
unsafe clock, respectively.

Remark: According to Sections III-A2 and III-B, we can
evaluate the privacy-protection mechanisms by analyzing
how much private information they have protected. The
private information can be detailed into three parts: the
L4 payload, the L2–L4 headers, and the inspection rules.
The protection of inspection rules can be further divided
into protection from the endpoints and protection from
the middlebox. The more private information a design
protects, the more secure it is.

VI. O P E N R E S E A R C H P R O B L E M S
Albeit existing works have shown the potential of network
function outsourcing, there are still challenges to design an
efficient, secure, and functional outsourcing architecture.
Here, we list several research challenges and potential
future research directions.

A. Limitations of the Cryptographic Tools

The cryptographic tools, such as SSE, HE, and multi-
linear maps, can well solve the privacy problems in the
outsourcing process. However, when applied to NFV, these
cryptographic tools have limitations on efficiency or func-
tionality to different degrees.
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The SSE-based NF outsourcing designs have the advan-
tage of high efficiency and lightweight computation and
communication burden. Nonetheless, existing efficient
SSE-based methods only enable the most straightforward
equality matching rules, such as the signature inspection.
There are potentials to combine more functional SSE
techniques, such as tree-based range search [115], [188],
[189] and Boolean search [190]–[192]. Interestingly, the
structured encryption [193] can encrypt and query the
structured data, such as graphs, which may be adopted
to solve the secure routing problem, such as the shortest
distant computation [194]–[196].

A drawback to HE is its poor efficiency. The nature
of HE is very suitable for solving the privacy problem
of NFV, i.e., computations on encrypted data. However,
the FHE-based methods are not ready to be applied in
practice due to their low efficiency. From the perspective
of functionality, HE-based methods can only be adopted
to the network functions, such as firewalls and routing,
where the involved data to be computed are relatively
small. For the low-efficiency applications, they could not
employ HE-based designs. In order to improve, researchers
can explore more efficient HE schemes in the future.
As an alternative direction, it is possible to limit the NFV
operations to specific operations by meticulously designing
the privacy-preserving network function computation algo-
rithms, so as to replace fully HE with efficient partial HE.

The multilinear map is a potential cryptographic tool
that can be applied to the arbitrary polynomial circuit,
thus enabling the obfuscation of the bit vector of the
rules in firewalls in an efficient way. However, the obfus-
cation methods based on the multilinear map [129], [130]
have been proven insecure [197]. Besides, in multilinear
map-based schemes, noise is often introduced to interfere
with the man-in-the-middle attacks and ensure security.
However, the noise will increase rapidly with the coding
level, which may affect the efficiency. How to balance the
security and efficiency of the multilinear map is also a key
point that we need to consider.

B. Chaining of Outsourced Network Functions

A complete network service requires the packet to go
through a set of network functions [198] (a.k.a. the service
chain). For example, an HTTP packet should go through
a IDS −→ proxy chain, and packets from the internal sites
should be processed through a NAT −→ firewall chain. When
the functions are chained, the communication between
the middleboxes may leak more privacy information than
the single function setting. SICS [49], [153] uses deter-
ministic encryption, such as AES to encrypt the header,
which contains the destination and processing action as
a label, and the middleboxes will learn the behavior (the
destination and processing action) according to the label
and a prebuilt label-behavior dictionary. However, the rule
generator needs to enumerate all the destinations and
actions, and the analysis on the header is not actually

outsourced. SGX-based methods, such as SheildBox [17]
and LightBox [20], can mount the functions on different
virtual machines in a physical machine. So far, research on
outsourcing service chains remains underexplored. There
is no formal definition of security (e.g., the leakage defini-
tion) for service chaining. More tools can be used to ensure
minimum information leakage when transferring among
different middleboxes. It is also important to consider how
to improve the flexibility and availability, i.e., update the
original chain topology without affecting current business.

C. Verifiable Outsourced Network Functions

Verifiability [199] is another major research issue
in the field of outsourced NFV. Outsourcing increases
the cost-efficiency of NFV. Since the network function
providers code to control the computing infrastructure, the
consistent provision of such service can be compromised by
cloud vendors so that they can gain extra profit. Oversight
of such behaviors can be computationally intensive and
place extra overhead on performance. Finding a proper
and efficient way to detect malicious vendors forms a big
problem.

Verifiability, though important, is not discussed in most
schemes that we introduced before. In a privacy-preserving
middlebox, the main focus is to prevent the third party
from stealing precious information. The work of [13]
leverages the trusted hardware to verify the correctness of
network function but is vulnerable to the denial of service
attack and, thus, is hard to ensure the quality of service.
Besides, especially in the SSE-based method, the validation
of the search tokens is indispensable if one of the endpoints
is malicious. Besides the correctness of the functions per-
formed on the server side, the integrity and consistency
of the tokens and traffic should also be checked, which
has not been widely studied. How to develop a middlebox,
which is both private and verifiable, would be a promising
yet challenging future direction.

D. Attacks on Outsourced Network Functions

To enable detection, analysis, or process on encrypted
traffic with outsourced (encrypted) network functions,
more information will be disclosed than the traditional
unmanageable encrypted packets (e.g., HTTPs traffic). For
example, the SSE-based methods may be vulnerable to
the leakage-abuse attacks [141], [147], [149], [150]. The
deterministic search tokens reveal the statistical distri-
bution of the traffic. According to existing weaknesses,
we can design possible attacks to infer the content of
the traffic or rules. Besides cryptography-based attacks,
traditional attacks, such as DoS attacks and man-in-the-
middle attacks, can also be mounted on the middleboxes.
Encryption makes it easier to send spam messages and
occupy resources. However, very few network function
outsourcing schemes consider the DoS attacks, which
remains a security threat to the practical application of the
schemes [200].
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E. Side-Channel Attacks on SGX-Based
Middleboxes

The side-channel attacks against SGX have been in a
state of not being considered in the SGX-based middle-
boxes. Although these schemes claim that there is a general
method to respond to the side-channel attack [17], [19],
[20], the general countermeasures may bring problems
to the performance-sensitive virtualized network functions
and invalidate the functions that have been realized.

The side-channel attacks on SGX can be conducted by
leveraging the TLB flushing, page faults, exceptions, and
so on. Take the TLB flushing as an example. Since the
operating system has direct access to memory manage-
ment, a malicious OS can decide whether to flush the TLB.
Then, the malicious OS can locate the attack address by
analyzing the code of SGX applications and learn what
the SGX has accessed by flushing the TLB and record-
ing the memory footprint. To defend such side-channel
attack, Xu et al. [201] proposed four general solutions:
1) disable the operating system paging, which limits the
functions of enclave application; 2) enable self-paging,
which requires extensive changes to the configurations,
such as new hardware or new paging interfaces; 3) use
the techniques of oblivious RAM or noise injection, both
of which may produce extra computation and communi-
cation overhead; and 4) check the execution time. Since
side-channel attacks will affect the execution efficiency, it is
reasonable to check the time to find out whether an attack
has occurred.

It is not hard to see that, while existing SGX-based
schemes assume that conventional defense methods can
evade the side-channel attacks, the countermeasures either
require case-by-case constructions, incur overhead, require
new hardware support and program modifications, or are
not secure enough. Therefore, it is necessary to take the
side-channel attacks into consideration for the SGX-based
middleboxes. LightBox [20] emphasizes that a stateful
middlebox may often support millions of flows concur-
rently, which shows the necessity of low overhead in the
enclave. However, the advantage of LightBox might be

whittled down if the general defense is adopted. Hence,
it is essential to design specialized countermeasures to
side-channel attacks for SGX-based solutions.

F. Virtual Machine Isolation for NFV

In addition to the threats from the cloud server and
external adversaries, it is also significant to consider poten-
tial attacks from the tenants in the same cloud. The
cloud service provider is a physical host virtual machine
inevitably shared by multiple users [202]. The malicious
tenant can make use of the loopholes in virtual machine
isolation, such as the side-channel attacks, to steal the
private data of her neighbors [73]. Currently, this problem
has not been discussed in the field of network function
outsourcing. The environment of virtual machines on the
cloud service is much more complicated than that of the
enterprise or individual level virtual machines. Therefore,
how to prevent the attacks of malicious neighbor tenants
in NFV from enhancing the credibility of the hypervisor is
another interesting topic in the field of network function
outsourcing.

VII. C O N C L U S I O N
In this article, we have conducted a comprehensive survey
on the latest literature on NFV and related security and
privacy issues when moving network functions into the
cloud. To better demonstrate the issue, we raised the
challenges and goals of the outsourcing model. We cat-
egorized the outsourced network functions into exact
matching, function-enriched matching, and very general
functions, and introduced existing solutions, respectively.
Cryptographic tools, such as searchable encryption, GC,
and HE, and trusted hardware, such as SGX, can be
utilized to design an outsourced network middlebox in
a privacy-preserving way. Furthermore, we carefully com-
pared the privacy preservation technologies from the per-
spective of functionality, efficiency, and security, and also
concluded the metrics to evaluate the solutions. Finally,
we put forward several open research problems for future
investigation.
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