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Abstract—Optimally extracting the advantages available from
reconfigurable intelligent surfaces (RISs) in wireless communica-
tions systems requires estimation of the channels to and from the
RIS. The process of determining these channels is complicated
by the fact that the RIS is typically composed of passive elements
without any data processing capabilities, and thus the channels
must be estimated indirectly by a non-colocated device, typically
a controlling base station. In this article, we examine channel
estimation for RIS-based systems from a fundamental viewpoint.
We study various possible channel models and the identifiability
of the models as a function of the available pilot data and
behavior of the RIS during training. In particular, we will
consider situations with and without line-of-sight propagation,
single- and multiple-antenna configurations for the users and base
station, correlated and sparse channel models, single-carrier and
wideband OFDM scenarios, availability of direct links between
the users and base station, exploitation of prior information, as
well as a number of other special cases. We further conduct
numerical comparisons of achievable performance for various
channel models using the relevant Cramér-Rao bounds.

Index Terms—Channel estimation, DOA estimation, reconfig-
urable intelligent surface, intelligent reflecting surface, massive
MIMO

I. INTRODUCTION

There has been an explosion of interest in the use of re-
configurable metasurfaces for wireless communication systems
in the last few years. Such reconfigurable intelligent surfaces
(RIS) provide tunable degrees-of-freedom for adjusting the
propagation characteristics of problematic channels (e.g., sparse
channels with frequent blockages) that make them a valuable
resource for maintaining and enhancing the quality of service
(QoS) for users (UEs) in the network. However, most techniques
that exploit this ability require channel state information (CSI)
to and from the elements of the RIS, which is a challenge
since the number of RIS elements may be very large, and
more importantly, they are usually constructed only as passive
devices without active transceivers or computational resources.
Consequently, channel estimation for RIS-based systems has
been a subject of intense study.

Because the RIS is passive, the CSI must be estimated by
devices – most often a basestation (BS) or access point – that
are not co-located with the RIS. For example, training signals
transmitted by the UEs are received by the BS after reflection
from the RIS, and possibly also over a direct path to the

BS, and these known signals are exploited for CSI estimation.
In order to estimate the RIS-based channel components, the
reflection coefficients of the RIS must be varied as well, at
least during a portion of the training period. However, even
with variable training from the UEs and RIS, the fact that the
impact of the RIS is only indirectly viewed in the data means
that the complete structure of the channel is not identifiable. In
particular, while the cascaded or composite channel from the
UEs to the BS can be determined, the individual components
of the channel involving the RIS cannot. Fortunately, this is
typically not a problem for designing beamforming algorithms
at the BS or optimizing the RIS reflection properties, since
ultimately the QoS only depends on the composite channel.

A large amount of published work on CSI estimation for RIS-
based systems has appeared recently. Initially, this work focused
on estimating unstructured models, where the channels are
simply described using complex gains [1–11]. Such models are
simple and lead to straightforward algorithms, but the required
training overhead is very large and may render such approaches
impractical. Methods for reducing the training overhead, for
example based on grouping the RIS elements or exploiting the
common BS-RIS channel among the users, have been proposed,
but larger reductions are possible when the channels are sparse
if parametric or geometric channel models are used instead
[12–25]. In these models, the channels are parameterized by
the angles of arrival (AoAs), angles of departure (AoDs) and
complex gains of each propagation path. As long as the number
of multipaths is not large, then the total number of parameters
to be estimated can be 1-2 orders of magnitude smaller than
in the unstructured case, and the amount of training can be
correspondingly reduced. On the other hand, geometric models
require knowledge of the array calibration and RIS element
responses, as well as the model order; errors in the modeling
assumptions will degrade some of this advantage. In addition,
we will see later that the algorithms for estimating the geometric
channel parameters can in general be quite complex.

Many CSI estimation techniques have been proposed under
a wide array of assumptions, from Rayleigh fading to line-of-
sight (LoS) propagation, single- to multi-antenna configurations,
single- and multi-carrier modulation, scenarios with and without
a direct link between BS and UEs, and a variety of other
special cases. In this paper, we take a systematic approach to
the problem and organize the various approaches that have been
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proposed – as well as some that have not – under a common
framework. In this way, the advantages and disadvantages of
different assumptions and solution approaches become clearer,
and avenues for future work are elucidated.

After stating our general assumptions and notational conven-
tions in Section II, we begin with a discussion of CSI estimation
for unstructured channels in Section III. We will first consider
the narrowband single user MIMO case and the corresponding
least-squares (LS) and minimum mean squared error (MMSE)
solutions, and then we will examine extensions to the wideband
and multi-user cases, as well as special cases involving a
single antenna BS and UEs and methods for reducing the
training overhead. Then in Section IV we focus on estimation
of geometric channel models, and we follow the same format
of beginning with the narrowband single user MIMO case
and then considering the same generalizations and special
cases as in the previous section. Numerical examples involving
the Cramér-Rao bound (CRB) will be given in Section V to
illustrate the main conclusions. Several additional topics will
be briefly considered in Section VI, including the use of some
active transceivers at the RIS, scenarios with more than one RIS,
machine learning approaches, etc. Finally some conclusions
and suggestions for future research are offered in Section VII.

II. GENERAL ASSUMPTIONS AND NOTATION

In this paper, we primarily consider scenarios with a single
basestation (BS), a single RIS, and potentially multiple co-
channel UEs. Various assumptions are made about the number
of antennas at the BS and UEs, and the number of UEs that
are active. We assume the BS and UEs employ fully digital
rather than hybrid digital/analog architectures. We also assume
a standard time-division duplex protocol in which pilot symbols
transmitted by the UEs in the uplink are exploited by the BS
to obtain a channel estimate, which is then used for downlink
beamforming or multiplexing. This assumes reciprocal uplink
and downlink channels between the BS, RIS and users, which in
turn typically requires some type of RF transceiver calibration
and RIS elements whose behavior is independent of the angle
of incidence. Pilots could also be embedded in the downlink
for channel estimation at the UEs, but this is similar to the
uplink problem and thus is not explicitly considered.

Matrices and vectors are denoted by boldface capital and
lowercase letters, respectively. In some cases, the k-th column
or row of a matrix A will be denoted by A:k or Ak:,
respectively. The transpose, conjugate transpose, and conjugate
are denoted by (·)T , (·)H , and (·)∗, respectively. The Kronecker,
Khatri-Rao, and Hadamard products of two matrices are
indicated by C = A ⊗ B, C = A � B and C = A � B,
respectively. An N×N identity matrix is represented as IN , and
N×1 vectors composed of all ones or zeros are denoted by 1N
and 0N , respectively. A circular complex multivariate Gaussian
distribution with mean µ and covariance R is denoted by
CN (µ,R). The function vec(A) creates a vector from matrix
A by stacking its columns. The function bac creates an integer
from real number a by truncating its decimal part, and amod b
is the modulo operator that returns the integer remainder of a/b.
A diagonal matrix with elements of vector c on the diagonal is
indicated by diag(c), and a block diagonal matrix with block

Fig. 1: A generic scenario involving an M -antenna basestation, an N -element
RIS, and a K-element user.

entries C1,C2, . . . is written blkdiag ([C1 C2 . . .]).
The reflective properties of an RIS with N elements is

described by the N × N diagonal matrix Φ = {diag(φ)},
where φ = [β1e

jα1 · · · βNejαN ]T . There are a number of
practical issues associated with φ that are important for RIS
performance optimization, such as the dependence of the gains
β on the phases α, the fact that the phases are typically discrete
and frequency dependent, etc. For the most part, these issues
are not directly relevant to the generic channel estimation
problem, which only requires that φ be known and sufficiently
controllable. However, certain simplifying assumptions about
φ are made below for performance analyses or purposes of
illustration.

III. ESTIMATION OF UNSTRUCTURED CHANNEL MODELS

We begin with models where the channel between individual
network elements is described by a complex coefficient in the
case of a narrowband single carrier signal, or a complex-valued
impulse response for wideband transmission. Such unstructured
or nonparametric channel models are appropriate for situations
with rich multipath scattering (e.g., sub-6GHz systems), where
it is difficult to describe the aggregate characteristics of the
propagation environment. We initially focus on the narrow-
band single-user scenario, and then examine cases involving
wideband signals or multiple users. As will become clear, the
limiting factor with unstructured CSI estimation is the large
training overhead that is required. Approaches for reducing the
training overhead are discussed at the end of the section.

A. Narrowband Single User MIMO
The scenario assumed here is as depicted in Fig. 1, with an

M -antenna BS, an N -element RIS, and a single UE with K
antennas. The geometries of the RIS and the arrays at the BS
and UE are arbitrary. If the UE transmits the K × 1 vector xt
at time t, the signal received at the BS is given by

yt =
√
P
(
Hd + HΦtG

H
)
xt + nt , (1)

where Hd,H,G are respectively the channels between the BS
and UE, the BS and RIS, and the RIS and UEs, and nt denotes
additive noise or interference. Assuming E{xtxHt } = IK and
nt ∼ CN (0, σ2IM ), P represents the transmit power, and the
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signal-to-noise ratio (SNR) is defined as P/σ2. The channels
are all assumed to be block flat fading and constant over a
coherence interval sufficiently long to permit channel estimation
and subsequent data transmission. On the other hand, the
reflection coefficients of the RIS, Φt, can vary synchronously
with the UE uplink transmission. Some prior work ignores the
direct channel component Hd, assuming that it is either not
present (e.g., due to a blockage), or that it was estimated in a
previous step and its contribution has been removed from the
received data, i.e., yt −→ yt − (1/

√
P )Hdxt.

It is important to note that not all of the components
of the channel-related term Hd + HΦtG

H are individually
identifiable. In particular, for any invertible N ×N diagonal
matrix Λ, we have

HΦtG
H = HΛΦtΛ

−1GH = H̃ΦtG̃
H , (2)

where H̃ = HΛ and G̃ = G(Λ∗)−1. Thus there is a scaling
ambiguity between each pair of the N columns {hk,gk} of
H and G that cannot be resolved using data obtained as
in (1). Most methods for beamforming, precoding or RIS
reflection optimization do not require this ambiguity to be
resolved, although as briefly discussed later, with certain
additional information the individual channel components can
be identified. For this reason, channel estimation in the context
of RIS-aided communication systems focuses primarily on
determination of the MK × (N + 1) composite or cascaded
channel Hc, defined using properties of the Khatri-Rao product:

vec
(
Hd + HΦtG

H
)

= [hd G∗ �H]

[
1
φt

]
≡ Hcφ̃t ,

(3)
with hd = vec(Hd). Eq. (3) together with further use of the
Kronecker product allows us to rewrite (1) in a compact form:

yt =
√
P
(
xTt ⊗ IM

)
Hcφ̃t + nt (4a)

=
√
P
[
φ̃
T

t ⊗ xTt ⊗ IM

]
hc + nt (4b)

≡
√
PZthc + nt , (4c)

where hc = vec(Hc) and the M ×MK(N + 1) matrix Zt is
implicitly defined.

The composite channel hc is clearly underdetermined in
Eq. (4), and thus multiple pilot symbols must be transmitted
in order for it to be uniquely estimated. Combining the data
from T such pilots together, we have

y =

 y1

...
yT

 =
√
P

 Z1

...
ZT

hc + n ≡
√
PZhc + n . (5)

Provided that T ≥ K(N + 1) and Z is full rank, there are two
common ways to estimate hc, as discussed below.
1) Least Squares

The simplest approach for estimating hc is to use the standard
deterministic least-squares (LS) method,

ĥc,LS = arg min
hc

‖y−
√
PZhc‖2 , (6)

whose solution is given by

ĥc,LS =
1√
P

Z†y , (7)

where Z† =
(
ZHZ

)−1
ZH . Assuming again that nt ∼

CN (0, σ2IM ) and that the noise is temporally uncorrelated,
the LS channel estimate is unbiased and equivalent to the
maximum likelihood (ML) estimate, and its covariance matrix
corresponds to the CRB:

Rĥc,LS
= E

{(
ĥc,LS − hc

)(
ĥc,LS − hc

)H}
(8a)

=
1

P
E
{
Z†nnH(Z†)H

}
=
σ2

P

(
ZHZ

)−1
. (8b)

Ideally, xt and φt should be designed to optimize the
CSI estimation performance. While such an optimization is
generally intractable, a good choice can be found [1] by noting
that for any positive definite matrix B, we have[

B−1
]
ii
≥ 1

Bii
, (9)

with equality for all i only if B is diagonal. Thus, a good
choice for Z would make (8) diagonal. Such a choice may not
be optimal in general, but a diagonal covariance matrix also
greatly simplifies the computation of ĥc,LS in (7).

The most common training approach that meets the above
design goals breaks the training interval T into T/K subblocks
of length K, where T/K is assumed to be an integer. For each
subblocks, b = 1, · · · , T/K, φt = φ̄b is held constant, while
the pilots xt are chosen as an orthonormal sequence that repeats
itself for each subblock. For example, the subblock sequence
for the UE is X = [x1 · · · xK ], where XXH = KIK , which
is then repeated T/K times:

xt pilots = [ X X · · · X︸ ︷︷ ︸
repeated T/K times

] (10a)

φt pilots = [ φ̄1 · · · φ̄1︸ ︷︷ ︸
repeated K times

· · · φ̄ T
K
· · · φ̄ T

K︸ ︷︷ ︸
repeated K times

] (10b)

Using this approach, we have

ZHZ =

T∑
t=1

[
φ̃
∗
t φ̃

T

t ⊗ x∗tx
T
t ⊗ IM

]
(11a)

=

(
T∑
t=1

[
φ̃
∗
t φ̃

T

t ⊗ x∗tx
T
t

])
⊗ IM (11b)

=

T/K∑
b=1

˜̄φ∗b
˜̄φTb

⊗ (XXH)∗ ⊗ IM (11c)

= K
(
ΨHΨ

)∗
⊗ IMK , (11d)

where ˜̄φHb = [1 φ̄
H
b ] and

Ψ =


1 φ̄

H
1

...
...

1 φ̄
H
T/K

 . (12)
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To achieve a diagonal ΨHΨ, the columns of the T
K × (N + 1)

matrix Ψ must be orthogonal, with T
K ≥ N + 1. If ΨHΨ can

be made proportional to an identity matrix, then ZHZ is also
a scaled identity matrix.

For the above training protocol, the general solution in (7)
is implemented by taking data from the b-th pilot subblock,

Yb =
√
P
(
Hd + HΦ̄bG

H
)
X + Nb , (13)

and multiplying on the right by XH/(K
√
P ) to obtain

yb ≡
1

K
√
P

vec
(
YbX

H
)

= Hc
˜̄φb + n̄b . (14)

where Φ̄b = diag(φ̄b) and n̄b = vec
(
NbX

H
)
/(K
√
P ). The

result yb from each of the T/K subblocks then forms a column
of the following combined equation:

Yc = Hc

[
˜̄φ1 · · · ˜̄φ T

K

]
+ N̄ = HcΨ

H + N̄ , (15)

where N̄ = [n̄1 · · · n̄T/K ], from which an estimate of the
composite channel is obtained by multiplying Yc by Ψ on the
right, assuming ΨHΨ ∝ IN+1.

Several methods have been proposed to choose the RIS
training sequence to satisfy ΨHΨ ∝ IN+1:
• When the direct path is absent (the first column of Ψ

is removed), a simple approach is to set T
K = N and

“turn on” one RIS element at a time for each K-sample
pilot subblock, with all other elements “turned off”1 [5],
[26]. This results in ΨHΨ = diag{β2

1 , · · · , β2
N}. If each

(identical) RIS element when active is tuned to the same
phase, it is reasonable to assume that βi = β, which
results in ZHZ = β2KIMKN and an estimate variance
of σ2/(β2PK) for each element of hc.

• Better performance is achieved by activating all RIS
elements over the entire training interval, in order to
benefit from the RIS array gain. One approach for doing
so assigns the RIS phase shifts such that the N+1 columns
of Ψ equal the columns of the T

K ×
T
K matrix that defines

the T
K -point Discrete Fourier Transform (DFT) [1], [5]:

[Ψ]mn = ej2π(m−1)(n−1)/(T/K) (16)

for m = 1, · · · , TK and n = 1, · · · , N+1. If the RIS gains
are assumed to be phase-independent and satisfy βi = β,
then this leads to ΨHΨ = Tβ2

K IN+1 and the variance of
the channel coefficient estimates is σ2/(β2PT ), a factor
of T/K ≥ N + 1 smaller than in the first approach. In
addition to the need for phase-independent RIS element
gains, which is difficult to achieve in practice, the RIS
phase shifts should be tunable with at least log2(T/K)
bits of resolution, which may be problematic for large N .

• An alternative that achieves the same performance is to
choose the columns of Ψ from among the columns of
a T/K-dimensional Hadamard matrix, whose entries are
constrained to be ±1 [4], [27]. This achieves orthogonality
for Ψ, and has the advantage of requiring only two phase
states for each RIS element (one bit of resolution). In

1“Turning off” an RIS element assumes it becomes a perfect absorber of RF
energy, which in practice is not possible. Thus, such elements will still reflect
a small amount of energy and thus degrade the orthogonality assumption.

addition, a diagonal ΨHΨ only requires that the RIS
gains be equal at these two phase values. In this approach,
T/K must be a multiple of 4 for the Hadamard matrix
to exist, but this is not a significant issue for large N .

2) Linear Minimum Mean Squared Error
The LS approach assumes a deterministic channel with no

prior information. On the other hand, the minimum mean-
squared error (MMSE) estimator assumes a stochastic model
for {Hd,G,H}, usually in terms of correlated Rayleigh
fading with prior information of the second-order statistics.
However, the composite channel is composed of products of
the Gaussian elements in H and G, which makes the MMSE
estimate E{hc|y} difficult to compute, although message-
passing algorithms have been proposed for this problem [28–
30]. Instead, the linear MMSE, or LMMSE, estimate given by
ĥc,LM = Wy can be found by solving [31], [32]

W = arg min
W̃
E
{
‖W̃y− hc‖2

}
. (17)

Assuming spatially and temporally white Gaussian noise
uncorrelated with hc, the LMMSE estimate is given by

ĥc,LM =
√
PRhcZ

H
(
PZRhcZ

H + σ2IMT

)−1
y , (18)

where Rhc = E{hchHc } and we have assumed E{hc} = 0.
Using orthogonal pilot and RIS reflection sequences like

those discussed above also simplifies computation of the
LMMSE estimate. For example, let I = IMK(N+1) and assume
the Hadamard reflection pattern so that ZHZ = T I. Then the
LMMSE estimate simplifies to

ĥc,LM =
1√
PT

Rhc

(
Rhc

+
σ2

PT
I

)−1
ZHy . (19)

The matrices in (19) involving Rhc are data independent, and
can be computed and stored offline since Rhc

changes relatively
slowly. The resulting error covariance is given by

Re,LM = Rhc −Rhc

(
Rhc +

σ2

PT
I

)−1
Rhc . (20)

For the above training protocol, Re,LM converges to Re,LS =
(σ2/(PT ))I for high SNR (i.e., σ2/P → 0) or long training
intervals (T →∞).

A bigger issue than the computational complexity of (19)
is how to determine the composite channel covariance Rhc

.
In theory, the covariance could be estimated using simulations
involving detailed propagation models of the environment,
or by taking sample statistics of channel estimates obtained
over a long period of time. However, the size of hc means
that such procedures would require a large amount of data.
Instead, a more reasonable approach is to determine Rhc

based on covariance information about its constituent parts. For
MIMO channels, it is commonly assumed that the multipath
scattering at the source is uncorrelated with the scattering at
the destination, which leads to the following descriptions:

H = R
1
2

HBH̃R
H
2

HR (21a)

G = R
1
2

GUG̃R
H
2

GR (21b)

Hd = R
1
2

HdB
H̃dR

H
2

HdU
, (21c)
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where the subscripts {B,R,U} respectively correspond to BS,
RIS, and UE, and indicate which side of the link the correlation
matrix is associated with (e.g., RHB is the correlation matrix
for the BS-side of the channel H). The matrices {H̃, G̃, H̃d}
are of the same dimensions as {H,G,Hd} respectively, and
are composed of uncorrelated CN (0, 1) elements. Under this
model, it can be shown that the composite channel covariance
matrix has the following form:

Rhc =

[
RT
HdU
⊗RHdB 0T

0 RR ⊗RT
GU ⊗RHB

]
, (22)

where we define RR = RGR �RT
HR.

Estimating the correlation matrices RHdU ,RHdB ,RGU and
RHB is relatively straightforward since the BS and UEs
have active transceivers that can collect and process data.
However, determining the RIS-side correlation matrices RGR

and RHR is problematic since the RIS is typically passive.
Various assumptions can be made to further simplify Rhc .
With uncorrelated scattering at the RIS, RGR and RHR can
be taken as identity matrices, and Rhc

is block diagonal with
identical block entries except for the block associated with Hd.
This greatly simplifies computation of (19). If we go a step
further and assume all channels exhibit uncorrelated Rayleigh
fading, then the LMMSE estimate and error simplify to

ĥc,LM =
1√
PT

[
νHd

IMK 0
0 νGHIMNK

]
ZHy (23a)

Re,LM =
σ2

PT

[
νHd

IMK 0
0 νGHIMNK

]
, (23b)

where

νHd
=

PTσ2
Hd

PTσ2
Hd

+ σ2
< 1 (24a)

νGH =
PTσ2

Gσ
2
H

PTσ2
Gσ

2
H + σ2

< 1 , (24b)

and σ2
Hd
, σ2
H , σ

2
G represent the variances of the channels

Hd,H,G, respectively. Since νHd
and νGH are less than one,

the LMMSE estimates have a smaller error than for LS, which
is due to the exploitation of the prior statistical information.
However, assumptions of uncorrelated fading are hard to justify
in RIS-aided wireless systems, which are typically motivated
by propagation environments with sparse propagation paths
and frequent blockages. In these environments, the BS and RIS
installations are envisioned to be in elevated positions away
from nearby RF scatterers. This leads to low-rank channel
correlation matrices and consideration of geometric models, as
discussed in Section IV.

B. Wideband Single User MIMO
In wideband scenarios where the channel is frequency

selective, we assume the UE transmits an OFDM signal
composed of Nc subcarriers from each of its k antennas.
The symbols are given by the rows of the K × Nc matrix
XF
t =

[
xFt,1 · · · xFt,Nc

]
in the frequency domain, where here

t is the OFDM symbol index. Prior to transmission, the data XF
t

is first converted to the time domain using the Nc×Nc matrix
FH that denotes the Nc-point inverse DFT: Xt = XF

t FH , and

then is appended with a cyclic prefix of length Lcp that is
longer than the maximum delay spread of the channel, L. At
the BS, the cyclic prefix is removed, and the data are converted
back to the frequency domain through multiplication by the
DFT matrix F. This generates a model essentially identical
to (1) for each subcarrier n:

yFt,n =
√
P
(
HF
d,n + HF

nΦt,nGFH
n

)
xFt,n + nFt,n , (25)

where {HF
d,n,H

F
n ,G

F
n } represent the DFT at subcarrier n for

the UE-BS, RIS-BS, and UE-RIS channel impulse responses,
respectively. Thus, one can employ the same estimation
methods discussed above on a per-subcarrier basis, although
to exploit the channel correlation in frequency and reduce the
training overhead, pilot data is normally transmitted only on a
subset of the subcarriers, and interpolation used to construct
channel estimates for others [2]. An alternative approach
proposed in [11] is to use shorter OFDM symbols during
the training period.

Note that most prior work on RIS channel estimation with
OFDM signals has assumed that the RIS reflection properties
are frequency independent, i.e., Φt,n = Φt, but this is generally
true only for relatively narrow bandwidths [33], [34]. If one
sets φt,n to have desirable properties (e.g., Z with orthogonal
columns) at a particular subcarrier n, then in general those
properties will not be inherited at other subcarriers. This issue
motivates the design of RIS circuit architectures that have
invariant properties across wider frequency bands.

An alternative to estimating the channels in the frequency
domain and using interpolation is to directly estimate the
channel impulse response. In the time domain, we represent
the data received for sample s of OFDM symbol t as

yt,s =
√
P

L−1∑
k=0

(
Hd(k) + H(k)Φt,s−kG

H(k)
)
xt,s−k + nt,s ,

(26)
where {Hd(k),H(k),G(k)}L−1k=0 represent the channel im-
pulse responses and L is the maximum number of
taps. Defining hd(k) = vec(Hd(k)) and hc(k) =
vec ([hd(k) G∗(k) �H(k)]), after removal of the cyclic prefix
we can write

yt,s =
√
P

L−1∑
k=0

[
φ̃
T

t,s−k ⊗ xTt,s−k ⊗ IM

]
hc(k) + nt,s (27a)

=
√
P

L−1∑
k=0

Zt,s−khc(k) + nt,s (27b)

=
√
P
[
Zt,s Zt,s−1 · · · Zt,s−L+1

]
hc + nt,s (27c)

yt =

 yt,1
...

yt,Nc

 =
√
PZthc + nt , (27d)

where hc =
[
hTc (0) · · · hTc (L− 1)

]T
is the LMK(N+1)×

1 vector containing all unknown channel coefficients, and Zt
is an MNc × LMK(N + 1) block-circulant matrix with first
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block row [Zt,1 Zt,Nc
· · · Zt,Nc−L+2]. Finally, assuming the

channel is stationary over To total OFDM symbols, we have

y =
√
P

 Z1

...
ZTo

 hc + n =
√
PZhc + n . (28)

The time-domain approach assumes only pilot data is transmit-
ted first, followed by payload data. The total number of pilot
symbols required is T = ToNc ≥ KL(N + 1). While more
OFDM symbols are likely required for the frequency domain
method to obtain the same channel estimation accuracy, this
is offset by the fact that data and pilots can be transmitted
together.

C. Single Antenna Scenarios
1) Single Antenna UE

The single-antenna UE case is often considered in the litera-
ture, since it simplifies the notation and reduces the algorithm
complexity, but there is fundamentally little difference with the
general multi-antenna UE case described above. The channel
G becomes a 1×N row vector that we denote by gT , while
the direct channel Hd is simply an M ×1 vector hd. The pilot
data received at the BS is given by

yt =
√
P (hd + H diag(g∗)φt)xt + nt , (29)

where the composite channel is now Hc = gH � H =
H diag(g∗). The training overhead in this case is reduced
to N + 1 samples.
2) Single Antenna BS and UE

When both the BS and UE have only a single antenna, we
denote the RIS-BS channel as the N × 1 row vector hT , and
write the BS output and composite channel as

yt =
√
PhTc φ̃txt + nt (30a)

hTc =
[
hd gH � hT

]
=
[
hd h̄Tc

]
, (30b)

where only h̄c is identifiable.

D. Multiple User Scenarios
The models and approaches discussed above are easily

generalized to the multiple UE case. Assuming UE u has
Ku antennas for u = 1, · · · , U , then the model in (1) holds
if we simply set K =

∑
uKu and all UE antennas transmit

orthogonal pilot sequences. Some prior work has proposed that
the users take turns transmitting pilots, in which case there
is no change to the algorithms described above, but this only
makes sense if one exploits the fact that each user’s composite
channel shares a common RIS-BS component H. This idea
will be explored further in the next subsection. For multicarrier
signals, a scheme is required to allocate the pilot subcarriers
to the UEs, but otherwise the channel estimation is the same.
One implication for the LMMSE approach is that, assuming
the channels for different UEs are uncorrelated, the matrices
RGU and RHcU will be block-diagonal.

E. Reducing the Complexity and Training Overhead
As noted already above, one of the key hurdles to overcome

in CSI estimation for RIS-aided systems is the large required
training overhead. Consequently, recent work has focused on

a variety of methods to reduce this overhead, some of which
is described below. The use of geometric channel models to
reduce pilot overhead is reserved for Section IV.

1) RIS Element Grouping
A simple approach to reduce the number of pilots and

estimation complexity is to assign identical phases to RIS
elements with highly correlated channels [2], [4]. High channel
correlation occurs when adjacent RIS elements are closely
spaced; retaining the flexibility of arbitrary phase shifts for
such elements provides minimal additional beamforming gains.
Suppose groups of size J are identifed, and assume for
simplicity that N ′ = N/J is an integer and no direct channel
Hd is present. Then we define φt = φ′t ⊗ 1J , where φ′t is
N ′ × 1, and write

Hcφt = Hc(φ
′
t ⊗ 1J) = Hc(IN ′ ⊗ 1J)φ′t = H′cφ

′
t , (31)

where the effective composite channel H′c is now MK ×N ′.
Each column of H′c is thus a unit-coefficient linear combination
of the columns of Hc corresponding to a given group of
RIS elements. The revised model is identical in form to the
general case, and thus the methods described above can be
implemented to estimate H′c with a reduction in the required
training overhead by a factor of J . A generalization of this idea
presented in [4] successively reduces the size of the groups
over multiple blocks of pilot and payload data in order to
eventually resolve the channels for all of the RIS elements.

2) Low-Rank Channel Covariance
We see from the noise-free part of (5), y =

√
PZhc, that

in the general case, the MT ×MK(N + 1) data matrix Z
should be full rank MK(N + 1), since otherwise components
of hc in the nullspace of Z could not be identified. Like the
LS approach, this requires T ≥ K(N + 1) training samples.
However, if Rhc

is rank deficient, then it would be enough for
the column span of Rhc

to lie within the column span of ZT .
In particular, suppose Rhc is rank r < MK(N + 1), and thus
can be factored as Rhc = UUH , where U has r columns.
Then in principle it would be sufficient to choose

ZT = UV (32)

for some full rank r ×MT matrix V, and thus theoretically
it would be sufficient that T ≥ r/M . Unfortunately, due to
constraints on the possible values for φt, finding a V that
exactly satisfies (32) is generally not possible if T < K(N+1).
It may however be possible to approximately solve (32) for
larger values of T that are still much smaller than K(N + 1),
provided that r is not too large. In addition to reducing the
training overhead, the low rank channel covariance can be
exploited to significantly reduce the cost of computing the
LMMSE solution in (18), since only an r × r inverse rather
than an MT ×MT inverse is required:

ĥc =

√
P

σ2
U

[
Ir −W

(
W +

σ2

P
Ir

)−1]
UHZHy, (33)

where W = UHZHZU.
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3) Exploiting Common Channels
The LS method in Section III-A1 ignores the Kronecker

product structure of the composite channel, which can be
exploited to reduce the training overhead. The key observation
is that, in the uplink, the composite channel for each user
shares the same RIS-BS channel H [8]. To explain how this
information can be exploited, assume without loss of generality
a scenario with K single-antenna users. The approach is divided
into two steps [7], [10]. In the first, one of the users is selected
and the composite channel for this user is estimated in the
normal way, while the other users do not transmit. Then, in
the second step, the other users transmit and the estimate of
the RIS-BS channel obtained in the first step is exploited to
reduce the training required for the remaining channels.

Assume the users are ordered such that the user correspond-
ing to the first row of G, denoted by gT1 , is the one selected for
the first step. The LS method is used to estimate the composite
channel H diag(g1) and the direct channel hd,1, which requires
at least T1 = N + 1 training samples. Recall that only the
product H diag(g1) is estimated and not the individual terms
H and g1. In fact, we can treat diag(g1) as Λ in (2), so step 1
provides us with an estimate of H̃, and we can set the first
row of G̃H to 1K . With the estimate ˆ̃H, during step 2 the
training data model is approximately given by

yt '
√
P
(
H̃d + ˆ̃HΦtG̃

H
)

xt + nt (34a)

'
√
P xTt ⊗

[
IM

ˆ̃HΦt

]
︸ ︷︷ ︸
M×(K−1)(M+N)

[
h̃d
g̃∗

]
+ nt (34b)

'
√
P Z̃th̃c + nt , (34c)

where we drop the first column of Hd to create H̃d, and we drop
the first row of ones in G̃, since UE 1 does not transmit. We also
have defined g̃ = vec(G̃T ) and h̃Tc =

[
h̃Td g̃H

]
. Stacking T2

of these training vectors together, we get an equation analogous
to (5), where in this case Z is MT2 × (M + N)(K − 1).
Assuming linearly independent pilots xt and RIS reflection
vectors φt are chosen, we can solve for the remaining channel
parameters using ˆ̃

hc = Z†y/
√
P provided that MT2 ≥ (K −

1)(M + N), or equivalently, T2 ≥ (K − 1)(NM + 1). Given
the N + 1 samples needed for step 1, the minimum required
training time is thus

Tmin = (N + 1) +

(
N

M
+ 1

)
(K − 1) , (35)

which for large M is significantly less than the value K(N+1)
required by the standard LS method.

IV. ESTIMATION OF STRUCTURED CHANNELS

The large training overhead required for unstructured channel
estimation motivates the consideration of channel models that
are described by fewer parameters. Such models are often used
in millimeter wave or higher frequency bands, where multipath
scattering is sparse and propagation is often dominated by
strong specular components. In such cases, the channels can be
described by a small number of propagation paths defined by
path gains, angles of arrival (AoAs), and angles of departure

(AoDs)2. The resulting number of parameters is often more 1-2
orders of magnitude less than that required in the unstructured
case, and the training overhead is correspondingly reduced.

Parametric channels are described by the array response or
“steering” vectors associated with the angle of an incoming
(AoA) or outgoing (AoD) signal. For example, the response of
an Mx-element uniform linear array (ULA) to a signal arriving
with azimuth angle θaz is described by the Vandermonde vector

ax(ωx) = [1 ejωx ej2ωx · · · ej(Mx−1)ωx ]T , (36)

where the spatial frequency ωx is defined by ωx =
2π∆x sin(θaz), and ∆x is the distance in wavelengths between
the antennas3. For an Mx × My uniform rectangular array
(URA) with antenna separations of ∆x and ∆y in the x and y
directions, the array response vector can be written as

a(ω) = ax(ωx)⊗ ay(ωy) , (37)

where the vertical array response component is similar to (36),

ay(ωy) = [1 ejω2 ej2ω2 · · · ej(M
′
y−1)ω2 ]T , (38)

but defined by ωy = 2π∆y sin(θel) cos(θaz) with elevation
AoA θel. The vector ω = [ωx ωy]T corresponds to a 2D
spatial frequency. For either a ULA or URA, there is a one-to-
one correspondence between the angles and spatial frequencies
as long as {∆x,∆y} are no more than one-half wavelength.
This is important for applications involving localization, since
the angles provide useful information for locating a signal
source. However, from the viewpoint of channel estimation, it
is enough to know ω, and any ambiguities in determining the
angles need not be resolved.

In this section we focus on estimation of structured or geo-
metric channel models. To simplify the discussion, we assume
that the direct UE-BS channel is absent. This assumption is
typical for scenarios with low-rank near-specular propagation
at high frequencies, where blockages are common. The extra
steps and pilot data required to estimate Hd when it is present
generate minimal additional overhead. We will further assume
that the BS and the UEs (when they have multiple antennas)
employ ULAs, so that their array response depends on a
single angle/spatial frequency, and we assume that the RIS
elements are arranged as a URA, so its spatial response depends
on two spatial frequencies. Generalizations to arbitrary array
geometries are straightforward.

A. Parametric Estimation
The structured channel estimators that we will consider

assume parametric channel models of the following form, which
we describe first for the RIS-BS channel:

H =

dH∑
k=1

γH,kaB(ωBH,k)aHU (ωRH,k) (39a)

= AB(ωBH)ΓHAH
R (ωRH) , (39b)

2For very large RIS, where the BS or UEs are in the Fresnel region of
the RIS, the channel parameterization must also include range or the 3-D
coordinates of the various devices, and the large scale fading becomes antenna-
dependent. However, here we focus on the more common far-field scenario.

3Note that we assume a narrowband propagation model here where time
delays can be represented by phase shifts. For large arrays, ignoring the
frequency dependence of the model leads to the beam-squint effect [22].
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where the columns of

AB(ωBH) = [aB(ωBH,1) · · · aB(ωBH,dH )] (39c)
AR(ωRH) = [aR(ωRH,1) · · · aR(ωRH,dH )] (39d)

respectively represent the steering vectors for the propagation
paths with AoAs ωBH = [ωBH,1 · · · ωBH,dH ]T at the BS
and AoDs ωRH = [ωTRH,1 · · · ωRH,dH ]T from the RIS. The
diagonal matrix ΓH = diag{γH} = diag{γH,1 · · · γH,dH}
contains the complex path gains γH = [γH,1 · · · γH,dH ]T .
The RIS AoDs for path k, denoted by ωRH,k, are written as
vectors since the RIS spatial frequencies are two-dimensional:

ωRH,k =

[
ωRH,k,x

ωRH,k,y

]
. (40)

Parametric models like (39) are usually employed when the
number of paths dH is smaller than the array dimensions M
and N , and thus the channel H is low-rank.

Parametric CSI estimation involves finding the spatial
frequencies of signals collected by an array. For example,
suppose n observations are available from an arbitrary M ′-
element array receiving signals from d directions:

Y′ = A(ω′)S′ + N′ , (41)

where Y′ is M ′ × n, S′ is d × n, N′ is noise, A =
[a(ω′1) · · · a(ω′d)] is the M ′ × d array response matrix,
and M ′ > d. The matrix S′ is not typically assumed to
be known. This is the classical model assumed for AoA
estimation, and many methods have been developed to estimate
ω′ = [ω′1 · · ·ω′d]T from Y′. The simplest method is based
on (matched filter) beamforming, which involves searching for
d peaks in the spectrum

pB(ω) = aH(ω)RY ′a(ω) , (42)

where RY ′ is the sample covariance matrix

RY ′ =
1

n
Y′Y

′H . (43)

Alternatively, one can employ higher resolution algorithms such
as the MUSIC [35] or ESPRIT [36], which require computation
of the eigendecompositon of RY ′ . The beamforming and
MUSIC spectra are either one- or two-dimensional functions,
depending on whether the steering vectors depend on one-
or two-dimensional spatial frequencies. If N′ is spatially and
temporally white, the (deterministic) maximimum likelihood
(ML) method [37] finds the AoA estimates from the d-
dimensional (or 2d-dimensional for azimuth/elevation angles)
problem

ω̂′ML = arg min
ω

trace
(
P⊥A(ω)RY ′

)
, (44)

where P⊥A(ω) = IM ′ − A(ω)
[
AH(ω)A(ω)

]−1
AH(ω).

The corresponding ML estimate of S′ is given by Ŝ′ =
A†(ω̂′ML)Y′, where (·)† represents the pseudo-inverse, al-
though estimates of ω̂′ from other algorithms can be substituted
for ω′ML to estimate S′. MUSIC and ESPRIT require that
rank(S′) = d and thus that n ≥ d, but the beamforming
and ML methods are theoretically viable for any value of n,
including n = 1. For a massive antenna array where M ′ is

large, all of the above methods provide asymptotically efficient
AoA estimates [38], and thus a simple technique such as
beamforming is preferred due to its low computational load
and minimal assumptions. A key requirement for all of the
above methods is that the value of d be known or estimated
from the data.

B. Compressive Sensing
Compressive sensing (CS) formulations of the geometric CSI

estimation problem are also possible, using sparse representa-
tions from an overcomplete dictionary [39–42]. For example,
we can represent the array response vectors for the BS side as

AB(ωBH) = ABDQBH , (45)

where ABD is an M ×NBD matrix whose columns are BS
array response vectors sampled on an NBD grid of frequencies
corresponding to the possible BS AoAs, and QBH is an
NBD × dH matrix whose k-th column has a single 1 in the
position corresponding to ωBH,k, assuming it is one of the
grid points. If ωBH,k is not on the grid, then the model in (45)
is an approximation. While the error can be made small by
making NBD large, increasing the coherence of the dictionary
eventually leads to computational and numerical issues. More
will be said on this topic below. The RIS also has a similar
overcomplete representation:

AR(ωRH) = ARDQRH , (46)

where ARD is N ×NRD and QRH is NRD × dH . Because
the RIS AoDs are two dimensional, a two-dimensional grid
is necessary to specify the AoD pairs, and hence NRD =
O(N2

BD). Substituting (45) and (46) into (39), we can write

H = ABDQBHΓHQT
RHAH

RD (47a)
h = vec (H) = (A∗RD ⊗ABD)γHD , (47b)

where γHD = vec(QBHΓHQT
RH) is a dH -sparse vector of

length NBDNRD whose dH non-zero elements are equal to
γH . The MN×NBDNRD matrix A∗RD⊗ABD can be thought
of as an overcomplete dictionary for the vectorized channel h.

Consider an overcomplete representation of the data in (41):

Y′ = ADQ′S′ + N′ = ADC′ + N′ , (48)

where the dictionary AD is M ′ ×ND and the matrix Q′ is
ND × d, with one non-zero element per column equal to one.
As before S′ is d×n. The matrix C′ = Q′S′ exhibits common
row sparsity; only d rows have non-zero elements, and these
rows are equal in some order to the rows of S′. If C′ can
be estimated, then the location of its non-zero rows would
correspond to the AoAs, and the entries in those rows to the
rows of S′. The problem can be solved, for example, by means
of a convex LASSO-type approach of the form

Ĉ′ = arg min
C

1

2
‖Y′ −ADC‖22 + λ‖C‖2,1 , (49)

where CT = [c1 · · · cND
] and the regularization

‖C‖2,1 =

ND∑
k=1

‖ck‖2 (50)
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promotes row sparsity. As mentioned above, the accuracy of
approaches like (49) is limited by the resolution of the sampled
grid, which cannot be made infinitely fine due to numerical and
computational issues. Off-grid AoAs create a basis mismatch
that leads to leakage of energy into adjacent rows of C′. One
approach to refine the AoA estimates obtained by (49) is to
apply a small angular rotation to each selected column of AD

that maximizes the correlation with the received data [18]:

ω′k = arg max
ω

∥∥∥diag (a(ω)) aD,kY
′H
∥∥∥
2

(51)

for k = 1, · · · , d, where aD,k is the k-th column of ADQ̂′.
The final estimate of ωk is the spatial frequency corresponding
to aD,k plus the estimated rotation ω′k. A more fundamental
approach to solving the basis mismatch problem for one-
dimensional spatial frequencies is to recast the sparse recovery
problem using the atomic norm [19], [43].

C. Single User MIMO Single Carrier
In this section, we consider structured channel estimation

for the case involving a single multi-antenna UE. As with the
RIS-BS channel, we can define parametric and overcomplete
representations of the RIS-UE channel as follows:

G = AU (ωUG)ΓGAH
R (ωRG) (52a)

= AUDQUGΓGQT
RGAH

RD (52b)

g = vec (G) = (A∗RD ⊗AUD)γGD , (52c)

where we assume dG paths with gains γG =
[γG,1 · · · γG,dG ]T and ΓG = diag{γG}. In this case,
γGD = vec(QUGΓGQT

RG) is a dG-sparse vector of length
NUDNRD whose non-zero elements correspond to γG.

Recall the general model in (5), where the BS data from the
T training samples is stacked together in a single vector:

y =
√
PZhc + n , (53)

where

Z =

 φT1 ⊗ xT1 ⊗ IM
...

φTT ⊗ xTT ⊗ IM

 (54)

is MT ×MKN and involves φt instead of φ̃t since we are
assuming no direct UE-BS channel is present, which also
implies that hc = vec(Hc) = vec (G∗ �H). Using various
properties of the Kronecker and Khatri-Rao products, the
composite channel can be decomposed using either a parametric
approach or via overcomplete dictionaries as follows:

Hc = (A∗U (ωUG)⊗AB(ωBH))︸ ︷︷ ︸
MK×dHdG

ΓGH︸ ︷︷ ︸
dHdG×dHdG

×
(
AT
R(ωRG) �AH

R (ωRH)
)︸ ︷︷ ︸

dHdG×N

(55a)

= (A∗UD ⊗ABD)︸ ︷︷ ︸
MK×NUDNBD

QGH︸ ︷︷ ︸
NUDNBD×N2

RD

(
AT
RD �AH

RD

)︸ ︷︷ ︸
N2

RD×N

,

(55b)

VARIABLE PARAMETERS DESCRIPTION
ωBH dH AoA frequencies at BS
ωRH 2(dH − 1) AoD frequencies at RIS
γH 2(dH − 1) complex gains for BS-RIS channel
ωRG 2dG AoA frequencies at RIS
ωUG dG AoD frequencies at UE
γG 2dG complex path gains for RIS-UE channel

TABLE I: Composite Channel Parameterization for Single User MIMO Single
Carrier Case. The elements of these vectors form the elements of the parameter
vector η for geometric channel models.

where

ΓGH = Γ∗G ⊗ ΓH (56a)

QGH =
(
QUGΓ∗GQT

RG

)︸ ︷︷ ︸
NUD×NRD

⊗
(
QBHΓHQT

RH

)︸ ︷︷ ︸
NBD×NRD

(56b)

= (QUG ⊗QBH)︸ ︷︷ ︸
NUDNBD×dHdG

ΓGH (QRG ⊗QRH)T︸ ︷︷ ︸
dHdG×N2

RD

. (56c)

As in the non-parametric case, not all of the parameters or
decompositions shown in (55) are identifiable. To see this, let

Λ = diag (aR(ω′)) (57)

be a diagonal matrix formed from an arbitrary RIS array
response vector for 2× 1 DOA ω′. Then,

AT
R(ωRG) �AH

R (ωRH) = AT
R(ωRG)Λ �AH

R (ωRH)Λ∗

= AT
R(ω′RG) �AH

R (ω′RH) (58)

where the elements of ω′RH and ω′RG are defined as ω′RH,k =
ωRH,k + ω′ and ω′RG,k = ωRG,k + ω′. Thus, if the RIS
AoA and AoD spatial frequencies are shifted by the same
amount, there is no change to the composite channel response.
In addition, since the channel gains for H and G always appear
together as Γ∗GΓH , there is a scaling ambiguity; in particular
γH and γG yield the same composite channel as αγH and
γG/α

∗. To obtain an identifiable parameterization η for the
composite channel in (55), one could for example set ωRH,1 =
[0 0]T so that aR(ωRH,1) is a vector of ones, and set γH,1 = 1.
With these assumptions, the set of unique parameters η that
describe the composite channel matrix are given in Table I. The
total number of parameters is thus dim(η) = 5dH + 5dG − 4,
which for typical values of dH and dG is much smaller than
the number of parameters 2MKN that must be estimated for
a non-parametric Hc, which could be in the thousands.

1) Channel Estimation for the General Case
Using (55), the composite channel is given by

hc = A(ω)γGH (59a)
= ADqGH , (59b)

where γGH = γ∗G ⊗ γH , qGH = vec(QGH),

A(ω) =
(
AT
R(ωRG) �AH

R (ωRH)
)T

� (A∗U (ωUG)⊗AB(ωBH)) (60a)

AD =
(
AT
RD �AH

RD

)T ⊗ (A∗UD ⊗ABD) . (60b)
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and ωT =
[
ωTBH ωTRH ωTRG ωTUG

]
. Similarly, there are two

forms of the general data model in (53):

y =
√
PZA(ω)γGH + n (61a)

=
√
PZADqGH + n . (61b)

At first glance, Eq. (61a) has the standard form assumed in
AoA estimation problems, where A(ω′) = ZA(ω), but there
are some caveats. First, γGH is not arbitrary, but is instead a
nonlinear function of γH and γG. Second, note that the k-th
column of A(ω) can be expressed as

[A(ω)]:k =
[
CT (ωRG,ωRH)

]
:k
⊗a∗U (ωUG,`)⊗aB(ωBH,p),

(62)
where ` = bk/dHc, p = moddH (k), and

C(ωRG,ωRH) = AT
R(ωRG) �AH

R (ωRH) . (63)

Each column of CT (ωRG,ωRH) only depends on a pair of
2D angles, one each from ωRG and ωRH [18]:[

CT (ωRG,ωRH)
]
:k

=
[(

AT
R(ωRG) �AH

R (ωRH)
)
k:

]T
(64a)

=
[
aTR(ωRG,`)� aHR (ωRH,p)

]T
(64b)

= aR(ωRG,` − ωRH,p) . (64c)

Thus, from (62), we see that the k-th composite steering vector
in (61a) is parameterized by different pairs of entries from
ωRG and ωRH , and from ωBH and ωUG:

[A(ω)]:k = aR(ωRG,`−ωRH,p)⊗a∗U (ωUG,`)⊗aB(ωBH,p) .
(65)

The fact that A(ω) only depends on the differences between
the elements of ωRG and ωRH is a direct consequence of
the fact that they are not separately identifiable, as mentioned
above. An AoA estimation algorithm that takes the special
structure of γGH into account is difficult to formulate, and one-
dimensional methods such as beamforming and MUSIC cannot
exploit the inherent relationship between the columns of A(ω).
However, assuming A(ω) is full rank4 for all possible ω, one
could ignore the structure of γGH and use the deterministic
ML (DML) criterion to estimate ω, setting ωRH,1 = [0 0]T

to make the model identifiable:

ω̂ = arg min
ω

yHP⊥ZA(ω)y , (66)

where P⊥ZA(ω) is the projection orthogonal to the columns
of the effective array response ZA(ω). This would require
a non-convex optimization over the 3(dG + dH) − 2 spatial
frequencies in ω.

One special case worth mentioning occurs when dH = dG =
1, or when the UE-RIS and RIS-BS channels are LoS. In this
case, (61a) simplifies to hc = γa(ω), where

a(ω) = aR(ωRG)⊗ a∗U (ωUG)⊗ aB(ωBH) , (67)

4The matrix A(ω) will generically be full rank as long as the BS, RIS,
and UE arrays have unambiguous array manifolds (e.g., elements spaced no
more than λ/2 apart for a ULA or URA). However, there are pathological
cases where A(ω) can drop rank. This could occur for example, if any RIS
angle differences are repeated, i.e., ωRG,` − ωRH,p = ωRG,`′ − ωRH,p′

for ` 6= `′ or p 6= p′, or if the BS and UE arrays have identical manifolds
and share an angle between the vectors ωBH and ωUG. Although such cases
occur with probability zero, A(ω) will become ill-conditioned if they are
approximately true, and numerical problems would ensue.

with 4 angle parameters of interest: ωBH , ωUG,ωRG. This
results in a standard single-snapshot AoA estimation problem,
and the vector ω can be determined either by maximiz-
ing the beamforming criterion |yHZa(ω)|2 or minimizing
the DML criterion yHP⊥Za(ω)y, and in either case setting
γ̂ = a†(ω̂)y/

√
P . Another way that beamforming can be

applied in the general case with arbitrary dH and dG is
to ignore the interdependence of the columns of A(ω) on
different combinations of the elements of ω, and just treat the
angle parameters of each column as if they were independent
variables. This reparameterizes the model in (61a) and (65) as

y =
√
PZA(ω′)γ + n (68a)

A(ω′) =
[
a(ω′1) · · · a(ω′dHdG)

]
(68b)

a(ω′k) = aR(ω′k,1)⊗ a∗U (ω′k,2)⊗ aB(ω′k,3) , (68c)

where γ is an arbitrary dHdG vector, and ω′ has 4 elements,
one each for ω′k,2 and ω′k,3 since they are 1D spatial frequen-
cies, and two for ω′k,1 since it is 2D. While this increases the
number of angle parameters that must be estimated to 4dHdG,
the beamforming criterion ‖yHZa(ω′)‖2 can be applied since
the columns of A(ω′) are identically parameterized. This would
require a search for dHdG local maxima in a 4-dimensional
space. In this case, γ̂′ = A†(ω̂′)y/

√
P .

CSI estimation for the dictionary-based model in (61b) also
requires an unconventional approach, due to the sparsity pattern
in qGH [12], [18], [20]. The first issue is again due to the
ambiguity in specifying the spatial frequencies of the RIS
AoAs and AoDs; any circular shift in the columns of ARD

or the rows of QRG and QRH will leave AD unchanged
in (60b). As before, this ambiguity can be rectified by forcing
the first column of QRH to have its non-zero element in the
position corresponding to ωRH = [0 0]T . The second issue
is most easily understood in via Eq. (56b). The matrix Q1 =(
QUGΓ∗GQT

RG

)
has dG non-zero elements at the row/column

coordinates corresponding to the AoA/AoD pairs of G, while
Q2 =

(
QBHΓHQT

RH

)
has dH non-zero elements at positions

corresponding to the AoA/AoD pairs of H. The Kronecker
product of Q1 with Q2 then repeats the sparse structure of Q2

at the block rows/columns in QGH corresponding to the non-
zero elements of Q2. In addition, the non-zero values in these
repeating blocks are scaled versions of one another; the dH
non-zero elements in Q2 correspond to γH , and each time they
are repeated in QGH they are multiplied by a different element
of γG. This structure in QGH in turn creates a corresponding
repeated pattern in qGH . Thus, qGH is dHdG-sparse, but it has
only dH + dG− 1 unique complex entries. While cumbersome,
imposing the required structured sparsity constraint on qGH
is possible [12], [20].

A bigger issue with the CS approach in the general case is
the size of the dictionary in (61b), which has NBDNUDN2

RD

elements. If we assume 100 grid points for each of the
spatial frequency dimensions, this results in 1012 elements! A
smaller dimensional problem can be formulated based on the
parameterization in (68), such that

y =
√
PZA′Dq′ + n , (69)
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where q′ is dHdG-sparse and unstructured, and the dictionary
ZA′D is composed of NRDNUDNBD entries defined by

ZA′D = Z (ARD ⊗A∗UD ⊗ABD) . (70)

While the dictionary is now a factor of NRD smaller, the
resulting problem is likely still intractable. Assuming LoS
propagation only serves to reduce the sparsity level, without
reducing the dimension of the dictionary. Consequently, a more
tractable approach is needed, as described next.

2) A Simpler Decoupled Approach
In this approach, the channel estimation is decoupled into

two stages; in the first, the BS and UE components of the
channel are determined from an initial set of pilot data and
then removed from the composite channel, and in the second
additional pilot data are used to estimate the remainder of the
channel [19], [21]. In particular, stage 1 assumes that the UE
transmits a K × T1 matrix of orthogonal (T1 ≥ K) pilot data
X1 while the RIS holds a fixed reflection pattern φ, which
results in the following received signal at the BS:

Y1 =
√
PHΦ̄GHX1 + N1 (71a)

=
√
PAB(ωBH)ΞAH

U (ωUG)X1 + N1 (71b)

=
√
PABDQBHΞQT

UGAH
UDX1 + N1 , (71c)

where

Ξ = ΓHAH
R (ωRH)ΦAR(ωRG)Γ∗G . (72)

We see immediately that, assuming M > dH , (71b)-(71c)
are in the form of a standard AoA estimation problem as
in (41), and thus ωBH could be estimated from Y1 using any
AoA estimation or compressive sensing algorithm5. Assuming
K ≥ dG, estimation of ωUG can also be performed separately
based on the following equation:

X1Y
H
1

T1
√
P

= AU (ωUG)ΞHAH
B (ωBH) +

X1N
H
1

T1
√
P

(73a)

= AU (ωUG)S +
1

T1
√
P

X1N
H
1 . (73b)

For the second stage, the UE transmits T2 pilots xt, t =
1, · · · , T2, and the RIS reflection pattern also changes at the
symbol rate: ΨH =

[
φ1 · · · φT2

]
. The training received at

the BS data at time t can be represented as follows:

Y2 = [y1 · · · yT2
] (74a)

yt = BtΓGHC(ωRG,ωRH)φt + nt , (74b)

where

Bt =
√
P
(
xTt ⊗ IM

)
(A∗U (ωUG)⊗AB(ωBH)) , (75)

5Note that in some work it is assumed that the BS-RIS channel changes
slowly since the BS and RIS are in fixed locations. In such cases ωRH can be
estimated infrequently and thus may already be known, and hence the above
estimation step may not always be necessary [3], [6], [14], [44].

and C(ωRG,ωRH) is defined in (63). With sufficiently ac-
curate estimates of ωBH and ωUG from stage 1, one can
eliminate Bt from (74) and form the matrix

YB =
[
B†1y1 · · · B†T2

yT2

]T
(76a)

' Ψ∗
(
AT
R(ωRG) �AH

R (ωRH)
)T

ΓGH + NB (76b)

' Ψ∗
(
AT
RD �AH

RD

)T
(QRG ⊗QRH)ΓGH + NB ,

(76c)

where NB is defined similarly to YB .
A sparse estimation problem could be set up for ωRG

and ωRH based on vectorizing (76c), and while the resulting
dictionary is significantly smaller than in (61b), it still has N2

RD

elements. Instead, a much simpler solution can be found by
noting the structure of C(ωRG,ωRH) described in (64), which
indicates that each of the dGdH columns of (76b) depends
only on a pair of 2D angles, one from ωRG and one from
ωRH . In particular, for the k-th column,

yB,k ' γkΨ∗aR(ωRG,` − ωRH,p) + nB,k , (77)

where γk is the k-th element of γ∗G ⊗ γH and k = (` −
1)dH + p for ` = 1, · · · , dH and p = 1, · · · , dG. Each of the
dHdG columns of YB is thus approximately equivalent to a
single snapshot from a T2-element “array” with a single 2D
spatial frequency. As before, the gains and 2D frequencies of
the columns are interrelated, but if one ignores this fact, the
unknown part of the channel in (74) can be reconstructed in a
suboptimal way by solving a series of dHdG one-dimensional
AoA estimation problems on each of the columns of YB . In
particular, if cTk represents the k-th row of ΓGHC(ωRG,ωRH),
then cTk is estimated using the estimates of γk and ωk =
ωRG,` − ωRH,p obtained for the k-th column of YB :

ĉk = γ̂kaR(ω̂k) . (78)

For LoS channels with dH = dG = 1, only a single sparse
estimation problem needs to be solved.

D. Wideband Single User MIMO
As in Section III-B, for geometric channel models with

OFDM signals, either time- or frequency domain models can
be employed. We will focus on the time-domain approach here
as it is a bit more straightforward. Our starting point is Eq. (28),
which differs from (61) in that the wideband channel parameter
vector hc is composed of L single-tap terms like hc stacked
together. Partition the columns of Z into L blocks, each block
corresponding to one of the taps hc(k), k = 1, · · · , L, in hc:

Z = [Z(0) Z(1) · · · Z(L− 1)] . (79)

Using (59), we can write

y =
√
P A(Ω)

 γGH(0)
...

γGH(L− 1)

+ n (80a)

=
√
P AD

 qGH(0)
...

qGH(L− 1)

+ n , (80b)
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where

A(Ω) =
[
Z(0)A(ω(0)) · · · Z(L− 1)A(ω(L− 1))

]
(81a)

AD =
[
Z(0)AD · · · Z(L− 1)AD

]
, (81b)

Ω =
[
ω(0)T · · · ωT (L− 1)

]T
, and where ω(k),γGH(k)

and qGH(k) are the spatial frequencies, path gains and sparse
vectors associated with the channel for tap k. Note that we have
assumed the general case where the AoAs/AoDs are potentially
different for each tap. Consequently, while we see from (80)
that the full-scale parameterization of the problem is similar
to that in (61), the dictionary size and parameter dimensions
are all a factor of L larger.

The decoupled approach described in Section IV-C2 can
be exploited to significantly reduce the required complexity.
As before, we ignore the direct channel and assume an initial
training period of T1 = To1Nc samples from To1 OFDM
symbols where the RIS reflection state is fixed at φ. Using (26),
after removal of the cyclic prefix we can collect all Nc samples
from OFDM symbol t in the matrix Y1,t as follows:

Y1,t =
√
P
[
H(0)ΦGH(0) · · · H(L− 1)ΦGH(L− 1)

]
×X1,t + N1,t (82a)

=
√
PAB(ΩBH)ΠX1,t + N1,t (82b)

where X1,t is block circulant with first block row
[xt,1 · · · xt,Nc ], ΩBH =

[
ωBH(0)T · · · ωTBH(L− 1)

]T
, and

AB(ΩBH) =
[
AB(ωBH(0) · · · AB(ωBH(L− 1)

]
(83a)

Π = blkdiag
({

Ξ(0)AH
U (ωUG(0))

}L−1
k=0

)
, (83b)

where Ξ(k) is the matrix corresponding to (72) for tap k.
Concatenating data from the To1 OFDM symbols yields

Y1 =
√
P [Y1,1 · · · Y1,To1

] (84a)

=
√
P AB(ΩBH)︸ ︷︷ ︸

M×LdH

ΠX1︸ ︷︷ ︸
LdH×T1

+N1 , (84b)

where X1 and N1 are defined like Y1. Assuming M > LdH ,
the BS AoAs for each tap of the impulse response can be
estimated using standard approaches. The AoDs at the UE can
be found by noting that

(Y1X
†
1)H√

PT1
=

 AU (ωUG(0))Ξ(0)AH
B (ωBH(0))

...
AU (ωUG(L− 1))Ξ(0)AH

B (ωBH(L− 1))


+

(N1X
†
1)H√

PT1
. (85)

Assuming K > dG, the UE angles are found by solving AoA
estimation problems on the L blocks in (85).

In Stage 2, To2 additional OFDM training symbols are
transmitted, for a total of T2 = To2Nc samples. As in (74)-(75),

yt,s =
√
P

L−1∑
k=0

Bt,s−kΓGH(k)C(k)φt,s−k + nt,s (86a)

= [Bt,s · · · Bt,s−L+1]

×

 ΓGH(0)C(0)φt,s
...

ΓGH(L− 1)C(L− 1)φt,s−L+1

+ nt,s

Bt,s−k =
√
P
(
xTt,s−k ⊗ IM

)
×
(
A∗U (ωUG(k))⊗AB(ωBH(k))

)
,

(86b)

where C(k) = C(ωRG(k),ωRH(k)). Replacing ωUG(k) and
ωBH(k) with their estimates from Stage 1, and assuming
M ≥ LdHdG, we multiply each yt,s on the left by the estimate
of the pseudo-inverse of [Bt,s · · · Bt,s−L+1], stack them
together and transpose as in (76):

YB,t︸ ︷︷ ︸
Nc×LdHdG

= [ YB,t,0︸ ︷︷ ︸
Nc×dHdG

· · · YB,t,L−1] (87a)

YB,t,k ' Ψ∗t,k︸︷︷︸
Nc×N

CT (k)ΓGH(k)︸ ︷︷ ︸
N×dHdG

+NB,t,k (87b)

Ψ∗t =
[
Ψ∗t,0 · · · Ψ∗t,L−1

]
, (87c)

where Ψ∗t is block circulant with first set of rows defined by
ΨT
t,0 =

[
φt,1 · · · φt,Nc

]
. Stacking the result from all To2

training symbols YT
B =

[
YT
B,1 · · · YT

B,To2

]
and partitioning

them into L blocks of dHdG columns each, we have

ȲB,k '

 Ψ∗1,k
...

Ψ∗Nc,k

CT (k)ΓGH(k) + NB,k , (88)

where ȲB,k holds columns k + 1 through k + L of YB . This
equation is equivalent in form to (76b), and thus the methods
discussed previously can be used to solve for the remaining
channel parameters for path k. The process is then repeated
for all L paths, k = 0, · · · , L− 1.

E. Single Antenna Scenarios
1) Single Antenna UE

When the UE has only a single antenna, ωUG = ∅ is the
empty set and AU (ωUG) = 1TdG . The matrix A(ω) in (61a)
still has dHdG columns, now given by

[A(ω)]:k = aR(ωRG,` − ωRH,p)⊗ aB(ωBH,p) , (89)

where ` = bk/dHc and p = moddH (k). We assume without
loss of generality that xt = 1,∀ t, so (54) simplifies to

Z =

 φT1 ⊗ IM
...

φTT ⊗ IM

 . (90)
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Ignoring the structure of γGH in (61a), the DML criterion
in (66) can be applied to estimate the 3dh+2dG−2 spatial fre-
quencies in ω, which represents only a slight savings compared
with the multi-antenna UE case. The simpler beamforming
criterion can be used if one ignores the relationship between
the columns of A(ω) as in (68), treating them as independent
vectors that are a function of three frequency variables, one for
the BS and two for the RIS. This results in a search for dHdG
local maxima in a 3D space. In the LoS case, the problem is
solved by optimizing a function of three frequency variables
in either the DML or beamforming approach.

The CS-based model in (61b) for single-antenna UEs can
also be approached in two ways. The first retains the full
geometric structure of the channel, with

AD =
(
AT
RD �AH

RD

)T ⊗ABD (91a)

QGH =
(
γHGQT

RG

)︸ ︷︷ ︸
1×NRD

⊗
(
QBHΓHQT

RH

)︸ ︷︷ ︸
NBD×NRD

. (91b)

In this case, the dHdG-sparse vector qGH = vec(QGH) has a
similar structure as before, and the dictionary has NBDN2

RD

elements. The second approach ignores the sparse structure as
in (69), except in this case the dictionary ZA′D = Z(ARD ⊗
ABD) has only NRDNBD terms.

Further complexity reduction is possible using the decoupled
approach described in Section IV-C2. In stage 1, ωBH is
estimated from Y1 as before, but estimation of ωUG is not
required. Stage 2 proceeds as before, but the solution is obtained
in a different way. In particular, in this case we define

yt =
√
PAB(ωBH)

(
γHG ⊗ ΓH

)
C(ωRG,ωRH)φt + nt

YB =
1√
P

[
A†B(ω̂BH)Y2

]T
(92a)

' Ψ∗CT (ωRG,ωRH) (γ∗G ⊗ ΓH) + NB , (92b)

and note that the dH columns of YB are now linear combina-
tions of RIS array response vectors:

yB,k ' γH,kΨ∗
dG∑
n=1

γ∗G,naR(ωRG,n − ωRH,k) + nB,k

(93a)

' γH,KΨ∗diag
(
AR(ωRG)γ∗G

)
aR(−ωRH,k) + nB,k,

(93b)

This special structure allows for a simpler solution than
that required in the multi-antenna UE case considered in
Section IV-C2 [18]. To see this, note that because of our
identifiability conditions γH,1 = 1 and ωRH,1 = 0, the first
column of YB is given by

yB,1 ' Ψ∗AR(ωRG)γ∗G + nB,1 . (94)

It is clear that the parameters ωRG and γG can be estimated
from yB,1 using an AoA estimation such as beamforming or
DML, or using a dG-sparse CS algorithm. Once estimated,
these parameters can be substituted into (93), and yB,k can
be used to estimate γH,k and ωRH,k for k = 2, · · · , dH . Thus,
instead of solving dHdG 1-sparse AoA estimation problems that

ignore the underlying structure of the data as in Section IV-C2,
for single-antenna UEs we can estimate the channel with one
dG-sparse estimation, followed by dH − 1 1-sparse problems,
that when combined provide estimates of ωRH ,ωRG,γH ,γG.

2) Single Antenna UE and BS

Here there is no need for a first stage, as there are no angles
to estimate at the BS or UE. Instead, we simply collect T
observations at the BS and stack them together in a T × 1
vector y = [y1 · · · yT ]T , which yields

y = Ψ∗CT (ωRG,ωRH)(γ∗G ⊗ γH) + n (95a)

= Ψ∗
dG∑
k=1

dH∑
n=1

γ∗G,kγH,naR (ωRG,k − ωRH,n) + n . (95b)

We have an equivalent single-snapshot AoA estimation problem,
although with the nonlinear Kronecker structure for the
gains. Ignoring this as before, the spatial frequencies can be
determined using a 2dH+2dG−2 dimensional DML search, or
a single dHdG-sparse CS problem with or without application
of the special row structure induced by the model.

F. Multi-User Scenarios

Multiple users in the geometric model can be accounted for
by redefining G as follows:

G =

 AU (ω1
UG)ΓG1AH

R (ω1
RG)

...
AU (ωUUG)ΓGU AH

R (ωURG)

 ≡
 G1

...
GU

 , (96)

where the superscripts indicate the user index. UE u is assumed
to have Ku antennas and the corresponding channel has dGu

propagation paths, so that dG =
∑
u dGu . The composite

channel and its vectorized form is given by

Hc =

 G1 �H
...

GU �H

 (97a)

hc =

 h1
c
...

hUc

 = Jvec(Hc) , (97b)

where the permutation matrix J is implicitly defined to group
the blocks of hc by user rather than by RIS elements. Compact
expressions for the multi-user case can be found for the general
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data model that parallel those in (61):

y =
√
PZJ

 A(ω1)γG1H
...

A(ωU )γGUH

+ n (98a)

=
√
P Z

[
J1A(ω1) · · · JUA(ωU )

]︸ ︷︷ ︸
A(ω)

 γG1H
...

γGUH


︸ ︷︷ ︸

γGH

+n

(98b)

=
√
P Z [J1AD · · · JUAD]︸ ︷︷ ︸

effective dictionary

 qG1H

...
qGUH


︸ ︷︷ ︸

qGH

+n, (98c)

where {ωu,γGuH ,qGuH} are the angle parameters, channel
gains, and sparse vectors for UE u as in (59). The block column
Ju of the permutation matrix J = [J1 · · · JU ] is of dimension
MKN × MKuN . General methods can be developed for
simultaneous estimation of all the channel parameters based on
these equations and the approaches discussed in Section IV-C,
but as before the dimension of the resulting optimization
problems is likely prohibitive except for certain simple cases.

The decoupled approach of Section IV-C2 can be applied to
reduce the estimation complexity. Provided that M ≥ dHdG,
the BS AoAs ωBH are estimated as before, while the equation
for estimating the UE AoDs is slightly different than (73):

X1Y
H
1

T1
√
P

=

 AU (ω1
UG)

. . .
AU (ωUUG)

S +
X1N

H
1

T1
√
P

(99)
where S = ΞHAH

B (ωBH) and

ΞH = ΓG

 AH
R (ω1

RG)
...

AH
R (ωURG)

Φ∗AR(ωRH)Γ∗H . (100)

Assuming Ku > dGu , UE AoD estimates can be found
separately for each user by processing different block rows
of (99). Once estimates of ωBH and ωuUG are determined, we
collect additional training data and proceed as in (76) where

Bt =
√
P
(
xTt ⊗ IM

)
×


 AU (ω1

UG)
. . .

AU (ωUUG)

⊗AB(ωBH)

 .

(101)

This leads to

YB ' Ψ∗

 AT
R(ω1

RG) �AH
R (ωRH)

...
AT
R(ωURG) �AH

R (ωRH)


T

︸ ︷︷ ︸
CT (ω1

RG,··· ,ωU
RG,ωRH)

ΓGH + NB .

(102)

As before, each column of (102) involves only the difference
between only one spatial frequency from {ω1

RG, · · · ,ωURG}
and one from ωRH . There are dHdG such combinations, and
thus the remainder of the channel parameters can be found
by solving dHdG single spatial frequency estimation problems.
Note also that when the UEs have only a single antenna, the
simplification discussed in Section IV-E1 holds, where only
one dG-dimensional AoA estimation followed by dH − 1 one-
dimensional AoA estimation problems are necessary.

G. Reducing the Complexity and Training Overhead
The methods discussed in Section III-E can be used to

further reduce the training required even for geometric channel
models. The availability of prior knowledge of low-rank channel
covariance matrices is useful for geometric models, although
less for reducing the amount of training than for designing the
pilot symbols xt and RIS training φt to improve the received
SNR. Also, the common channel H associated with multiple
UE antennas can be exploited as before to reduce the algorithm
complexity. For geometric channel models, this approach could
be implemented as follows [18]:

1) Choose one antenna from one of the UEs, and transmit
training data while the other antennas are silent to estimate
the channel Hdiag(g1).

2) Transmit training data from the remaining UE antennas,
and estimate the UE AoDs ωkUG as in (73) if there is only
one user with multiple antennas, or as in (99) if there are
multiple multi-antennas users.

3) Set the RIS reflection vector to a fixed value φ̄ and send
at least dG additional training symbols xt to obtain

Y = HΦ̄AR(ωRG)ΓGAH
U (ωUG)X + N . (103)

Then, multiply on the right by
(
AH
U (ω̂UG)X

)†
. Since

we have an estimate of H, the resulting matrix is
approximately in the standard form for AoA estimation,
using either steering vectors drawn from ĤΦ̄AR(ωRG),
or an overcomplete dictionary ĤΦ̄ARD.

Use of the geometric model offers a further opportunity
for dramatic reductions in both computational complexity and
training overhead. The AoAs and AoDs in the geometric model
change very slowly, and can be considered to be stationary over
multiple coherence blocks. Only the complex gains γG and γH
change substantially from block to block. This suggests that,
once estimated, the spatial frequencies for subsequent blocks
can be considered constant, and only the gains need to be
re-estimated [18]. For CS-based methods, this means that the
support of the sparse solution is already known. Consequently,
with at least dHdG training samples, the channel gains in
equations (61), (80), or (98) can be estimated using least-
squares; e.g., for (61a) we have

γ̂GH =
1√
P

(
ZA(ω̂)

)†
y . (104)

V. NUMERICAL EXAMPLES

To illustrate the CSI estimation performance for typical RIS-
based scenarios, we will use the CRB rather than plotting
the results of individual algorithms (for which there are too
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many examples to fairly consider). In particular, we will show
numerical results for the CRB of h̆Tc =

[
Re(hc)

T Im(hc)
T
]
,

where Re(hc) and Im(hc) respectively represent the real and
imaginary parts of hc.

In the unstructured case, the parameters are the elements of
the channel itself: η = h̆c. Assuming temporally and spatially
white Gaussian noise with variance σ2 as in (1) and (5), the
log-likelihood is given by

fu(h̆c) = −MT ln(πσ2)− 1

σ2

∥∥∥y−√PZhc

∥∥∥2 , (105)

where the subscript u denotes “unstructured.” The CRB is
defined in terms of the Fisher Information Matrix (FIM):

CRBu(h̆c) = FIM−1u (h̆c) (106)

FIMu(h̆c) = E

∂fu(h̆c)

∂h̆c

(
∂fu(h̆c)

∂h̆c

)T , (107)

where E(·) denotes expectation with respect to the noise
distribution. It is straightforward to show that the CRB for the
unstructured model is given by

CRBu(h̆c) =
σ2

2P

(
Z̆T Z̆

)−1
, (108)

where
Z̆ =

[
Re(Z) −Im(Z)
Im(Z) Re(Z)

]
(109)

and Z is as defined in (5). If Z is designed to be orthogonal
as in Section III-A1, then the CRB simplifies to

CRBu(h̆c) =
σ2

2PT
I2MK(N+1) , (110)

signifying that the lower bound is identical for every element
of h̆c (note that we have assumed the RIS element gains
are β = 1). Note that the CRB in the unstructured case is
independent of the number of BS antennas, RIS elements, and
UEs (although T ≥ K(N + 1) must hold for the model to be
identifiable, and hence for the FIM to be invertible).

The CRB for the geometric channel model depends on the
parameter vector η defined by the angles and gains listed in
Table I. The CRB for η is more difficult to compute, requiring
a large number of tedious derivative calculations which we do
not include here. When one forms an estimate of the composite
channel hc from the estimate of the parameters in η, then the
resulting CRB for the channel is given by

CRBs(h̆c) =
∂h̆c
∂η

CRB(η)

(
∂h̆c
∂η

)T
, (111)

where here the subscript s is for “structured.” The examples
below compare CRBu(h̆c) and CRBs(h̆c) for several different
scenarios. The performance metric adopted in all numerical
examples is the average of the diagonal elements of the
CRB over a large number of different (geometric) channel
realizations with random AoAs/AoDs and path gains.

The first case considers a single-UE with K ∈ {1, 2}
antennas, orthogonal pilot signals, and uniformly distributed
RIS phases during training. The AoAs/AoDs were generated
using a uniform distribution over [−90◦, 90◦] for azimuth and

Fig. 2: CRB for various channel models vs. SNR. Channel parameters are
M = 30, N = 30, T = 31,K = 2, dF = 5, dG = 5, dH = 2.

[0◦, 90◦] for elevation. The path gains were generated as unit-
variance Rayleigh random variables. Since the path gains are
independent of the number of paths, a channel with more paths
will generally make a larger contribution to the overall SNR.
The path gain distribution is the same for all three channels
Hd,H,G, which corresponds to a case where the BS, RIS and
UE are approximately located at the vertices of an equilateral
triangle with similar propagation characteristics. Also, this
assumption means that, even though during channel estimation
the RIS phases Φt are not chosen to maximize the coherent
gain offered by the RIS, the RIS provides sufficient combining
gain such that ‖HΦtG‖ � ‖Hd‖. The SNR in the examples
below is defined as P/σ2, but the effective SNR will be a
function of the channel gain ‖Hd+HΦtG‖, which will change
as a function of the number of antennas, RIS elements, and
path gains.

Figs. 2-4 assume a BS with M = 30 antennas and an RIS
with N = 30 elements. Fig. 2 plots the CRB as a function
of SNR for a case with dH = 2, dF = dG = 5, and T = 31
training samples, which is the minimum required for the case
of a single-antenna UE (K = 1). The CRB for the unstructured
model and the geometric model with and without the direct BS-
UE channel Hd are included. The advantage of the geometric
model is clear in this example, providing 10-15dB of gain over
the unstructured case, although a few dB of this gain would
be lost due to imprecise BS and RIS array calibration [45].

The advantage of the geometric model in terms of training
data is apparent from Fig. 3 for the same scenario with an SNR
of 5dB; we see that the same performance can be achieved
with more than order of magnitude fewer training samples.
Note that the plots show a degradation in geometric channel
estimation performance when the direct channel is present; this
is due to the observation above that for the assumed model,
we have ‖HΦtG‖ � ‖Hd‖. In effect, when Hd is present,
we are faced with the task of estimating additional parameters
that are observed more weakly in the data.

Fig. 4 plots the CRB as a function of the number of paths
present in the geometric channel model, again assuming M =
N = 30 and the minimum number of T = K(N + 1) =
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Fig. 3: CRB for various channel models vs. number of training samples T .
Channel parameters are M = 30, N = 30, SNR = 5dB,K = 2, dF =
5, dG = 5, dH = 2.

Fig. 4: CRB for various models vs. number of propagation paths. Channel
parameters are M = 30, N = 30, T = 62,K = 2, SNR = 5dB.

62 training samples. The red curve assumes dH = dG = 2
and shows an increase in the CRB as dF increases, the blue
curve assumes dF = dG = 2 and plots versus dH , while the
magenta curve is for dF = dH = 2 versus dG. While the
presence of more paths increases the power of the received
signals in this example, this gain is offset by the fact that more
parameters must be estimated, and hence the geometric CRB
increases with the number of paths. The increase due to larger
values of dF causes the most dramatic increase for the reason
noted in the previous paragraph. For the common case where
the direct channel is blocked, it is clear that the geometric
model can include a relatively large number of paths before
its performance degrades to the level of the unstructured case.

The last example for the first scenario is depicted in Fig. 5,
which shows the achievable channel estimation performance
as a function of N assuming that M + N = 70, with the
other parameters set as before (K = 2, dF = 5, dG = 5, dH =
2,SNR = 5dB). The curve for the unstructured model assumes
that T is increasing with N according to T = K(N+1), which
explains why the performance improves as the size of the RIS

Fig. 5: CRB for various channel models vs. number of RIS elements N , where
M +N = 70. Channel parameters are SNR = 5dB,K = 2, dF = 5, dG =
5, dH = 2. For the unstructured model and the dashed blue and red curves
(geometric model), we have T = K(N+1). For the solid blue and red curves
(geometric model), T = 31.

Fig. 6: CRB for various channel models vs. SNR. Channel parameters are
M = 6, N = 64, T = 260, U = 2,K = 4, dF = 2, dG = 3, dH = 2.

increases. The dashed curves for the geometric model assume
the same increasing values for T , while the solid lines assume
a fixed value of T = 31. For fixed T , the best performance
is achieved when M ' N , while larger values of T favor the
use of a larger RIS and a smaller number of BS antennas.

The second scenario is different from the first in a number
of ways, but the conclusions are essentially the same. Unlike
the previous case, there are U = 2 users with 2 antennas
each (K = 4), the RIS training sequences are not random
but rather chosen such that the diagonal CRB in (110) holds,
the BS has M = 6 antennas, and there are dH = dF = 2
paths in the BS-RIS and BS-UE channels. Except for Fig. 8,
dG = 3. In addition, the Rayleigh distributed path gains in
this example have a variance equal to the reciprocal of the
number of paths. Figs. 6-8 assume a larger RIS with N = 64
elements, and thus the LS channel estimator requires at least
T = K(N + 1) = 260 training samples in order to obtain a
unique estimate. This value for T will be assumed, except for
the case where performance is plotted versus T .

Figs. 6-9 each show the CRB for five different cases: (1)
“Geometric Hd” - geometric model for Hd channel with the
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Fig. 7: CRB for various channel models vs. number of training samples
T . Channel parameters are M = 6, N = 64, SNR = 0dB, U = 2,K =
4, dF = 2, dG = 3, dH = 2.

Fig. 8: CRB for various models vs. number of propagation paths dG. Channel
parameters are M = 6, N = 64, T = 260, U = 2,K = 4, SNR =
0dB, dF = 2, dH = 2.

RIS channel present, (2) “Geometric Hc” - geometric model
for Hc with Hd included, (3) “Unstructured” - unstructured
model (independent of Hd), (4) “Geom. Hd only” - geometric
model when only Hd is present, and (5) “Geometric no Hd”
- geometric model for Hc without Hd present. In all cases,
the results for “Geometric Hd” and “Geom. Hd only” are
essentially identical, indicating that the presence or absence of
the RIS should not impact the quality of the estimate of Hd.

Fig. 6 shows the CRB versus the SNR, and as in the
previous case we see an estimation gain of about 15dB for the
geometric model in the ideal case. Achievable performance
versus T is illustrated in Fig. 7 for 0dB SNR. The curve for
the unstructured case is only shown for T ≥ 260 where the
channel is identifiable, and as before there is at least an order of
magnitude reduction in training data required for the geometric
model. Fig. 8 provides results versus dG for 0dB SNR, and we
still see a considerable gap between the achievable performance
of the unstructured and geometric models even as the number
of propagation paths grows larger. The CRB versus the number
of RIS elements N = N2

x for 0dB SNR is shown in Fig. 9
with T = K(N+1) = 788 in order for the unstructured model

Fig. 9: CRB for various channel models vs. number of columns Nx in a
square RIS with N = N2

x elements. Channel parameters are M = 6, T =
788, SNR = 0dB, U = 2,K = 4, dF = 2, dG = 3, dH = 2.

to be identifiable for the case of the largest RIS.

VI. ADDITIONAL TOPICS

A. Active RIS Elements
The methods discussed above have assumed a purely passive

RIS with elements that are capable of applying only a
controllable phase shift to the impinging signal, together with
a phase- and frequency-dependent attenuation factor. Recently,
several research teams have studied the added flexibility that
can be provided if the RIS is equipped with a few active
receivers and local baseband processing, suggesting that there
are benefits that outweigh the resulting increase in power
consumption at the RIS. Most of this work has assumed only
active receiving and not active transmission at the RIS, hence
the additional required power is still significantly less than a
similarly-sized active relay. Instead of the lower SNR data at
the BS that has propagated from the UEs through the RIS,
the data collected by the RIS has higher SNR due to lower
path loss and will lead to higher fidelity channel estimates. In
addition, the channels H and G can be separately identified,
which as we have seen above is useful in cases where one
component varies less rapidly than the other, and need not be
estimated as frequently.

The active RIS elements are used to estimate the gains and
angles of the geometric channel model, and these estimates are
then used to infer the full H and G matrices using the known
RIS geometry [46–48] or a deep neural network (DNN) [49].
This matrix completion approach is similar to methods proposed
for channel estimation in hybrid digital/analog systems. A
tensor completion approach is proposed in [50], and also
extended to the wideband OFDM case. The active elements
can either be embedded in fixed positions with a separate RF
chain for each as in the methods above, or different linear
combinations of the RIS outputs can be combined together
through a single RF chain over the training interval to achieve
a similar result [51]. We also mention here the related work of
[52] which, instead of active RIS elements, proposes deploying
active anchor nodes in known locations near the UEs to reduce
the CSI estimation complexity as discussed in Section IV-G
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and resolve the ambiguity of the composite channel.

B. Double RIS Systems
We have only considered communication links between a BS

and UEs that include a single RIS, but channel estimation for
scenarios with two RIS have been studied for certain special
cases. In [53], a double RIS scenario is considered where a BS
communicates with a single UE over an indirect channel that
passes from the BS to RIS 1 to RIS 2 to the UE, assuming all
other channels are blocked. They propose an unstructured LS
channel estimator that requires at least N1N2 training samples,
assuming the two RIS have N1 and N2 elements respectively.
They also consider the special case of an LoS channel between
the two RIS, which reduces the training overhead to N1+N2. A
more general scenario is considered in [54], in which both RIS
have unblocked channels with the BS and UEs, in addition to
the direct link between the two RIS. A two-stage unstructured
LS approach is proposed where, in the first, the phase shifts
of RIS 1 are held fixed while those of RIS 2 are varied,
and the composite single-bounce (UE-IRS 2-BS) and double-
bounce (UE-IRS 2-IRS 1-BS) channels are estimated. In stage
2, the phase of both RIS are varied in order to estimate the
corresponding components of RIS 1, which are superimposed
on the composite channels estimated in stage 1. Assuming
K single-antenna UEs, the required training overhead for this
approach is of the following order:

T = O
(KN1N2

M
+K(N1 +N2)

)
, (112)

which can be large when the number of BS antennas M is small.
An earlier approach to the double-RIS problem in [55] assumed
LoS propagation between two RIS that both possess active
receivers, which allowed the individual channel components
to be determined. It is unclear if a geometric model could be
used for a purely passive double-RIS scenario to achieve an
identifiable parameterization.

C. Learning-Based Methods
The application of machine learning to RIS systems and

channel estimation has also been growing recently. For example,
the approach in [56] designs a DNN that directly takes the
received training data and produces the channel estimate. The
DNN is trained using synthetic uplink data generated assuming
the direct and composite channels are Rayleigh fading. As has
been noted in other work, the performance improves if not only
the real and imaginary parts of the input data are provided,
but also a third component related to the data, in this case its
magnitude. Other work has employed the phase of the data
as the third component [57]. However, [57] uses a federated
learning approach in the downlink, in which the UEs generate
local channel estimates using a learning-based optimization,
and the gradients of the local networks are fed back to the BS
to update the global model.

A common learning-based approach for RIS systems involves
denoising an initial channel estimate with a DNN. The initial
estimate can be found using the methods described above, such
as LS [31], [58] or compressive sensing in the geometric model
[59]. Multi-stage DNN denoising networks are proposed in
[60], [61], where separate DNNs are used to first denoise the
direct channel (if present) with the RIS switched off, then to

denoise a reduced-dimension version of the composite channel
with only a subset of the RIS elements active, and finally to
map the sampled composite channel to its full dimensions. A
similar technique is proposed in [49] that uses a DNN to map
the channel estimated with a few active RIS elements to the full
RIS array. The approach in [47] also assumes the availability of
active RIS receivers, but instead of attempting to estimate the
channel with the full RIS, the sampled channels from the active
RIS subarray are used as “environment descriptors” during
training to find the best codebook of RIS phases that yields
the highest sum rate.

The primary advantage of the above learning-based methods
is that, once the neural networks are trained, the channel esti-
mates are obtained with relatively little computation. However,
since the training is performed using synthetic data, the ability
of the network to handle non-idealities not present in the
simulated training data is still an open question.

VII. CONCLUSIONS

Wireless channel estimation for RIS-based systems provides
a rich source of interesting research problems. We have
highlighted some of the solutions to these problems for two
general classes of channel models: unstructured models that
make no assumptions about the propagation environment or the
RIS or array geometries, and structured or geometric models
that rely on the assumption of sparse propagation paths and
calibrated antenna arrays and RIS element responses. Algo-
rithms for estimating unstructured channels are conceptually
simple and robust, but for RIS-based systems they require
a large training overhead and their achievable accuracy is
limited due to the large number of channel coefficients to be
estimated. On the other hand, geometric channel models lead
to estimation of many fewer parameters and hence have a much
smaller training burden and can achieve dramatically better
performance. However, this improvement comes at the cost of
increased algorithm complexity, a requirement to determine the
model order (i.e., number of propagation paths), and some of
the performance gain will be lost in practice due to inevitable
modeling errors. We have highlighted these issues using both
theoretical derivations and numerical CRB examples, and
we have also briefly discussed on-going research related to
RIS with active elements, double-RIS systems, and machine
learning algorithms. In addition to these areas, many open
research problems remain, including how to estimate channels
for multiple RIS when they are visible to multiple basestations
and their reflections interact, how to take into account more
realistic models of RIS behavior (coupled dependence of gains
and phases over frequency, mutual coupling, etc.), how to
reduce the complexity of compressive-sensing based approaches
that normally require huge dictionaries for RIS-based CSI
estimation, how to exploit available side information such as
knowledge of the local propagation environment or known
channel statistics for optimal design of pilots and RIS phases
during training, etc.
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