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ABSTRACT | Successful integration of deep neural networks

(DNNs) or deep learning (DL) has resulted in breakthroughs in

many areas. However, deploying these highly accurate models

for data-driven, learned, automatic, and practical machine

learning (ML) solutions to end-user applications remains chal-

lenging. DL algorithms are often computationally expen-

sive, power-hungry, and require large memory to process

complex and iterative operations of millions of parameters.

Hence, training and inference of DL models are typically

performed on high-performance computing (HPC) clusters in

the cloud. Data transmission to the cloud results in high

latency, round-trip delay, security and privacy concerns, and

the inability of real-time decisions. Thus, processing on edge

devices can significantly reduce cloud transmission cost. Edge

devices are end devices closest to the user, such as mobile

phones, cyber–physical systems (CPSs), wearables, the Inter-

net of Things (IoT), embedded and autonomous systems, and
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intelligent sensors. These devices have limited memory, com-

puting resources, and power-handling capability. Therefore,

optimization techniques at both the hardware and software

levels have been developed to handle the DL deployment

efficiently on the edge. Understanding the existing research,

challenges, and opportunities is fundamental to leveraging

the next generation of edge devices with artificial intelligence

(AI) capability. Mainly, four research directions have been pur-

sued for efficient DL inference on edge devices: 1) novel DL

architecture and algorithm design; 2) optimization of existing

DL methods; 3) development of algorithm–hardware codesign;

and 4) efficient accelerator design for DL deployment. This arti-

cle focuses on surveying each of the four research directions,

providing a comprehensive review of the state-of-the-art tools

and techniques for efficient edge inference.

KEYWORDS | Algorithm–hardware codesign; artificial intelli-

gence (AI); artificial intelligence on edge (edge-AI); deep learn-

ing (DL); model compression; neural accelerator.

I. I N T R O D U C T I O N
Machine learning (ML) algorithms extract and learn
characteristic features from data for automatic decision-
making. Deep learning (DL) is one of the subfields of ML
that has enabled many advanced technologies. DL algo-
rithms automatically learn from simple to complex features
while moving from shallow to deeper layers [1].

A neural network (NN) architecture also termed a
multilayer perceptron (MLP) is presented in Fig. 1. The
three main kinds of layers of an NN are the input layer,
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Fig. 1. Overview of the terminology, operations, and processing in

a basic NN model. Notations: x � example of training data, wL
ij �

weights connecting neuron i to j in layer L, a�L�i � activation of

neuron i in layer L, f � activation function, b�L�
� bias in layer L, and

�y � predicted output.

hidden layers, and output layer. Input signals propagate
through the neurons in the hidden layers accumulating
learned information. Weights control the strength of the
connection between two neurons deciding the influence of
input on the output. The weighted sums calculated in each
layer are known as the activations. If an NN consists of
more than three hidden layers, the model is termed a deep
NN (DNN) or DL [2]. The human-level accuracy may result
from the ability to add many hidden layers.

The basic training and inference process of a DL model
is illustrated in Fig. 2. Training is the refinement of the
output through an iterative learning process that includes
both forward and backward propagation. Weights and
biases are the parameters learned and updated through the
training process. Computing the predictions from unseen
data using the learned parameters is called inference or
prediction. Each inference task consists of only the for-
ward propagation. Training a DL model is computation-
ally more expensive than inference. During the training
phase, the parameters are updated through optimization
processes to minimize a loss function. An efficient way to
update the weights and biases is backpropagation, which
passes outputs backward through the network to deter-
mine the effects of each parameter on the loss to refine
the parameters.

The deployment of DL models for inference can be
of two main types: inference on cloud and inference on
edge. Cloud-based processing requires data transmission
from the acquisition site to the cloud. On the other hand,
processing on edge performs inference near the source
of data. Three popular use cases of DL training and
inference are: 1) training and inference on the cloud;
2) training and inference on edge; and 3) training on
the cloud and inference on edge. Training and inference
on the cloud focus on highly accurate and deeper models
with a large dataset. Edge devices have many resource

constraints, such as limited memory, computation, and
power budget. Thus, training on edge is of limited capacity.
The focus of this article is the inference on edge cases.
For inference on edge, the models are pretrained to be
deployed for inference on artificial intelligence on edge
(edge-AI) devices. There are numerous use cases in secu-
rity, surveillance, healthcare, autonomous driving, and so
on, where real-time inference on edge is necessary. For
instance, the intensive care unit (ICU) requires real-time
signal processing and decision-making. A closed-loop sys-
tem can remove human intervention and error using AI to
balance vital physiological signals within a specific range.
Smart wearable devices use ambient intelligence to process
several sensor data on edge to improve assisted living by
quickly detecting anomalies (e.g., a fall or a fire) and tak-
ing immediate actions. Business and commercial values of
edge-AI are apparent in the manufacturing and industrial
sectors. Embedded sensors of machines in an industry can
apply DL for predictive analysis of equipment failure. This
automation can increase productivity by removing off-line
inspection of machinery at regular intervals.

Hardware acceleration for efficient and accurate DL
inference on edge has many advantages over cloud-based
computing. Fast and real-time use cases are possible by
reducing the latency as data are processed near the source.
Better security and bandwidth efficiency are ensured due
to data not being transmitted to the cloud. Other benefits
of edge inference (EI) are scalability and reliability. In EI,
the data collection, storage, and processing are distributed
across different parts, making it difficult for any single
disruption (e.g., cybersecurity threats and power outages)
to take down the system. As sensitive data can be processed
locally and in real-time without streaming it to the cloud,
privacy is ensured. Therefore, many applications of AI
are migrating from the cloud to embedded edge devices.
Virtual assistants, such as Alexa, Siri, and Google Assistant,
use on-chip speech recognition as part of the processing
for real-time assistance. Smartphones use embedded AI
to create a better picture using computational imaging
techniques taking input from multiple lenses. In smart tele-
visions, AI upscales the high-definition content to recreate
the missing details. Wearable devices with integrated AI
are now facilitating the monitoring and processing of vital
signs and fitness information to track or detect various
diseases. In a hospital environment, edge-AI performs
inventory management, remote monitoring of patients,
thermal screening, and disease prediction. Unmanned aer-
ial vehicles (UAVs) can ensure safety inspections in remote
and harsh environments (traffic, construction, fire, cartog-
raphy, security, and so on) with on-device processing facili-
tated by AI. Robots with AI provide efficient manufacturing
having high precision and scalability in industrial applica-
tions. Besides, manufacturing flaws can be detected using
AI-enabled cameras for quality control that can otherwise
be impossible in human eyes. Fingerprint detection, face
identification security, fraud detection, and autonomous
driving are a few practical applications brought by edge-AI.
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Fig. 2. Overview of the DL training and inference process. Training is an iterative process of both forward and backward propagation. The

inference is a single forward propagation to find the output for a given input using the parameters learned during training. Notations: α �

learning rate, Wnew � updated weight matrix, Wold � current weight matrix, and (dL/dW) � gradient of loss L.

In addition, edge-AI with video analytics facilitates auto-
mated product replacement, arrangement in-store, and
placement and layout in the home environment before
making a purchase. The edge-AI cameras can determine
reckless drivers, emergency conditions, and road block-
age to ensure safety and efficiency. Self-driving cars are
another practical example of edge-AI, which can prevent
fatal accidents through on-site processing of data from
various sensors for detecting pedestrians, roadblocks, and
recognition of traffic signals and surrounding vehicles.
This trend brings new design challenges. Some of the
challenges are programmability, real-time performance
requirements, and the power consumption of the hardware
to adapt to the changes and evolution of the new DL
algorithms. Besides, many applications on the edge require
real-time outputs within a specific latency limit. Energy
efficiency is another crucial requirement in the design of
EI. Customized and dedicated application-specific design
improves energy efficiency but is limited in flexibility and
programmability. Therefore, edge devices contemplate the
best tradeoffs between performance, power, energy effi-
ciency, latency, cost, and size.

The rest of this article is organized into different sec-
tions. Section II discusses the scope and contributions of
this article. Section III presents the broad spectrum of
edge-AI and identifies EI as a vital element of edge-AI.
Section IV puts forward an overview of bringing classical
ML on edge. Section V explains DL methods, and Section VI
includes techniques for edge-compatible DL model design
and neural architecture search (NAS). Section VII is a
review of compression techniques to make DL compatible

with resource-constrained edge devices. Section VIII briefly
explored the source, usage, and opportunities of sparse
tensors in DL. Section IX identifies, lists, and discusses the
EI performance evaluation metrics. Section X illustrates
the popular software packages and techniques for code-
sign and optimization. A discussion on available hardware
platforms and architecture optimization is presented in
Section XI. Section XII outlined distributed edge training
and inference. Section XIII presents a few use cases of EI.
In Section XIV, challenges and future trends are analyzed,
and conclusions are drawn in Section XV.

II. S C O P E O F T H I S A R T I C L E
Research on DL EI is flourishing as the theoretical founda-
tions of DL algorithms are becoming rich. DL algorithms
are now achieving human-level performance for many
intelligent applications, such as voice recognition, behavior
prediction, object tracking, autonomous driving, and visual
recognition. These achievements have improved the qual-
ity of human life dramatically. People are more interested
to have smart and intelligent services anywhere-anytime.
Thus, there is a boost in research on bringing artificial
intelligence (AI) services to the end users. Moreover, due to
the rapid emergence of smart devices, mobile computing,
sensors, and the Internet of Things (IoT), massive amounts
of data are being generated at the edge. According to the
IDC forecast, around 80 billion IoT devices and sensors will
be associated with cyberspace by 2025 [3]. Transferring
a tremendous volume of data from sensors at the edge
to the cloud for processing creates a critical challenge to
network capacity, transmission bandwidth, and computing
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infrastructure. Besides, the chances of violating security
and privacy increase during this transfer of data. There-
fore, edge computing has emerged to meet the computing
needs by distributed computing and bringing processing
closer to the data sources. In addition, the improvement of
edge computing systems facilitates the implementation of
EI as a reality.

There are surveys available in various related areas.
In [4] and [5], different DL theories, architectures, algo-
rithms, and applications are described. Four prominent
compression techniques, such as parameter pruning, low-
rank approximation, compact CNN design, and knowledge
distillation (KD), are summarized in [6]. This article lacks
in including state-of-the-art techniques and discussing
applications of compression on EI. Different compres-
sion techniques, such as pruning, weight sharing, knowl-
edge sharing, and low-rank approximation, are reviewed
in [7], which also includes the hardware acceleration
of compression techniques. Reviews on hardware real-
ization of convolutional NNs (CNNs) [8] in general and
on the application-specific integrated circuit (ASIC) [9]
have also been presented. These papers do not include
software frameworks, codesign techniques, hardware plat-
forms other than field-programmable gate arrays (FPGAs)
and ASICs, and a complete pipeline associated with EI.
Methods to obtain compact network architectures, such
as joint compression, sparsification, tensor decomposition,
and bit-adaptive computing, are surveyed in [10]. How-
ever, discussions on compression performance evaluation
are limited, software frameworks are absent, and there is
a lack of reviewing hardware acceleration platforms for EI.
FPGA-based acceleration of DL tensor computation [11]
and execution of compact networks on FPGA [12] are
also studied. These two surveys limited their discussions
to CNN inference on FPGA, which is only a small part
of DL inference on edge. Efficient techniques, such as
model compression and dataflow optimization for hard-
ware accelerations of DNN, are explained in [2]. This
tutorial and survey article mainly focused on designing
custom neural accelerators and was limited to reviewing
other hardware platforms, software packages, and DL
techniques other than CNN. Different frameworks and
compilers for ML are surveyed in [13] having no con-
sideration of edge technology and compression-compiler
codesign. Benchmarking quantized DL models to acceler-
ate on smartphones is presented in [14]. Handling sparse
and irregular tensors resulted in different DL models,
and techniques in hardware are summarized in [15].
There are available reviews of different DL techniques [5],
DNNs on edge [2], [16], DL compression techniques for
hardware acceleration [10], DL inference on FPGA-based
platforms [17], edge intelligence [18], and edge com-
puting [19]. However, none of the reviews presents a
complete picture of realizing DL inferences in edge devices.
This article presents a complete pipeline and state-of-the-
art techniques of DL inference on resource-constrained
edge devices comprising model building, compression,

codesign, software tools, hardware platforms, performance
evaluation, and challenges.

However, with the rapid growth of DL concepts, these
surveys lack a discussion of emerging trends and state-
of-the-art tools and techniques. This article is an up-to-
date survey on DL inference on edge devices. The training
process contains complex calculations of derivatives and
weight updates through backpropagation, which are not
feasible for on-chip implementation in most cases. There-
fore, the scope of this article is restricted to training on a
different platform and inference on edge.

This review considers research on DL techniques, opti-
mizations, algorithms, and architectures emphasizing EI.
Therefore, the scope of this article is limited to lightweight
DL models, different compression techniques, applica-
tion areas, algorithm–hardware codesign approaches,
available hardware and software tools, and use cases
of EI.

The major contributions of this article are listed as
follows.

1) Research achievements and enabling techniques of EI,
such as compression, algorithm–hardware codesigns,
and hardware accelerators, are discussed. A com-
prehensive classification of compression techniques,
practical use cases, advantages, and limitations is
provided.

2) Discussions and analyses of research papers in EI are
presented from multiple viewpoints, such as the base
network, the adopted optimization method, applica-
tions, and results. Key performance metrics to eval-
uate, compare, and benchmark the EI research are
discussed.

3) The increasing importance and research trends
of shifting DL inference from the cloud to
resource-constrained edge hardware are highlighted.
Available software tools for the hardware-algorithm
codesign are reviewed. The available choices of edge
hardware platforms are provided with the pros and
cons analyses.

4) The design challenges and future opportunities for
high-performance EI are explored. Open challenges
in the realization of EI are identified, and a possible
outline of future research directions is discussed.

III. A R T I F I C I A L I N T E L L I G E N C E
O N E D G E
The edge-AI is the collaborative utilization of edge comput-
ing and AI. Big data generated on edge require AI to utilize
its full potential. Besides, the availability of sufficient data
paves the way for improving edge computing systems. This
intersection between AI and edge computing has resulted
in a broad application of edge-AI for precision medicine,
agriculture, industrial IoT, visual and cognitive assistance,
and smart home.

Fig. 3 illustrates the four essential elements of edge-
AI [20]: 1) edge caching; 2) edge training; 3) EI; and
4) edge offloading.
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Fig. 3. Four major elements of edge-AI are [20] edge caching,

edge training, EI, and edge offloading.

A. Edge Caching

Edge caching is the collection and storing of the data
produced by edge devices, sensors, and IoT through a
distributed and connected system. For example, images
and videos captured by the smartphone and environment
or patient monitoring data from sensors are collected and
stored for edge-AI. Two types of data can be stored at
the edge: 1) raw sensor data and 2) results from previous
computations for reuse. Caching data on edge for reuse
can substantially lessen the computational complexity and
inference time. For instance, Cachier [21] caches the input
features and corresponding task results on the edge server
for reuse. The edge server transfers the least frequently
used (LFS) input to the cloud. A 3× improvement of
latency is possible using Cachier [21]. In Precog [22], the
cached data are stored both at the edge server and mobile
devices that achieve a 5× speedup. FoggyCache [23]
uses caching to reduce the redundant computation and
achieves 3× latency improvement and 10× reduction of
energy cost. For redundant data handling, caching is an
effective technique for faster inference on edge devices.
CNNCache [24] reuses the results from similar image
regions, thus minimizing computations and the burden on
device resources.

B. Edge Training

Training on edge enables the devices to learn the pat-
terns from the data cached on edge. Such training can
take place either on an edge server or on an edge device
itself. The edge training strategies include: 1) indepen-
dent training and 2) collaborative training. Independent
training is performed on a single-edge device without any
support from the cloud. On the other hand, in collab-
orative training, highly computation-intensive training is
performed on the cloud, and results are used by the edge,
while part of the less computation-intensive training is
performed on the edge device. Edge training is slower
compared to training on the cloud. One of the challenges
of collaborative training is maintaining the privacy and
security of the data.

C. Edge Inference

EI is the computation of forward propagation of a
trained ML model to get the decision from given inputs.

The key enabling techniques are shown in Fig. 4. Most of
the DL algorithms are designed to target higher accuracy
by employing high-performance central processing units
(CPUs), GPU, or multicore high-performance computing
(HPC). Therefore, designing compact network architecture
or compressing the existing models and ensuring real-time
performance from the raw data are the two-core challenge
of efficient EI. Designing new DL architecture targeting
edge devices can be obtained in two ways: 1) design by
experience and 2) NAS (see Section VI-A). For EI, design by
experience is more suited than NAS due to the high com-
putational needs of NAS algorithms. Model compression
techniques are used to obtain acceptable performance with
reduced model size in terms of parameters and computa-
tion. Similar to edge training, inference on edge devices is
also slower than inference on the cloud.

DL inference can broadly be classified into two types:
inference on cloud and inference on edge. Inference on
the cloud is the traditional DL training and inference both
on the cloud server or HPC data center. The collected
data from edge devices and sensor nodes are sent to a
centralized system to train the DL models and make the
inference. This type is suitable for initial model building,
training, and optimization. However, for providing service
to the end user, EI is more suitable.

The EI of DL models can be categorized into three
types [18]: 1) inference on the edge server; 2) inference
on the edge device; and 3) collaborative inference on the
edge device and edge server.

1) Inference on Edge Server: The input data collected
from end nodes are sent to the servers at the network edge.
The DNN model is stored, and inferences are performed at
the edge server. The result obtained is then returned to the
edge devices. As the DNN model remains available on the
edge server, multiple edge devices for many applications
can easily make the inference using the same model. How-
ever, the latency is dependent on the available bandwidth
and communication resources between the edge server and
the edge device.

2) Inference on Edge Device: In the inference on edge
device mode, the DL model can be trained either in the
cloud, edge server, or any other platform. The learned
model is loaded to the edge device to make the inference
locally. Privacy and security are maintained, and communi-
cation resources are saved in this method. The limitations
are the resource constraints of edge hardware and the
need for significant DL model compression to meet the
performance goal. The focus of this article is restricted to
the inference on edge devices.

3) Collaborative Inference on Edge Device and Edge Server:
In collaborative inference employing both the edge device
and the edge server, the DNN layers are partitioned into
multiple parts. The edge device performs inference up to
a partition point and sends the intermediate results to
the edge server. The remaining part of the DNN model is
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Fig. 4. Key enabling techniques of EI. DL models can be designed by experience or NAS. The models are compressed using individual or

joint compression. Hardware and software accelerations are used for inference on data collected and processed at the edge.

executed on the edge server, and predictions are returned
to the edge device. The collaborative edge device and
server inference are more flexible than individual edge
device or edge server-based inference. However, deter-
mining the partition point is challenging and requires
additional computation.

D. Edge Offloading

Edge offloading provides computing support for
caching, training, or inference depending on the needs.
Edge offloading can carry out part of the processing in
any of the connected distributed computing centers or
cloud servers when the computing capability of edge
hardware is not adequate. The performance of EI can
be boosted by offloading the computation-intensive task
to the cloud or by partitioning the task. For example,
in [25], the latency and energy efficiency of each layer are
estimated using a regression-based method to offload the
computation-intensive task to the cloud to meet the latency
and energy requirements. In [26], instead of uploading
the entire model to the cloud, the layers are incrementally
uploaded for collaborative inference, which significantly
improves the energy cost and performance.

IV. C L A S S I C A L M A C H I N E L E A R N I N G
O N E D G E
In many real-world applications, ML algorithms [such as
random forests (RFs), decision trees (DTs), support vec-
tor machines (SVMs), K-nearest neighbors (KNNs), and

linear regression (LR)] are more appropriate than DL.
Therefore, efficient ML inferences on edge devices are
often crucial [27]. For instance, training and inference of
ML models that use gradient calculation for optimization
(such as SVM, K-means, and LR) are demonstrated in [28].
The training is performed on edge devices exploiting local
gradient descent computation. Such techniques generate
local copies of the ML model that are aggregated in a
central edge device to calculate the weighted average of
the local updates. The iterative process continues until
reaching an optimal trained model within the resource
budget. The performance was demonstrated by incorpo-
rating three Raspberry Pi’s and a laptop connected through
Wi-Fi. ProtoNN [29] is an implementation of KNN on edge
devices demonstrating real-time inference and minimal
storage (<2 kB of the Arduino UNO microcontroller).
This technique uses a sparse projection matrix to project
the data into lower dimensional space and uses a joint
optimization to learn the projection matrix and prototype
samples from data. Such joint optimization protects the
accuracy degradation in binary and multiclass classifi-
cation problems. ProtoNN technique is available in the
Microsoft EdgeML library [30]. Tree-based ML techniques,
such as RF and DTs, have logarithmic time complexity and
linear space complexity to the training data size. Deploy-
ing such models on edge devices is complicated. Thus,
often, either aggressive pruning or shallow tree models
are used. Bonsai [31] maintains the accuracy of the DT
by a low-dimensional linear projection of the input. This
technique can be applied in a streaming mode without
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storing the whole input in RAM. The low-dimensional pro-
jection and model parameters are jointly learned, which
retains the accuracy. This technique has experimented with
binary and multiclass classification problems requiring
only 70 and 500 bytes for binary and 62-class classification,
respectively, with comparable performance to the uncom-
pressed version. Bonsai is also integrated and available as
a part of EdgeML library packages [30].

V. D E E P L E A R N I N G M E T H O D S
An NN functions similar to neurons in the human brain.
The neurons in NN map the inputs into activations for
the next layer. The activations obtained by the multiply-
and-accumulate (MAC) operations are fed as the input to
the next layer and sequentially pass through the network
architecture to generate the results. Conventional ML algo-
rithms require handcrafted feature extraction from raw
data that depends on domain expertise and signal process-
ing knowledge. On the other hand, the key advantages of
DL are automatic feature learning multilevel abstraction
through different layers.

Model complexity, performance, maintainability, and
resource utilization are a few criteria for selecting a model,
which can be across different DL types or models from
the same category tuned with various hyperparameters.
Probabilistic measures and resampling methods are the
two popular ways of selecting models. Probabilistic mea-
sures consider the model performance and complexity dur-
ing the training stage [32]. Resampling methods mainly
focus on the generalization performance during the devel-
opment process. Resampling methods split the training
dataset to create many training and test subsets. The DL
model is trained and evaluated on each subset. Usually,
this process is continued for multiple iterations, and the
average performance over each test is estimated. Three
popular resampling methods are random splitting [33],
cross-validation [34], and bootstrapping.

The limitations of DL models to fit a particular data
distribution are often characterized by bias and variance.
A high-bias model cannot sufficiently capture the patterns
in the data resulting in underfitting. High variance leads to
overfitting the training data causing the model to perform
very well on the training data but lacking generalization
on test data. An estimate of the bias and variance can be
obtained from learning curves. An optimal DL model can
be selected by tuning the hyperparameters considering the
bias and variance tradeoff.

Fig. 5 illustrates different training approaches com-
monly encountered in ML. Broadly, ML algorithms can
be characterized by supervised and unsupervised learning.
In supervised learning, the model is trained with the
labeled dataset to predict the classes from unseen data.
A loss function is incorporated that finds the difference
between the prediction and the actual label. In the train-
ing phase, minimization of the loss function iteratively
improves the weights and biases. The process of optimiz-
ing the loss function to update the model parameters is

Fig. 5. Different training schemes used in DL.

called training/learning. There are several optimization
algorithms, such as stochastic gradient descent (SGD),
ADAM, RMSProp, and AdaGrad [35]. In SGD, the average
of gradients for several examples updates the weights
in each step. The gradient calculation in DL is usually
performed by the chain rule of derivatives starting from the
output toward the input, termed backpropagation. In the
evaluation phase, the trained model predicts from unseen
data. Typical examples of supervised learning applica-
tions include weather forecasting, spam detection, face
detection, sentiment analysis, pricing predictions, and so
on [36]. Supervised ML techniques widely used are DTs,
RF, naive Bayes, SVM, KNNs, LR, and NNs, among many
others [37]. NN techniques are usually used in a supervised
fashion but also find extensive applications in unsuper-
vised learning. In unsupervised learning, models can learn
without the labeled data. A few examples of unsupervised
learning are handwritten digit recognition, speech recog-
nition, natural language processing (NLP), DNA pattern
analysis, and so on. Unsupervised learning techniques
include K-means clustering, spectral clustering, principal
component analysis (PCA), singular value decomposition
(SVD), and so on [38]. Semisupervised learning combines
supervised and unsupervised techniques in which training
uses both labeled and unlabeled data. A few promising
applications of semisupervised learning are speech analy-
sis, drug discovery, web content classification, and bank-
ing, among many others [39]. Semisupervised techniques
include expectation maximization with generative mixture
models, transductive SVMs, graph-based methods, and so
on [39], [40]. Reinforcement learning (RL) has exploded
as a prominent technology that falls in the semisupervised
learning category. RL does not explicitly require labeled
input–output pairs for training and decision-making but
rather learns from trial and error using feedback from its
actions and experiences. Intelligent agents continuously
learn to refine their actions over states from the environ-
ment to maximize the accumulative reward functions [41],
[42]. The RL has numerous applications in robotic manipu-
lation, the game industry, video streaming, NLP, and so on.
RL algorithms include deep Q-network, Q-learning, double
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Fig. 6. Three basic types of DL architecture: (a) FNN, (b) CNN [2], and (c) RNN. The FNN works as a classifier. In CNN, convolution

operations are used to extract the features, and the pooling layer identifies and keeps the significant features through downsampling.

In RNN, the memory in the hidden units keeps the previous result to improve the current output due to the long-term dependence on

sequence data. The hidden unit H can be either vanilla RNN, LSTM, or GRU unit depending on the RNN type.

Q-learning, actor–critic, and policy gradient, among many
others [43].

Two common forms of DL architecture are feed-forward
NNs (FNNs) and recurrent NNs (RNNs). In FNN, the com-
putations are executed on the outputs of the prior layers.
The network is memoryless, and the current output has no
dependence on the previous input sequence. In contrast,
RNNs, such as long short-term memories (LSTMs) and
gated recurrent units (GRUs), have internal memory to
incorporate long-term dependencies of sequential data.
Intermediate results are stored internally in the network
to be fed as inputs to subsequent layers. The RNNs are
mostly used for time series and sequential data, such as
speech and natural language analysis. The CNNs, mainly
composed of convolution and pooling layers, are generally
useful for computer vision and image processing problems
due to local connectivity, shared weights, and the ability
to use many layers. To improve the accuracy, the current
trend is to increase the number of hidden layers in DL,
which, in turn, increases the number of computations and
parameters. To balance the increased cost by escalated
depth, bulky convolution operations are being substituted
by a sequence of light convolutions. Dropout is another
technique most often used to reduce the model complexity
by dropping some connections found in major applications
in deep CNN (DCNN). As the dense layer is computa-
tionally more expensive with many weights, modern DL
architectures typically contain a reduced number of dense
layers. The three widely used DL models are shown in

Fig. 6. The deep belief network (DBN), the autoencoder
(AE), the restricted Boltzmann machine (RBM), the deep
Boltzmann machine (DBM), the conditional random field
(CRF), and the generative adversarial network (GAN) are
a few examples of DL architectures that have evolved and
adapted in many applications [5].

Usually, in DL, the output of each layer is connected to
the input of the next layer. Some of the common nonlinear
functions are rectified nonlinear unit (ReLU), leaky ReLU,
sigmoid, Tanh, and ELU [44]. In multiclass classification
problems, the softmax function is usually employed as the
activation function of the output layer.

Over the last decade, DL has received widespread accep-
tance in many domains. Some of the applications are
image classification, speech recognition, drug molecules
activity prediction, restructuring brain circuits, DNA gene
expression analysis, and disease diagnosis. Examples of
DL applications in speech analysis and NLP include topic
classification, keyword spotting, sentiment prediction, and
language translation. DCNNs are prevalently being used
for image processing and computer vision applications,
such as object detection and tracking, traffic sign recog-
nition, biomedical image segmentation, human detection,
and face recognition. In addition, DL has paved the way for
advanced driver-assistance systems (ADASs), autonomous
mobile robots, and self-driving cars. Widespread accep-
tance and usefulness of DL have been triggered by the
availability of huge training data, improvement of com-
putational resources through parallelism, hardware and
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Table 1 Computational Characteristics of Popular DL Models

software optimization for fast and reliable simulation,
and evolution of different variants of new and efficient
DL model architectures. However, the computational and
memory needs for DL models are evident from Table 1.
With the recent advancement of DL algorithms, accuracy
has significantly improved with deeper layers at the cost of
increased computational and memory needs. For instance,
the number of parameters increased from 50 to 100 million
to 175 billion for NLP tasks using the Transformer [45]
network to the GPT-3 [46] model within a gap of only
three years (2017–2020). Since 2012, DL has experienced
a 3000× and 10× increase in computational need and
memory requirements, respectively [9]. Studies demon-
strate that these models are often overparameterized hav-
ing significant redundancy [47], [48]. Networks having
millions of parameters and computations are not feasible
to fit in edge devices without significant optimizations.
Thus, compression techniques discussed in Section VII
can be used to obtain a compact network architecture
with reduced computation complexity, execution time, and
minimal memory footprint.

VI. E D G E - C O M P AT I B L E D E E P
L E A R N I N G M O D E L D E S I G N
Larger DL models with big data can generate better results,
which are often not sustainable due to resource limita-
tions at the edge and the requirement of low inference
time to ensure real-time applicability. Therefore, instead
of creating deeper models, the trend has shifted toward a
resource–performance tradeoff designing reasonable mod-
els feasible for edge deployment with acceptable perfor-
mance. Such edge-compatible models can be designed
either automatically using techniques, such as NAS or
designing compact models exploiting research experience.
This section is a brief on edge-compatible DL model
designs in two ways: 1) NAS and 2) compact network
design.

A. Neural Architecture Search

DNNs for resource-constrained edge hardware devices
require compact computations and a reduced number of

parameters while preserving acceptable accuracy. Appro-
priate network architecture can be obtained after the
evaluation of many architectures that are often time-
consuming, tedious, and have an infinitely large search
window. The NAS is an automatic and algorithmic way of
finding optimal NN architectures and components.

The basic NAS strategy is illustrated in Fig. 7. NAS
techniques have three parts [60]: search space, search
strategy, and performance estimation. Search space is the
available architectures discoverable in the search. To limit
the search window, a search space is defined by imposing
constraints on network architectures, operations, layers,
repeated patterns, and so on. Although these constraints
introduce human bias to the NAS, the search space will
remain sufficiently large to discover novel architectures
for a particular problem. Search strategy determines the
guide to explore the search space. Search strategy can
be random, but it often considers the candidate architec-
tures based on the performance of previously explored
working solutions. Agents can be trained through RL [61]
to estimate the performance of a novel architecture on
unseen data. There are techniques to estimate performance
through parameter sharing instead of training from scratch
and using approximated data and networks.

Software tools, such as Google Cloud AutoML [62] and
Auto-Keras [63], can be exploited for NAS. AutoML can
take the training data as input and outputs the optimal
building blocks for a base network construction that are
fine-tuned for further optimization. In Auto-Keras, the
algorithm searches for the detailed configuration of the
user-specified high-level architecture.

MobileNet-v3 [64] released in large and small ver-
sions uses NAS and NetAdapt [65] algorithms. The
Netadapt [65] algorithm is presented in Fig. 8, which is
an adaptive algorithm to generate many network proposals
based on given quality metric specifications. The algorithm
evaluates the performance of these proposal models based
on experiments on selected hardware and selects the one
with the highest accuracy. Compared to MobileNet-v2, the
large MobileNet-v3 results in 25% speedup with compara-
ble accuracy, and the smaller version offers 6.6% increased
accuracy with similar size and delay. NASNet [59] starts
with a sequence of blocks in which the construction
of blocks is determined by RL. NASNet consists of the
normal block and the reduction block. The convolution

Fig. 7. Components of NAS. NAS techniques consist of a search

space S. Using the search strategy an architecture A is obtained,

which is evaluated using the performance estimation strategy.
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Fig. 8. NetAdapt [65] algorithm. Layers are simplified at each

iteration based on empirical measurements. The network having

maximum accuracy within the target platform’s budget is chosen for

fine-tuning.

in the normal block keeps the size of the feature map,
which is reduced by 4× in the reduction block. Accuracy
improvement of 3% can be achieved in NASNet compared
to the MobileNet with a similar number of parameters.
Progressive NAS (PNAS) is reported in [66] for CNN
architecture search. PNASNet demonstrates 8× faster con-
vergence and 5× improved efficiency than RL-based model
search. MNASNet [67] automatically generates DL models
for mobile platforms. RL is used to explore and find the
architecture constituents from a predefined search space
that considers a tradeoff between accuracy and mobile
device constraints. On mobile devices, MNASNet can clas-
sify images with 78-ms latency, which is 1.8× faster than
MobileNet-v2 and 2.3× faster than NASNet with 1.2%
higher accuracy. The accuracy is 0.8% and 1.2% better
than MobileNet-v2 and NASNet, respectively.

Hardware-aware transformer designs using NAS tech-
niques for edge-compatible and low-latency inference are
presented in [68]. The search space consists of numer-
ous encoder–decoder attention and heterogenous layers.
A SuperTransformer is trained to generate many SubTrans-
formers, and through hardware exploration, the faster
SubTransformer is identified. For machine translation, NAS
technique-based transformer model exploration resulted in

3× speedup and 3.7× reduced size on a Raspberry Pi-4
device.

The NAS algorithms are computationally expensive.
To minimize the hardware dependence of NAS, differential
architecture search (DARTS) [69] has evolved. DARTS
techniques use gradient descent for architecture search,
and both CNN and RNN models can be obtained. However,
NAS techniques are still in the infancy to be adopted to
find compact architectures for EI.

B. Compact Network Design

1) Optimized Convolution in CNN: In CNN, most compu-
tation time and power are consumed by the convolution
operations. The faster inference of a CNN mostly depends
on how fast a single input can be processed. Designing
compact network architectures can minimize the number
of weights and computations. For instance, concatenating
a series of smaller filters can emulate the same effect of a
larger filter. Convolutions are simplified using 1 × 1 con-
volution in MobileNet [70] and Xception [56] networks.
There are two major optimizations of the convolution
operation in MobileNet: input size reduction and pointwise
convolution. The depthwise separable convolutions are
used, which are a combination of depthwise convolution
and a pointwise convolution. The network structure is
a sequential convolution subsequently average pooling
and, finally, a dense layer with configurable hyperpara-
meters. A depth multiplier is used that can change the
number of filters in each layer. For a variety of appli-
cations, MobileNet with 0.5–4.2 million parameters and
41–559 million MACs achieves an accuracy between 50%
and 70%.

A hybrid DL model called EdgeNeXt is presented in [71],
which combines the power of CNN with the self-attention
mechanism of a transformer for computer vision tasks
considering the resource constraints of edge devices.
EdgeNeXt, with around 28% reduced floating-point oper-
ations (FLOPs), achieves 71.2% top-one accuracy on the
ImageNet dataset for classification having only 1.3M para-
meters.

Fig. 9 shows different types of convolution opera-
tions used to obtain compact CNN models. In MobileNet-
v2 [72], residual connections and intermediate data
encoding have been introduced to reduce the num-
ber of operations and weights. The elementary unit of
MobileNet-v2 is the bottleneck residual block consisting of
three convolutional layers. The three convolution layers
are one 1 × 1 convolution followed by two depthwise
separable convolutions. MobileNet-v2 reduces about 30%
parameters and 50% operations compared to MobileNet
with improved accuracy. 1 × 1 convolution is also used
in SqueezeNet [73] to reduce the number of channels in
a CNN. SqueezeNet performs three main optimizations:
1) reduction of the number of inputs of filters; 2) replace-
ment of 3 × 3 filters by 1 × 1 filter; and 3) downsampling
with global average pooling. Inputs to the large filters are

Vol. 111, No. 1, January 2023 | PROCEEDINGS OF THE IEEE 51



Shuvo et al.: Efficient Acceleration of DL Inference on Resource-Constrained Edge Devices

Fig. 9. Different types of the convolution operation. (a) Basic

convolution. (b) Fire module. (c) Depthwise separable convolution.

(d) Bottleneck layer. (e) Residual connection. (f) Channel shuffle

[20].

first squeezed by 1 × 1 convolution and then expanded by
a set of parallel 1 × 1 and 3 × 3 convolution filters. This
squeeze and expansion operation block is called the fire
module. The SqueezeNet consists of an initial convolution
layer, eight fire modules, and a global average pooling
layer at the end. The result is a 50× reduction in the num-
ber of weights than AlexNet while preserving the equiv-
alent accuracy. However, one drawback of SqueezeNet is
that it consumes more energy than AlexNet. Instead of
using a fire module, a two-stage bottleneck module is used
in SqueezeNext [74]. 3 × 3 convolutions are substituted
by separable convolutions and 1 × 1 expansion modules
afterward. SqueezeNext has shown 112× fewer parame-
ters compared to AlexNet but resulting in better accuracy.

In ShuffleNet [75], convolutions are applied parallelly
to separate parts of the inputs reducing the number
of operations. The 1 × 1 convolutions are replaced by
group convolutions and a channel shuffle forming the
ShuffleNet unit. The output of convolutions is shuffled
to mix the information from different groups. ShuffleNet
has shown promising results with 3% better accuracy
compared to MobileNet-v1 with similar computational
complexity. In ShuffleNet Sx, a stride of two is used to
implement 3 × 3 convolutions. Elementwise additions
are replaced by concatenating channels. The hyperpara-
meter s is used as a scaling factor for the number of
channels. The overall network architecture consists of
an initial convolutional, the average pooling layer, and
three ShuffleNet units afterward. Instead of using random
shuffling, CondenseNet [76] learns the grouping during
training. It also integrates the parameter pruning and
removal of less important features. CondenseNet with

50% fewer parameters can achieve ShuffleNet-like accu-
racy. ANTNet [77] is an image classification CNN that
also utilized the group convolution concept. This network
reported 0.8% increased accuracy, 6% parameter reduc-
tion, 10% fewer operations, and 20% performance boost
compared to MobileNet-v2 for inference on mobile devices.

The Winograd algorithm [78] can significantly reduce
the computation time of convolution with small filters,
minibatches, and minimal arithmetic convolution over
small tiles. The number of floating-point multiplications
and integer arithmetic operations can be reduced by a
factor of 2.25× [79] and 3.13× [80], respectively, using
the Winograd algorithm. The Winograd algorithm can min-
imize computations in the convolution exploiting additions
and shifts. As additions can be implemented in hardware
with negligible power consumption, Winograd convolu-
tion demonstrated potential for hardware inference. FPGA
implementations of Winograd convolution are presented
in [81], which incorporate feature map caching using line-
buff structure, data reuse, effective use of pipelining for
PEs, and parallel processing of convolution operations.
A unified architecture incorporating the Winograd and
general matrix multiplication (GEMM) named UniWig is
presented in [82]. Instead of using separate PEs for convo-
lution and dense layers, UniWig utilizes the same set of PEs
and blocked Winograd filtering to ensure proper resource
utilization. Parameters in convolutional layers remain
unchanged over a long interval in weight-stationary CNN.
Thus, the CNN layer can exploit data reuse through a
reconfigurable convolutional kernel [83]. The reconfig-
urable architecture efficiently utilizes the lookup tables
(LUTs) of FPGA for reducing computational complexity.

2) Optimized RNN Design: Designing compact RNNs can
be realized either at the unit level or the network level.
The LSTM and GRU are the unit-level improvements of the
vanilla RNN by eliminating the vanishing or exploding gra-
dients. Studies illustrate that, in LSTM, the forget get and
the input gate plays the most critical role, and the output
gate is less significant [84]. Therefore, in GRU, the input
and forget gates are coupled into the update gate resulting
in a simplification of LSTM. The units of S-LSTM [85] and
JANET [86] consist of only one forget gate. The minimal
gated unit (MGU) integrates the reset gate and update gate
of the GRU [87]. LSTM can also be extended by adding
an extra time gate for rapid convergence and performance
boost [88]. Such unit-level modifications resulted in sim-
plified RNN architecture having reduced model complexity
without performance degradation. Faster results can be
obtained using the phased LSTM [88], which extends the
LSTM unit cell by adding an extra gate called the time gate.

The network-level optimization pays attention to the
interaction between different RNN or LSTM cells instead
of the network units. The network-level compression can
be performed by modifying the stacked RNN layers in the
temporal and spatial directions. For instance, the dimen-
sion of the hidden state can be minimized using the linear
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recurrent projection layer in LSTM to improve the parame-
ter efficiency [89]. The weight matrix of LSTM can be fac-
torized into matrices, and results can be concatenated for
faster convergence and parameter reduction [90]. Residual
connections [91] and skip connections [92] can also be
exploited in RNN for faster convergence and performance
boost.

The concept of weight sharing is utilized in the grid
LSTM [93] for multidimensional data processing. Parame-
ter sharing is also exploited in the RNN and LSTM [94] by
increasing tensor size with shared parameters. Thus, the
network can be effectively widened without adding more
parameters.

VII. D E E P L E A R N I N G M O D E L
C O M P R E S S I O N F O R E D G E
I N F E R E N C E
Compact models and efficient compression techniques are
developed to meet the massive trends in DL migration
from the cloud to the edge. Instead of highly accurate
models, the tradeoffs among performance, silicon area,
cost, and power consumption are the key to EI. This section
covers compression techniques to get optimized DL models
compatible with resource-constrained edge devices.

A. Pruning

Most of the modern DL models are overparameter-
ized. Pruning is one of the compression techniques that
remove less important weights (connections) or filters
(channels) from a trained model. The advantages of prun-
ing are mainly twofold: minimizing the physical size of
parameters and reducing the inference time. Pruning can
be either structured or unstructured [95]. Unstructured
pruning removes the weight and preserves the neurons
if at least one connection to that neuron exists. A spar-
sification technique for LSTM network implementation
on FPGA has been demonstrated in [96]. It splits the
matrix into multiple banks containing an equal number
of nonzero elements. The accuracy can be maximally pre-
served by keeping relatively large weights. Unstructured
pruning results in irregular computation and memory
access that limit parallelism for hardware implementa-
tions [96], [97]. In structured pruning [98], a group of
weights is removed instead of pruning individual weights.
The group of weights can be neighboring weights, part of
a filter, or the whole filter [99]. A structured pruning tech-
nique presented in [100] for CNN removes certain filters to
increase the efficiency of the network without significantly
affecting the accuracy. An agent is trained layer-by-layer
for pruning. The network performance is evaluated by
retraining, and subsequently, the process continues for the
next layers. Structured pruning offers efficient process-
ing in hardware by exploiting the data-parallel architec-
ture [101], improves network compression, and reduces
storage requirements.

Structured and unstructured pruning can be combined
to obtain an optimized model for hardware realization.

For example, in [95], in each iteration, a small percentage
of the least important weights based on a predefined
threshold are removed from every layer, and the models
are retrained to evaluate the performance. After the weight
removal, if all connections are deleted from a neuron, that
neuron is also removed.

Weight pruning can compress the weights of shallow
networks without any significant loss of accuracy. An itera-
tive vectorwise sparsification is presented in [97] for CNNs
and RNNs. Result demonstrates faster response with a neg-
ligible accuracy loss compared to a 75% sparse network.
However, filter (channel) pruning introduces a significant
loss of accuracy for deeper networks.

Fig. 10 demonstrates different pruning techniques and
effects on the network architecture. Currently, there
are three main approaches to pruning to make sparse
networks.

1) Magnitude-Based: The contribution of weight is
proportional to its absolute value. Weights less than
a threshold are removed to make the network sparse.
Magnitude-based sparsity can increase the speed of con-
vergence. In [47], a magnitude-based pruning is applied
layer by layer. The model is retrained after pruning all
layers to compensate for the effects of weight removal.
The remaining weights are adjusted over several iterations.
Pruning demonstrates 9× and 3× reductions of the num-
ber of weights and MACs, respectively, in AlexNet. Also,
9.9× weight reduction in dense layers compared to 2.7×
for convolutional layers can be achieved. Empirical results
from AlexNet and VGGNet illustrate that around 80% and
50% weights can be removed with and without fine-tuning.

A dynamic pruning technique is reported in [102] to
minimize the inference latency of transformer networks
while deploying on edge devices. The threshold-based
pruning techniques have been demonstrated to reduce
MAC operations and tensor data sizes while maintaining
around 98.4% accuracy for keyword spotting tasks. More-
over, for an accuracy degradation tolerance of up to 4%,
it can achieve up to 94% reduced operations and multi-
head self-attention inference speedup up to 16× compared
to the keyword transformer. ABERT [103] is a pruning
framework for automatic and efficient pruning of the BERT
network to find an ideal candidate with high accuracy with
given pruning ratio constraints. Experimental results on
deploying the subnetwork inference on Xilinx Alveo U200
FPGA have shown 1.83× speed compared to the BERT
model.

One limitation of magnitude-based pruning is identify-
ing the appropriate threshold. In addition, if the threshold
is shared among all layers, the result is not optimal due
to the variation of the magnitude of parameters across
different layers. Finding different thresholds for each layer
is even more challenging. To overcome this limitation,
differentiable pruning [104] can be used. A criterion has
been set in [105] based on the Tylor expansion to iden-
tify less significant neurons in CNN. In [105], pruning
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Fig. 10. Illustration of pruning techniques. (a) Original weight matrix. (b) Magnitude-based unstructured pruning of 50% smaller

magnitude weights. (c) Structured block pruning (pruning based on the lowest average of 2 × 2 weight groups). (d) Basic FNN architecture

without pruning. (e) Result of unstructured 50% weight pruning on (d). Example of neuron pruning on (d).

is formulated as an optimization problem to determine
the cost minimization weights and allows simultaneous
training of the network and pruning parameters. Gate
decorator [106] is a global filter pruning algorithm for
CNN based on scaling the channels. If the scaling factor
is zero for any filter, that filter would be removed.

2) Regularization-Based: These methods use a regular-
ization part in the loss function equation to provide the
required sparsity level [107]. The network converges to a
sparse subnetwork that has the desired sparsity rate and
minimal accuracy drop. The main advantage is that the
regularization-based method provides better accuracy as
it does not corrupt the weights. However, regularization-
based methods need a lot of iteration for convergence.

3) Energy-Aware Pruning: This technique is developed
in [108] that prunes weights depending on an estimated
energy. The energy estimation considers the number of
MACs, data sparsity, and movement in the memory hier-
archy. Energy-aware pruning demonstrated 1.74× more
energy efficiency for AlexNet compared to magnitude-
based pruning.

One of the disadvantages of unstructured pruning is
a sparse weight matrix that complicates hardware real-
ization. Pruning is usually more efficient for dense [fully
connected (FC)] layers than other layers. Also, it does
not necessarily reduce the latency because of the sporadic
erasure of weights, making matrix multiplication slower.
Other potential drawbacks of the pruning technique are
lack of generalization for various architectures, irregular
access to on-chip memory, the requirement of fine-tuning
to achieve acceptable accuracy, and unbalanced paral-
lelism in the computation.

Zero-skipping techniques [34] can avoid the multipli-
cation by zero resulting from pruning. Skipping zeros

from weights and activations may result in reduced per-
formance efficiency [109]. The large on-chip memory is
required in zero-skipping techniques to exploit the parallel
processing in hardware acceleration. To minimize on-chip
memory requirement, the weight matrix can be stored
in a dense format [110]. The map batching technique
balances the heavy transfer of parameters in dense layers
by kernel reuse eliminating the transfer to an external
memory [111]. Moreover, if filters (channels) are pruned,
the model accuracy usually degrades. For this reason, CNN
models are usually compressed with unstructured pruning
to obtain a new network of the same size having sparse
weight tensors.

B. Quantization

Weights and activations in most DL models use a
floating-point representation that retains information but
leads to slow processing. DNNs are trained to capture the
key patterns and features in the data and are resilient to
noise. Quantization maps the model parameters and acti-
vations into low-precision quantized levels avoiding costly
FLOPs. Due to low precision, the number of bits is reduced,
allowing more efficient integer arithmetic operations on
hardware. DL can tolerate small changes in weights and
biases resulting from quantization errors. Quantization
offers three major benefits: 1) memory saving due to
compact representation with fewer bits; 2) reduced com-
plexity of mathematical operations resulting in improved
inference time; and 3) improved energy efficiency.

There are two main ways of mapping data into different
quantization levels: 1) linear and 2) nonlinear quantiza-
tion. The quantization bit length can be fixed or variable.
In fixed quantization, the same quantization is applied for
all layers, data, and filters in the model. In variable quan-
tization, different quantization can be used for different
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layers, filters/channels, weights, and activations in the
network.

Instead of using single-precision 32-bit floating point
(FP32), the calculations and implementation of DL algo-
rithms become much easier in 16-bit floating-point [112],
8-bit floating-point [113], and fixed-point representa-
tions [114], [115], [116], [117]. For example, an 8-bit
integer (INT8) addition results in a 3.3× and 3.8× reduc-
tion in energy and area, respectively, than a 32-bit fixed
point representation [118]. The same INT8 addition can
save 30× energy and 116× area compared to FP32 opera-
tions. Similarly, 8-bit fixed-point multiplication consumes
15.5× less energy and 12.4× less area than the 32-bit
fixed-point operations. An 18.5× less energy and 27.4×
less area is required than that of FP32 multiplications.
Therefore, the energy and area reduce approximately lin-
early and quadratically for fixed-point additions and mul-
tiplications, respectively, with the number of bits. AlexNet
can be quantized using a variable precision of 4 to 9 bits
with less than 1% accuracy degradation [119]. In [120],
activations and weights of intermediate layers are quan-
tized to 8-bit integers, whereas the inputs and biases
remain in FP32s. Result demonstrates a 3–4× reduction
in memory and 10× speedup without affecting accuracy.
Quantization of only weights to 8-bit integer and output to
16-bit integer can result in 4.16× storage reduction [121].
Instead of floating-point numbers, posit numbers can be
used to reduce storage. As posit numbers require fewer
bits than floating-point numbers, it saves memory. For
example, in [122], CNN is compressed by using posit
numbers to read and write weights from/to memory. As the
conversion of parameters occurs between float and posit,
no quantization happens, thereby eliminating the need for
retraining.

In linear quantization, the floating-point numbers are
represented with fixed-point numbers. Scaling and biasing
are used to minimize the quantization error caused by the
difference between floating-point numbers to the nearest
quantized fixed-point numbers. Mixed-precision quantiza-
tion can be adopted, which applies different bit widths at
different layers. Such flexible bit width can ensure a gain
in memory efficiency and reduced power consumption.
Stripes [123] is an implementation of variable bit width
with bit-serial computation. It is a hybrid architecture
that provides flexible bit width for the activations and
fixed-point integers for weights. One potential problem of
variable bit width is the increased latency, which can be
minimized by exploiting the inherent parallelism of DNN
models. The bit-serial operation uses AND gates and adders,
eliminating the need for multipliers. Multipliers are one
of the most power-consuming elements in DL processing.
By omitting the need for a multiplier, it also excludes exter-
nal memory access. UNPU [124] also implements bit-serial
computation with 16-bit fixed-point representation for
activations and 1–16-bit variable bit width for weights.
Loom architecture exploits bit-serial multiplication and
variable bit width for both weights and activations [125].

For efficient processing, Loom requires transposing of the
output, which increases the overhead. The PEs in the
bit fusion [126] architecture are combined differently to
implement spatial flexibility in bit widths. The multipli-
cation is partitioned into two 2-bit × 2-bit multiplication
followed by a shifter and adder. The BitBlade [127] fol-
lows a similar architecture that eliminates the shift-add
operation using bitwise summation, resulting in improved
optimization. Often, low bit width is used for middle
layer weights, and large bit-width quantization is used for
weights in the first and last layers [128]. Weights and
activations can also be grouped to use different bit widths
to encode values of different groups [129]. A summary of
different quantization techniques, quantized bit width, and
neural accelerators is presented in Table 2.

Binarization is an extreme type of quantization that
uses a 1-bit representation for weights and activations.
For instance, binary values are used for weights in
YodaNN [130], and both the weights and activations adopt
binary values in BRein [131]. Binarization significantly
speeds up the NNs by replacing the original FP32 multipli-
cation with a 1-bit logical XNOR operation. The concept of
binarization was introduced in BinaryConnect (BC) [132]
to use binary weights (−1 and +1) that reduce the MAC
to only additions and subtractions. BC [133] randomly
binarizes the weights. Then, quantization is applied layer-
wise to replace the remaining multiplication with bit-shift
operations. No loss in accuracy was encountered during
the training but sometimes achieves improved results.
Binarization reduced the multiplication to addition and
convolution to addition and subtraction operation reduc-
ing the size of the network approximately by 32× [134]
and achieving 2× speedup. Binary weights and activations
can also be applied in backward propagation to enhance
performance through expectation backpropagation (EBP)
techniques [135]. A fully binary NN (BNN) is presented
in [136] using EBP demonstrating improved energy effi-
ciency on the neuromorphic chip.

The major challenge of a BNN is to maintain the model
accuracy. For example, BC [132] and BNN [137] result
in an unacceptable accuracy degradation of 19% and
29.8%, respectively. Another limitation of BNN is that it
can achieve acceptable performance only when datasets
are small. The BNN model accuracy can be improved
in two ways: 1) increasing the number of weights and
2) adopting several binarizations to input activations
(IAs) [138]. Bi-Real Net [139] is proposed to minimize
the accuracy degradation of 1-bit CNN incorporating real
activations after a 1-bit convolution operation. To mitigate
the problem of accuracy degradation, the binary weight
nets (BWNs) and XNOR-Net [140] introduced a few modifi-
cations, such as scaling the output to recover the dynamic
range, keeping the input and output layer with FP32
representation, and normalization prior to convolution.
The BWN was able to limit the accuracy degradation to
0.8% and XNOR-Net to 11%. In XNOR-Net [140], the weight
and convolution inputs are binarized. The convolutions are
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Table 2 Summary of Noteworthy Works on the Quantization of DL Models

simplified using XNOR operations, resulting in 58× speedup.
The accuracy degradation of XNOR-Net can be improved by
introducing 2-bit quantization of the activations instead
of using 1-bit while keeping the weights binary [141].
Quantized NNs (QNNs) [142], DoReFa-Net [143], and
HWGQ-Net [144] are a few examples of DL models that
use 2-bits and 1-bit precision for activations and weights,
respectively. In ternary weight nets (TWNs) [145] and
trained ternary quantization (TTQ) [146], ternary weights
instead of binary weights are used with 32-bit floating-
point representation for activations that exhibit as low
as 0.6% accuracy degradation. TrueNorth chip [147] also
implemented the ternary weights and binary activations.

Nonlinear quantization considers the nonuniformity of
weights and activations. An LUT containing the binary
codes for weights and activations can be used. For exam-
ple, replacing the multiplication operation with an LUT
in [148] or using a hash function to create and train values
from the LUT [149] has already been proposed. In [149],
hash functions are used to uniformly cluster the weights in
different hash buckets. Activation functions can be stored
in the LUTs to speed up the activation calculation. Log
quantization and weight sharing are two nonlinear quan-
tization techniques. In log quantization, the quantization
levels are determined by a logarithmic distribution that
ensures equilibrium of weight and activation distribution
at different quantization levels, reducing the quantization
error. For example, log base-2 quantization has shown 5%
accuracy degradation compared to 27.8% accuracy degra-
dation for 4-bit precision linear quantization [150]. Quan-
tization of weights as the nearest power of two can replace
the multiplication with faster arithmetic shift operation
that significantly reduces the computation [114], [151].
Incremental network quantization (INQ) [152] divides the
weights into different groups by separating large and small

values, and applies iterative quantization and retraining to
reduce the accuracy degradation.

Temporal dependence of the RNN models accumulates
the quantization error resulting in accuracy degradation.
Though most of the quantization methods for RNN are like
CNN, there are research efforts to quantize the RNN model
itself. For instance, improved accuracy has been achieved
in [153] using the binary quantization to RNN. A hybrid
quantization method has been proposed in [154] for RNN
that used threshold for weights and probabilistic methods
for the hidden states’ quantization. However, most of the
RNN quantization methods used small datasets. Besides,
there is a lack of benchmarks to evaluate the performance
of RNN quantization.

Quantization-based compression is also effective for
automatic speech recognition tasks on edge devices. For
instance, exploiting 8-bit fixed point precision for weights
and activations, SpeechTransformer [155] achieves a 4×
reduced number of parameters while maintaining the
performance of a full-precision model. An integer-only
quantization of vision transformers for computer vision
tasks is reported in [156]. Such integer-type quantization
allows realizing the inference operation through integer
arithmetic and bit shifting, achieving up to 4.11× inference
speedup.

Some of the challenges of quantization include informa-
tion loss due to low bit width, distorted network architec-
ture, and complicated differentiation in backpropagation.

C. Joint Compression and Weight Sharing

Pruning and quantization techniques are applied either
individually or jointly. Quantization and pruning tech-
niques are combined in [157]. The less significant con-
nections are first pruned to minimize the computations.
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After pruning, the remaining parameters are quantized to
reduce the storage requirements. The network is retrained
to offset the effects of compression. The last step is the
Huffman prefix coding to further compress the network
and reduce the storage. In [158], pruning methods are
implemented for popular DL models targeting IoT and
mobile devices. A library for ARM Cortex-M processors
named CMSISNN is presented in [159] for maximized
performance through quantization. A combination of prun-
ing and quantization has been demonstrated in [160] for
RNN models. The result shows a 10× and 2× speedup
through pruning and quantization, respectively. To meet
the resource constraints of edge devices, Adadeep [161]
presents an automatic selection of compression techniques
and filters. DeepMon [162] uses a combination of quanti-
zation and caching to speed up the execution by reducing
redundant computations of video frames. CPU and GPU
can significantly increase the throughput by exploiting
parallelism using 8-bit quantization. Instead of one 32-bit
operation, four 8-bit operations are possible within one
clock cycle with a faster response. For instance, the Google
Tensor Processing Unit (TPU) and NVIDIA PASCAL GPU
support 8-bit integer arithmetic operations.

In weight sharing, the same weights are used to cal-
culate outputs for multiple layers or filters reducing the
number of unique weights [157]. In [157], weight sharing
is performed by k-means clustering and Huffman coding.
As the same weights are repeatedly used, the memory
requirements are significantly reduced. A hashing function
can be used to group the weights and then use one weight
from each group [149]. The number of parameters in
CNN can be reduced by using vector quantization [163].
The concept of vector quantization is to use a represen-
tative central value for a group of parameters. K-means
clustering is used to group the parameters, and then,
vector quantization is applied to each cluster resulting in
16–24× parameter reduction within 1% accuracy degra-
dation. In deep compression [157], the number of dis-
tinct weights is grouped resulting in only 8- and 4-bit
precision weight indices in AlexNet for convolution and
dense layers, respectively. Weight fetching becomes a two-
step procedure: reading the weight index and reading the
shared weight based on the weight index. Weight sharing
is only useful for memory saving and does not impact the
precision of MAC or computation.

D. Multiply-and-Accumulate Optimization

One of the main computational complexities of DL algo-
rithms comes from multiplication operations. Therefore,
optimization of the multiplication by replacing it or remov-
ing part of the multiplication can significantly improve
the inference performance. For FPGA implementations,
spatial convolutions are replaced by shift operations and
depth convolutions followed by 1 × 1 convolutions in
DiracDeltaNet [164]. Results demonstrated a 48× and
65× reduced parameters and operations, respectively,

of the VGG-16 model having a comparable performance on
the ImageNet dataset. The technique presented in [165]
eliminates FLOPs, multiplications, and nonlinear opera-
tions during inference. All multiplications are precomputed
and stored in a multiplication table. Thus, the FLOPs
are omitted by table lookups and fixed-point summation,
and nonlinear operations are omitted by quantizing the
activation functions. An alphabet set multiplier (ASM)
that uses computation sharing is used in [166] to reduce
the cost of multiplication in DNN. In ASM, conventional
multiplication is performed using a precompute, adder,
shifter, and select unit. The precompute bank finds the
alphabet using the product of input and some smaller bit
sequences. Shifters and adders are then used to obtain
the multiplication between an input and an alphabet. The
result of this computation is shared. Therefore, based on
the weights, the complete multiplication can be realized
through a proper combination of the alphabet using the
shifter and adder.

E. Computational Optimization

Approximate computing (AC), low-rank approximation,
and stochastic computing (SC) are three major computa-
tional optimizations used to compress the DL models tar-
geting edge devices. At acceptable accuracy degradation,
hardware realization of DL models with reduced complex-
ity, latency, and improved energy efficiency is achievable.
AC can be applied at both the algorithmic and hardware
levels. For example, at the algorithmic level, loop perfo-
ration [70] skips some iteration by trading off between
accuracy and latency or power consumption. At the hard-
ware level, an approximation could be in architectural
optimization [167], approximate data storage [168], and
reading writing speed modifications [169]. In [170], the
approximation of both computation and memory access
for NN demonstrates 34%–51% energy savings within 5%
quality degradation. Based on a ranking of the contribu-
tion of neurons to energy consumption and accuracy, less
important neurons can be approximated. AxDNN [171]
is the cross-layer approximation of a DNN incorporating
activation pruning, approximate multiplier, and voltage
scaling to improve energy efficiency and speed. An approx-
imated DBN is presented in [172]. AxTrain [173] also
leverages AC that improves the inference on hardware
by finding the error-tolerant parameters. An approximate
NN (AxNN) can be obtained using a quality-configurable
technique exploiting neuromorphic processing [174].

The low-rank approximation is another effective way of
compressing the size of the DL model. In DL, there is a
significant redundancy at filters/channels to be encoded
using low-rank matrices to get an approximate network.
For instance, redundant filters of an NN layer can be
compressed using the linear combination of fewer filters.
A data-driven approach is presented in [175] that uses
Tucker decomposition to obtain a low-rank approxima-
tion for various image classification models demonstrating

Vol. 111, No. 1, January 2023 | PROCEEDINGS OF THE IEEE 57



Shuvo et al.: Efficient Acceleration of DL Inference on Resource-Constrained Edge Devices

improved computation and reduced bandwidth require-
ments. Tensor decomposition can be applied to a trained
DL model to decompose the large filters into several
smaller tensors. It can improve performance without signif-
icant degradation of accuracy. In canonical polyadic (CP),
decomposition can be combined with low-rank approxima-
tion to increase the model compression. A 4.5× speedup
of CNN in CPU has been achieved in [176]. Fine-tuning
of weights can restore the loss of accuracy caused by CP
decomposition at certain levels. One of the advantages
of low-rank approximation in DL is the simplified model
architecture with reduced parameter count.

SC allows MAC operations through AND gates and mul-
tiplexers that help to reduce power consumption. SC has
shown promise in realizing the DL inference on embedded
systems utilizing simplified arithmetic operations. An effi-
cient implementation of a DCNN is presented in [177]
based on SC for activation functions, pooling, and con-
volution layers. SC can also be used in ReLU, parallel
counter, and near-max pooling operations’ approximation
to optimize the CNN [124]. There are significant efforts
to reduce the computation time and latency of SC-based
multiplication in DL using logarithmic quantization [179]
and differential MAC [180].

F. Knowledge Distillation

KD is a compression method that mimics the behavior of
a large DL model into a lightweight model by transferring
learned knowledge [178]. The conceptual representation
of the KD technique is demonstrated in Fig. 11. Two dif-
ferent models are used for training and inference. Usually,
the large network is called the teacher model, whereas the
small one is called the student model. The student models
are the compressed model having a smaller size that can
be deployed in resource-constrained devices to make the
efficient inference. The transfer of knowledge is done by
training the student model to imitate the teacher network
through the minimization of a loss function. The idea of
KD was developed in [181] and generalized in [182].
In [182], the student model was trained to imitate the class
probabilities of the softmax output of the teacher model.
An improvement of 2% accuracy for speech recognition
has been demonstrated in using the KD methods. The
student network achieves similar accuracy as the teacher
network consisting of an ensemble of ten networks. The
student model can also use other information from the
teacher model, such as activations [183], neurons [184],
or features of intermediate layers [185] as knowledge to
improve the performance.

In KD, the teacher model can be significantly larger and
pretrained. There are research efforts to design an effective
student model. For example, DeepRebirth [186] merges
convolution layers with consecutive weightless layers, such
as pooling and normalization, together to get a compressed
student model. The parameters are then fine-tuned layer-
wise to minimize the accuracy degradation. DeepRebirth

has shown promising results by 3× speedup and 2.5×
memory reduction. Rocket launching [187] is a parallel
learning scheme that trains both the teacher and student
models simultaneously.

For NLP on edge devices, a smaller transformer-based
model has been designed using the KD technique named
TinyBERT [188]. The knowledge encoded in the teacher
BERT is effectively transferred to the TinyBERT maintain-
ing at least 96.8% performance of larger BERT model with
7.5× reduced model size and 9.4× inference speedup.
Another technique is presented in [189] based on the
extension of KD for sentence transformer distillation
demonstrating compressed student models with compara-
ble performance.

FitNets [185] are student networks with increased depth
and reduced width that make a generalized compact net-
work. A guided layer introduced in the middle of the
student layer learns from the hint layer in the teacher net-
work. Result demonstrates comparable classification accu-
racy for the CIFAR-10 dataset with speedup and reduced
parameter count. Various applications with impressive
results have been developed for KD, such as mutual learn-
ing [190], teacher assistant [191], and self-learning [192].
Also, the idea of knowledge transfer has been extended to
dataset distillation to obtain a compressed training dataset
reducing the computational burden of training a DL model
with a large amount of data. The knowledge from a large
dataset is transferred to a smaller dataset that significantly
reduces computational loads of training DL models [193],
[194]. KD is a very flexible compression technique that can
be adapted for a wide variety of applications. The major
drawback of KD is the unbounded decision boundary of
student and teacher models.

G. Adaptive Optimization Techniques

Most DL compression techniques, such as pruning,
quantization, and KD, are static. The optimizations are
independent of the change in input. Sometimes, the
decision-making complexity of DL algorithms depends on
the difficulties of input. For example, object detection
from a blurry image is more difficult than detection from
a clear picture. Similarly, for NLP, recognizing a sim-
ple sentence is much easier than a complex sentence.
Adaptive optimization techniques allow tuning during
inference runtime based on the current input to the net-
work. To avoid redundant computation of video frames,
NoScope [209] skips frames having insignificant changes
to adjacent frames. A difference detector is used to iden-
tify the changes between consecutive frames employing a
lightweight classifier.

Two DL models of different sizes (big and little) can be
used for classification during inference [210]. The little
network runs first assuming that easy input occurs more
frequently than difficult ones. A success checker evaluates
the classification confidence. The inference is forwarded
to the output when the confidence score exceeds a prede-
fined threshold. Otherwise, the big model is employed to
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Fig. 11. Illustration of KD [178]. The knowledge from the pretrained large teacher model is transferred to the shallow student model

through the minimization of distillation loss.

execute the inference. This technique offers up to 53.7%
and 94.1% energy savings for image classification and
digits’ recognition, respectively. The little/big scheme will
save energy only if the big model is seldom activated.
It also requires double training time and resources for two
networks. The learned parameters from the two models
consume additional on-chip memory.

Instead of storing weights from two separate models,
incremental training and weight reuse can improve some
limitations [211]. With increased depth, the DL model
learns from simple to complex features. Therefore, if the
input is easy, a shallower network may make accurate
decisions, whereas deeper models classify complex inputs
as having very complicated nonlinear decision boundaries.
Instead of running through the last layer of the network,
part of the network can be turned off during the inference
from easy input.

The early exiting technique can reduce the latency by
generating acceptable inference performance using only
a portion of the complete DNN model. An early exiting
CNN architecture with four exit points is demonstrated
in Fig. 12. BranchyNet [212] is an implementation of an
early exiting technique that adds multiple exit points to
the base network. The confidence score is calculated as the
entropy of softmax. Comparing the confidence score with
a threshold, the inference is either stopped or continued.
Instead of making an inference at the end of the network,
an inference result can be produced at any of the exit
points improving latency and saving resource utilization.
However, improved performance is only achievable if the
deeper branches are rarely used. In [213], a regularization
has been added to the latency term to identify whether the

current input sample is to be passed to the next layer or
not.

Early exiting concepts can be extended to different com-
putation levels. For instance, DDNNs [214] are based on
BranchyNet having exit points at three different network
levels: cloud, edge server, and end-device. This concept is
also used in DeepIns [215] for inspecting manufacturing
processes in the industry. In DeepIns, data are collected
by the edge sensors and have two exit points: one at the
edge server and the other one at the cloud. An authentic
operation (AO) unit is added to BranchyNet in [216] to
determine whether the input is to be passed to the edge
server or cloud based on the confidence score.

Due to additional weights from the lateral branches,
the BranchyNet requires more storage than the original
network. Instead of adding branches, skippable tiny NNs
known as gates are attached to the network architecture
of SkipNet [217]. The concept of SkipNet is illustrated

Fig. 12. Example of early exiting technique [18]. There are four

exit points in the CNN classifier having different depths.
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Table 3 Summary of Model Compression Techniques and Results of Compression

in Fig. 13. In the inference runtime, the network can
skip some layers depending on the input type to save
computations with negligible effect on accuracy. Splitting
the inference into multiple tasks and sequentially execut-
ing with increasing complexity saves energy. For example,
speech recognition in smart assistants (e.g., Google Home,
Apple Siri, and Apple Watch) uses two networks. A small
RNN is used on the edge that can run on energy con-
straint wearables, such as smartwatches with low power
consumption [19]. After the wake-word detection, the rest
of the audio signal is transmitted to interpret and take
actions in a large speech recognition DL model running
on the cloud. Such a hierarchical face recognition method
using a smartphone is presented in [218], which uses CNN.
Steps of CNN are executed in the custom inference engine
sequentially with increased complexity. A medical diag-
nostic tool based on hierarchical inference is developed
using wearable sensors in [219]. First, a small CNN on the
edge device is used to predict whether the person is ill or
healthy. If the patient is ill, then a deeper and larger model

is used on the cloud that uses more complicated diagnoses
using multiple sensor data.

Representative model compression techniques from this
section are summarized in Table 3. This table presents the
summary from multiple viewpoints, such as objectives of
the corresponding research, base network, and adopted
compression techniques, whether the outcome is lossy,
lossless, or improved, and finally, results are tabulated.

Table 4 presents a summary of popular lightweight DL
models with the number of parameters and operations.
Most of the models listed in Table 4 are the results of apply-
ing compression techniques on the computation-intensive
DL models.

VIII. H A N D L I N G S P A R S E T E N S O R S F O R
E F F E C T I V E E D G E I N F E R E N C E
The DL models sparsity can be of two types: structured
and unstructured. The nonzero elements are randomly
scattered in unstructured sparsity and follow a regular
pattern in structured sparsity. Some of the basic operations,
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Fig. 13. Example of skipping net [217]. The network can skip some layers depending on the input type to save computations with

negligible effect on accuracy.

such as dropout, quantization, and ReLU activation, result
in unstructured sparse activations and weights that are
inherent in the DL models.

Activation functions, such as ReLU, clamp the negative
inputs to zeros resulting in sparse tensors. For instance,
activations are 40% and 70% sparse in CNN and FC layers,
respectively, [220] due to ReLU activations. Max pooling
operation can boost the sparsity up to 80% for the VGG-
16 network [100]. Upsampling operation in CNN inserts
zero weights resulting in sparsity [221]. Transposed con-
volutions in the GANs insert zeros by upscaling resulting in
60% MAC elimination [222]. Dropout is a technique often
used in DL training to prevent overfitting that introduces
activations sparsity [48].

The pruning technique can remove above 90% and
60% weights of dense layers and convolution layers,
respectively, introducing significant weight sparsity [47].
For compact network architectures, such as MobileNet-
v2 and EfficientNet-B0, pruning can introduce 50%–93%
sparsity resulting in 2.5×–4.2× MAC elimination [223].
NLP models, such as Transformer [45] and BERT [224],
have around 80% [225] and 93% [226] weight sparsity.
If exploited properly, such sparsity can result in 4.8×
and 12.3× MAC reduction for Transformer and BERT,
respectively. Lossless reduction of computation and mem-
ory access of 3.8× and 1.1× is reported in the NLP model
SpAtten [227] by pruning unimportant tokens and heads.

Above 80% weights can be pruned from RNN [228],
GRU [160], and LSTM [229] models without any signif-
icant loss of accuracy. For instance, refactoring the batch
normalization for RNN in MASR [230] achieves about
60% activation sparsity. Through activation sparsification,
DasNet [231] reports MAC elimination of 27% for AlexNet
and 12% for MobileNet with less than 1% top accuracy
degradation.

The advantage of such sparsification has been examined
in CNN models to be about 40% and 50% MAC oper-
ation elimination during training and inference, respec-
tively [232]. In MobileNet-v2, activation sparsity can elim-
inate 20% MAC operation [72]. The execution time and
energy are significantly reduced by exploiting sparsity by
eliminating ineffective calculations and considering only
nonzero computations. Significant speedups are possible

by reducing memory access and storage requirements by
storing only the nonzero values.

Hardware accelerators for efficient inference may
exploit the sparsity of weights, activations, or both. Accel-
erators can handle the sparsity both in a static way or
dynamically. An example of static sparsity involves the
locations of zero weight being known beforehand for
inference in Cambricon-X [233]. Such architectures allow
off-line structured arrangements of sparse tensors [234].
Recent developments of inference accelerators, such as
ZENA [235], SNAP [236], and EyerissV2 [237], leverage
dynamic sparsity. Dynamic sparsity handling accelerators
are required to determine the locations of nonzero ele-
ments in tensors.

The sparsity in the DNN accelerator can be exploited
at two levels: neurons and weights/activations. The MAC
operations can be skipped for zero weights as implemented
in Cambricon-X [233]. The sparse weights are stored with
the address index. The activations are fetched to the PEs
according to the address index of the weights, and the
MAC operation is performed. Thus, exploiting the sparsity
of weights, the number of MAC can be reduced, which,
in turn, reduces the latency and energy consumption.
However, the distribution of nonzero weights is irregular
causing address indexing problems, inefficient memory
access, and imbalanced PE. The number of address indexes
is reduced in the block sparsity, where a single address
index is used for a group of weights [238], [239]. Archi-
tectures exploiting block sparsity require less MAC than

Table 4 Lightweight DL Models for Edge
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weight-sparse architecture, and the PE is more balanced
with efficient memory access. Vectorwise block sparsity is
exploited in [239], where nonzero weights from adjacent
multiple columns are combined with a column index.
A multiplexer is used to correctly identify the column index
and the corresponding input.

The neuron sparsity in the input and output is exploited
in many DNN accelerators. The number of operations
can be lessened by observing the sign of accumulated
activation in the PE [240]. In [240], the negative values
are detected to terminate the computation because neg-
ative activation will be zeroed by ReLU and will remain
zero in subsequent layers. The computations for only the
important neurons are realized in [241]. The predictions
are performed first, and then, the output indexes are
used to exploit the sparsity. The bit-serial processing for
MAC calculation is used to employ the flexible bit width.
Architectures can also exploit both the weight and neuron
sparsity in a joint way [242], [243], [244].

Sparse weight compression is an effective technique
that results in 20%–30% memory access reduction [157].
The compressed sparse weight matrix can be saved in
two main formats: compressed sparse row (CSR) and
compressed sparse column (CSC). Eyeriss v2 [237] uses
the CSC format to store compressed parameters and acti-
vations. It provides support for both sparse and dense
models. A hierarchical mesh ensures high flexibility in
PE interconnections. Cnvlutin [245] uses the CSR scheme
for compressed activation without exploiting the weight
sparsity. In Cambricon-X [233], the PEs used compressed
weights for calculation but do not consider the activation
sparsity. The SCNN [244] supports compressed processing
for convolutional layers, and EIE [243] supports processing
for dense layers. In SCNN [244], the CSC scheme is
used for storing both weights and activations. A multiplier
array generates the products from compressed values that
are summed using interconnection mesh. Sparten’s [246]
architecture is similar to SCNN with an improved multipli-
cation reducing the overhead. EIE [243] performs sparse
multiplication for dense layers. Weights are stored using
the CSC format and have the zero-skipping ability for null
activations. EIE also stores the starting position of each
column, which is required due to the variable length of
compressed weights. For nonzero input, the compressed
weight column is read to update the output. Moreover,
power savings are achieved by avoiding external DRAM
access. The CSC provides better memory efficiency com-
pared to the CSR format [247]. Compression methods
for sparse-weight matrices also include compressed image
size (CIS) and run-length coding (RLC). NullHop [248]
utilizes the CIS scheme for the weights and implements
zero skipping for null activations. SqueezeFlow [249]
used the RLC for weights supporting both the sparse and
dense models. RLC for activation compression, PE data
gating, and zero input detection are used in [250]. The
concise convolution is introduced to avoid null results.
Unique weight CNN (UCNN) accelerator [251] reduces the

memory size considering a generalization of the sparsity.
Instead of utilizing the repetition of zero weights, UCNN
considers the repetitions of weights having any value and
reuses the computations.

IX. Q U A L I T Y M E T R I C S F O R E D G E
I N F E R E N C E P E R F O R M A N C E
E V A L U AT I O N
Comparisons between different edge hardware platforms
for DL inference are not straightforward. There are some
standard metrics to define the performance of the DL
inference on edge devices described in this section.

A. Model Size

The size of the model is an important metric to eval-
uate EI performance. Compact network architectures are
preferred for edge devices. Hyperparameters such as the
number of layers, nodes per layer, activation functions, the
complexity of computation per layer, loss functions, and
the number of connections between nodes of one layer
to the next significantly affect the inference performance.
Therefore, the network architecture and hyperparameters
of the model need to be considered. In addition, the num-
ber of parameters (weights and biases) reflects the memory
requirements and, therefore, acts as another important
metric.

B. Accuracy and Robustness

The accuracy verifies if the inference engine can accom-
plish the assigned task properly. Some EI applications, such
as autonomous driving and face verification for device
unlocking, require very high accuracy. Inference accu-
racy, sometimes, depends on the input feeding speed. For
instance, while processing video frames, a few frames may
be skipped due to device constraints and fast feeding rate
resulting in an accuracy drop. Robustness also plays a sig-
nificant role in evaluating inference performance. In many
cases, a highly accurate model with ideal datasets and
a simulation environment will produce poor results in a
practical scenario. As inference on edge is focused to bring
DL solutions to the end user, robustness is important. The
robustness of the accuracy can be determined by evaluat-
ing the performance on widely accepted multiple datasets.
Also, if any data preprocessing improved the accuracy, that
should be carefully considered during inference.

C. Area and Cost

The chip area represents the total silicon area required
to implement all the computations for the inference oper-
ations. The area is often expressed in squared millimeters
(mm2) and squared micrometers (µm2) units. It is depen-
dent on the technological node, architecture, the number
of cores, and the size of the on-chip memory. The expense
of the chip depends on the chip area requirement, includ-
ing the size and type of storage, and the amount of control
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logic. The typical on-chip memory capacity of inference
engines is in the range of a few hundred kilobytes. Thus,
in addition to chip area, the required memory sizes should
be carefully considered.

D. Power Consumption

The power consumption often expressed as milliwatt
(mW) or microwatt (µW) is the total power required
to execute the inference. The power consumption report
should include the power consumption of memory access.
Although alternate power sources are emerging for edge
devices through energy harvesting [252], reducing the
power consumption of inference is crucial. The number
of computations and off-chip memory access implicitly
impact the power consumption. Thus, the amount of
off-chip memory accesses should be carefully considered.
Power consumption caused by memory access can be pre-
dicted by the off-chip data read and write per inference.

E. Energy Efficiency

It measures the rate of operations that a computing
device can deliver for every watt of power consumption.
Usually, the edge devices are battery-operated, requiring
ultralow power consumption and highly energy-efficient
operations. Energy efficiency is one of the key criteria
to evaluate the performance of DL inference. It is often
expressed as giga operations per watt (GOPS/W) or tera
operations per watt (TOPS/W), illustrating how many
operations the inference engine can perform per watt of
power consumption. The FLOPs per second (FLOPS) per
watt (FLOPS/W) metric is also used to assess the perfor-
mance of a computing system that involves many floating-
point calculations. The energy efficiency is influenced by
the DL model size, the number of memory access, and
computation needs.

F. Latency

Latency defines how fast an inference engine can accom-
plish a complete inference. For real-time performance,
improving the latency is crucial. Latency is often expressed
in units of time (microseconds, milliseconds, and seconds)
that measures the difference in time between the arrival
of the input signal to the time when the result is gen-
erated. Low latency is the desirable feature of EI. For
instance, real-time augmented reality (AR)/virtual real-
ity (VR) applications and intelligent robotic vision may
put stringent latency requirements to a few milliseconds.
Latency depends on many factors, including the types of
edge devices, available resources, and how the inference
operations are being processed.

G. Throughput

The throughput of DL is defined as the maximum num-
ber of inputs that the network can process per unit of
time. It is often expressed as the number of operations that

an inference accelerator can perform per second. Higher
throughput indicates better performance. Metrics used to
quantify the throughputs are giga operations per second
(GOPS) and tera operations per second (TOPS). As the
major computations of DL algorithms are MACs, therefore,
throughput is sometimes expressed as giga MACs per
second (GMAC/s) and tera MACs per second (TMAC/s).
An MAC consists of multiplication and addition (two
operations); thus, the ratio between TOPS and TMACS is
2:1. High throughput is imperative to provide real-time
execution for numerous use cases in navigation, medical
diagnosis, security, and automation. The low latency and
high throughput are expected to run fast inference for real-
time performance. The throughput is related to the number
of cores in the chip. Therefore, the number of cores is also
an important parameter to be considered.

H. Memory

Optimizing the memory requirement plays a vital role
in high energy efficiency and low power consumption
EI. A highly accurate DL model requires computations of
millions/billions of parameters that consume large storage.
On edge devices, there is an obvious scarcity of memory.
Thus, the memory footprint is an important quality met-
ric to evaluate the inference performance. The memory
requirements are mainly contingent upon the DL model
size and required number of memory access, and the types
of memory used. Lowering the memory requirement is the
better optimization of the DL inference on edge.

I. Test Setup

The test setup is an important aspect of evaluating
the DL inference for different applications. For exam-
ple, one processor can be designed to report very low
power consumption without considering off-chip memory
access. When evaluating the overall system performance,
the off-chip memory would cause substantial power con-
sumption. Similarly, it is important whether the results
are produced by simulation or experiments. With much
preprocessing in ideal simulation cases, DL can generate
superior performance, which can deteriorate significantly
in real-life experimental case.

X. S O F T W A R E T O O L S A N D
T E C H N I Q U E S F O R E D G E I N F E R E N C E
A N D C O D E S I G N
The DNN inference on the edge is slower compared to the
cloud. Thus, to accelerate the performance, both hardware
and software optimizations are carried out. Hardware
acceleration mainly focuses on parallel computing, while
software optimization focuses on pipelining, resource man-
agement, and efficient compiler design. The low-level
libraries are mainly developed for GPU computation and
are not widely available for edge devices. However, these
libraries (e.g., cuDNN, CUDA, and MKL-DNN) provide
an optimized implementation of the building blocks of
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DL methods, such as forward and backward propagation,
activations, pooling, convolutions, and normalization. For
inference on the edge and IoT devices, hardware-specific
development platforms, such as Nvidia Jetson TX2 [253]
and Intel Edison kit [254], are available.

Open-source frameworks are highly successful for DL
model building, training, validation, and evaluation. Ten-
sorFlow [255], Caffe [256], and PyTorch [257] are some
of the popular frameworks. TensorFlow by Google uses the
directed graph for computation and a placement algorithm
to distribute the computation task on nodes. TensorFlow
enables posttraining quantization to 8 bits using a scal-
ing factor with a bias to map the weights within the
INT8 range. TensorFlow Lite (TF-Lite) and TensorFlow
Micro are two optimized extensions of TensorFlow for
mobile, embedded devices, and microcontrollers, respec-
tively, to provide on-device inference from pretrained
models [258]. TF-Lite and Caffe can efficiently load and
compute sparse matrices. These frameworks facilitate a
significant reduction of latency, memory, the number of
FLOPs, power, and inference time in pruned models than
their dense counterparts. RSTensorFlow [259] is another
extension of TensorFlow, developed to ensure proper uti-
lization of the heterogeneous computing resources to
run inference on android devices. It has demonstrated
improved matrix multiplication and speedup of different
DL models on Android devices with GPU support. Caffe
and PyTorch are two other frameworks maintained by
Facebook. Caffe focuses on DL model building and exper-
imentation for edge devices, such as smartphones and
Raspberry Pi. PyTorch is a very convenient platform to
deploy DNN research prototypes into production. Open NN
Exchange (ONNX) [260] enables interoperability, hard-
ware optimization, and portability within different frame-
works. A model trained in one of the frameworks can
be deployed to make inferences using another framework
taking advantage of the ONNX standard format.

Graph compilers take the computation graph to gen-
erate optimized instructions for specific hardware. Graph
compilers (e.g., Tensor-RT, TVM, XLA, and OpenVINO)
often optimize the graph structure by merging redun-
dant operations, performing kernel autotuning, enhancing
memory reuse, preventing cache misses, and so on. Table 5
presents an outline of the widely used software packages
for algorithm–hardware codesign and optimization. This
table also includes the supported ML frameworks and edge
devices by each of the software packages.

A. Compression-Compiler Codesign

The compression-compiler codesign has recently gained
attention demonstrating improvement in EI performance
in mainstream general-purpose edge devices. The DL
model compression and compilation of executable codes
are performed in synergy to ensure optimum model
size and inference speed. The compilation is the map-
ping of high-level DL operations into hardware-level

Fig. 14. Overview of compression-compiler codesign used in

CoCo-Gen of the CoCoPIE software framework [274].

instructions. This codesign approach remained unex-
plored for a long and has recently shown promise in
improving energy efficiency and latency. A few promi-
nent examples include PCONV [261], PatDNN [262],
and CoCoPIE [263], which considers simultaneous design
exploration compression and compiler. In model compres-
sion, structured pruning obtains compiler-compatible pat-
terns. In the compiler design phase, parallelism at both
the instruction and thread levels generates efficient com-
piler code. MCUNet [264] is a framework incorporating
compact model design and compiler optimization to elim-
inate instruction and memory redundancy. Compression-
Compilation codesign for Performance, Intelligence, and
Efficiency (CoCoPIE) [263] is a software framework that
effectively uses the pruning and quantization techniques
compatible with compiler instructions. The two-part opti-
mization in CoCoPIE includes CoCo-Gen and CoCo-Tune.
The CoCo-Gen is the pattern-based structured weight
pruning and pattern-aware executable code generation.
A simplified overview of the CoCo-Gen framework is
illustrated in Fig. 14. The synergy in fine-grained prun-
ing for high accuracy and hardware-compatible compiler
code generation resulted in the efficient execution of
DL inference. However, the process is slow due to the
time-consuming pruning process. The CoCo-Tune fastens
the pruning by effectively identifying the parameters to
discard through a composability-based compiler frame-
work. In CoCo-Tune, the pruning is speeded by considering
the CNN model as a composition of pretrained blocks
and reusing them to identify the components to be dis-
carded. In addition, computation reuse is exploited by
utilizing hierarchical compression techniques. An exper-
imental demonstration of CoCoPIE resulted in improved
energy efficiency and inference latency for ResNet50 and
VGG-16 models in general-purpose smartphones compared
to neural accelerator ASICs and FPGAs [274]. This tech-
nique has also been experimented with for object detection
using YOLO-v4 and 3-D activity detection using C3D,
R(2 + 1)D, and S3D networks achieving 19 frames/s and
6.8 ms per frame performance without accuracy degra-
dation, respectively, in smartphones [275]. Therefore, the
compression-compiler codesign has emerged as a promis-
ing technology to ensure energy efficiency and faster DL
inference in general-purpose edge devices.
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Table 5 Software Packages and Supported Edge Devices for Algorithm–Hardware Codesign

B. Algorithm–Hardware Codesign

The processing of DNN algorithms in hardware for
efficient inference is attracting continuous research atten-
tion. The reason for the current surge of customized
hardware design is twofold: 1) conventional hardware
performance is reaching the upper limit and 2) adopting
the compression techniques in hardware is a potential
choice to meet the increasing computation demand. The
paradigm in customized DNN accelerator design is the
algorithm–hardware codesign. A general framework of
the algorithm–hardware codesign is illustrated in Fig. 15.
The algorithmic design can be performed in any of the ML
frameworks. The best-learned models are then used by an

edge-specific intermediate software package for optimiza-
tion. The optimized models are used for inference accel-
eration on the target hardware platform. The algorithmic
optimization provides effective hardware design instruc-
tions. On the other hand, the hardware realization of
DNN algorithms provides feedback for more efficient algo-
rithm design. Therefore, the algorithm–hardware codesign
is the new research direction in obtaining customized
application-specific DNN accelerators.

C. Frameworks to Exploit Hardware Parallelism

The goal of parallelization is to maximize performance
through proper utilization of the available hardware

Fig. 15. Block diagram of the generic training to inference pipeline. The algorithmic design can be performed in any of the ML frameworks.

The learned model is then used by an edge-specific intermediate software package for optimization. The optimized models are used for

inference acceleration on the target edge hardware platform.
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resources. Parallel computing of CNNs and RNNs has
demonstrated faster response in CPU, GPU, and DSP [259].
For instance, CNNdroid [276] is a GPU-based library for
DCNN inference on the android smartphone that can result
in 60× speedup and 130× energy reduction.

Nvidia’s compute unified device architecture (CUDA) is
a parallelization framework that can be used for embed-
ded and mobile devices [277]. For instance, vectorized
implementation of convolution can be used in real-time
object detection and robotic controllers. However, directly
employing the CUDA for mobile GPU may deteriorate
the system performance [278]. RenderScript [279] is
another parallelization framework for android devices to
automatically exploit data structure parallelization among
accessible GPU cores. SqueezeNet implementation using
RenderScript has demonstrated a 310.74× speedup on
Nexus-5 mobile devices. The Cappuccino [280] framework
can automatically synthesize the appropriate DL models
for EI. Cappuccino takes in the model definition, model
file, and dataset as input and applies three levels of paral-
lelization on kernel, filter, and outputs. Using cappuccino,
faster response and high energy efficiency can be achieved
at the expense of imprecise computation.

DeepSense [281] is a GPU-based CNN inference
framework for mobile devices with improved latency.
In DeepSense, most computation-intensive tasks are per-
formed by GPU, and only the padding and memory allo-
cation are performed by the CPU. Limited memory of
mobile GPU negatively impacts running the DCNN on
mobile devices [282]. Thus, splitting the computation of
convolution and dense layer between GPU and CPU can
achieve a 60× speedup for object detection using YOLO in
the Jetson TK1 board [283].

DeepX [284] uses SVD to compress layers to get compact
network architecture. Then, the architecture is decom-
posed into blocks to run parallel inference. The DeepX
toolkit (DXTK) [285] is a generalization of DeepX tech-
niques for other DL models and layers.

D. Efficient Memory Access

The basic operation of DL is the billions of MAC. For
the successful computation of each MAC, a total of four
memory accesses are needed. The memory accesses are
three read operations to fetch the weight, activation, accu-
mulated partial sums (psums), and one memory write to
save the updated sum. Therefore, one of the challenges
in DL inference is efficient memory access. The generic
architecture of a DNN inference accelerator is presented
in Fig. 16. In general, the DL inference accelerating hard-
ware follows a hierarchical memory structure for efficient
processing. The outer layer of the memory hierarchy is
the off-chip DRAM that stores the weights and activations.
There are three SRAM buffers or global buffers (GLBs).
The GLB stores IAs, weights, and output activations in the
intermediate layer to feed the PEs. The lowest level of
the memory hierarchy is the register files (RFs) within the

PEs. In the worst case scenario, if all four off-chip DRAM
accesses are required for MAC calculation, the throughput
and energy efficiency are significantly affected.

DRAM access is the most power-consuming task in
the memory hierarchy. DRAM in the DL accelerator can
store more data requiring more energy compared to the
on-chip small memory. The on-chip memory is usually a
few kilobytes in size. Instead of frequent access to DRAM,
storing the available data on-chip to reuse is an energy-
efficient solution. A high number of DRAM access results in
increased latency and energy costs. Thus, many techniques
have been introduced to reduce the number of DRAM
accesses. In ShiDianNao [286], the inference architecture
is embedded inside the camera sensor. Thus, eliminating
any DRAM access to store the data leads to 60× energy
savings compared to DianNao [287].

Thus, reusing data stored in faster and low-energy small
memories, such as GLBs and RFs, is preferred. However,
due to the limited storage capacity of on-chip memory,
different dataflow techniques are developed. In CNN, three
types of data can be reused, such as inputs, weights, and
convolutions. The inputs captured in the adjacent receptive
fields can be reused to calculate more than one output
value. Weights are often redundant for neighboring filters
and can be reused. When the weight slides through the
input to compute the convolution, overlapping regions can
be reused. During the inference engine design, efficient
data flow can improve the throughput.

There are four types of dataflow schemes used for DL
acceleration [2]: 1) weight stationary (WS); 2) no local
reuse (NLR); 3) output stationary (OS); and 4) row sta-
tionary (RS). In WS methods, the weights read from the
DRAM are stored in the RFs and remain stationary. The
PEs reuse the same weights for as many MACs as possible,
therefore minimizing the power consumption of memory
access for reading weights. For example, neuFlow [288]
is a WS dataflow processor for computer vision applica-
tions. In NLR, weights are not stationary inside the PEs.
In DianNao [287], IAs and filter weights fetched from the
buffer are used in the MAC unit to get the psums. The
sums are then stored in registers to be reused by the PEs.
Thus, reducing the memory access for psum saves energy.
ShiDianNao [286] uses the OS dataflow scheme. The
energy efficiency is improved by reusing the activations
from neighbor PEs. The RS dataflow [250] considers the
efficient data reuse at the lower level of memory hierarchy
like RFs. The inputs, weights, and psums are reused to
update the psum through accumulation at the registers to
increase energy efficiency. The PEs of MAERI [289] consist
of RFs and multipliers. MAERI allows flexible dataflow
through reconfigurable interconnects, distribution trees,
and adder trees. The distribution trees are used to supply
the activations and weights to the PEs, and the adder trees
are used to collect the multiplier outputs. Sparsification
techniques can be exploited using compression to reduce
memory access and memory size. For example, external
memory bandwidth can be reduced by 1.5× for activations
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Fig. 16. Block diagram of the generic DNN inference accelerator [2]. The PEs consist of CU, ALU, and RF. The main computation in the ALU

unit is the MAC. Each MAC may require four memory read/write operations. The energy cost of each data flow in the memory hierarchy is also

illustrated.

and weights using RLC [250]. In addition, by zero skip-
ping, the weights and MAC calculations can save 45% of
energy.

E. Intel OpenVINO1 Toolkit

Intel Open Visual Inference and NN Optimization
(OpenVINO) optimizes the pretrained NN models for Intel
hardware platforms to make the inference. The OpenVINO
workflow consists of four main parts [258]: 1) model
preparation and training; 2) model optimizer; 3) inference
engine and tuning; and 4) deployment.

1) Model Preparation and Training: The OpenVINO
toolkit supports most of the popular ML frameworks, such
as Caffe, TensorFlow, ONNX (Pytorch and Apple ML),
MXNet, and Kaldi. A DL model can be trained using these
frameworks or downloaded from the Open Model Zoo. The
Open Model Zoo is a pool of pretrained models for numer-
ous applications, such as object detection, face recognition,
pose estimation, text detection, and action recognition.

2) Model Optimizer: The model optimizer optimizes and
converts the pretrained model to an intermediate repre-
sentation (IR) suitable for inference. It is a cross-platform
command-line tool to prepare the DL models for optimal
execution in hardware. The model optimizer converts the
trained model to an nGraph compatible IR (.xml + .bin
files) suitable for inference. The optimizer removes the
excess layers and operations, and implements pruning,
freezing, quantization, fusion, and so on. An accuracy
checker utility can be run to evaluate the accuracy of
the inference. Further acceleration of inference is possible
by quantizing the model to an INT8 precision using the
posttraining optimization tool.

1Trademarked.

3) Inference Engine and Tuning: The IR is fed to the
inference engine. The inference engine loads and com-
piles the optimized model to run the inference on inputs.
Model compatibility is checked based on the training
framework and inference hardware. It can execute the
inference on multiple Intel2 devices, such as CPUs, FPGAs,
graphics processors, Neural Compute Stick (NCS) 2, and
Movidius2 vision processing units (VPUs). To trial and
test the inference performance, the OpenVINO2 Tuning
Utilities and Inference Engine can collaborate. The bench-
mark utility can provide throughput and latency measures
through iterative tests, and comparison among differently
configured inferences can be obtained using the cross-
check utility.

4) Deployment: The Deployment Manager is a
command-line tool to assemble the tuned model,
IR files, applications, and required dependencies into a
runtime package for the target hardware devices.

F. MATLAB Deep Learning HDL Toolbox

The Deep Learning HDL Toolbox2 in MATLAB R2021b
(MathWorks Inc.) and the above versions support the
inference on Xilinx and Intel FPGAs and SoCs [265]. This
toolbox enables users to design customized DL models
and evaluate the hardware realization performance. The
DL model building and training are possible in MAT-
LAB. The pretrained model from other frameworks can
also be loaded into the MATLAB environment. The HDL
toolbox supports 8-bit integer quantization of weights to
improve throughput, memory, power, and computational
requirements. Portable and synthesizable Verilog or VHDL
code of the DL model for deployment on edge hardware

2Registered trademark.
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Fig. 17. MATLAB HDL DL Processor IP [265]. The processor

consists of four AXI4 master interfaces, DDR external memory,

convolution, FC layer processor, activation normalization, and

controller through scheduling logic.

(FPGA and SoCs) can be generated using HDL Coder and
Simulink.

One of the advantages of this toolbox is that the com-
pile command automatically generates FPGA instructions
without requiring manual reprogramming. The Ethernet
or JTAG interface can be used to connect the FPGA and
deploy instructions with the DL processor IP core. Dur-
ing predictions, the actual on-device performance metrics,
such as layer-level latency, can be evaluated to identify
performance bottlenecks. The synthesizable RTL from HDL
coder can adapt to a variety of workflows and devices.
An IP core with standard AXI interfaces can be created for
the integration into SoCs.

The MATLAB HDL processor IP core is shown in Fig. 17.
The toolbox includes a DL processor consisting of four
AXI4 master interfaces, DDR external memory, convolu-
tion, FC layer processor, activation normalization, and
controller through scheduling logic. Input data and para-
meters can be stored in the external DDR memory and
transferred to block RAM using one of the AXI4 master
interfaces. The block RAM provides activations to the
generic convolution and FC processor. The convolution and
FC processor perform the convolution operation and FC
layers’ computation. The activation normalization module
serves the purpose of adding the ReLU nonlinearity, a max-
pooling layer, or performing local response normalization
(LRN). There are two controllers in the IP core: one for the
convolution and the other for the FC layer. The generic
convolution/FC processor and activation normalization
can process one layer at a time. The next layer is processed
using the controller (scheduling). The prediction results
or scores can be transmitted back to MATLAB through
the AXI4 Master interface and stored in the external DDR
memory. This processor IP core is edge hardware platform-
independent and, therefore, can be deployed to any cus-
tom hardware platform. The processor IP core is reusable

and sharable to accommodate the DL model of different
sizes.

The DL HDL toolbox provides hardware implementation
of convolution (2-D convolution and depthwise convolu-
tion), FC layers, activation functions (ReLU, leakyReLU,
and clipped ReLU), batch normalization, cross-channel
normalization, dropout, pooling (max, average, and global
average pooling), addition, and concatenation layers.
It also supports a few layers from other frameworks, such
as Keras and ONNX. The DL HDL toolbox supports Xil-
inx Zynq1-7000 ZC706 FPGA, Zynq UltraScale+2 MPSoC
ZCU102, and Intel Arria1 10 SoC devices. The MATLAB DL
HDL provides inference capability on Intel or Xilinx FPGA
for many popular pretrained CNNs (AlexNet, VGG, ResNet,
DarkNet, YOLO V2, MobileNet-v2, GoogLeNet, and so on)
for classification, object detection, and software-defined
radio.

G. XCUBE-AI

X-CUBE-AI can automatically convert pretrained DL
and classical ML algorithms to run inference on
STM32 Arm1 Cortex1-M-based microcontroller units
(MCUs) [266]. It supports the validation and performance
measurement of ML algorithms on STM32 devices without
manual code generation. The workflow of X-CUBE-AI for
DL inference on the STM32 MCUs is presented in Fig. 18.
The pretrained models can be automatically converted to
an optimized MCU-compatible C code.

X-CUBE-AI provides support for Keras, TF-Lite, and
ONNX frameworks. Pretrained models from other frame-
works need conversion to the standard format supported
by X-CUBE-AI (.h5, .tflite, and .onnx). For DL model opti-
mization, X-CUBE-AI supports 8-bit quantization. Weights
can also be stored in external memories (flash and RAM) to
make inferences for deeper networks. In addition, multiple
models can be run on a single STM32 MCU.

H. XILINX Deep Neural Network Development Kit
(DNNDK)

To provide efficient DL inference on Edge platforms,
Xilinx developed the DNNDK. The DNNDK is a software
development kit (SDK) that enables acceleration of the

Fig. 18. Integration of X-CUBE-AI to run DL inference on STM32

microcontrollers [266].
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Fig. 19. Xilinx DNNDK workflow and associated tools for DL

inference on Xilinx edge devices [267].

DL inference in programmable logic. The core component
of the DNNDK is the DL processor unit (DPU). The DPU
is scalaßith Xilinx1 Zynq1-7000 series FPGA and Zynq
UltraScale+2 MPSoC [267]. Zynq and Zynq MPSoC are
heterogeneous systems on chip with ARM processors with
programmable logic. Using the lightweight C/C++ appli-
cation programming interface (API) of DNNDK, inference
application development is possible without prior knowl-
edge of FPGA programming. It also includes an efficient
tensor-level instruction set for CNN.

The DNNDK workflow and associated tools are shown
in Fig. 19. To deploy the DL inference on the edge, the
DNNDK follows five steps: 1) compression of the DL model;
2) compilation of DL models to generate ELF files for
DPU; 3) programming DNNDK API to manage inputs and
outputs, DPU kernel life cycle, and task management; 4)
compilation of hybrid DPU application to make the CPU
code and link to the ELFs for the DPUs; and 5) running the
hybrid DPU application on the target edge device.

The constituent components of DNNDK include com-
pression, compiler, assembler, runtime, simulator, and pro-
filer. The Deep Compression Tool (DECENT) takes an FP32
pretrained model, weights, and a calibration dataset as
input. A lightweight quantized model with an 8-bit fixed
point representation is created. It supports coarse-grained
pruning, posttraining quantization, and weight-sharing
compression techniques. The DNN Compiler (DNNC2) is
the compiler that converts the DL algorithms to IR and DPU
instructions. It also maintains a balance between memory

access and computational load to achieve maximum uti-
lization of the DPU resources. The Cube of NNs (N2Cube)
is the runtime engine for DPU that consists of a driver, DPU
loader, tracer, and programming APIs. N2Cube provides
loading of DNNDK applications, scheduling, and resource
allocation. The DNN Assembler (DNNAS) compiles the
DPU instructions into ELF binary code. The DPU profiler
is composed of a DPU tracer and DSight. During DL infer-
ence runtime, the DPU tracer produces the raw profiling
data. The DSight can generate the visualized charts for
performance analysis using the profiling data. DNNDK
v3.0 and above support both the Caffe and TensorFlow
frameworks [267].

I. NVIDIA TensorRT

NVIDIA’s TensorRT allows the optimization of DL models
for faster inference in embedded and automotive devices.
TensorRT takes a trained DL model as input and produces
a highly optimized runtime engine to perform the infer-
ence. TensorRT is built on the parallel programming model
CUDA and leverages sparse tensor cores [268]. It performs
six optimizations for efficient inference: 1) reduce mixed
precision; 2) layer and tensor fusion; 3) kernel autotuning;
4) dynamic tensor memory; 5) multistream execution; and
6) time fusion. In the training phase, the model parameters
and activations use an FP32 representation. TensorRT cal-
ibrates the precision to convert FP32 into FP16 or INT8
precision. These quantization steps significantly reduce
latency and model size. TensorRT uses KL-divergence to
convert FP32 distribution into INT8. KL-divergence finds
the difference between FP32 and INT8 representation to
minimize the difference through an iterative search. The
layer and tensor fusion merge the nodes in a kernel to opti-
mize the memory. Such fusion reduces the cost of memory
access for the tensor data for each layer. Kernel autotuning
is the kernel-specific optimization that decides on the best
layers, algorithms, and best possible batch size based on
the target edge device. Memories are allocated to the ten-
sor only for the duration of usage. It helps high-speed and
efficient execution reducing the memory footprints and
avoiding allocation overhead. TensorRT processes multiple
input streams in parallel through Nvidia’s CUDA stream.
Time fusion is specifically for the RNNs that perform
optimization over time steps with dynamically generated
kernels. TensorRT-based inference can produce results up
to 40× faster than the CPU-only platforms.

J. CEVA Deep Neural Network (CDNN)

CDNN is a graph compiler for pretrained DL model
deployment on edge devices for efficient inference.
CDNN incorporates network optimizations, quantization,
data flow management, and libraries for both CNN
and RNN [269]. CDNN consists of three main compo-
nents: compiler, run-time software, and invite API. The
compiler automatically optimized the pretrained models
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Fig. 20. Workflow of Qualcomm� NPS [270] for DL inference

acceleration in Snapdragon processors.

through quantization. Run-time software package acceler-
ates the inference in low-power embedded systems. The
CDNN-Invite API provides network support and optimiza-
tions to ensure seamless incorporation and application of
custom AI engines. The CDNN-optimized models can be
embedded for SensPro, NeuPro, and CEVA-XM cores. The
CDNN also incorporates layer fusion and various compres-
sion techniques to reduce memory bandwidth. It enables
proper utilization of heterogeneous computing architec-
tures and is flexible to split a network between multiple
computing engines to ensure superior performance with
minimal power consumption. For example, the AlexNet
inference on CEVA-XM4 demonstrates 3× speedup, 1/30th
power consumption of a GPU, and 1/15th memory require-
ment of a typical implementation. The CDNN fixed-point
quantized AlexNet exhibited less than 1% accuracy degra-
dation than the FP32 implementations on a CPU.

K. Qualcomm1 Neural Processing SDK

The Qualcomm Neural Processing SDK (NPS) is
designed to convert DL models trained on Ten-
sorFlow, Caffe, and ONNX to be compatible with
Snapdragon2 mobile platforms [270]. The NPS exploits the
heterogeneous computing resources to run a pretrained
NN on Kyro2 CPU, Adreno2 GPU, and Hexagon2 DSP
without connecting to the cloud. The NPS supports CNNs
and custom layers. Fig. 20 shows the workflow of Qual-
comm NPS. After building and training, the model files
are transformed into a Deep Learning Container (.dlc)
file to be processed by the Snapdragon neural processing
engines (NPEs). After generating the model file, additional
optimization is possible using quantization or compression
techniques. An application can be designed to quickly exe-
cute the converted model to make the inference on mobile
platforms. Qualcomm provides Qualcomm NPS C++/Java

API or GStreamer plugins for ML application development
and DL inference execution. After execution, the model
performance and accuracy can be tuned using debugging
tools.

L. Cadence Stratus HLS

The Stratus HLS developed by Cadence Design Sys-
tems Inc. can realize the DL inference in register transfer
logic (RTL) [271]. It supports evaluating the performance,
power consumption, and silicon area requirement for var-
ious DL designs. The working steps of Stratus HLS are
illustrated in Fig. 21. The DL models are usually trained
in other frameworks. The learned parameters (weights and
biases) are extracted from TensorFlow or Caffe to calculate
the inference in RTL. The same DL model architecture
needs to be implemented in System C with parametrized
datatypes and hardware constraints. Stratus HLS allows
quantization of parameters ranging from 16-bit down to
12-bit fixed-point representation. From the System C archi-
tecture, the Stratus HLS can generate Verilog RTL. From
the Verilog RTL architecture, the Joules RTL Power Solu-
tion is used to get an assumption on power consumption,
Genus Synthesis Solution for area predictions, and Xcelium
for throughput analysis.

M. Software Frameworks for Large-Scale
Distributed Training

Distributed training facilitates large and complex DL
models to train faster from the high volume of data by
exploiting data and model parallelism. In data parallelism,
data are split and distributed among available connected
nodes, and the DL model is shared. On the other hand,
DL models are split among nodes while using the same

Fig. 21. Cadence Stratus HLS for RTL synthesis and inference

performance evaluation of DL models trained in TensorFlow [271].
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data in model parallelism. Data parallelism is more prac-
tical in most cases. Model parallelism is only feasible,
while there are separately trainable model components
that can be synced after training. There are software frame-
works designed to achieve efficient distributed training.
For instance, PyTorch and TensorFlow allow data paral-
lelism by exploiting the distributed training modules.

DeepSpeed developed by Microsoft is built on PyTorch.
It allows three-way parallelism (models, data, and
pipeline) that facilitates memory and communication
efficiency [290]. DeepSpeed enables high throughput
and low latency for large DL models (having a tril-
lion or more parameters) utilizing distributed computing
resources. Other features include mixed precision training
in single/multi-GPU/multinode, gradient accumulation,
checkpointing, model parallelism, and compression. For
instance, DeepSpeed can train up to 13 billion parameters
on a single GPU without running out of memory, while
PyTorch can handle only 1.4 billion [291]. In addition,
the zero redundancy optimizer (ZeRO) facilitates mem-
ory efficiency by partitioning model states and gradients.
In addition, 1-bit Adam [292], 0/1 Adam [293], and
1-bit LAMB [294] optimizers reduce the communication
resource demand in DeepSpeed. Sparse attention kernels
support long sequence input and sparse structures with
faster execution and comparable performance. Inference-
customized kernels’ design and model quantization shrinks
the DL model reducing the inference latency and cost.
Transformer-based models, such as Megatron and Hug-
gingFace, can make the inference efficiently using Deep-
Speed model parallelism. Compression techniques, such as
ZeroQuant [295], are designed, and many existing com-
pression techniques are built-in in the DeepSpeed library
for rapid compression, reduced model size, and faster
inference.

Google introduced GPipe that combines data and
model parallelism through pipelining [296]. GPipe library
offers distributed training using synchronous SGD and
pipeline parallelism. A DL model can be partitioned
for parallel processing in different hardware accelera-
tors and automatically split training minibatches into
microbatches.

Horovod is another distributed DL training framework
developed by Uber and hosted under Linux Foundation
AI. It supports popular ML packages, such as Tensor-
Flow, PyTorch, and Apache MXNet [297]. Horovod uses
a message-passing interface (MPI) to run DL training in
parallel, distributing the workload to computing facili-
ties. A DL model computation can be distributed to hun-
dreds of GPUs for parallel processing, scaling down the
training time. For instance, a scaling efficiency of 90%
is achieved for Inception-v3 and ResNet-101 in Horovod
(128 servers, four pascal GPUs, and 25-Gb/s connectivity)
execution [298]. In addition, Horovod can run on Apache
Stark for data processing and model training in a single
pipeline. It uses an optimized implementation of the ring-
all-reduce algorithm called NCCL for efficient network

bandwidth use while running a DL model over multiple
GPUs.

Fairscale is an extension of PyTorch for efficient
large-scale distributed DL training [299]. Fairscale allows
DL model interlayer, intralayer, and tensor parallelism,
memory and compute efficiency, and model splitting across
multiple processing nodes. Mesh TensorFlow is a lan-
guage that implements distributed computation graphs
over TPUs using model parallelism [300]. TF replicator is
another framework for leveraging distributed ML across
TPUs [301]. High-level parallelism is obtained by first
building subgraphs for all devices and connecting them
by replacing the placeholders in cross-device computation.
Therefore, the workload distribution can be scaled-up and
switched between different accelerators. BigDL is a distrib-
uted DL framework for Apache Spark for data processing
and DL in the end-to-end pipeline [302]. Ray is another
high-performance distributed framework built on PyTorch
for large-scale deep and RL [303]. In Ray, data are handled
by sharing memory and hierarchical scheduling resulting
in low-latency and high-throughput training. Ray is flexible
in using different GPU clusters and compatible with most
cloud providers.

Besides different software frameworks and libraries,
cloud platforms support easy and efficient DL model train-
ing and performance evaluation. Google Colab, Amazon
Web Services, and Microsoft Azure are a few prominent
cloud computing infrastructures allowing quick DL model
building, training, optimization, and inference at various
capacities and scales [304].

XI. E D G E H A R D W A R E P L AT F O R M S F O R
D E E P L E A R N I N G I N F E R E N C E
Several hardware devices are available to make the EI,
such as FPGA, MCU, TPU, VPU, system-on-chip (SoC), and
ASICs. With large amounts of data, available program-
ming frameworks, and new algorithms, the DNN accel-
eration is contingent upon the computing capabilities of
the hardware platform. For DNN acceleration, the graph-
ics processing unit (GPU) or TPU is the popular choice
in the cloud. Although GPU and TPU can provide high
throughput, the associated energy cost is unacceptable
for resource-constrained edge devices. Thus, customized
neural accelerators are necessary for inference on edge
devices. Such accelerators can achieve satisfactory results
through architectural, memory, and dataflow optimization.
A comparison of different choices of edge hardware plat-
forms is presented in Table 6. The right choice of hardware
is contingent upon the design specification in terms of
latency, area, energy, cost, and flexibility.

A. General Purpose CPU and GPU

The general-purpose CPU contains billions of transis-
tors and can effectively run DL training and inference.
They contain powerful cores and high memory capac-
ity that can handle vast amounts of operations. The
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Table 6 Edge Hardware Comparison in Terms of Quality Metric

CPU-based inference is not feasible on-edge due to high
power consumption, low throughput performance, costly
design, complicated manufacturing process, and large sili-
con area due to many redundant components. Moreover,
the CPU does not fully exploit the parallelism possible
for DL simulations. The GPU offers HPC using multicore
architecture and leveraging parallel processing. CPU and
GPU are software programmable allowing straightforward
adjustment to run new or customized models. In contrast
to the CPU, GPU comprises thousands of ALUs enabling
parallel execution of a massive number of simple opera-
tions. GPUs are performance efficient but infeasible for EI
due to energy constraints. The GPU power consumption
is not tolerable for most smartphones, drones, and many
other edge devices. Although there is high throughput
performance, the limitation of GPU is the IO latency for
transferring data and memory. Therefore, the usage of
GPU for EI depends on the power and energy handling
capacity of the target. The Jetson TX2 includes embedded
GPUs that consume around 15-W power to run the DL
inference [253]. The NVIDIA Jetson Nano development
board consists of a 128-core GPU and quad-core ARM CPU
that can smoothly run most NN backends and frameworks
using NVIDIA Jetpack SDK.

B. System-on-Chip and Application-Specific
Integrated Circuit

Researchers around the globe are focusing on ASICs
and SoCs for DL applications due to the highest per-
formance and energy efficiency. ShiDianNao [286] is a
custom ASIC with improved memory accesses for low
latency and power consumption. It is one of the accel-
erators from the DianNao [287] family targeting the
embedded devices. UNPU [124] is an ASIC designed in
a 65-nm CMOS process capable of running inference
for convolutional, recurrent, and dense layers. It sup-
ports variable bit-width precision from 1 to 16 bit for
weights and demonstrates that LUT-based serial processing
improves the energy efficiency of the MAC operation.

For different bit weight precisions, UNPU can achieve
the peak performance from 345.6 to 7372 GOPS. Envi-
sion [218] targets the always-on-vision application for
wearable devices. It reuses the inactive arithmetic cell for
computation at a lower precision. Designed in a 28-nm
CMOS process, this chip can achieve an energy efficiency
of 10 TOPS for CNN processing for visual recognition.
An ASIC for object tracking using pipelined direct feedback
alignment (PDFA) is presented in [308]. It is capable
of processing 34.4 frames/s with an energy efficiency of
1.32 TOPS/W. SNAP [309] is another ASIC designed in
a 16-nm process that adopted unstructured sparsity for
optimization. Within a 2.4-mm2 chip area, it can achieve
an energy efficiency of 21.55 TOPS/W for convolutional
layers, and it can run pruned ResNet-50 inference within
a power consumption of 348 mW. STICKER [310] is an
ASIC for efficient inference of DL models containing con-
volution and dense layers. The highest energy efficiency of
62.1 TOPS/W within the 7.8-mm2 chip size can be reached.
It uses an automatic circuit to switch between nine sparsity
modes and multimemory access modes to ensure better
energy efficiency. FlexFlow [311] is a scalable accelerator
that exploits the parallelism of computing platforms and
CNN architectures to support a flexible data flow and data
reuse.

Cadence Design Systems, Inc., developed the deep
neural-network accelerator (DNA 100), an IP SoC for
on-device DL inference [305]. DNA 100 supports ML
frameworks, including Caffe, TensorFlow, TF-Lite, and
so on. It can integrate end devices, such as wearables,
AR/VR headsets, drones, always-on-vision cameras, smart-
phones, drones, robots, and IoT devices for numerous
applications in computer vision, speech processing, and
communications. It also supports the Android NN (ANN)
API for on-device inference in Android devices. Current
DNA 100 processors can run NN layers, such as convo-
lution, FC, LSTM, and pooling. A single accelerator can
deliver 0.5–12 TMACs, and multiple DNA can be stacked
to achieve 100 s of TMAC/s.

Synopsis developed an intellectual property (IP) proces-
sor core for computer vision applications on embedded
devices named DesignWare EV6x [306]. The accelerator
allows 8- and 12-bit quantization. DesignWare supports
OpenCV , OpenCL2 C, and OpenVX2 toolkit and consists
of a 32-bit processor, an optimized CNN accelerator, and
a 512-bit vector digital signal processor (DSP). When
implemented in 16-nm FinFET processes, it can offer up
to 2000-GMAC/s/W power efficiency.

Ceva Inc. has developed IP cores for NN processing
named NeuPro-STM [269]. It consists of a CEVA-XM digital
vision signal processor and a NeuPro-S engine for layer
computations, such as convolution, activation, and pool-
ing. This IP core also supports 8- and 16-bit quantization,
sparsification, weight decompression, and multicore scala-
bility. The processing capability of this accelerator ranges
from 2 to 12.5 TOPS per core. It is scalable to use multicore
processing for a performance boost of up to 100 TOPS.
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Table 7 Summary of ASICs and SoCs for Edge Inference Targeting Various Use Cases

NeuPro-S targets applications for advanced autonomous
driving, ADAS, AR, smartphones, UAVs, and cameras.

Gyrfalcon Technology Inc. (GTI) has developed the
LIGHTSPEEUR1 [307] neural accelerators targeting the
edge devices for various applications, such as IoT, mobile
edge computing, portable devices, cameras, AR/VR prod-
ucts, NLP, and autonomous driving. The intelligent matrix
processor Lightspeeur 2801S uses memory for neural
processing based on APiM architecture. Eliminating the
data movement enables a superior energy efficiency at
9.3 TOPS/W. The architecture features on-chip paral-
lelism, on-chip computing, and reduced memory bottle-
necks for AI inference. Lightspeeur 2802M is designed on
a matrix processing design that uses magnetoresistive ran-
dom access memory (MRAM) technology. It enables multi-
task performance with multimodel storage on a single chip
delivering 9.9 TOPS/W. Lightspeeur 2803 is the dedicated
CNN inference engine for audio and video processing.
It can process 24 TOPs/W, 16.8 TOPS at 300-MHz speed,
and 700-mW power within a small size of 9 mm × 9 mm.

Models can be cascaded to allow multiple chips to support
larger models. The Lightspeeur 5801 delivers the neural
processing of 12.6 TOPS/W and 2.8 TOPS at 200-MHz
speed and 224-mW power consumption.

The Coral edge TPU [312] developed by Google is an
ASIC for EI. The Edge TPU is primarily capable of inference
acceleration and certain lightweight transfer learning. The
advantages of edge TPU are low power consumption,
cost-efficiency, NN processing at high speed, and off-line
capabilities. Coral TPU supports ML frameworks, such as
TF-Lite, and DL models, such as YOLO and R-CNN.

The ASICs are the most efficient hardware to realize the
EI. Table 7 provides an overview of several successful SoCs
and ASICs for a variety of applications. However, most of
the computations realized in ASIC are hardwired in silicon.
DL networks and optimization algorithms are continually
being changed and enhanced. Hence, deploying an ASIC
solution for inference is expensive due to reduced flexibil-
ity and limited programmability. Introducing flexibility in
the ASIC architecture increases its silicon area resulting in
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increased cost and power consumption. Thus, coarse and
fine-grained reconfigurable architectures are other choices
for the rapid prototyping of EI.

C. Field-Programmable Gate Array and
Reconfigurable Architectures

The spatial architecture of the hardware accelerator for
DL models can be of two types: coarse-grained and fine-
grained. FPGA is a fine-grained reconfigurable architecture
that is programmable through hardware description lan-
guages (HDLs). The coarse-grained reconfigurable acceler-
ators (CGRAs) have evolved as an architecture for EI due
to their capability to operate at higher clock frequencies,
faster compute performance, reduced compilation, and
reconfiguration time. For efficient tensor processing of ML
models, coarse-grained spatial architectures are a popular
selection.

1) FPGA: A reconfigurable architecture can be designed
faster than ASICs to easily adapt to model changes. FPGA
contains programmable logic blocks and configurable
interconnections. FPGAs are more flexible in architecture
than ASICs due to fast computation and reconfigurabil-
ity. HDLs (e.g., Verilog or VHDL) are used to define the
connection between digital hardware components. FPGAs
are easy to use for fast customization and performance
evaluation for DL inference on hardware. Due to the
increased demand for EI, small and high-density FPGAs
are now being considered [11], [315], [316], [317].
The ZYNQ7020 FPGA is one of the popular reconfig-
urable architectures exploited to implement and prototype
CNN inference. For example, VGG-16 CNN implementa-
tion with 8-bit fixed point quantization on ZYNQ7020
FPGA achieved a performance of 84 GOPS [315]. Simi-
larly, a 16-bit fixed-point quantized CNN implementation
with 13 GOPS has been demonstrated in [316]. Lite-CNN is
a configurable implementation of the INT8 quantized CNN
in ZYNQ XC7Z020 FPGA. It can accomplish 408 GOPS peak
performance and 33 GOPS/W energy efficiency. One of the
challenges of FPGA-based inference is the conversion of
trained models to FPGA interconnections. Other challenges
include slow configuration, long compilation time, and low
clock frequency. Notable works on DL inference on FPGA
are presented in Table 8 with the implemented model, peak
performance, and energy efficiency.

2) Reconfigurable Architecture: The general architecture
of the DL inference accelerator consists of an array of
interconnected PEs, RFs, and shared/scratchpad memory.
Low latency and high energy efficiency can be achieved
with optimized PE design, effective memory access con-
trol, spatial data reuse, and optimized computations. Such
coarse-grained architectures are more power-efficient for
DL inference execution compared to the CPU and GPU
cores [250], [318], [319]. Tensor processing of DL models
is efficiently processed using the PEs. With local RFs and
memory, high spatial and temporal data reuse can be

Table 8 State-of-the-Art DL Inference on FPGA

achieved by minimizing off-chip memory access. There-
fore, using coarse-grained spatial architecture can achieve
low latency, high throughput, and energy efficiency for
DL inference acceleration. A summary of representative
research on reconfigurable architectures for DL EI is pre-
sented in Table 9 consisting of supported models/layers,
peak performance, and energy efficiency.

Eyeriss [250] is one prominent CGRA for convolution
implementations. It contains 168 PEs connected to the
network-on-chip (NOC). Eyeriss uses data compression
for the chip, external memory, and sparsification in inter-
mediate layers. With a 16-bit fixed-point quantization,
the architecture achieved 166 GOPS/W with an average
power consumption of 278 mW to get inference results for
AlexNet. Eyeriss [250] adopted two major optimizations:
1) data reuse to limit memory access and 2) exploiting data
statics to improve computations and prevent unnecessary
memory reading. Thus, with a minimum data movement to
external memory, improved energy efficiency is achieved.

An improved version of Eyeriss architecture is the Eye-
riss v2 that generalizes the Eyeriss for compact and sparse
DL architectures [237]. The Eyeriss v2 architecture is
presented in Fig. 22. Each architecture consists of an
array of PEs and GLBs. The constituent PEs and GLBs are
grouped in Eyeriss v2 to adopt a hierarchical architecture
minimizing the communication overhead.

The Thinker chip [320] supports three levels of recon-
figurability: 1) the PE can be constructed with 8- or
16-bit multipliers; 2) support for zero skipping; and
3) improved bandwidth distribution configuring on-chip
memory. In addition, parallelism is fully exploited to pre-
vent idle PEs. The Thinker chip can achieve 590-GOPS/W
energy efficiency within 335-mW power consumption in a
16-bit configuration.

The Sparse CNN (SCNN) [244] performs sparsification
in both activations and weights. The SCNN architecture is
reconfigurable consisting of a multiplier array and a set
of accumulation registers. In [321], a reconfigurable ASIC
implemented in the 65-nm process is presented targeting
hybrid NNs. The PEs consist of two 8-bit multipliers, which
can be used independently or jointly for 16-bit oper-
ations. It supports variable bit-width quantization. This
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Fig. 22. Eyeriss v2 high-level hierarchical architecture [237]. The PEs and GLBs are arranged into clusters supporting NOC flexibility. The

architecture consists of 16 PE clusters and 16 GLB clusters. Each PE cluster consists of 12 PE, and each GLB cluster contains 12 kB of memory.

architecture is capable of handling convolution, recurrent,
and dense layers with supports for pooling and nonlinear
activations with a peak performance of 409.6 GOPS and
5.09 TOPS/W energy efficiency.

The DNPU is another CGRA processor [322] that sup-
ports CNN and RNN processing. For dense and convolution
layers, the architecture has dedicated units. The pooling
and activation functions are executed by a central module.
Matrix multiplications for FC layers can be configured as
4-, 8-, or 16-bit integer arithmetic. With 4-bit multipliers,
the DNPU architecture can achieve a peak performance of
1.2 TOPS and an energy efficiency of 3.9 TOPS/W.

The SDT-CGRA [323] architecture includes up to three
MAC instructions. A programmable delay is included in
the PEs to map temporally closer data. The custom stream
buffers are programmable in a very long instruction word
(VLIW) approach that accelerates the DL access patterns.

Tianjic [324] and Simba [325] are two spatial architec-
tures that utilized the concept of distributed weights [326]
and weight exchange among PEs [319]. The PEs are decen-
tralized with preloaded weights that remain stationary
throughout the inference execution. The activations can
propagate inter- and intra-PEs for computation.

A dynamically reconfigurable processor (DRP) is a CGRA
core to accelerate inference on embedded devices [327].
The core consists of an array of dynamically reconfigurable
PEs. It supports large networks by adjusting the architec-
ture for different layers at runtime. DRP supports 16-bit
integer or floating-point quantization and binarizations.

For RL, a CGRA architecture is introduced in [328]. The
PEs support addition, multiplication, or a combination of

both in a stationary fashion. Different activations can be
chosen using the configuration register. The reconfigurable
cells include address generations inside the architecture,
and data can be locally stored. Reinforcement training is
controlled using global communication lines.

The neural processing unit (NPU) is presented in [329]
for the project Brainwave to provide real-time AI. The core
NPU is a microarchitecture that is spatially distributed and
capable of performing 96k MACSs. The architecture pro-
vides a custom SIMD instruction set for programming and
can use vectors and matrices as datatypes. An RNN execu-
tion on Intel Stratix10280 FPGA using the Brainwave NPU
has demonstrated a peak performance of 10–35 TOPS.

For efficient processing of DL inference, the neural accel-
erators exploit parallel processing and memory access.
There are three main sources of data to be processed in

Table 9 Summary of Reconfigurable Architectures for DL Inference
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the neural accelerators: weights, IAs, and the psum at the
output of the activation functions. The NOC can increase
data reuse, thus reducing memory footprint through direct
information exchange between PEs. The usage of the GLBs
can reduce the off-chip DRAM access time, thus improv-
ing the latency. Data prefetch using the double buffer
technique in the GLB can fasten the computation even
more [320].

D. Vision Processing Unit

The VPU is a customized microprocessor chip for EI
for numerous machine vision uses. The VPUs are opti-
mized to provide inference results for pretrained CNNs
and other computer vision algorithms at low power with
minimal performance degradation. Successfully deploying
the vision processor can be used for numerous use cases
in security, robotics, smart homes, drones, IoT, always-on-
vision cameras, VR, AR, smartphones, and wearables.

Movidius Myriad X is a vision processing SoC that
supports 8- and 16-bit integers and 16-bit floating-point
quantization. It consists of a 4k image processing pipeline
that can take input from up to eight HD sensors connected
to the processor. With parallel processing and minimized
data movement, it can achieve a peak performance of
up to 4 TOPS for image, vision, and DL tasks. It is pro-
grammable with the Myriad Development Kit (MDK) and
supports the Intel OpenVINO toolkit.

Intel NCS 2 is a small fanless USB vision processor
developed on the Intel Movidius Myriad X processor. NCS
2 supports most of the popular ML frameworks, such as
TensorFlow, Caffe, Apache MXNet, PyTorch, and ONNX.
The USB containment of the chip makes it compatible with
Raspberry Pi and Intel Next Unit of Computing (NUC)
devices. NCS 2 can make EI for image processing and
computer vision applications, NLP, machine translation,
and so on.

The neuFlow [288] is a general-purpose vision processor
for real-time object detection, recognition, and localiza-
tion. This vision processor implemented on Xilinx Vir-
tex 6 FPGA demonstrates 10 W of power consumption
and is capable of processing 12 frames/s. The performance
analysis has shown a 100× speedup compared to a laptop
for segmenting 20 categories of the object from street
scenes.

The pixel visual core (PVC) [330] from Google is a
coprocessor for image analysis incorporating an ARM
Cortex-A53. The PVC is an optimized architecture to min-
imize the power consumption while idle but requires a
power budget of 6–8 W for a short burst of around a
few seconds while operational. It supports the TensorFlow
framework and can perform 3.28 TFLOPS at 800 MHz.
Each arithmetic logic unit (ALU) consists of 256 PEs that
are arranged as 16 × 16 2-D arrays. The PVC architec-
ture consists of eight image-processing custom cores each
having 512 ALU. PVC supports 8-, 16-, and 32-bit integer
arithmetic operations.

Mobile EyeQ1 [331] is another SoC for vision process-
ing at low power targeting the ADAS and autonomous
driving applications. The fifth-generation processor EyeQ5
is implemented on the FinFET 7-nm process. It is a VLIW
SIMD processor having flexible memory access and mul-
ticore capability, and can perform 24 TOPS within 10-W
power consumption.

E. Microcontroller Unit

MCUs are devices that work as an essential part of
embedded systems. Therefore, DL capabilities in MCU can
bring intelligence to billions of products from industry,
households, automobiles, medical equipment, vision, and
so on. Some of the advantages of EI on MCU include low
power consumption, preserving privacy, easy installation,
and low cost. Often MCU is a good choice for a controller
rather than a computational job. However, advanced MCUs
with complicated logic control, high operating speed, and
large cache can make efficient DL inference in low latency.
Lightweight DL models without FLOPs are suitable for
MCUs. Therefore, fixed-point quantization and structured
pruning are the prominent compression techniques used to
deploy the DNN models on MCU. Modern MCUs support
8- and 16-bit fixed-point operations with some parallel
computing capability. The limited memory capacity is one
of the major limitations of MCUs.

CMSIS-NN [159] is a DL library targeting the
ARM Cortex-M microcontrollers. CMSIS-NN consists of
important DL kernels and supports converting pre-
trained models and posttraining quantization. The par-
allel ultralow-power (PULP-NN) library [332] can help
to deploy DL on GAP8 processors. The GAP8 processor
includes software-controlled scratchpad memory improv-
ing efficiency for memory-intensive DL inference. As most
of the existing MCUs do not support SIMD instructions,
the available instruction set architecture (ISA) poses limi-
tations to running quantized DL models on MCU. Even if
the parameters and data are quantized, the computation
must be performed one by one using the 32-bit registers
of MCU. In [333], an extension of the RISC-V ISA has
been proposed that supports subbyte quantization. One
limitation is that RISC-V microcontrollers are not widely
available in the market, hence requiring expensive custom
manufacturing. Hello Edge [334] implements various DL
models on MCU for keyword spotting for speech-based
smart devices. The KWS system is required to be always on
with minimal power consumption to confirm the longevity
of the battery. Besides, high accuracy and low latency
are two critical requirements to ensure a satisfactory user
experience. Hello Edge presented the implementations of
CNN, RNN, convolutional RNN, depthwise separable CNN,
and others on ARM Cortex-M microcontrollers with perfor-
mance analysis.

TF-Lite has extensions for running DL inference on
memory constraint MCUs [258]. For example, the ARM
Cortex M3 having only 16 kB of memory can run many
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basic ML models. TF-Lite supports 32-bit MCU architecture,
such as the Arm Cortex-M series, ESP32 architectures, and
development boards.

MicroAI [335] is another DL framework targeting end-
to-end training, quantization, and deployment on 32-bit
MCUs. This framework has been evaluated on speech
recognition, activity recognition, and image classification
on Ambiq Apollo3 and STM32L452RE microcontrollers
showing competitive memory and energy efficiency.

Limitations of microcontrollers include less memory,
slow processing compared to CPU or GPU, lack of paral-
lelization, low clock frequency, and so on. Besides, MCU
relies on general-purpose processors that cannot support
vectorization or thread-level parallelism.

F. Emerging Memory-Based Neural Accelerator

The digital neural accelerators split the matrix-vector
multiplication (MVM) into numerous MAC operations
to perform the operations cyclewise. In the processing-
in-memory (PIM) architecture, the emerging nonvolatile
memory (eNVM) is exploited to realize the MVM opera-
tions of DNN efficiently. For instance, using RRAM [336],
PCRAM [337], and memristors, the MVM operation can
be performed fast in the analog domain within one
clock cycle. However, the limitations are the require-
ments of analog-to-digital converter (ADC) and digital-to-
analog converter (DAC) that constitute around 50% of the
power consumption of the overall system. The traditional
SRAM [338], DRAM [339], and Flash [340] memories also
can be modified to realize the PIM implementation of DNN
algorithms. The PIM technologies are still in their infancy
and are being extensively studied in academia rather than
industry adoption.

A BNN requires only two stable states. Therefore, BNN
can be realized easily by utilizing the memory architectures
and logic operations [341]. Irregular zeros in the weight
matrix generated from quantization impose a challenge
on execution speedup and energy saving due to crossbar
processing. The weight matrix can be decomposed into
smaller submatrices to be mapped onto a crossbar as
done in SNrram [342]. The weight matrix can also be
decomposed into blocks to cluster the zero columns for
coarse-grained pruning [343], [344]. Fine-grained cross-
bar processing is demonstrated in [345]. Instead of acti-
vating the entire crossbar at once, a matrix block named
operation unit (OU) is activated every time [345]. The zero
inputs are skipped, and nonzero elements are grouped to
activate the corresponding crossbar. As a result, more oper-
ations can be realized by the same crossbar within fewer
clock cycles, thus improving the inference performance.

XII. E D G E T R A I N I N G A N D I N F E R E N C E
I N D I S T R I B U T E D E N V I R O N M E N T
DL requires substantial memory, computations, and com-
munication resources to execute the training and infer-
ence, which is often impractical for a single-edge device.

Therefore, distributing the training and inference task to
different edge devices can reduce the burden on individ-
ual devices. Through collaboration and shared models,
such distributed schemes collectively can achieve better
performance. For distributed training and inference, novel
algorithms are being emerged, which are summarized in
this section.

A. Distributed Edge Training

Edge training is performed in proximity to the data
collection for cost-effective communication in data transfer
and ensuring user privacy by processing on-edge. The
edge training can be performed in a single edge device or
server if the computational capability and need match. For
instance, DL models are trained in a smartphone for activ-
ity recognition and audio signal sensing in [346]. Similarly,
researchers also investigated DL training in wearable [347]
and embedded [348] devices. However, two major con-
straints in running training on single-edge devices are
the memory constraints and the computational need for
larger DL models [349]. Therefore, edge training is mainly
performed in distributed manner learning from data in
different edge devices and servers.

DeepCham [350] consists of one edge server connected
to multiple mobile devices. The large model is updated
by aggregating the parameters from edge nodes, and the
mobile devices are trained for object recognition in local
visual domains. Scheduling schemes for edge training are
presented in [352], where the edge devices upload a train-
ing profile requesting cloud access. Depending on avail-
ability, the cloud server assigns edge servers to perform
the training. Peer-to-peer distributed training is another
infrastructure in which edge devices are given equal prior-
ity [353]. Each edge performs partial training on the local
data and exchanges the parameters with connected nodes.
This approach has demonstrated comparable performance
to centralized cloud training for activity and pattern recog-
nition tasks [353]. The concept of transfer learning has
also been exploited in edge training [354], [355]. For
example, features learned in a trained model are trans-
ferred to edge nodes that are updated by retraining with
local data [354]. In addition, memories shared among
edge devices can reduce the storage burden of any single-
edge device. Besides, model compression to 8-bit fixed
precision quantization [355] results in faster computation.

Interactive ML (iML) involves users, providing informa-
tion to the learning process and monitoring the output
in subsequent iterations [356], [357]. In [358], iML is
exploited in edge training for human activity recognition
(HAR) and demonstrated that a few training iterations
achieve acceptable performance.

Federated learning is an emerging technique of edge
training using data from multiple nodes [359]. A shared
model can learn collaboratively from local training data
instead of requiring to accumulate the data to a cen-
tral cloud server [360]. There are two architectures of
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Fig. 23. Federated learning scheme of edge training. Learned

parameters are downloaded into the edge that is updated using local

data collected from sensors. New parameters are aggregated into

the cloud, and refined models are propagated to edge devices [351].

federated learning, such as cloud-based and edge-based.
An overview of cloud-based federated learning is illus-
trated in Fig. 23. The untrained DL model from the central
cloud server is assigned to different edge devices to accom-
plish the training using the local data. After local training,
the model updates are aggregated in a central cloud server
and usually averaged [361]. The changes in the shared
model are downloaded to edge devices. In this process, the
training data remain in the edge devices. Only changes in
learned models are uploaded to and downloaded from the
central cloud server. Therefore, it maintains data and user
privacy, and saves communication resources. In edge-based
federated learning, an edge server serves the functionality
of a central cloud server. Besides, a hierarchical approach
can include edge and cloud servers where edge servers
assign the training to edge devices.

Gradient optimization of the shared model consider-
ing local updates and maintaining connectivity remains
challenging in federated learning. To mitigate the gradi-
ent optimization problem, selective SGD [362] has been
proposed, which allows independent training on edge on
local data and selective sharing of parameter updates
to the central server. An extension of this approach
is FedAvg [359], which considers the unbalanced and
non-independent identically distributed (non-i.i.d.) data
through iterative model averaging. In this method, the
edge devices update the central aggregator with one-step
SGD, which is averaged in the central server. In federated
learning, each connected edge device transfers the model
updates to the central server. If the model is larger, it poses
a serious bottleneck to the communication resources.
There are research efforts to minimize the number of
update rounds in federated learning to ensure communi-
cation efficiency [359], [363], [364].

The DL model splitting is another edge training
approach that transfers the processed data instead of raw
data to the cloud server providing enhanced user privacy.
The DL models are trained at both the edge device and

server by partitioning the model into parts. However,
determining the partition point is challenging. Researchers
proposed different techniques for appropriately perform-
ing the DL model splitting, such as differential private
mechanism [365], Arden (privAte infeRence framework
based on DNNs) [366], and hybrid edge-cloud frame-
work [367]. As distributed edge devices are exploited in
edge training, parallelism in data and model can facilitate
computation load balancing. For instance, PipeDream is
model parallelism through pipelined training presented
in [368]. The minibatches are simultaneously injected into
the connected systems to ensure parallel utilization of
computing resources and automatically determine the DL
model splitting that speeds up the training.

A factorization-aware training is presented in [369]
for natural language understanding (NLU) in resource-
constraint devices, such as voice assistants. Joint training
of compressed transformer model, DistilBERT, exploiting
factorization of linear mapping has demonstrated around
84% model size reduction with approximate 10% accuracy
degradation.

B. Distributed Edge Inference

Edge devices have limited resources which can cause
slow DL inference. Therefore, splitting the inference work-
load and distributing it among connected edge devices has
shown promise [19]. Distributed EI can be of two types:
vertical in different levels of the edge device, edge server,
and cloud server; horizontal among multiple devices on the
same level. For instance, mobile deep inference (MODI) is
a vertically distributed inference framework [370]. Mul-
tiple DL models in both compressed and uncompressed
formats are stored in a central server that dynamically
decides the deployment platform. For instance, if resources
are limited, a compressed model is employed, and if suf-
ficient resources are available, uncompressed models are
deployed. In addition, MODI facilitates joint inference in
edge devices and edge servers. DL models are mapped
across different computing hierarchies: Distributed DNNs
(DDNNs) [214]. Part of data analytics is performed in edge
devices reducing the communication overhead. In addi-
tion, early exiting at vertical exit points results in faster
inference.

MoDNN [371] is a horizontally distributed platform
for DL inference in resource-constrained edge devices.
In MoDNN, the pretrained DL models are used and layer
scanning identifies layer types. The model partitioning
and edge devices are determined based on layer types.
Empirically using the VGG-16 model on the ImageNet
dataset employing two to four mobile devices resulted in a
2.17—4.28× inference speedup. A communication-aware
distributed inference across six edge devices is presented
in [372] for YOLOv2 inference. DL inference in mobile
robots utilizing the optimal model partitioning to incor-
porate idle robots in proximity shows a 6× speedup than
remote execution in the cloud [373].
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Fig. 24. Overview of the distributed inference system in

EdgeFlow [380].

Model parallelism can distribute the inference workload
in a sequential or parallel manner. In sequential distribu-
tion, DL layers are assigned to different edge devices [25],
[374]. For instance, input is processed by one device
and passed results to the next for further computation.
However, sequential approaches often keep the devices
idle if enough inference computation is not in the queue.
In parallel distribution, feature dependence of different
layers is exploited. For example, in DeepThings [375], fea-
ture maps are partitioned into nonoverlapping tiles using
fused tile partitioning (FTP) to assign them to different
edge devices. A scheduling process is employed to ensure
data reuse and reduce inference latency. An inference
speedup of 1.7—3.5× using two to six edge devices with
a small memory footprint (<23 MB each) is obtained
running YOLOv2 inference. However, adjacent partition
requires overlapping intermediate inputs resulting in
3—5× redundant computation. CoEdge [376] reduces the
redundant calculation by nonoverlapping partitioning with
an added data transmission cost. In another similar work,
five IoT and a gateway device are employed that uses
weight pruning and model partitioning using FTP [377].
An approximate 16% improvement in inference latency
compared to DeepThings is demonstrated for YOLOv2
using 5 × 5 fused layer partitioning. Edgent is another
distributed EI framework for a static and dynamic network
architecture that exploits model partitioning and early
exiting techniques [378]. The execution plan of Edgent
varies depending on the available bandwidth. Incorporat-
ing raspberry pi and laptops, Edgent demonstrated low
latency on-demand EI.

DistrEdge [379] is an adaptive distributed EI framework
for CNN models considering the heterogeneity of edge
devices, network conditions, and nonlinear computations.
NVIDIA Jetson devices are employed to create a heteroge-
nous distributed infrastructure demonstrating improved
inference latency.

To facilitate distributed inference for DL models having
a directed acyclic graph (DAG) structure, EdgeFlow is
reported in [380]. The computation graphs are broken
into a list of input requirements, a computation operator,
and a forwarding table. The execution unit applies the
computation operator on input to generate intermediate
results. According to the forwarding table, the interme-
diate results are distributed to other units. Parallel exe-
cutions are achieved in EdgeFlow by partitioning a DL
layer into multiple independent execution units. Besides,
an algorithm is developed to determine the optimal por-
tioning and ensure the run-time efficiency. A simplified
system architecture of EdgeFlow is depicted in Fig. 24.
Experiments demonstrated up to a 40.2% reduction in
inference latency in EdgeFlow compared to local EI while
running the YOLOv5 model.

The transformer-based DL models have achieved
promising results in NLP applications, such as machine
translation, grammatical error correction, and abstrac-
tive summarization. For example, EdgeFormer [381] is a
transformer-based encoder–decoder architecture designed
for seq2seq generation considering the memory and com-
putation constraints of edge devices. In machine trans-
lation and grammatical error correction, EdgeFormer
demonstrated high parameter optimization (<10M) and
faster latency (100 ms) with only a few megabytes of
memory (<50-MB RAM) using two CPU cores. Another
efficient and lossless acceleration of seq2seq generation
is presented in [382] that exploits aggressive decoding
and parallel processing. The experimental results in GPU
execution using a six-layer transformer model obtained up
to 9× and 5× speedup for grammatical error correction
and machine translation.

XIII. U S E C A S E S O F E D G E I N F E R E N C E
EI has gained significant attention and is the key tech-
nology to bring AI services to the end user. Practical use
cases of EI include, but are not limited to, face recognition,
HAR, ADAS, speech recognition, and so on. For instance,
face recognition is being actively used in door unlocking,
mobile banking [383], device unlocking [384], and so on.
In [385], a CNN named Mobile-FaceNets is presented
that uses a global depthwise convolution filter that can
perform face recognition having less than 1M parameters.
MobiFace [386] is an improvement on Mobile-FaceNet
using residual bottleneck [72] with an expansion layer and
fast downsampling.

HAR finds significant applications in wearable sensors
for fitness tracking, activity monitoring, patient monitor-
ing, fall detection, elder care, and so on [387]. RBMs
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are used in [388] for HAR applications on smartwatches.
Statistical features of CNN are used in [389], which
extended, in [390], adding the position features for HAR.
Due to the heterogeneous sensor types and distinct user
behavior, incremental learning [391] provides secondary
training for the pretrained model to learn new features
from incoming data. Thus, a personalized user experi-
ence with improved recognition accuracy can be achieved.
In DeepSense [392], both CNN and RNN are used to tackle
the inherent noisy behavior of raw activity sensor data.
The CNN captures the interaction of heterogenous sen-
sors, while the RNN captures the temporal characteristics
providing an ability to differentiate significant inputs to
improve predictions.

DeepEye [393] is a wearable camera capable of run-
ning five DL models on edge for image recognition tasks.
Content-based image retrieval (CBIR) for edge devices
has been presented in [394] that uses the low-rank
approximation for feature detection and object detection
resulting in a 6.1× inference speedup.

MobileDeepPill [395] is an image recognition system
to identify pills for patients from pill images. The KD
technique is incorporated having a large CNN model as
the teacher. During inference, the student CNN is used
to calculate the output class probabilities on an input pill
image.

Driver fatigue or other distractions can be detected in
real time using DL inference on a smartphone. In Dar-
Net [396], driving patterns are analyzed using DL to
identify distracted driving. Two sensor types are used to
capture the driving patterns: the inertial measurement unit
(IMU) data from the smartphone and the images captured
using the IoT sensors with a camera. CNN is used to
process the image data, whereas RNN processes the IMU
data. Ensemble learning is used to capture the real-time
distracted driving activity by combining both CNN and
RNN results.

DeepEar [397] is DL-based audio sensing using a smart-
phone that used stacked RBM. The experiment demon-
strates that sharing the same base bottom layer can sense
the audio with only 6% battery consumption throughout
a single day with only 3% accuracy degradation. The
accuracy can be further enhanced by training shared layers
and multitask learning [398].

DL-based vehicle detection to assist autonomous driving
has been presented in [399], which uses the faster-RCNN
network. Pruning and quantization are used together
achieving a 16% reduction in model size and a 64%
reduction in runtime. An RNN model is used in [400] for
driving pattern analysis from raw sensor data. Parameter
quantization is used to make the EI on smart automobiles
with reduced memory and power consumption. Results
demonstrated only 44-kB memory and 7.7-mW power
consumption.

Anomaly detection of electrical equipment based on
compressed AlexNet through pruning and quantization can
detect the status of the instrument using images [408].

Lightweight DL models can also be used for transmission
line fault detection [409] with 74.5% accuracy.

Table 10 presents a summary of the representative
research works and use cases of EI on various edge devices.
This table lists information from multiple viewpoints, such
as used/supported DL models, adopted optimization tech-
niques, use cases/applications, edge devices, and used
performance evaluation metrics.

XIV. C H A L L E N G E S A N D
O P P O R T U N I T I E S O F E D G E
I N F E R E N C E
The DL inference on edge devices can enable highly effi-
cient and intelligent services to the end user and minimize
the traditional cloud dependence on AI services. Based
on the comprehensive discussions on EI tools and tech-
niques, this section identifies some remaining or minimally
explored challenging areas and discusses the research
trend to find solutions.

A. Adaptability to Data Heterogeneity

EI often requires collecting data using multiple sen-
sors and in distinct sensing environments. For instance,
if the data source changes from indoor to the street or
the weather changes from cloudy to sunny, the sensor
data may also get affected. Even if the environment and
source of data remain the same, sensors from different
manufacturers might have distinct sensing behavior. Such
heterogeneity may cause inconsistency in data imposing a
challenge on EI performance. Data augmentation [410],
[411] and representation learning could [412] be two
promising future research directions to mitigate the data
inconsistency problem at the edge.

B. Automatic Mapping of DL to Hardware

The FPGA and CGRA can overcome some limitations of
ASICs with the ability to reconfigure new DL operations,
modules, or even network architectures. However, the con-
version of trained DL models into a hardware-compatible
version for inference is tedious, time-consuming, and man-
ual. There is a significant research gap to develop tools
that can automatically map the DNN models on hardware.
Available tools for automatic mapping of DL models to
FPGA or CGRA are less efficient. Therefore, developing
efficient mapping frameworks to support DL deployment
on reconfigurable devices is a challenge.

The ML frameworks help researchers quickly proto-
type the models for different applications. More func-
tions and libraries should be added to these frameworks
to quickly implement the compression techniques. For
example, NVIDIA’s SparseBLAS/cuSPARSE and Intel’s MKL
libraries can handle sparse matrix computations. Ten-
sorFlow provides library support for quantization during
training or posttraining. Xilinx provides quantization sup-
port through the FINN-R framework for inference realiza-
tion on FPGA [413]. Therefore, developing more advanced
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Table 10 Summary of Representative Research on DL Inference on Edge

libraries and frameworks to support training and posttrain-
ing compression of DL models is imperative.

C. Developing Benchmarks

Proper benchmark standards to assess the performance
of EI are significantly important. EI requires a universal
and comprehensive set of quality metrics to execute mean-
ingful comparisons of DL models, optimization algorithms,
and hardware platforms.

Benchmark datasets and models are limited. Most com-
pression techniques and hardware performance are eval-
uated on CNN (e.g., AlexNet and VGG16) on the Ima-
geNet dataset. Therefore, more benchmark datasets and
DL models need to be developed for other applications
and input data types. Due to the error-accumulating nature
of DL models, the optimization performance of large DL
models (e.g., layers > 50) should also be studied. Besides,

extending the compression algorithms to be universal for
both compact and deep networks is challenging.

D. Automatic, Joint, and Edge Aware
Compression

Most existing compression techniques require manual
intervention and expert inputs (e.g., quantization bit
width, rank value in decomposition, and layerwise spar-
sity). Compression hyperparameters, such as pruning ratio,
quantization bit widths, pruning pattern for different lay-
ers, and epochs, need to be automatically adjustable for
optimum memory usage and minimum computations with
acceptable accuracy degradation. Therefore, developing an
automatic compression technique can be an interesting
research domain.

Most of the model compression algorithms are employed
posttraining. Due to the iterative nature of the training
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process, implementing compression during training is
infeasible and complicated. During training, joint auto-
mated exploration of compression algorithms can increase
the compression and improve hardware realization. Thus,
realizing the compression for faster convergence and
reduced computation needs can be an exciting research
area to explore.

There are lots of DNN compression techniques being
continuously evolving. However, fair comparison metrics
are lacking. Therefore, there are research opportunities
to develop compression evaluations metric to identify the
performance of the compression techniques.

E. Algorithm–Hardware Codesign

The lightweight DL model and compression techniques
should be developed considering the hardware architec-
ture. Therefore, hardware-algorithm codesign can pro-
duce more efficient EI. Model compression needs to be
associated with architecture optimization for the highest
efficiency. For instance, different edge hardware platforms
have varying capabilities for handling different precisions.
Often accelerators support a uniform bit-width tensor.
In such cases, handling distinct bit-width precision needs
zero padding incurring inefficient memory usage and
processing. In such cases, hardware-aware compression
can improve processing efficiency.

Frameworks such as DNNWeaver [414],
DNNBuilder [415], T2S-Tensor [416], and HeteroCL [417]
have been developed recently for FPGA, ASIC, and other
DL hardware accelerators for efficient EI. However, most
frameworks still support the fixed bit-width tensors and
cannot handle the sparsity caused by model compression.
Therefore, reconfigurable architectures need to be
developed for rapid prototyping and evaluation allowing
sparsity.

F. Neural Architecture Search for Edge Inference

NAS could obtain efficient models with high accuracy.
The limitations are the computational load and time
required for the NAS algorithms that are high. Thus, there
are research opportunities to considerably improve the
NAS algorithms to obtain highly compact network architec-
tures targeting edge. Due to the vast search space for NAS,
notable efforts are required for the automated exploration
of model-accelerator codesigns.

Different edge hardware platforms or neural accelera-
tors have distinct properties and processing capabilities.
Therefore, a hardware-aware NAS algorithm can consider
the performance feedback from edge hardware to generate
the optimum neural architecture for specific hardware. For
instance, ProxylessNAS [418] can find neural architecture
to fit the hardware. However, due to the availability of
numerous hardware devices (e.g., IoT devices), there is a
proportional growth of search space and increased com-
plexity of NAS.

G. Developing Flexible ASICs

One of the main limitations of ASIC is not being
adaptable to changes resulting in performance inefficiency.
There are significant research opportunities to fill the gap
of adding some flexibility in ASICs and SoCs to cope
and adapt to the improved DL operations and algorithms.
If some flexibility can be added, this will improve the
silicon efficiency and can be cost-friendly. Thus, dynamic
reconfigurability is expected to be rooted in the ASIC or
SoCs. Due to extra logic and wiring, minimizing the power
consumption and area of such ASIC could be an active area
of research.

H. Neural Accelerators to Handle Sparsity

General-purpose processors, such as CPU, GPU, or even
FPGA, are not specialized to handle the sparse, irregular
tensors, and low-precision computation resulting from dif-
ferent compression techniques. Hence, special architecture
should be developed to accelerate the compressed DNN
models. In addition, combining multiple compression tech-
niques for optimum hardware performance is a promising
research direction.

General hardware platforms for EI can process regu-
lar tensors and data flow. However, compression tech-
niques result in many irregularities in tensor processing.
For instance, bit-adaptive computing and high reconfig-
urability are required for sparse tensors with flexible bit
width. Hardware accelerators cannot inherently compute
sparse tensors. Data such as activations, parameters, and
gradients include zero values that require to be retrieved
from memory to the PEs. The zero computations are not
automatically skipped requiring PEs’ execution time on
the ineffective zero computations. In unstructured sparsity,
nonzero values are scattered randomly across the tensor
resulting in irregular processing. Therefore, to handle the
significant sparsity in modern DL algorithms, additional
techniques are necessary to store, process, and compute
the nonzero elements.

I. Focusing on Other DL Techniques

Model compression techniques reduce the computation
and memory needs of edge devices to run efficient infer-
ences. However, many optimization techniques, such as
pruning and batching, targeted the dense layers. In mod-
ern architectures, few dense layers are used, so these tech-
niques become less effective in terms of overall network
performance. The transition from research prototypes to
industry-ready products is one of the major challenges.
Many of the techniques developed focus only on the FNN
and CNN due to a wide variety of applications. However,
the technology is moving faster with the wide acceptance
of other DL methods. For example, sequence analysis is
prominent in commercial edge devices for voice recogni-
tion, NLP, and many more. Therefore, the focus should
be given to the understanding of how existing techniques
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work on time series or sequence analysis on edge and the
development of new techniques.

J. Training on the Edge

Training DL models are performed mostly in the cloud.
Such training is isolated and static, having no subsequent
attempts to retain the learned knowledge for the future.
Besides requiring large datasets, the application domain is
also limited. Adding the retraining capability and transfer
learning on edge can open various services where data are
not static, and continuous learning is necessary from new
data. Though accelerators such as ScaleDeep [419] and
HyPar [420] are proposed for training on edge, these archi-
tectures do not consider the sparsity, variable precision of
gradients, parameters, and activations. Hence, there are
significant improvement opportunities to leverage layer-
level optimization, boost performance, and improve energy
efficiency by supporting mixed precision. As training is
more computation-intensive, challenges are severe for
edge training compared to EI.

Most of the edge training techniques are developed
adopting supervised learning assuming the availability of
sufficient labeled data of good quality. These assumptions
pose a serious challenge to these algorithms to deal with
real-life data, which are mostly unlabeled and sparse.
Active learning [421] can deal with the unlabeled data
problem up to a certain extent. However, active learn-
ing works well for small datasets but requires manual
intervention for annotation. Federated learning could be
another solution through decentralized training. Instead
of uploading and making a centralized database, feder-
ated learning is collaboratively trained on multiple local
nodes using local datasets, and learned parameters are
exchanged. Using the parameters from multiple nodes a
global model is generated and shared by all local nodes.
Other possible solutions to data scarcity at the edge might
consider incremental learning and data augmentation.

Lifelong ML (LML) [422] could bring human-like intel-
ligence to edge devices and could be the possible future
research direction to tackle the environmental dynamics
and scarcity of data. LML is a continuous learning par-
adigm that accumulates knowledge from the past and
adapts it to the present. However, the concept of LML is
developed considering the high computational capacity of
the machines and is not targeting edge devices. Therefore,
making LML applicable for edge training and inference
is one of the challenges and could bring many research
opportunities.

K. Increased Demand of Communication
Resources

The increase in communication resources’ demand in
data collection, cloud transfer, edge deployment of large
models, and distributed training and inference are a
few communication challenges associated with EI. The
DL models are data-driven, which require edge big-data

transfer from edge to the cloud for storage and train-
ing. In addition, even after significant compression and
algorithm–hardware optimization, the model size can be
large. Transferring such a large model to deploy on edge
requires connectivity. Different communication strategies,
such as wired connection, cellular networks, and oppor-
tunistic spectrum, have been explored. Data collection
edge devices require interconnection with the edge clusters
for proper data transfer. This data transfer from edge
devices consumes spectral resources and puts an addi-
tional burden on the hardware costs. In federated learn-
ing, an established connection between the cloud server
and edge devices is critical to upload the updates from
edge nodes and download the accumulated updates from
shared local models. Minimizing the number of update
rounds, efficient spectral usage, and cost-effective com-
munication are a few challenges of federated learning.
Multiaccess edge computing (MEC) is an emerging tech-
nology [423] that has the potential to ensure optimal
coordination between the spectral, storage, and computing
resources within the limited power and latency budget.
By sharing the communication resources in proximity,
MEC has the potential to meet the spectral demand in
data collection and distributed training and inference.
In addition, the envisioned 6G network infrastructure
will eliminate several communication resources burden
through high-capacity satellites and possible exploitation
of terahertz and optical frequency bands [20].

L. Explainability in Edge Inference

Advances in AI facilitate highly accurate decision-
making in numerous application domains. However, there
is an increasing concern about transparency, ethics, and
accountability for the widespread adoption of AI in health-
care, jurisprudence, and law enforcement. The rapid emer-
gence of DL makes it tough to justify and explain the
outcomes. Thus, explainable AI (XAI) brings a novel para-
digm shift to provide transparency in DL algorithms [424].
The ever-increasing intelligent edge devices incorporating
DL inference impose a tremendous challenge in ensuring
that the output is harmless. Due to multiple optimizations,
often, the accuracy is compromised in EI. Therefore, incor-
porating explainability remains a minimally explored and
challenging research direction.

XV. C O N C L U S I O N
Most DL model designs are concerned with empirically
attaining the highest achievable accuracy. However, lever-
aging the full potential of DL through embedded AI capa-
bility for the end-user application requires adaptability and
applicability to various domains and future evolution. This
article analyzes some avenues that preceding works have
accomplished to optimize DL inference processing on edge.
For example, edge-oriented compression techniques and
available EI hardware platforms are presented. Different
edge-specific quality metrics, such as model size, accuracy,
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latency, throughput, and cost, are analyzed. Mem-
ory access techniques and data flow often dominate
power consumption. Thus, techniques developed to
optimize memory access are also described. In addi-
tion, available software packages and ML frameworks
for algorithm–hardware codesign techniques for train-
ing, optimizing, and deploying DL for EI are included.

In summary, this article presents a comprehensive review
and systematic classification of EI research and a thorough
exploration of each component. Moreover, open research
questions, challenges, and possible future directions are
discussed. This article will help researchers cope with the
current state of the tools and techniques for EI and develop
next-generation AI-enabled end-user systems. �
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