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Abstract—Motivated by the advancing computational capacity
of distributed end-user equipment (UE), as well as the increasing
concerns about sharing private data, there has been considerable
recent interest in machine learning (ML) and artificial intelli-
gence (AI) that can be processed on distributed UEs. Specifically,
in this paradigm, parts of a ML process are outsourced to
multiple distributed UEs. Then the processed information is
aggregated on a certain level at a central server, which turns a
centralized ML process into a distributed one, and brings about
significant benefits. However, this new distributed ML paradigm
raises new risks of privacy and security issues. In this paper, we
provide a survey on the emerging security and privacy risks
of distributed ML from a unique perspective of information
exchange levels, which are defined according to the key steps
of a ML process, i.e.: i) the level of pre-processed data, ii) the
level of learning models, iii) the level of extracted knowledge and,
iv) the level of intermediate results. We explore and analyze the
potential of threats for each information exchange level based on
an overview of the current state-of-the-art attack mechanisms,
and then discuss the possible defense methods against such
threats. Finally, we complete the survey by providing an outlook
on the challenges and possible directions for future research in
this critical area.
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Fig. 1. Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2025.

Index Terms—Trusted AI, Multi-agent Systems, Distributed
Machine Learning, Federated Learning, Privacy, Security

I. INTRODUCTION

An explosive growth in data availability arising from pro-
liferating Internet of Things (IoT) and 5G/6G technologies,
combined with the availability of increasing computational
resources through cloud and data servers, promote the ap-
plications of machine learning (ML) in many domains (e.g.,
finance, health-care, industry, and smart city). ML technolo-
gies, e.g., deep learning, have revolutionized the ways that
information is extracted with ground-breaking successes in
various areas [1]. Meanwhile, owing to the advent of IoT,
the number of intelligent applications with edge computing,
such as smart manufacturing, intelligent transportation, and
intelligent logistics, is growing dramatically.

As such, conventional centralized deep learning can no
longer efficiently process the dramatically increased amount
of data from the massive number of IoT or edge devices.
For example, as shown in Fig. 1, the expected volume of
data will be 181 zetabytes in 20251. In addition, the long
runtime of training models steers solution designers towards
using distributed systems for an increase of parallelization
and the total amount of wireless bandwidth, as the training
data required for sophisticated applications can easily be
on the order of terabytes [2]. Examples include transaction
processing for larger enterprises on data that is stored in

1https://www.statista.com/statistics/871513/worldwide-data-created/
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different locations [3] or astronomical data that is too large
to move and collect [4].

To address this challenge, distributed learning frameworks
have emerged. A typical distributed learning fashion involves
the cooperation of multiple clients and servers, which thus
involves a decentralization and aggregation process along with
the ML process [5]. With the increasing capability of edge
devices, distributed clients are able to execute simple ML
tasks. For example, federated learning (FL) [6]–[8] enables
the decoupling of data provisioning by distributed clients and
aggregating ML models at a centralized server. In certain
ML tasks, the model sometimes can be so large that it
cannot be trained in a reasonable amount of time, and cannot
run completely on a single machine. Therefore, large-scale
distributed ML is proposed in [9] where datasets in each client
will be re-analyzed and pre-trained locally, and the knowledge
is aggregated by a central server. In addition, aggregating
learning results [10] by the server is another part of distributed
ML technology.

To complete a ML task successfully, we need to preserve the
integrity and security of the system, along with the privacy of
participating clients. As the manufacturers can potentially fail
to implement a robust security system in distributed devices,
experts on security have warned of potential risks of large
numbers of unsecured devices connecting to the Internet [11].
Security and privacy are very significant issues for distributed
ML, which introduce a new level of emergent concerns for
participants. This is because these devices collect not only
personal and sensitive information, e.g., names and telephone
numbers but also monitor daily activities. Due to the regular
stream of news stories about privacy leakage through major
data breaches, users are wary of using personal data in public
or private ML tasks with good reasons [12].

There are some related surveys on security and privacy
issues in distributed ML. For example, the challenges and
opportunities of distributed learning over conventional (cen-
tralized) ML were discussed in [13], [14], which elaborated
on limited privacy and security issues. In [15], [16], the
authors focused on the adversarial models related to private
information leakage and corresponding defensive mechanisms
in ML, and the work [17] investigated privacy issues in
distributed ML. Moreover, differential privacy (DP) based
protection methods were introduced in [18]. In addition, to
protect the privacy of the IoT data, the work [19] surveyed
the ML-based method to address the privacy issues including
scalability, inter-operability, and limitations on resources, such
as computation and energy. The works [20]–[22] addressed se-
curity and privacy issues in FL, together with related solutions.
The summary of the related surveys on security and privacy
issues in ML is listed in Table I.

Different from the above-mentioned surveys, in this work,
• We first give a clear and fresh definition of distributed

learning, and develop the distributed learning framework
in four levels in terms of sharing different information,
namely sharing data, sharing model, sharing knowledge,
and sharing results.

• We then provide an extensive overview of the current
state-of-the-art related to the attacks and defensive mech-

anisms on the privacy and security issues for each level.
Real examples are also listed for each level.

• In addition, learned lessons from each aspect are de-
scribed, which can indeed help readers to avoid potential
mistakes.

• Several research challenges and future directions are
further discussed, which can provide insights into the
design of advanced learning paradigms.

II. BACKGROUND OF DISTRIBUTED ML AND THE PAPER
STRUCTURE

In Section II, we first describe the detailed process that
how a machine learning task is executed, and then transit
the centralized learning to distributed paradigms, and develop
a decentralized learning framework. In addition, we provide
descriptions of several widely-studied distributed learning
frameworks.

A. Background of Machine Learning

Generally speaking, the core idea of ML algorithms can be
summarized as training the machine to learn rules or patterns
underlying some phenomenon using data and then making
decisions or inferences based on new data using the learned
rules or patterns. Many ML algorithms fall into the category
of pattern recognition (PR), including face recognition, voice
recognition, character recognition, and so on [25]. Since
humans cannot easily program machines to follow all detailed
rules and judgments, ML can be used to help machines learn
hidden and even implied rules by themselves. This process is
described simply as follows.

Suppose we are going to train a machine to classify whether
a fruit is an apple or a banana (a classification task). We
first collect some samples that can be labeled and learned
by the machine (dataset). So some apples and bananas from
this dataset along with their features, including shape, color,
weight, size, and so on are recorded. Now, a labeled fruit
(apple or banana) with a set of ground-truth features together
builds up a sample, and these labeled samples constitute
the training dataset. The goal of this ML task is to make
the machine learn features from the training dataset and
output good predictions given new samples without labels (test
dataset). This learning process can be expressed as fitting a
function that takes the features as inputs and outputs a value
that is as close as possible to the true label. Fig. 2 illustrates
the procedure of ML with four main steps listed as follows:

• Data collection. The quantity and quality of the collected
data dictate how accurate the model is, and the dataset
can be divided into training, validation, and test dataset
[26].

• Model training. For different ML tasks, an appropriate
model should be chosen wisely first. Then, the training
dataset with the right labels is fed as inputs to the model
to start training.

• Knowledge extraction. During training, features of the
input samples are extracted by some metrics or combina-
tions of metrics (e.g. linear or nonlinear combinations),
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TABLE I
EXISTING SURVEYS ON PRIVATE AND SECURE MACHINE LEARNING

Related Survey Topic Key contributions

[20]
Privacy preserving in federated learning
for IoT data

This work mainly focused on the survey on the use of federated learning for private
data analysis in IoT, i.e., highly skewed non-IID data with high temporal variability,
to address privacy concerns, bandwidth limitations and power/compute limitations.

[19]
Machine learning-based solutions to protect
privacy in IoT

This work surveyed the works that leverage machine learning as a strategy to address
the privacy issues of IoT including scalability, inter-operability, and resource limitation
such as computation and energy.

[23] Data Security Issues in Deep Learning
This survey investigated the potential threats of deep learning with respect to black
and white box attacks and presented related countermeasures on offense and defense.

[18] Differentially private machine learning
This survey investigated the existing differentially private machine learning technologies
and categorized them as the Laplace/Gaussian/exponential mechanism and the output
/objective perturbation mechanism

[13], [14] Machine learning in distributed systems
These articles provided an overview by outlining the challenges and opportunities
of distributed machine learning over conventional (centralized) machine learning,
and discussing available techniques.

[20]–[22]
Attacks and defensive strategies on federated
deep learning

These works investigated existing vulnerabilities of FL and subsequently provided a
literature study of defensive strategies and algorithms for FL aimed to overcome
these attacks.

[15], [16], [24] Privacy in machine learning
These surveys focused on machine learning and algorithms related to private information
leakage and corresponding defensive mechanisms.

[17] Privacy in distributed machine learning
This work focused on the privacy leakage issues in distributed learning and studied
benefits, limitations, and trade-offs for defensive algorithms.

Our paper Privacy and Security in distributed learning

Our work is different from the above survey articles in the following aspects: 1. our
work first develops a distributed framework into four levels; 2. the state-of-the-art
on the private and secure issues in each level are investigated and summarized;
3. the characteristics of the adversary at each level are further discussed.
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Fig. 2. The process of machine learning in four key steps: data collection, model training, knowledge extraction, and result prediction.

and this knowledge helps the model updates its weights
in structures.

• Result prediction. The test dataset which has been with-
held from the model is used and outputs the prediction
results, such as labels, values, vectors (e.g., generative
time series), and matrices (e.g., generative images).

B. Background of Distributed Machine Learning

Distributed ML systems and algorithms have been exten-
sively studied in recent years to scale up ML in the presence
of big data. Existing work focuses either on the theoretical
convergence speed of proposed algorithms or on the practical
system aspects to reduce the overall model training time [27].
Bulk synchronous parallel algorithms (BSP) [28] are among
the first distributed ML algorithms. Due to the hash constraints
on the computation and communication procedures, these
schemes share a convergence speed that is similar to traditional
synchronous and centralized gradient-like algorithms. The
Stale synchronous parallel (SSP) algorithm [29] is a more
practical alternative that abandons strict iteration barriers, and

allows the workers to be off synchrony up to a certain bounded
delay. The convergence results have been developed for both
gradient descent and stochastic gradient descent (SGD) [29]–
[31] as well as proximal gradient methods [32] under different
assumptions of loss functions. In fact, SSP has become central
to various types of currently distributed parameter server
architectures [33]–[36]. Depending on how the workload is
partitioned [27], distributed ML systems can be categorized
into four levels:

• Level 0: sharing data. After collecting and pre-
processing data locally, each UE will upload its pri-
vate/anonymized data to a central server, and then the
server will use this aggregated data to complete the
learning task.

• Level 1: sharing model. Different from uploading data
directly, each UE can train a local ML model using its
own data and share the trained model with the server.
Then the server will aggregate the collected model and
re-transmit the global model to UEs for the next round
of learning.
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• Level 2: sharing knowledge. Different from sharing ML
models, the extracted knowledge from training local data,
such as the relationship between different attributes, is
further shared.

• Level 3: sharing result. The task training is completely
processed locally, and each UE only shares ML re-
sults/outputs to the central server.

The detailed framework of the four-level distributed ML is
illustrated in Fig. 3, which is composed of a local and global
plane. In the local plane, different information, i.e., data or
models, are processed and generated in local devices, and then
transmitted to a centralized server for aggregation. Four levels
of the proposed distributed learning framework are described
in detail, i.e., sharing data, sharing models, sharing knowledge,
and sharing results, which are exemplified by representative
ML techniques.

C. Existing Distributed Learning Frameworks
In this subsection, we will introduce some popular dis-

tributed learning models in the literature, which includes
federated learning, split learning, SGD-based collaborative
learning, and multi-agent reinforcement learning.

1) Federated Learning: FL is a collaborative ML technique
[37]–[39] developed by Google, which allows decoupling of
data provision at UEs, and machine learning model aggrega-
tion, such as network parameters of deep learning, at a central-
ized server. A structure of FL is plotted in Fig. 4. The purpose
of FL is to cooperatively learn a global model without directly
sharing data. In particular, FL has distinct privacy advantages
compared to data center training on a dataset. At a server,
holding even an anonymized dataset can put client privacy at
risk via linkage to other datasets. In contrast, the information
transmitted for FL consists of minimal updates to improve
a particular ML model. The updates can be ephemeral, and
will not contain more information than the raw training data
(by the data processing inequality). Further, the source of the
updates is not needed by the aggregation algorithm, and so
updates can be transmitted without identifying metadata over
a mixed network such as Tor [40] or via a trusted third party.
General categories are distributed horizontal FL, where clients
have different sample spaces with the same feature space, and
share models during aggregation, distributed vertical FL with
the same sample space and different feature spaces, sharing
models or knowledge to the central server, and distributed
transfer learning with various sample and feature spaces when
uploading model or knowledge in aggregation [41].

However, although the data is not explicitly shared in
the original format, it is still possible for adversaries to
reconstruct the raw data approximately, especially when the
architecture and parameters are not completely protected. In
addition, FL can expose intermediate results such as parameter
updates from an optimization algorithm like SGD, and the
transmission of these gradients may actually leak private
information when exposed together with a data structure such
as image pixels. Furthermore, the well-designed attacks such
as inference attack (stealing membership information) [42]–
[44], and poisoning attack (polluting the quality of datasets or
parameter models) [45] may induce further security issues.

2) Split Learning: Split learning, as a type of distributed
deep learning [17], [47]–[49], has another name of split neural
network (SplitNN). Similar to FL, split learning is effective
when data uploading is not available because of privacy and
legal restrictions. In the SplitNN, each participant first trains a
NN until a predefined layer, called the cut layer, and then
transmits the output of the cut layer to the server. Upon
receiving the outputs, a central server will continue training
the rest layers. Then, the loss function value is calculated
and back-propagated to the participant. When receiving the
feedback, the participant continues the back-propagation until
the network finishes training. In Fig. 5, we show a combination
of FL and split learning, where the logits are shared and
aggregated at a centralized server.

The computational and communication costs on the client
side are reduced in split learning because part of the network
is processed locally. In addition, instead of transmitting the
raw data, the activation function of the cut layer is uploaded
to the server, which has a relatively smaller size. Some
experimental results show that split learning has higher per-
formances and fewer costs than FL over figure classification
tasks, i.e., CIFAR-100 datasets, using Resnet-50 architectures
for hundreds of clients-based setups [47]. However, it needs
further explanations on how split learning works and makes
decisions, which is linked to the trust of distributed networks,
especially in the health area [47].

3) Large Batch Synchronous SGD (LBS-SGD): The differ-
ence between the large batch synchronous SGD-based collabo-
rative learning and FL lies in that the updates in LBS-SGD are
processed on each batch of training data, and multiple epochs
of local training are required before uploading in FL. In LBS-
SGD, model parallelism and data parallelism are two common
ways to support updating, such as distributed large mini-batch
SGD [50], distributed synchronous SGD with backups [17],
[51], and selective SGD [52]. In [52], each participant is
asked to choose a part of the models to update at each epoch
and share them asynchronously with others. The work [50]
considered synchronous SGDs by dividing local epochs into
mini-batches over multiple clients and model aggregations.
While the aggregated updates were performed synchronously
in [50] that the aggregator will wait for all clients, the straggler
may slow down the learning, and a synchronous optimization
with backup participants has been provided in [51].

4) Multi-Agent Reinforcement Learning: Reinforcement
learning (RL) is trial-and-error learning by interacting directly
with the environment, training according to the feedback, and
finally achieving the designed goal. Specifically, RL defines
a decision maker as an agent and the interaction with the
environment, where three essential elements: the state, action,
and reward, are used to describe the interaction. For each
interaction, the client arrives at a certain state and processes
a corresponding action, and then obtains feedback that is
used to alter the current state to the next state. However, a
single RL framework has no capability to address complex
real-world problems, and thus, a multi-agent reinforcement
learning system (MARL) has attracted increasing attention.
Within a MARL, agents will cooperate with each other and
observe the complex environment in a more comprehensive
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Fig. 3. The framework of distributed learning, which is composed of a local and global plane. In the local plane, different information, i.e., data or models,
are processed and generated in local devices, and then transmitted to a centralized server for aggregation. Four levels of the proposed distributed learning
framework are described in detail, i.e., sharing data, sharing models, sharing knowledge, and sharing results, which are exemplified by representative ML
techniques.

...

User 2User 1 User N-1 User N

Central Server

vw1 w2 wN-1 wNv v v

Local Model Uploading

Global Model Broadcasting

Fig. 4. The structure of federated learning, where users train a ML model
using their local data and share the models to a centralized server.

way. For example, as shown in Fig. 6, a three-agent reinforce-
ment learning system, where actions and rewards are shared
between different users, is provided. By absorbing the learning
experiences from the user-self and other participants, a faster
convergence rate with better performance is always achieved.
However, compared to the single-agent setting, controlling
multiple agents poses several additional challenges, such as

Fig. 5. A reformulation of FL with assisted by the split learning and
knowledge distillation [46].

the heterogeneity of participants, the design of achieved goals,
and the more serious malicious client problem. Although a
number of methods have been proposed to address these chal-
lenges, e.g., approximate actor-critic [53] and lenient-DQN,
limitations like nonseasonal communication among agents and
privacy leakage prevent the rapid development of MARL and
existing methods cannot be extended to large-scale multi-agent
scenarios.

Following the discussed background of distributed ML, we
present the structure of this survey work in Fig. 7. The rest
of the paper is structured as follows. In Section III, privacy
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Fig. 6. A framework of multi-agent reinforcement learning, where multiple
users communicate and interact to change information, and also process
actions to obtain feedback from the environment.

and security issues are discussed and several robust protection
methods are provided in Section IV. Then, in Section V, we
survey the attacks and defenses in various paradigms in dis-
tributed ML. Several research challenges and future directions
are shown in Section VI. Finally, conclusions are drawn in
Section VII. In addition, a list of important abbreviations is
provided in Table II.

III. PRIVACY AND SECURITY RISKS IN DISTRIBUTED ML

In Section III, we will introduce the potential risks of
privacy and security, which are measured by factors including
threat models, adversarial models, and attack methods.

A. Threat Models

1) Malicious/Curious Participant: Participants in dis-
tributed ML can be malicious or curious. For example, a car
insurance company with limited user attributes might want
to improve its risk evaluation model by incorporating more
attributes from other businesses, e.g., a bank, a taxation office,
etc. The role of the other participants is simply to provide
additional feature information without directly disclosing their
data to other participants, and in return, obtain financial and/or
reputation rewards. However, the competitors may be dis-
guised as collaborators, and then damage the training process
or steal the ML model.

2) External Attackers: In terms of exchanged information,
eavesdropping, modification or deletion can occur during
communication in distributed ML as well. We can notice
that the exchanged information usually contains the updated
direction and extracted features from private data, and thus it
is crucial to ensure its correctness, especially for the client-
server framework. An external attacker may control the final
output by modifying or deleting the exchanged information
in the communication. In addition, via eavesdropping on the
extracted features from private data, an external attacker can
further infer sensitive information [54].

B. Adversarial Models

In this subsection, we will discuss adversarial goals related
to leaking information from the training data or destroying
models during learning.

1) Access:

• White-Box: The adversary is assumed to acknowledge
certain information about the training data or the learning
model, e.g., model parameters, network structures, or part
of/the whole training dataset.

• Black-Box: The adversary does not have any knowledge
about the ML model, but the adversary can further
explore the model by injecting some designed inputs and
observing related outputs [55].

2) Training v.s. inference: The second factor is the place
where the attack happens:

• Training Stage: The adversary attempts to learn the model
by accessing a part or all of the training data, and creating
a substitute model, i.e., a shadow model.

• Inference Stage: The adversary observes the outputs from
the learning and sums up the model characteristics [54].

3) Passive vs. Active: A third factor is to distinguish
between passive and active attacks.

• Passive attack: The adversary can passively observe and
obtain the updates but change nothing during the training
process.

• Active attack: The adversary actively performs and ad-
justs the learning operation. For example, the adversary
can upload unreasonable parameters to degrade the ag-
gregate model in FL [56].

C. Attack Methods

In this subsection, several attack methods are investigated
as follows.

1) Poisoning Attack: The goal of a poisoning attack is to
degrade the model quality, which misleads the learning to
an incorrect direction by carefully crafting poisoning samples
during training, also called adversarial examples [57]. In the
black-box attack, the attacker can only inject a relatively
small amount of crafted/poisoned data into the training model,
where the amount and the undiscovered capability of these
poisoning data are two basic metrics to estimate the attacking
performance. For example, the authors in [58] have first
investigated poisoning attacks against linear regression mod-
els and proposed a fast optimization algorithm with limited
crafting samples to perturb outputs. Further, Suciu et al. have
investigated the minimum information required by the attacker
to achieve various attacking goals [59]. In the white-box
attack, the adversaries have full knowledge of the training
model and can take advantage of it to reconstruct a powerful
poisoning attack. For example, Yuan et al. in [60] have
proposed a white-box attack with perfect knowledge under
different goals. Although the mentioned method might be
unrealistic in practical settings, it can achieve almost five times
than the black-box attack in success rate.
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TABLE II
LIST OF IMPORTANT ABBREVIATIONS.

Abbr. Definition Abbr. Definition Abbr. Definition
ML Machine Learning DL Deep Learning RL Reinforcement Learning
DQN Deep Q-Learning AC Actor-Critic A3C Asynchronous Advantage Actor-Critic
TRPO Trust Region Policy Optimization PG Policy Gradient PPO Proximal Policy Optimization
DP Differential Privacy HE Homomorphic Encryption SMC Secure Multiparty Computation
SGD Stochastic Gradient Descent FL Federated Learning NN Neural Network

2) Evasion Attack: An evasion attack often happens in the
prediction process, which aims to mislead the outputs. In
detail, the evasion attack is to change real data from one
category to a determined or random one and destroy the
integrity of the original dataset. From a black-box attack angle,
the adversary only knows the type of the training dataset and
observes the outputs. Based on this assumption, the authors in
[61] have realized it in the speech recognition system. The
generated adversarial samples achieve a 91.67% successful
rate on moving one data from one category to another. While
in the white-box attack, the adversary is able to acknowledge
more useful information, such as the network structure and the
type of training samples, rather than the predictive interface.
For example, Kevin Eykholt et al. in [62] has shown the
weakness for DNNs when random noises are added to the
inputs and an advanced robust physical perturbations-based
method has been proposed.

3) Model Inversion Attack: The model inversion attack
proposed in [63] works in a black-box fashion, and the adver-
sary only knows the input and can observe the corresponding
outputs, which is used to detect correlations between uncertain
inputs and respective outputs. A follow-up work has presented
a combination with a black-and-white box attack [43]. The
proposed attack aims to predict the highest probability of
one input for a given label, which the adversary is able to
reconstruct the input for a known label, i.e., a figure from a
specific class. However, the proposed model inversion attack
only works in linear models for most cases, and a major
weakness is that the complexity grows exponentially with the
input size since it relies on searching all linear combinations
by brute force.

4) Membership Inference Attack: The membership infer-
ence attack (MIA) is mainly focused on privacy attacks. A

previous attack targeting distributed recommend systems [64]
intended to infer which input will lead to a change in the out-
put by observing temporal patterns from the learning model. In
[54], Shokri et al. have investigated the differences between
the models to infer whether an input exists in the training
dataset for the supervised model. In particular, a shadow
model analogs as a similar structure to the targeted model
in a black-box fashion. Following [54], Song et al. in [65]
attempted to record the training data with black-box access.
Then, the authors in [66] have exploited the knowledge of
learning models to hide the Markov model and attack support
vector machine in classification tasks. Also, related works [44],
[67], [68] presented inference attacks against distributed deep
learning [37], [52]. In particular, Aono et al. [67] aimed to
attack the privacy-preserving learning framework proposed in
[52], and revealed that partial data samples can be revealed by
an honest-but-curious server. However, the operation that the
single-point batch size limits its effectiveness. Also, a white-
box attack against [52] has been proposed in [44], which used
generative adversarial networks (GAN) to produce similar
samples with a targeted training dataset, however, the proposed
algorithm lost effectiveness in the black-box access. Finally,
Truex et al. in [69] has shown that the MIA is usually data-
driven, and Melis et al. in [68] have demonstrated the way that
a malicious participant infers sensitive properties in distributed
learning. Other MIAs focused on genomic research studies
[70], [71], in which the attack is designed to infer the presence
of specific information of individuals within an aggregated
genomic dataset [71], locations [72], and noisy statistics in
general [73].

5) Model and Functionality Stealing:
• Model Extraction. The aim of model extraction is first

proposed in [74], in which they proposed to infer the
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parameters from a trained classifier with a black-box
fashion; however, it only works when the adversary has
access to the predictions, i.e., the probabilities for each
class in a classification task. In follow-up works, other re-
searchers went a step further to perform hyper-parameter
stealing [75], which are external configurations. These
values cannot be estimated by data samples, architecture
extraction [76] that infers the deep model structures as
well as the updating tools (e.g., SGD or alternating
direction method of multipliers (ADMM)), etc.

• Functionality Extraction. The concept of functionality ex-
traction is, rather than stealing the model, to create knock-
off models. Orekondy et al. [77] have processed this
attack only based on design inputs and relative outputs
to observe correlation from ML as a service (MLaaS)
queries. In particular, the adversary uses the input-output
pairs, e.g., image-prediction pairs in a figure classification
task, to train a knock-off model, and compares it with one
of the victims for the same task. In addition, the authors
in [55] have trained a shadow model to replace a DNN
which directly uses inputs generated by the attacker and
labeled by the attacking DNN.

D. Section Summary

To sum up, the attack target can be regarded as a clue to
distinguish the privacy and security risks from the adversary
aspect. A common aim for the privacy attack is to infer a
membership of participants without degrading the learning
performance, i.e., membership inference attack, and model
and functionality stealing, while malicious clients usually aim
to destroy the integrity of the learning system, i.e., model
poisoning, evasion, and inversion attack.

IV. ROBUST DEFENSIVE MECHANISMS

In Section IV, we will present an overview of several
robust defensive mechanisms that include cryptography, robust
aggregation, network compression, and differential privacy to
reduce information leakage and address security issues.

A. Cryptography

Cryptography is a vital part of distributed ML as it has
the ability to support confidential secure computing scenarios.
There are a vast of research algorithms and prototypes in
literature, which allow participants to obtain learning outputs
without uploading their raw data to the server. For instance,
in the supervised ML task, secure multi-party computation
(SMPC) and homomorphic encryption (HE) based privacy-
enhancing tools have been proposed to enable secure comput-
ing. Typical examples are, neural networks [78]–[80], matrix
factorization [81], linear regressions [82], decision trees [83],
and linear classifiers [84], [85].

Specifically, SMPC allows two or more participants to
jointly complete a ML task over the shared data without
revealing it to others. Popular SMC prototypes are usually
developed for two parties, such as [80], [82], [86], [87]
designed for distributed ML tasks. For more than two parties,

algorithms based on three-party communication have been
provided in [88]–[91], which all rely on the majority of semi-
honest or honest participants. For example, Bonawitz et al.
in [78] has proposed a mixture of several communicating
schemes to enable secure computing of participants in FL by
blurring the aggregation from the server.

Regard to HE, it mainly uses the encryption and decryption
protocol to transform the original message by certain math-
ematical operations, and there are three common forms for
HE: 1) Partially Homomorphic Encryption (PHE) supports one
type of mathematical operation; 2) Somewhat Homomorphic
Encryption (SWHE) that uses a number of mathematical
operations for limited use-cases; 3) Fully Homomorphic En-
cryption (FHE) supports unlimited numbers of mathematical
operations with no other limits [92]. For example, Phong et al.
in [67] have developed a novel homomorphic scheme based
on additive operations for FL with no performance degradation
[67]. Other distributed learning strategies, such as [93], [94]
used HE to encrypt data and the central server can train a
learning model based on the encrypted one. However, the
drawbacks of HE are obvious. First, it is usually hard or
even impractical to implement HE since this will generate
a huge computation overhead [87], [95], [96]. Second, with
the increasing number of homomorphic operations, the size
of the encrypted models grows exponentially, especially in
the SWHE [95], which usually largely surpasses the original
model. Third, extra communications between the client and
server are required to facilitate key-sharing protocols, which
will increase communication costs.

B. Robust Aggregation

The robust aggregation protection methods are used de-
signed for distributed ML that a server needs to aggregate
something from clients. To prevent malicious clients, or a
group of collusive malicious clients, such as the Byzantine
attack in FL [97], the authors in [98] have proposed Krum,
a robust aggregation scheme. By minimizing the sum of
squared Euclidean distances over the aggregated models, Krum
can effectively recognize and remove these outliers. Several
follow-ups [99]–[101] aimed to recognize malicious clients.
In addition, Chang et al. [102] have developed a knowledge-
sharing-based algorithm to preserve privacy. The proposed
Cronus algorithm relies on a public dataset that is available
to all clients. Instead of transmitting parameters, clients will
upload the predicted results from this public dataset, and a
mean estimation algorithm [103] was used to aggregate these
high dimensional label samples. Although Cronus has been
proven to defend against basic model poisoning attacks with
an acceptable performance loss, sharing labels will lead to
privacy leakage to a certain extent.

C. Network Compression

The main purpose of compressing the network is to reduce
information transmission, which saves communication re-
sources and accelerates learning. As well, it can also reduce the
information exposed to the adversary. Typical methods include
quantization [104]–[106], network sparsification [107], [108],
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knowledge distillation [109], [110], network pruning [111],
[112] and Sketch [113]–[115]. Specifically, an initial work
[52] provided the ideal to transmit a subset of all gradients
in distributed SGD, and based on it, the authors in [116] have
proposed a novel gradient subset scheme that uploads sparse
and chosen gradients can improve the prediction accuracy
in the non-independent and identically distributed (non-IID)
settings. However, as the gradients keep their own form, recent
works [42], [117] shown that such methods cannot prevent a
specific adversary from inferring available information from
these frameworks [42], [117].

Another approach is using lossy compression techniques
to decrease the transmitted bits, and it may facilitate certain
forms of information security. The authors in [118] quantized
the updates using the low-precision quantizer proposed in
[104] and provided a smooth tradeoff between compression
rate and the convergence performance in convex and non-
convex settings. In [119], a count Sketch method with mo-
mentum and error accumulation was provided for FL while
achieving a high compression rate with good convergence.
On the basis of it, the authors in [115] have proved such a
quantization method can provide a certain differential privacy
guarantee. Moreover, a Sketch-based method was proposed in
[114], which sorts gradient values into buckets and encodes
them with bucket indexes. In addition, a stochastic-sign-based
gradient compressor was used and analyzed to enable commu-
nication efficiency [120], and an auto-encoder compressor was
proposed in [121] in which the auto-encoder is trained based
on dummy-gradients, and the server will release the coded part
to clients while keeping the decoder part secretive.

Different from the above methods, a technique called
dropout can also be used to defend [122], although it is usually
used to prevent overfitting problems in training [123]. By
applying dropout, there will be no deterministic outputs (e.g.,
the updating gradients) on the same training dataset, which
can reduce the exploitable attack fact [42].

D. Differential Privacy
Differential privacy (DP) is a standard definition for privacy

estimation [124]. A query mechanism is first defined as a
property to a dataset, DP-based analytical methods are then
extended for ML models on private training data, such as SVM
[125], linear regression [126], and deep learning [52], [127].
On neural networks, differentially private stochastic gradient
descent [127] is the most famous method that adds random
noises on the updating gradients to achieve DP guarantee.

DP sets up a game where the adversary is trying to deter-
mine whether a training model has an input D or D′ which
are adjacent datasets and only differ in one sample. If the
adversary can distinguish which dataset (D or D′) is used to
train by observing the outputs, we can say this training model
leaks private information. A formal definition of (ϵ, δ)-DP is
expressed as follows:

Definition 1. ((ϵ, δ)− DP). A randomized mechanism f :
D 7→ R offers (ϵ, δ)-DP if for any adjacent input d, d′ ∈ D
and S ⊂ R,

Pr [f (d) ∈ S] ≤ eϵ Pr [f (d′) ∈ S] + δ, (1)

where f(d) denotes a random function of d.

To estimate the accumulated privacy budget in multiple
learning iterations, the composition theory in [124] shown
the effectiveness, and other variants of DP [128], [129] use
slightly different formulations with (1), and can achieve a
tighter privacy delimitation. Recently, the authors in [130] have
derived a lower bound of DP from the adversary perspective,
and the Monte Carlo-based method is the first trial of obtaining
the privacy level empirically. In addition, the concept of
local DP was proposed firstly in [131], [132], and enjoys its
popularity gradually.

E. Section Summary

To sum up, general defensive schemes, such as cryptogra-
phy, robust aggregation, and network compression, can provide
thorough protection on security and preserve privacy, where
the application of DP is particularly for privacy issues.

V. ATTACKS AND DEFENCES IN VARIOUS LEVELS OF
DISTRIBUTED LEARNING

In Section V, we will provide a detailed discussion on
the state-of-the-art of attacks and defenses in each level of
distributed ML.

A. Level 0: Sharing Data

Data collection plays an important role in various data-
governed distributed ML algorithms. However, original data
usually contain sensitive information such as medical records,
salaries, and locations, and thus a straightforward release of
data is not appropriate. Correspondingly, research on protect-
ing the privacy of individuals and the confidentiality of data
with an acceptable performance loss has received increasing
attention from many fields such as computer science, statistics,
economics, and social science.

1) Threat Models: Although existing works have proposed
a mount of mechanisms to hide identifiers of the raw data, it is
also possible for attackers to steal privacy by analyzing hidden
features [133]. Moreover, deep neural networks have been
proven vulnerable to adversarial examples, which poses secu-
rity concerns due to the potentially severe consequences [134].
This means that if some adversaries successfully make ad-
versarial examples participate in system training, the training
performance will be unacceptable.

2) Taxonomy of Attacks: Attacks on data publishing models
can be mainly categorized as adversarial examples and feature
identification based on their goals. As shown in Table III, we
summarize possible attacks as follows.
• Adversarial examples (data poisoning). The work

in [134] integrated the momentum term into the itera-
tive process for attacks and generated more transferable
adversarial examples by stabilizing update directions and
escaping from poor local maxima during the generating
iterations. The research on this area is faced with an
“arms race” between attacks and defenses, i.e., a defense
method proposed to prevent the existing attacks will be
soon evaded by new attacks.
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Fig. 8. A breakout figure from Fig. 3: an illustration of privacy and security issues in Level 0 distributed learning with sharing data.

• Feature identification. Although many works have pro-
posed efficient methods to process original data in order
to preserve sensitive information. Many feature identifi-
cation attacks are emerging to expose hidden information.
As one of the feature identification attacks, structure-
based de-anonymization attacks to graph data have been
proposed, which aims to de-anonymize the private users
in terms of their uniquely distinguishable structural char-
acteristics [135].

3) Taxonomy of Defences: Many defensive mechanisms
have been designed against aforementioned attacks as shown
in Table IV, and we will discuss various defenses as follows.

• Adversarial training. Adversarial training is among the
most effective techniques to improve model robustness
by augmenting training data with adversarial examples.
The work in [140] has proposed an adversarial distri-
butional training (ADT) framework, which is formulated
as a mini-max optimization problem and improves the
model robustness obviously. In this framework, the inner
maximization aims to learn an adversarial distribution to
characterize the potential adversarial examples around a
natural one under an entropic regularizer, and the outer
minimization aims to train robust models by minimizing
the expected loss over the worst-case adversarial distri-
butions.

• Anonymization. An anonymization operation comes in
several flavors: generalization, suppression, anatomiza-
tion, permutation, and perturbation [141], [142]. These
techniques aim to remove or hide identifying characteris-
tics from raw data while guaranteeing the data utility. An
information-theoretic approach has been formulated and
proposed a new multi-objective loss function for training
deep auto-encoders [143], which helps to minimize user-
identity information as well as data distortion to preserve
the application-specific utility. The work in [144] has
proposed the conditional identity anonymization gener-

ative adversarial networks (CIA-GAN) model, which can
remove the identifying characteristics of faces and bodies
while producing high-quality images and videos that can
be used for various computer vision tasks, such as de-
tection or tracking. Unlike previous methods, CIA-GAN
has full control over the de-identification (anonymization)
procedure, ensuring both anonymization as well as diver-
sity. In summary, the choice of anonymization operations
has an implication for the search space of anonymous
tables and data distortion. The full-domain generalization
has the smallest search space with the largest distortion,
and the local recording scheme has the largest search
space but the least distortion.

• Dummy. Existing research methods to protect data pri-
vacy mainly focus on the protection of the user’s identi-
ties through anonymity. User attributes can be classified
into identity information, quasi-identifier, and sensitive
information. Given an anonymity table, if the attributes
in the table have not been properly treated, an adversary
may deduce the relationship between the user’s identity
and sensitive information according to the user’s quasi-
identifier, such as age and gender. A popular approach
for data anonymity is k-anonymity, and any record in a
k-anonymized dataset has a maximum probability 1/k
of being re-identified [145]–[147]. The privacy model
l-diversity and t-closeness in [148] further refines the
concept of diversity and requires that the distribution
of the sensitive values of each equivalent class should
be as close as to the overall distribution of the dataset.
The common rules for these algorithms are basically to
produce dummy records to hide the real ones. In addition,
the dummy-based methods also work for location privacy
protection. Dummy data along with the true one will be
sent to the server from users, which may hide the client’s
contribution during training [149]. Because the collection
is processed on the server, the system performance can
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TABLE III
TAXONOMY OF ATTACKS IN LEVEL-0 DISTRIBUTED ML WITH SHARING DATA.

Issue Ref. Attacker’s knowledge Learning Model Effectiveness

Adversarial
examples

[134] White-box, black-box Inception v2, Inception v3,
Inception v4, Resnet v2-152

Attack a white-box model with a
near 100% success rate and more
than 50% for black-box models

[136] White-box, black-box DQN, A3C, TRPO Physically interfering with the
observations of the victim

[137] Black-box AC Directly attack actions to achieve
the designated purposes

[138] Black-box AC

Taking actions to induce natural
observations (environment

dynamic) that are adversarial to
the victim

Feature
identification [139] A little bit about an individual

subscriber -

Identify the Netflix records of
known users, uncovering users’
preferences and other sensitive

information

still be guaranteed. As an efficient method to generate
realistic datasets, GANs provide an alternative to balance
user privacy and training performance. The work in [150]
has proposed a novel data augmentation technique based
on the combination of real and synthetic heartbeats using
GAN to improve the classification of electrocardiogram
(ECG) heartbeats of 15 different classes from the MIT-
BIH arrhythmia dataset2.

• DP. As a promising solution, a mechanism is said to
be differentially private [124] if the computation result
of a dataset is robust to any change of the individual
sample. Several differentially private machine learning
algorithms [151] have been developed in the community,
where a trusted data curator is introduced to gather data
from individual owners and honestly runs the private
algorithms. Compared to DP, Local DP (LDP) [131],
[132] eliminates the need for a trusted data curator and
is more suitable for distributed ML. Rappor [152], which
applies LDP by Google, is designed to collect the per-
turbed data samples from multiple data owners. Besides
simple counting, a follow-up paper [153] shows that
Rappor can also compute other types of statistics such
as joint-distribution estimation and association testing.
Besides Rappor, an alternative way that achieves DP is to
add random noise on the sample value before publishing
[131], [154]. To process this method, a numerical sample
is always normalized and a categorical one is transformed
to the same range by one-hot coding. In addition, the
authors in [155] adopted the DP algorithm to handle
the privacy concern in a communication problem that
each distributed client needs to transmit data to one
aggregated center to learn a model. The work [156] has
proposed a distributed edge computing which for image
classification, where each edge will upload its raw data
after coding to latent data to protect privacy.

• Encryption. The work in [157] has instantiated a scalable
privacy-preserving distributed learning (SPINDLE), an
operational distributed system that supports the privacy-
preserving training and evaluation of generalized linear

2https://www.physionet.org/content/mitdb/1.0.0/

models on distributed datasets. Moreover, it relies on a
multiparty HE scheme to execute high-depth computa-
tions on encrypted data without significant overhead. The
work in [158] has proposed a distributed algorithm for
distributed data, where privacy is achieved by the data
locality property of the Apache Hadoop architecture and
only a limited number of cryptographic operations are
required.

• Others. The work in [159] has aimed to develop secure,
resilient, and distributed ML algorithms under adversarial
environments. This work has established a game-theoretic
framework to capture the conflicting interests between
the adversary and a set of distributed data processing
units. The Nash equilibrium of the game has allowed
for predicting the outcome of learning algorithms in
adversarial environments and enhancing the resilience of
the ML through dynamic distributed learning algorithms.

4) Real Examples for Level-0 Distributed ML:

• RAPPOR. Randomized aggregatable privacy-preserving
ordinal response provides a privacy-preserving way to
learn software statistics to better safeguard users security,
find bugs, and improve the overall user experience. Build-
ing on the concept of randomized response, RAPPOR
enables learning statistics about the behavior of users
software while guaranteeing client privacy [152]. The
guarantees of differential privacy, which are widely ac-
cepted as the strongest form of privacy, have almost never
been used in practice despite intense academic research.
RAPPOR introduces a practical method to achieve those
guarantees. In detail, the core of RAPPOR is a random-
ized response mechanism [161] for a user to answer a
yes/no query to the record aggregator. A classic example
is to collect statistics about a sensitive group, in which the
aggregator asks each individual: “Are you a doctor?” To
answer this question, each individual tosses a coin, gives
the true answer if it is a head, and a random yes/or answer
otherwise. This randomized approach provides plausible
deniability to the individuals. Meanwhile, it is shown to
satisfy ϵ-LDP, and the strength of privacy protection (i.e.,
ϵ) can be controlled by using a biased coin. Based on the
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TABLE IV
TAXONOMY OF DEFENSES IN LEVEL-0 DISTRIBUTED ML WITH SHARING DATA.

Method Ref. Use case Key idea Effectiveness

Adversarial
training

[140] Against adversarial examples

Formulating a minimax
optimization problem,

Parameterizing the adversarial
distributions

Improving model security and
robustness

Anonymization

[142]
Removing unique identifiers
of spatiotemporal trajectory

datasets

Clustering the trajectories using a
variation k-means algorithm

Enhancing the k-anonymity metric
of privacy

[143] Motion data
A multi-objective loss function

involving an information-theoretic
approach

Concealing user’s private identity

[144] Image and video Conditional generative adversarial
networks

Removing the identifying
characteristics of faces and bodies

for privacy

Dummy

[145]–[148] Tabular dataset Generating fake samples to hide
real one

Realizing k-anonymity or similar
metrics for privacy

[150] Balance MIT-BIH arrhythmia
dataset

Generative adversarial networks
(GANs)

Generating high quality dummy
samples for privacy

DP

[131],
[132], [152],

[153]
Localized or tabular dataset Using random response to perturb

the value of local data Achieving LDP for privacy

[155] PAC-learning from distributed
data

General upper and lower bounds
for quantities such as the

teaching-dimension

Achieving DP without incurring
any additional communication

penalty for privacy

[156]
Communication bandwidth

limitation and security
concerns of data upload

Training autoencoder,
Transmitting latent vectors

Reducing the communications
overhead and protecting the data

of the end users

Encryption

[160]
Enforcement of access

policies, Support of policies
updates

Defining their own access policies
over user attributes and enforce

the policies on the distributed data

Securely manage the data
distributed

[157]
Complete ML workflow by
enabling the execution of a

cooperative GD

Multiparty homomorphic
encryption

Preserving data and model
confidentiality with up to N − 1

colluding parties

[158]
Distributed training data, a
large volume of the shared

data portion.

Data locality property of Apache
Hadoop architecture, a limited

number of cryptographic
operations

Achieving privacy-preservation
with an affordable computation

overhead

Others [159] A learner with a distributed
set of nodes

Establishing a game-theoretic
framework to capture the

conflicting interests between the
adversary and data processing

units

Obtaining the network topology
with a strong relation to the

resiliency

collected randomized answers, the aggregator estimates
the percentage of users whose true answer is “yes” (resp.
“no”). RAPPOR allows the software to send reports
that are effectively indistinguishable and are free of any
unique identifiers. RAPPOR is currently an available
implementation in Chrome, which learns statistics about
how unwanted software is hijacking users settings.

• DP in the IOS system. Apple has adopted and further
developed local DP to enable Apple to learn about the
user community while avoiding learning about individu-
als [162]. DP perturbs the information shared with ran-
dom noise before it ever leaves the users device such that
Apple can never reproduce the raw data. The power of
additive noise that has been added can be reduced without
exposing raw data from users by averaging out over
large numbers of data points, and meaningful information
emerges. DP is utilized as the first step of a system for
data analysis that consists of robust privacy protections
at every stage. The system is optional and developed

to provide transparency to users. Device identifiers are
removed from the data, and it is transmitted to Apple
over an encrypted channel. The Apple analysis system
ingests the differentially private contributions, dropping
IP addresses and other metadata. The final stage is
aggregation, where the private records are processed to
compute the relevant statistics and the aggregate statistics
are then shared with relevant Apple teams. Since both
the ingestion and aggregation stages are performed in a
restricted access environment, the raw data is not broadly
accessible to the public.

5) Brief Summary: The guarantee of privacy and security
in terms of data sharing models relies on the pre-processing of
the raw data, such as perturbation, dummy, anonymization, and
encryption. As shown in Fig. 8, data pre-processing happens
at the first stage of a ML task, and thus, these pre-processing
techniques are usually harmful to the utility of systems or
involved extra computations. Therefore, it is more practical to
select a proper mechanism to hide sensitive information from



13

shared data while alleviating the negative influences on the
system’s utility.

B. Level 1: Sharing Model

In model sharing systems, all distributed nodes need to
share their training models with the central server or other
participants. Via the interaction between independent data
training and local model aggregation, model sharing systems
can capture a required learning model over data that resides
at the associated nodes.

1) Threat Models: Although data is not required to up-
load in model sharing systems, private information can still
be divulged by analyzing uploaded model parameters, e.g.,
weights trained in deep neural networks. Moreover, adversarial
participants may degrade or even destroy the training systems
by uploading unreliable models. Attacks can be carried out by
the following three aspects.
• Insiders vs. outsiders. Insider attacks include those

launched by the server and the participants in the model
sharing systems. Outsider attacks include those launched
by the eavesdroppers in the wireless transmission envi-
ronment between participants and the server, and by users
of the final model when it is deployed as a service. Insider
attacks are generally stronger than outsider attacks, as it
strictly enhances the capability of the adversary.

• Semi-honest vs. malicious. Under the semi-honest set-
ting, adversaries are considered passive or honest but
curious. They try to learn the private states of other
participants without deviating from the model sharing
protocol. The passive adversaries are assumed to only
observe the aggregated or averaged gradient, but not the
training data or gradient from other honest participants.
Under the malicious setting, an active, or malicious adver-
sary tries to learn the private states of honest participants
and deviates arbitrarily from the model sharing protocol
by modifying, re-playing, or removing messages. This
strong adversary model allows the adversary to conduct
particularly devastating attacks.

• Poisoning vs. inference. Attacks at the poisoning phase
attempt to learn, influence, or corrupt the model sharing
itself. During the poisoning phase, the attacker can run
data poisoning attacks to compromise the integrity of
training dataset collection, or launch model poisoning at-
tacks to compromise the integrity of the learning process.
The attacker can also launch a range of inference attacks
on an individual participant’s update or on the aggregation
of updates from all participants.

2) Taxonomy of Attacks: Attacks to model sharing models
can be categorized as poisoning attacks, inference attacks,
and model inversion based on their various goals as shown
in Table V. We also summarize them as follows.
• Poisoning attack. Compromised clients by attackers

always have opportunities to poison the global model
in model sharing systems, in which local models are
continuously updated by clients throughout their deploy-
ments. Moreover, the existence of compromised clients
may induce further security issues such as bugs in

pre-processing pipelines, noisy training labels, as well
as explicit attacks that target training and deployment
pipelines [188]. In order to destroy ML models, poisoning
attackers may control part of clients and manipulate their
outputs sent to the server. For example, the compromised
clients can upload noisy and reversed models to the server
at each communication round [178], [189], which has
the advantage of low complexity to mount attacks. Other
attackers may manipulate the outputs of the compromised
clients carefully to achieve the evasion of defenses and
downgrade the performance of ML models. Furthermore,
the authors in [165], [190] have formulated the local
model poisoning attack as optimization problems, and
then apply this attack against recent Byzantine-robust FL
methods. In this way, attackers can improve the success
rate of attacks, dominate the cluster and change the
judgment boundary of the global model, or make the
global model deviate from the right direction. Besides,
attackers may hope to craft the ML model to minimize
this specific objective function instead of destroying it.
Via using multiple local triggers and model-dependent
triggers (i.e., generated based on local models of at-
tackers), the collusive attackers can conduct backdoor
attacks successfully [191]. Bagdasaryan et al. in [163]
have developed and evaluated a generic constrain-and-
scale technique that incorporates the evasion of defenses
into the attacker’s loss function during training. The work
in [164] has explored the threat of model poisoning at-
tacks on FL initiated by a single, non-colluding malicious
client where the adversarial objective is to cause the
model to misclassify a set of chosen inputs with high
confidence.

• Inference attack. The work in [190] has presented a
new attack paradigm, in which a malicious opponent
may interfere with or backdoor the process of distributed
learning by applying limited changes to the uploaded
parameters. The work in [163] has proposed a new model-
replacement method that demonstrated its efficacy on
poisoning models of standard FL tasks. Inferring privacy
information about clients for attackers is also possibly
achievable in ML models. A generic attacking framework
mGAN-AI that incorporates a multi-task GAN has been
proposed in [192], which conducted novel discrimination
on client identity, achieving attack to clients’ privacy, i.e.,
discriminating a participating party’s feature values, such
as category, reality, and client identity.

• Model inversion. By casting the model inversion task
as an optimization problem, which finds the input that
maximizes the returned confidence, the work in [43] has
recovered recognizable images of people’s faces given
only their names and accesses to the ML model. In
order to identify the presence of an individual’s data, an
attack model trained by the shadow training technique
has been designed, and can successfully distinguish the
target model’s outputs on members versus non-members
of its training dataset [52].

Specifically, in distributed reinforcement learning (DRL)
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Fig. 9. A breakout figure from Fig. 3: an illustration of privacy and security issues in Level 1 distributed learning with sharing model.

TABLE V
TAXONOMY OF ATTACKS IN LEVEL-1 DISTRIBUTED ML WITH SHARING MODELS.

Issue Ref. Attacker’s knowledge Learning Model Effectiveness

Model poisoning

[163] Black-box LSTM, ResNet Manipulating the RL to achieve
the designated purposes

[164] Black-box CNN Manipulating the RL to achieve
the designated purposes

[165] White-box, Black-box LR, CNN Destroying the system
performance

Inference attacks
(Snooping attack)

[42] Black-box CNN
Inferring certain sensitive

characteristics of clients, such as
locations and gender, etc.

[166]

Black-box access to the trained
policy, access to the state space,
the action space, the initial state

distribution and the reward
function

DQN, PG, PPO

Inferring certain sensitive
characteristics of the training

environment transition dynamics,
such as dynamics coefficients,

environment transition dynamics

[167] Black-box DQN, A2C Consistently predicting RL agents’
future actions with high accuracy

Model inversion

[44] Black-box CNN Reconstructing raw training data

[168] Black-box CNN
Reconstructing the actual training

samples without affecting the
standard training

systems, there has been literature available on security vulner-
abilities. We provide many characteristics of an adversary’s
capabilities and goals that can be studied as follows. First,
we divide attacks based on what components in an MDP the
attacker chooses to attack: the agent’s observations, actions,
and environment (transition) dynamics. Then, we discuss the
practical scenarios where attacks happen on these components.

• Observations. Existing work on attacking DRL systems
with adversarial perturbations focuses on perturbing an
agent’s observations, i.e., states and rewards, that are
communicated between the agent and the environment.
This is the most appealing place to start, with seminal
results already suggesting that recognition systems are

vulnerable to adversarial examples [136], [193]–[201].
Sandy et al. [136] have first shown that adversarial attacks
are also effective when targeting neural network policies
in RL adversarial examples. Based on this technique,
part of the works enhance adversarial examples to attack
DRL. To improve the attack efficiency, the strategically-
timed attack [193], consuming a small subset of time
steps in an episode, has been explored. Via stamping a
small percentage of inputs of the policy network with the
Trojan trigger and manipulating the associated rewards,
the work in [197] has proposed the TrojDRL attack,
which can deteriorate drastically the policy network in
both targeted and untargeted settings. Another fancy idea
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TABLE VI
TAXONOMY OF DEFENSES IN LEVEL-1 DISTRIBUTED ML WITH SHARING MODELS.

Method Ref. Description Key Challenges Effectiveness

DP [127],
[169]–[174]

Introducing a level of uncertainty into the released
model sufficient to mask the contribution of any

individual user

Finding a balance
between the training

performance and
privacy level

Low complexity in preserving
privacy

Model
compression

[115], [175] Encoding local models before transferring them to
the server

Measuring the effect
on the privacy and
reduce the negative

effect on the training
performance

Low complexity and high
communication efficiency

HE [117], [176]
Mathematical operations applied on an encrypted

message result in the same mathematical operation
being applied to the original message

Increasing
computation

complexity and
transmission bits

Strongly effective in security

Secure MPC [78]
Allowing two or more participants to jointly

compute functions over their collective data without
disclosing any sensitive information

Lack of a common
protocol for various

tasks

A lower complexity than HE and
a higher security than DP

Statistical
analysis

[177], [178]
Detecting and filtering the outliers based on the

statistical information, e.g., Euclidean distance and
principle component

Destroying the
training performance

especially in the
non-i.i.d. setting

Low complexity to detect outliers

Pretest on
Auxiliary Datasets

[179], [180] Calculating the accuracy score for all local models
and reducing the effect of low-quality ones

Performance
governed by the

quality of auxiliary
datasets

Directly detecting malicious users
with sensitive datasets

Authentication
[181] Using trust composition for determining the trust

and reputation values for unknown agents

Relying on the trust
transfer and

vulnerable to the
collusion

Low complexity in security

[182]–[184] Combining blockchain technology and reaching an
agreement by a group of agents

Vulnerable to the
51% attack Guaranteeing fairness in integrity

Authorization [185]–[187] Constructing capability-based access and different
agent privilege levels

Formulating
corresponding
authorization
standards for

differential privilege
levels

Guaranteeing the quality of
participants

for a reward-poisoning attack is to design an adaptive
disturbing strategy [198], where the infinity norm con-
straint is adjusted on the DRL agent’s learning pro-
cess at different time steps. For the theoretical analysis,
two standard victims with adversarial observations, i.e.,
tabular certainty equivalence learner in reinforcement
learning and linear quadratic regulator in control have
been analyzed in a convex optimization problem on which
global optimality and the attack feasibility and attack cost
have been provided [196]. In addition, the effectiveness of
a universal adversarial attack against DRL interpretations
(i.e., UADRLI) has been verified by the theoretical anal-
ysis [199], from which the attacker can add the crafted
universal perturbation uniformly to the environment states
in a maximum number of steps to incur minimal damage.
In order to stealthily attack the DRL agents, the work
in [200] has injected adversarial samples in a minimal set
of critical moments while causing the most severe damage
to the agent. Another work in [201] has formulated an
optimization framework in a stealthy manner to find an
optimal attack for different measures of attack cost and
solved it with an offline and online setting.

• Actions. Attacks applied on the action space usually

aim to minimize the expected return or lure the agent
to a designated state, e.g., the action outputs can be
modified by installing some hardware virus in the ac-
tuator executing process. This can be realistic in certain
robotic control tasks where the control center sends some
control signals to the actuator. A vulnerability in the
implementation, i.e., the vulnerability in the blue-tooth
signal transmission, may allow an attacker to modify that
signal [202]. A training policy network to learn the attack
has been developed, which treats the environment and the
original policy together as a new environment, and views
attacks as actions [137]. However, existing works only
concentrate on the white-box scenario, i.e., knowing the
victim’s learning process and observations, which is not
practical and inaccessible to attackers.

• Environment Dynamics. The environment (transition)
dynamics can be defined as a probability mapping from
state-action pairs to states, which is governed by the
environmental conditions. For attacks applied on the en-
vironment dynamics, an attacker may infer environment
dynamics [166] or perturb a DRL system’s environment
dynamics to make an agent fail in a specific way [137],
[138], [201], [203]. In the autonomous driving case, the
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attacker can change the material surface characteristic of
the road such that the policy trained in one environment
will fail in the perturbed environment. In a robot control
task, the attacker can change the robot’s mass distribution
so that the robot may lose balance when executing its
original policy because it has not been trained in that
case.

Then, we categorize these attacks based on what knowledge
the attacker needs. Broadly, this breaks attacks down into the
already recognized white-box attacks, where the attacker has
full knowledge of the DRL system, and black-box attacks,
where the attacker has less or no knowledge.
• White-Box. If the adversary attacks the DRL system

with the capability of accessing the architecture, weight
parameters of the policy and Q networks, and querying
the network, we can call it a white-box attack. Clearly,
the attacker can formulate an optimization framework for
the white-box setting and derive the optimal adversarial
perturbation [136], [199]. Moreover, via the theoretical
analysis of the attack feasibility and cost, the adversary
can further decrease the efficiency and stealth of the
learning [137], [196]. However, this setting is inaccessible
for the adversary in most practical scenarios.

• Black-Box. In general, the trained RL models are kept
private to avoid easy attacks by certain secure access
control mechanisms. Therefore, the attacker cannot fully
acknowledge the weight parameters of the policy network
and Q networks, and may or may not have access to query
the policy network. In this case, the attacker can train a
surrogate policy to imitate the victim policy, and then use
a white-box method on the surrogate policy to generate
a perturbation and applies that perturbation to the victim
policy [137]. The finite difference (FD) method [204] in
attacking classification models can be utilized to estimate
the gradient on the input observations, and then perform
gradient descent to generate perturbations on the input ob-
servations [137]. In this black-box setting, the adversary
becomes difficult to perturb a DRL system and needs to
estimate the victim’s information with large computation
costs, such as policies and observations.

Based on the adversary’s objective, adversarial attacks are
divided into two types: poisoning attacks and snooping attacks.
• Poisoning Attack. In particular, for poisoning attacks,

there are at least two dimensions to potential attacks
against learning systems as untargeted attacks [136] and
targeted (induction) attacks [194]. In untargeted attacks,
attackers focus on the integrity and availability of the
DRL system, i.e., minimizing the expected return (cumu-
lative rewards). Specifically, the work [136] has shown
existing adversarial example crafting techniques can be
used to significantly degrade the test-time performance of
trained policies. However, in terms of defensive mecha-
nisms, the attacker may control time steps [200] or solve
an optimization framework in a stealthy manner [199].
Another attack of this category aims at maliciously luring
an agent to a designated state more than decreasing the
cumulative rewards [194]. Via combining a generative

model and a planning algorithm, the generative model
predicts the future states and the planning algorithm
generates a preferred sequence of actions for luring the
agent [193]. Similar to untargeted attacks, by solving an
optimization framework in a stealthy manner [201], the
attacker can easily succeed in teaching any target policy.

• Snooping Attack. Different from poisoning attacks, the
attacker only aims to eavesdrop on environment dy-
namics, the action and reward signals being exchanged
between the agent and the environment. If the adversary
can train a surrogate DRL model that closely resembles
the target agent [166], [167], the desired information can
be estimated by this model. Furthermore, the adversary
only needs to train a proxy model to maximize reward,
and adversarial examples crafted to fool the proxy will
also fool the agent [205]. We can note that the snooping
attacks can still launch devastating attacks against the tar-
get agent by training proxy models on related tasks, and
leveraging the transfer-ability of adversarial examples.

3) Taxonomy of Defences: Defensive mechanisms found in
multiple works of literature are grouped by their underlying
defensive strategies as shown in Table VI. We will discuss
various defenses in model sharing frameworks as follows.

• DP. DP tackles the privacy leakage about the single
data change in a dataset when some information from
the dataset is publicly available and is widely used
due to its strong theoretical guarantees [206]. Com-
mon DP mechanisms will add an independent random
noise component to access data, i.e., the shared models
in this level, to provide privacy. DP preserving dis-
tributed learning systems have been studied from various
paradigms, such as distributed principal component anal-
ysis (PCA) [169], distributed ADMM [170], distributed
SGD [127], FL [171], [172] and multi-agent reinforce-
ment learning [173], [174]. In order to provide fine-
tuned control over the trade-off between the estimation
accuracy and privacy preservation, a distributed privacy-
preserving sparse PCA (DPS-PCA) algorithm that gen-
erates a min-max optimal sparse PCA estimator under
DP constraints has been proposed in [169]. Similarly, for
distributed ADMM, distributed SGD, FL, and multi-agent
reinforcement learning systems, all related works focus
on improving the utility-privacy trade-off via two aspects
as follows: a) analyzing the learning performance with
a DP constraint and then optimizing system parameters;
b) enhancing the DP mechanism by obtaining tighter
estimates of the overall privacy loss.

• Model compression. Model compression techniques for
distributed SGD and FL systems, e.g., sketches, can
achieve provable privacy benefits [115], [175]. Therefore,
a novel sketch-based framework (DiffSketch) for dis-
tributed learning has been proposed, improving absolute
test accuracy while offering a certain privacy guarantee
and communication compression. Moreover, the work
in [175] has presented a family of vector quantization
schemes, termed Vector-Quantized Stochastic Gradient
Descent (VQSGD), provides an asymptotic reduction in
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the communication cost and automatic privacy guaran-
tees.

• Encryption. Encryption, e.g., HE [117] and MPC [78],
is also adopted to protect user data privacy through
parameter exchange under the well-designed mechanism
during ML. A novel deep learning system [117], bridging
asynchronous SGD and cryptography, has been proposed
to protect gradients over the honest-but-curious cloud
server, using additively homomorphic encryption, where
all gradients are encrypted and stored on the cloud server.
To verify whether the cloud server is operating correctly,
VerifyNet [176] has been proposed to guarantee the con-
fidentiality of users’ local gradients via a double-masking
protocol in FL, where the cloud server is required to
provide proof of the correctness of its aggregated results
to each user.

• MPC. The work in [78] has outlined an approach to
advancing privacy-preserving ML by leveraging MPC to
compute sums of model parameter updates from indi-
vidual users’ devices in a secure manner. The problem
of computing a multiparty sum where no party reveals
its updates to the aggregator is referred to as secure
aggregation. Via encoding local models into multiple
secret shares in the first round, and then splitting each
share into a public share and a private share, the work
in [207] can provide stronger protections for the security
and privacy of the training data. MPC integrates the en-
cryption technology and interactive protocols, aiming to
make the receiver keep away from sensitive information
and obtain the necessary messages [208]–[211].

• Statistical analysis. The work in [177] has proposed a ro-
bust aggregation rule, called adaptive federated averaging,
that detects and discards bad or malicious local model
updates based on a hidden Markov model. To tackle ad-
versarial attacks in the FL aggregation process, the work
in [178] presented a novel aggregation algorithm with the
residual-based re-weighting method, in which the weights
for the average of all local models are estimated robustly.
Via controlling the global model smoothness based on
clipping and smoothing on model parameters, a sample-
wise robustness certification FL framework has been
proposed, which can train certifiably robust FL models
against backdoors [212]. Most of the defenses for FL aim
to explore the latent model exception, such as similarities
between malicious and benign clients, and then lessen the
influence of these exceptional models [213]–[216].

• Pretest on auxiliary datasets For detecting poisoned
updates in collaborative learning [179], the results of
client-side cross-validation were applied for adjusting the
weights of the updates when performing aggregation,
where each update is evaluated over other clients’ local
data. The work in [179] considered the existence of
unreliable participants and used the auxiliary validation
data to compute a utility score for each participant to
reduce the impact of these participants. The work in [180]
has proposed a novel poisoning defense method in FL,
in which the participant whose accuracy is lower than
a predefined threshold will be identified as an attacker,

and the corresponding model parameters will be removed
from the training procedure in this iteration.

• Authentication and access control. The key question in
considering security in a MARL consists of increasing the
confidence that all parties involved in the system (agents,
platforms, and users) will behave correctly, and this can
be achieved through the authentication of these parties.
The identification of the parties can make up a system
and possibly establish an agent-trust relationship. Thus,
how to design efficient identity certification mechanisms
to uniquely authenticate known and trusted users and
agents in the system has drawn heated attention. A
domain-independent and reusable MARL infrastructure
has been developed in [217], in which the system uses a
certification authority (CA) and ensures full cooperation
of secured agents and already existing (unsecured) agents.
The work in [181] has introduced a method called trust
composition, which combines several trust values from
different agents. We can note that the trust composition
can play a critical role in determining the trust and repu-
tation values of unknown agents since it is impractical
for an agent to get complete knowledge about other
agents. A work called PTF (Personalized Trust Frame-
work) has been proposed to establish a trust/reputation
model for each application with personalized require-
ments [218]. Naturally, the idea of using blockchain
technology to solve security problems in multi-robot
systems was discussed in [182]. The work in [182] stated
that combining peer-to-peer networks with cryptographic
algorithms allows reaching an agreement by a group of
agents (with the following recording this agreement in
a verifiable manner) without the need for a controlling
authority. Thus, blockchain-based innovations can pro-
vide a breakthrough in MARL applications. The work
in [183] has developed an approach to using decentralized
programs based on smart contracts to create secure swarm
coordination mechanisms, as well as for identifying and
eliminating Byzantine swarm members through collective
decision-making. The work in [184] has proposed an
approach combining blockchain technology and explain-
ability supporting the decision-making process of MARL,
in which blockchain technology offers a decentralized
authentication mechanism capable of ensuring trust and
reputation management.

• Authorization and trust model. Combined with authen-
tication, authorization is used to restrict the actions that
an agent can perform in a system, and control the access
to resources by these agents. Sensitive information about
principals is transferred online even across the Internet
and is stored in local and remote machines. Without
appropriate protection mechanisms, a potential attacker
can easily obtain information about principals without
their consent. In the context of authorization mechanisms,
the algorithm proposed in [185] is designed to solve the
problem of systems that are constantly changing. The
main goal is to build a flexible and adaptive security
policy management capable to configure itself and reflect
the actual needs of the system. According to the authors,
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a system is not safe if a security model is developed
but never managed afterward. Security of the proposed
system in [186] has been further explored in the form of
authorization and encryption of the data by introducing an
authorization layer between the user and the system that
will be responsible for providing access to the legitimate
users of the system only. The work in [187] has ensured
agent authorization and platform security with capability-
based access and different agent privilege levels, in which
the agent behavior is modeled with an activity transition
graph (ATG) and implemented entirely in JavaScript with
a restricted and encapsulated access to the platform API
(AgentJS).

4) Real Examples for Level-1 Distributed ML:
• Electronic Medical Records (EMR) [219]. The use of

information and network technologies in the healthcare
field inevitably produces EMR, which is a necessary trend
for the modernization of medical records in hospitals. The
initial adoption of EMR in clinical practice has vastly
improved the efficiency and quality of health care pro-
vided by hospitals. Empowered by algorithm technologies
and data reconstruction, BaseBit [219] has constructed a
robust and comprehensive knowledge base system and
has a series of intelligent models with excellent abilities
of expression. In various applications centered around
electronic medical records, the proposed models effec-
tively improve the abilities such as automatic medical
record writing, overall quality control, cost monitoring
systems for single diseases, early warning for infectious
diseases, prompt for critical illnesses, clinical decision-
making assistance for rare diseases, enabling hierarchical
diagnosis and treatments.

5) Brief Summary: As shown in Fig. 9, although due to
the local training process, the raw data of each participant
will not be exposed to the curious server or external attackers,
defensive mechanisms are also necessary because of the ex-
isting possibility of feature inference and data reconstruction
from models sharing, in addition to the model poisoning
paradigm. Traditional HE and DP are proven beneficial to
privacy preservation but lead to low efficiency or damaged
utility. Therefore, the quantitative analysis of the relationship
between the sensitive feature and the published model is
imperative.

C. Level 2: Sharing Knowledge

Recent configurations that rely on knowledge sharing tech-
niques can be summarized as split learning [47], vertical
FL [9], and distillation-based FL [223]. Split learning allows
multiple clients to hold different modalities of vertically parti-
tioned data and learn partial models up to a certain layer (the
so-called cut layer). Then the outputs at the cut layer from
all clients are then concatenated and sent to the server that
trains the rest of the model. In vertical FL, participants hold
the same set of samples but with disjoint features and only one
participant owns the labels, which need to combine split NNs
and privacy-preserving techniques [224]. Distillation-based
FL [46], [223], [225] exchanges model outputs instead of

model parameters, where the communication overhead cannot
scale up according to the model size and has been proven to
satisfy the DP guarantee.

1) Threat Models: In knowledge sharing paradigms, adver-
sarial participants or eavesdroppers still possibly exist. The
adversarial participants can be categorized into two kinds:
a) honest-but-curious (semi-honest) participants, who do not
deviate from the defined learning protocol, but attempt to
infer private training data from the legitimately received in-
formation; b) malicious participants, who may deviate from
the defined learning protocol, and destroy this training task or
inject Trojans to the training model.

2) Taxonomy of Attacks: Existing attacks on knowledge
sharing paradigms can be mainly categorized as label leak-
age, feature inference, and data reconstruction as shown in
Table VII. Then, we discuss existing attacks as follows.
• Label leakage. The labels in distributed learning frame-

works might be highly sensitive, e.g., whether a person
has a certain kind of disease. However, the bottom
model structure and the gradient update mechanism of
VFL or split learning can be exploited by a malicious
participant to gain the power to infer the privately
owned labels [226]. Worse still, by abusing the bottom
model, he/she can even infer labels beyond the training
dataset [227]. The work in [220] first made an attempt at
a norm attack that uses the norm of the communicated
gradients between the parties, and it can largely reveal the
ground-truth labels from participants. The adversary (ei-
ther clients or servers) can accurately retrieve the private
labels by collecting the exchanged gradients and smashed
data [228]. Thus, it is necessary to make gradients from
samples with different labels similar.

• Feature inference. Through analysis, the work in [229],
[230] demonstrated that, unless the feature dimension is
exceedingly large, it remains feasible, both theoretically
and practically, to launch a reconstruction attack with
an efficient search-based algorithm that prevails over
current feature protection techniques. In this paper, the
authors have performed the first systematic study on
relation inference attacks to reveal VFL’s risk of leaking
samples’ relations. Specifically, the adversary is assumed
to be a semi-honest participant. Then, according to the
adversary’s knowledge level, the work [230] formulated
three kinds of attacks based on different intermediate
representations and revealed VFL’s risk of leaking sam-
ples’ relations. Luo et al. [192] considered the most
stringent setting that the active party (i.e., the adversary)
only controls the trained vertical FL model and the
model predictions, and then observed that those model
predictions will leak a lot of information about features
by learning the correlations between the adversary’s and
the attacking target’s features.

• Data reconstruction. The work in [221] has provided
the leakage analysis framework via three empirical and
numerical metrics (distance correlation and dynamic time
warping) indicating that the activated outputs after two
and more convolutional layers can be used to reconstruct
the raw data, i.e., sharing the intermediate activation
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TABLE VII
TAXONOMY OF ATTACKS IN LEVEL-2 DISTRIBUTED ML WITH SHARING KNOWLEDGE.

Method Ref. Attacker’s knowledge Learning Model Effectiveness

Label leakage [220] Black box Split learning Revealing the ground-truth labels
from the participants

Feature inference [192] Black box Vertical FL
Inferring the feature values of new

samples belong to the passive
parties successfully

Data reconstruction
[221] Black box Split learning

Activated output after two and
three convolutional layers can be
used to reconstruct the raw data

[222] Black box Vertical FL Stealing partial raw training data
successfully

Fig. 10. A breakout figure from Fig. 3: an illustration of privacy and security issues in Level 2 distributed learning with sharing knowledge.

from these layers may result in severe privacy leakage.
In vertical FL, two simple yet effective attacks, reverse
multiplication attack and reverse sum attack, have been
proposed to steal the raw training data of the target
participant [222]. Though not completely equivalent to
the raw data, these stolen partial orders can be further
used to train an alternative model which is as effective
as the one trained on the raw data [231].

3) Taxonomy of Defences: Defensive mechanisms found in
multiple works of literature are grouped by their underlying
defensive strategy as shown in Table VIII. Hence, we will
discuss various defenses in model sharing frameworks as
follows.
• DP. The work in [232] has proposed a privacy-preserving

protocol for composing a differentially private aggregate
classifier using local classifiers from different parties. In
order to overcome the effects of the proposed information
inference attacks [221], DP has been proven helpful in
reducing privacy leakage but leading to a significant drop
in model accuracy.

• MPC. The work in [233] has proposed a novel solution
for privacy-preserving vertical decision tree training and

prediction, termed Pivot, ensuring that no intermediate
information is disclosed other than necessary releases
(i.e., the final tree model and the prediction output).

• Encryption. A novel privacy-preserving architecture has
been proposed in [234], which can collaboratively train
a deep learning model efficiently while preserving the
privacy of each party’s data via the HE technique. The
work in [234] has explored a lossless privacy-preserving
tree-boosting system known as SecureBoost by using the
additive HE scheme.

• Secure aggregation. The work in [235] has proposed
the vertical FederBoost which runs the gradient boosting
decision tree (GBDT) training algorithm in exactly the
same way as the centralized learning. Via further utilizing
packetization and DP, this algorithm can protect the order
of samples: participants partition the sorted samples of
a feature into buckets, which only reveals the order of
the buckets and add differentially private noise to each
bucket.

• Others. The work in [236] has presented TIPRDC to
learn a feature extractor that can hide the private infor-
mation from the intermediate representations using an
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adversarial training process while maximally retaining
the original information embedded in the raw data to
accomplish unknown learning tasks. In [221], adding
more hidden layers to the client side was proven helpful
in reducing privacy leakage, but increasing the number of
layers seems ineffective with the most highly correlated
channels. In order to relieve the negative impact of
random perturbation preserving techniques on the learned
model’s predictive performance, the work in [220] has
introduced an improved way to add Gaussian noise by
making the expected norm of the positive and negative
gradients in a mini-batch equal (un-distinguishable).

4) Real Examples for Level-2 Distributed ML:
• FATE. An open-source project, named FATE, provides

a secure computing framework to support the federated
AI ecosystem [237], led by Webanks AI Department. It
can enable big data collaboration without privacy leakage
by implementing multiple secure computation protocols,
such as DP, HE, and so on. FATE accesses out-of-
box usability and excellent operational performance with
a modular modeling pipeline, explicit visual interface,
and flexible scheduling system [238]. eHi Car Services,
a national chain car rental brand, and WeBank jointly
announced a deep strategic partnership, announcing that
the two sides will carry out multi-scene and multi-
dimensional innovation cooperation in car travel, member
services, finance and insurance, blockchain technology,
and other fields. eHi Car Services uses federal transfer
learning, AI face authentication technology, payment
technology, and other fin-techs to deeply integrate into the
car rental service process for the purpose of optimizing
and improving user experience, and combines the car
rental scene with the bank’s big data risk control system,
so as to provide a new way of travel and life for the
young and long-term rental customers.

5) Brief Summary: As shown in Fig. 10, split learning, ver-
tical FL, and distillation-Based FL are the classical knowledge
sharing systems, in which the knowledge can be viewed as the
partial processing result to meet the requirement of the system
learning. It is also challenging for knowledge sharing systems
to hide sensitive information from the shared knowledge.

D. Level 3: Sharing Results

We define the sharing results category as follows: there is no
interaction or communication during the process of training.
The distributed clients only share the training results after the
process ends. The history of sharing results can be traced
back to ensemble ML over partitioned datasets [239], [240],
where a number of base classifiers collectively determine the
output for an instance based on a pre-defined aggregation
strategy. Ensemble techniques were originally introduced to
increase the overall performance of the final classification, but
it is also straightforward to utilize them for distributed ML
systems [241]. The shared results [242] in distributed learning
can be either the final training models, e.g., PATE and multi-
agent multi-arm bandits (MAMAB), or the prediction (output)
of the models, e.g., crowd-sourcing.

1) Threat Models: For the result sharing models, malicious
participants may exist and provide false advice or results to
hinder the learning performance of other participants or the
global model. In addition, curious participants can infer some
confidential information from the shared results.

2) Taxonomy of Attacks: As stated by da Silva et al. [243],
the existence of malicious participants is a key concern in
agent advises. The work in [244] has proposed the attack
model that some of these agents might become self-interested
and try to maximize car owners’ utility by sending out
false information. Based on [244], Hayes et al. [245] have
investigated attacks in the setting where the adversary is only
permitted to access the shared results (such as the generated
samples set in GAN), by retraining a local copy of the victim
model. In addition, Hilprecht et al. [246] have proposed to
count the number of generated samples that are inside an ϵ-
ball of the query, based on an elaborate design of distance
metric. The work in [247] has presented the first taxonomy
of membership inference attacks and focused on membership
inference attack against deep generative models that reveals
information about the training data used for victim models.
In spirit to Hilprecht et al. [246], this work scored each
query by the reconstruction error directly, which does not
introduce additional hyper-parameter while achieving superior
performance. We further summarize these attacks in Table IX.

3) Taxonomy of Defences: In results sharing paradigms,
Tab. X summarizes the use case, key idea, and effectiveness for
existing attacks. Moreover, we will discuss various defenses
in model sharing frameworks as follows.
• DP. The work in [174] has proposed a novel differen-

tially private agent advising approach, which employs
the Laplace mechanism to add noise to the rewards used
by student agents to select teacher agents. By using
the advising approach and the DP technique, this ap-
proach can reduce the impact of malicious agents without
identifying them and naturally control communication
overhead. The work in [248] adopted DP and studied
the regret upper and lower bounds for MAB algorithms
with a given local DP guarantee. The differentially private
PATE framework has been proposed to achieve individual
privacy guarantees with provable privacy bounds [250],
[251].

• MPC. Zhao [249] has proposed to use the teacher-student
framework in a more general distributed learning setting.
The goal of this work is to address distributed deep
learning under DP using the teacher-student paradigm.
In the setting, there are a number of distributed entities
and one aggregator. Each distributed entity leverages
deep learning to train a teacher network on sensitive
and labeled training data. The knowledge of the teacher
networks is transferred to the student network at the
aggregator in a privacy-preserving manner that protects
the sensitive data. This transfer results from training non-
sensitive and unlabeled data, which also applies secure
MPC to securely combine the outputs of local ML for
updating.

• Others. If an ensemble contains enough models, and
each model is trained with disjoint subsets of the training
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TABLE VIII
TAXONOMY OF DEFENCES IN LEVEL-2 DISTRIBUTED ML WITH SHARING KNOWLEDGE.

Method Ref. Use case Key idea Effectiveness

DP

[232]

Deriving aggregate
information without revealing
information about individual

data instances

Differentially private aggregate in
a multi-party setting

DP analysis on the perturbed
aggregate classifier

[221] Against DCM and DTWM
attacks in split learning

Laplace mechanism on the split
layer activation

Strong DP level (ϵ = 1) works
but degrading the classification

accuracy

MPC [233]

Vertical decision tree training,
random forest (RF), and

gradient boosting decision
tree (GBDT)

A hybrid framework of threshold
partially HE (TPHE) and MPC

Be independent of any trusted
third party against a semi-honest
adversary that may compromise

m− 1 out of m clients

Encryption

[234] Asymmetrically split learning Partial HE (PHE), additive noise Achieving a lossless performance
and more than 100 times speedup

[234] Vertical tree-boosting system HE
Revealing no information of each

participant and achieving a
lossless performance

Secure aggregation [235] Vertical GBDT

Lightweight secure aggregation
because the whole training relies

on the order of the data instead of
the values

Achieving the same level of the
area under the ROC curve (AUC)

with centralized training

Others

[236] Privacy attributes inferring
from extracted features

Adversarial training and neural
network based mutual information

estimator

First task-independent
privacy-respecting data

crowdsourcing framework

[221] Against DCM and DTWM
attacks in split learning Adding more hidden layers Preventing privacy leakage with a

slight reduction in performance

[220] Against norm-based attack

Adding Gaussian noise by making
the expected norm of the positive

and negative gradients in a
mini-batch equal

Preventing label leakage against
some extreme scenarios.

TABLE IX
TAXONOMY OF ATTACKS IN LEVEL-3 DISTRIBUTED ML WITH SHARING RESULTS.

Method Ref. Attacker’s knowledge Learning Model Effectiveness

Poisoning attack [244] Black box Street random waypoint (STRAW)
mobility

Average speed of vehicles in the
network decreases as the

percentage of liars increases

Inference attack

[245] White-box, black-box GAN

Achieving 100% and 80%
successful at membership
inferring in white-box and

black-box settings, respectively

[246] Black-box GAN, variational autoencoders
(VAEs)

Success rates superior to previous
work with mild assumptions

[247] White-box, partial black-box,
black-box GAN

Consistently outperforms the
state-of-the-art models with an
increasing number of generated

samples

data in a distributed manner, then “any predictions made
by most of the models should not be based on any
particular part of the training data” [252]. The private
aggregation of teacher ensembles (PATE) is based on this
idea [10]. In more detail, the ensemble is seen as a set
of “teachers” for a new “student” model. The student is
linked to the teachers only by their prediction capabilities,
and is trained by “querying the teachers about unlabelled
examples”. The prediction result is disjointed from the
training data through this process. Therefore data privacy
can be protected. The privacy budget for PATE is much
lower than traditional DP-based ML approaches. But it
may not work in many practical scenarios as it relies on
an unlabelled public dataset.

4) Real Examples for Level-3 Distributed ML:

• Large-scale online taxicab platforms, such as Uber and
DiDi, have revolutionized the way people travel and
socialize in cities worldwide and are increasingly be-
coming essential components of the modern transit in-
frastructure [253], [254]. The reinforcement learning-
based dynamic bipartite graph matching approach has
been adopted to assign each worker with one or more
tasks to maximize the overall revenue of the platform,
where the workers are dynamic while the tasks arrive
sequentially. Specifically, for each worker-task pair, the
platform can obtain a reward based on value-based rein-
forcement learning. Then, via some solutions to bipartite
graph matching, such as greedy search, the platform can
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Fig. 11. A breakout figure from Fig. 3: an illustration of privacy and security issues in Level 3 distributed learning with sharing results.

TABLE X
TAXONOMY OF DEFENSES IN LEVEL-3 DISTRIBUTED ML WITH SHARING RESULTS.

Method Ref. Use case Key idea Effectiveness

DP

[174] Malicious agent advising Laplace mechanism Reducing the impact of malicious
agents without identifying them

[248]
Against inference attacks

from any party or
eavesdropper

Laplace mechanism, Bernoulli
mechanism

Providing regret upper and lower
bounds for MAB with local DP

MPC [249] PATE
Training non-sensitive and
unlabeled data, Securely

combining the outputs by MPC
Guarantee data security

Others [10] PATE

The student is linked to the
teachers only by their prediction

capabilities and trained by
“querying the teachers about

unlabelled examples”

Achieving much lower privacy
budget than traditional DP

approaches

.

make near-optimal decisions. However, if the platform
can obtain all workers information and its purpose is only
aiming to maximize the overall revenue, workers may be
out of control. Thus, using DP to achieve fairness may
be a solution [255].

5) Brief Summary: As shown in Fig. 11, although the
results from ML systems are various from the raw data, they
are also existing risks of privacy leakage, such as the generated
samples from the generator in GAN. Hence, several defensive
mechanisms are utilized for preventing privacy leakage and
against malicious participants.

E. Relationship among the privacy and security issues in the
four levels of distributed ML

From level 0 to level 3, there is no certain law for the privacy
and security level, but we may conclude that the forms of data
show expose different degrees of information in the considered
four levels. For example, compared to the prediction results
in level 3, much more information can be extracted from the
raw or original data in level 0. Regarding to the protection
methods, designing a general mechanism for the four levels
is an un-trivial task. For example, the DP-based mechanisms

can be well adopted in level 0 (i.e., local DP [131], [152]),
level 1 (i.e., DP in deep learning [127]) and level 3 (i.e., PATE-
GAN [10]), but it may lose the effectiveness in level 2 (sharing
knowledge).

VI. LESSONS LEARNED

In this section, we summarize the key lessons learned from
this survey, which provides an overall view of the current
research on security and privacy issues in distributed learning.

A. Lessons Learned from Definitions of Security and Privacy

The public often mixes up the terminologies of “Privacy”
and “Security”, which are in fact distinctively different. From
the expression of privacy and security in distributed learning,
we can learn lessons as follows.

1) Difference between Security and Privacy: The concerns
of security and privacy issues are different [256]–[258]. On
the one hand, security issues refer to unauthorized/malicious
access, change, or denial of data or learning models. Such
attacks are usually launched by adversaries with expert/full
knowledge of the target system. Hence, the fundamental three
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goals of security are confidentiality, integrity, and availabil-
ity [165]. On the other hand, privacy issues generally refer
to the unintentional disclosure of personal information. For
example, from a side-by-side comparison of a vote registration
dataset and an anonymous set of health-care sensor records
(e.g., no individuals name and ID), an adversary may have
the ability to identify particular individuals and the health
conditions of these individuals leaks [68], [259], [260]. This
is because attributes such as gender, birth date, and zip code
are the same in both datasets.

2) Connection between Security and Privacy: Security and
privacy go hand-in-hand. Privacy issues can further induce
security issues in some scenarios. If an adversary steals
the private information of individuals, substantial profit from
the information can be easily obtained. For example, when
the adversary extracts the health conditions of an important
person, he/she can blackmail the victim person by threatening
to reveal the information. We know that one can envision an
environment that is secure but does not guarantee privacy.
Similarly, one can imagine an environment that is private, but
it does not guarantee security from outsiders. Security can
be achieved without privacy, but privacy cannot be achieved
without security. This is because whether the security is weak
or vulnerable, it will automatically affect privacy.

B. Lessons Learned from Evaluations of Security and Privacy

The evaluations on security and privacy guide the research
directions in this area. In the following, we will provide some
lessons by reviewing the state-of-the-art.

1) Bayes-based Methods: Privacy leakage can be formal-
ized as a Bayes optimization problem from the aspect of
an adversary with different assumptions on the probability
distributions of the input data and interactive messages (such
as gradients and extracted features). For example, the work
in [261] constructed a theoretical framework that can measure
the expected risk that an adversary has in the process of
reconstructing an input, given the joint probability distribution
of inputs and their gradients. This framework can reveal
the gradient leakage level by analyzing the Bayes optimal
adversary, which minimizes this risk with a specific optimiza-
tion problem involving the joint distribution. DP constitutes
a strong standard for privacy guarantees for algorithms on
aggregate databases [124], [127], [172]. It is defined in terms
of the application-specific concept of adjacent databases and
aims to hide whether one sample exists in the database. Thus,
DP is defined as the detecting probability of outputs of any
two adjacent databases.

2) Experiment-based Methods: Attack algorithms can eval-
uate the security and privacy levels directly. In order to
evaluate the adversarial robustness of image classification
tasks, large-scale experiments have been conducted and the
performance of different defense methods can be evalu-
ated [262]. In addition, we can apply adversaries to DP-
SGD, which allows for evaluating the gap between the private
information that an attacker leaks (a lower bound) and what
the privacy analysis establishes as being the maximum leak
(an upper bound) [130]. We can notice that attack methods

constantly emerge to face advanced defense methods. Thus,
the experiment-based methods need to consume a lot of com-
putation resources, such as 3, 000 GPU hours with parallelized
over 24 GPUs as shown in [130].

C. Lessons Learned from Attacks and Defenses

The research on attacks and defenses in distributed learning
is faced with an “arms race”, i.e., a defense method proposed
to prevent the existing attacks will be soon evaded by new
attacks, and vice versa.

1) Attacks in Distributed Learning: Attack algorithms in
the white-box scenario draw a lot of attention in the last
few decades, but they seem to be impractical and can only
be used as an upper bound. For example, model poisoning
attacks in FL can be divided into three scenarios based on
various levels of background knowledge, i.e., full knowledge,
partial knowledge, and no knowledge. The attack perfor-
mance decreases drastically as the background knowledge
decreases [165], [263], [264]. In this context, practical attack
algorithms with no knowledge should be studied to explore
potential privacy and security risks. In addition, the organizer
usually obtains more background knowledge than the rest of
the participants. In order to mitigate the risk of the organizer
being an adversary/eavesdropper, the decentralized framework
can be adopted as a solution.

For the same attack purpose, different levels of distributed
learning require different background knowledge, since the
level of distributed learning determines interactive messages
which usually contain the private information of participants,
such as extracted features and neural network gradients of
private data. Thus, various attack methods have emerged to
infer private information or poison training process instead of
unified attack schemes. For example, MIA in level 1 (sharing
model) needs shadow datasets to train shadow models and then
estimates the confidence of the training models [54]. We know
that the shadow datasets and their distribution affect the attack
performance obviously. However, how to obtain the shadow
datasets becomes controversial, such as generative networks,
stealing, and so on.

2) Defenses in Distributed Learning: Although distributed
learning can achieve privacy-enhanced and scalable data shar-
ing, it also presents some security and privacy risks. Four-level
distributed learning frameworks show various risk levels of pri-
vacy leakage, due to the different interactive messages [265],
[266]. The interactive messages usually contain the private
information of participant users, such as extracted features and
neural network gradients of private data. This data process can
protect private data to some degree. Thus, it is of interest to
study the potential privacy protection levels owing to these
data process functions, and then design effective protection
schemes to achieve a better trade-off between training perfor-
mance and privacy.

Privacy/confidential computing for distributed learning is a
high requirement compared with conventional privacy protec-
tion. However, existing privacy computing techniques usually
cannot provide systematic privacy preservation, which will
degrade the learning performance or training efficiency [155],
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[267]. In addition, the protection effectiveness of different
privacy computing techniques varies. For example, DP is
seen as an effective method to prevent membership inference
attacks by perturbing the impact on whether one instance
exists in the training process. Thus, the sensitivity of in-
teractive messages in distributed learning for DP should be
carefully investigated when estimating the privacy budget.
MPC is another widely used privacy computing technique.
However, the transfer ability of MPC is limited and the MPC
protocols for different paradigms of distributed learning need
to be well-designed. Overall, it is crucial to combine these
privacy computing techniques and design a general privacy-
preserving framework for different paradigms of distributed
learning [268], [269].

D. Lessons Learned from Federated Learning

Reviewing the state-of-the-art in the field, we find that FL
plays an increasingly important role in facilitating training ML
models for distributed data, as highlighted as follows.

1) The Advantages of Federated Learning: Three classic
paradigms in FL, i.e., horizontal FL, vertical FL, and federated
transfer learning, can be categorized as level 1, level 2 and
level 3 of distributed learning, and have the capability to
address most of the challenges of training ML models in
distributed scenarios. FL is an efficient approach for federated
data sharing among multiple clients, in which raw data are kept
on the client side, which in turn protects data privacy for tensor
mining. The primary purpose of FL is to train a satisfied ML
model without exposing participants’ data privacy. Thus, when
we select or design a training framework, both participants
data characteristics and privacy requirements should be consid-
ered. In addition, an increasing number of advanced paradigms
have emerged to handle various challenges in FL training,
such as multi-modal FL [270]–[272], federated knowledge
distillation [273]–[275], quantized FL [118] and so on, which
help to construct a secure and efficient federated AI ecosystem.

2) The Disadvantages of Federated Learning: Although FL
can benefit data privacy, security and privacy risks induced by
the interactive messages also exist. Particularly, FL can be
combined with other privacy techniques, such as DP, MPC,
HE, and so on, to improve the privacy of local updates,
by integrating them into gradient descent training to enable
privacy-enhancing FL. Moreover, the security of FL-based data
sharing can be improved by combining it with blockchain
technology [276]–[279]. In this context, the information of
trained parameters can be appended into immutable blocks
on a blockchain during client-server communications. Fur-
ther, the vast communication cost in vertical FL should be
noticed [280]–[282]. Specifically, in vertical FL, the total
computation and communication cost is proportional to the
training dataset size. In other words, the widely adopted batch
computation method in horizontal FL cannot be applied to
vertical FL. When facing a massive amount of data, e.g.,
billions of advertising data, communication, and local com-
putation may be in many orders of magnitude, and the system
may lose vitality due to limited resources, such as hardware
capacity, bandwidth, and power.

VII. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

As discussed in the above sections, distributed learning sys-
tems can alleviate security and privacy concerns by advancing
defense mechanisms. In Section VII, we provide and reveal
several critical research challenges for further improvement in
system implementation. In addition, related possible solutions
are also discussed.

A. Balance between ML performance and Security/Privacy
Level

1) Convergence analysis: As mentioned above, DP has
widely been adopted to train a distributed ML model, which
will add random noise to gradients during the training process.
However, a strict privacy guarantee usually requires a large
noise variance injected, so the DP-based training will lead to
significant performance degradation. Although existing works
in [172], [283] have explored the training performance of the
differentially private distributed learning systems and provided
some theoretical results, these results can only bring out
some intuitions and cannot enhance the learning performance
directly. Therefore, an accurate estimation of convergence per-
formance on the differentially private ML training is beneficial
to find a proper balance between utility and privacy.

2) Dynamic parameter optimization: In addition to the
accurate estimation of convergence performance, dynamic
parameter optimization is also a promising direction to balance
the trade-off between utility and privacy. Because of privacy
protection, the training performance caused by the original
parameters has been changed. Correspondingly, the conven-
tional parameter optimization method for distributed ML also
becomes inapplicable. For example, the work in [172] has
developed the upper bound on the differential private FL and
revealed that there exists an optimal number of communication
rounds with a given privacy level. This discovery brings a
new look at the communication round in FL and rethinks the
choice of communication parameters. The dynamic parameter
optimization for differentially private ML has also been con-
sidered, which implements a dynamic privacy budget allocator
over the course of training to improve model accuracy [284].
Although existing dynamic optimization methods have already
been proposed and proven to improve a number of distributed
learning systems obviously, there is still a huge room for
improvement.

3) Specific/personalized protection mechanism: The var-
ious requirements for different scenarios or different par-
ticipants in distributed ML systems are also challenging,
especially when the data distribution is non-independently
identically distributed [285], [286]. Therefore, designing a
specific/personal protection mechanism for the distributed ML
system can bring out a better balance between utility and
privacy. The work in [287] has considered a social network
and achieved a proven DP requirement by perturbing each
participant’s option with a designated probability in each
round. Combining sketch and DP techniques, the work in [115]
has proposed a novel sketch-based framework, which com-
presses the transmitted messages via sketches to simultane-
ously achieve communication efficiency and provable privacy
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TABLE XI
SUMMARY OF CHALLENGES ALONG WITH THEIR DESCRIPTIONS, AND POSSIBLE SOLUTIONS.

Challenges Description Solution

Balance between ML performance
and Security/Privacy Level

The tradeoff between the Learning performance,
such as convergence, and the privacy and security

level should be well designed.

Dynamic parameter optimization
Specific/personalized protection mechanism

Decentralized Paradigm
In the distributed fashion, the regulations as well

as the incentives among multiple participants
should be investigated.

Authentication and access control
Consensus design

Blockchain assisted distributed learning

Complexity Reduction

Distributed learning with a high complexity security
and privacy protection is sometimes impractical. How
to alleviate this complexity burden under a required

protection level still needs investigation.

Lightweight encryption
High-efficiency secure protocol

Model compression

benefits. These designs can obtain a satisfactory trade-off
between utility and privacy, because of the deep combination
of original scenarios and DP techniques. Therefore, how
to balance utility and privacy in the amount of distributed
learning scenarios has not been fully explored.

4) Private set intersection (PSI): PSI is an important step
in distributed learning because of the feature or individual
differences among multiple users. For example, in horizontal
FL/SGD systems, we need to ensure that each record has the
same features. Classical PSI protocols are third party-based
PSI [288], [289], public-key-based PSI [290], [291], circuit-
based PSI [292] and OT-based PSI [293]. However, there
is still a research gap that using PSI in distributed learning
to investigate the tradeoff between the privacy level and the
learning performance.

B. Decentralized Paradigm

1) Authentication and access control: The key question
in adding security to a decentralized diagram is to increase
the confidence that all parties involved in the system (agents,
platforms, and users) will behave correctly, and can be
achieved by authentication. The identification of the parties
can make up a system and possibly establish a trusting
environment between clients. Cryptology is proven useful in
a large number of authentication and access control scenarios,
but it cannot address the problem of fully new participants.
In addition, a trust/reputation model has been proposed to
determine the participating values for unknown clients, since
it is hard for an agent to obtain complete knowledge about
other participants [181], [217], [218]. Consequently, how to
design efficient identity certification mechanisms to uniquely
authenticate known, and trusted users and agents in the system
has drawn much attention.

2) Consensus design: Coordination and cooperative control
of multi-client in distributed ML always attract lots of attention
from various research communities, where a fundamental ap-
proach to achieving cooperative control is the consensus-based
algorithm [294]. Traditional consensus designs are mostly
based on single and finite-time domain [295], [296], where
in reality, the dynamics of the system are usually complicated
and non-linear. Therefore, a useful and effective consensus
design with dynamic or unknown parameters is urgent in
future research. For example, the time-varying resources and
requirements for participating clients are key and un-trivial

factors in design. In addition, the security of consensus also
raises several issues recently [297]. How to protect the in-
tegrity of the consensus from inside or outside attackers and
how to prevent private information leakage from the published
consensus are other interesting research directions.

3) Blockchain assisted distributed learning: The reasons
for implementing blockchain in a distributed learning system
are to increase the interaction efficiency between participants
by providing more trusted information exchange, reaching a
consensus in trust conditions, assessing participant productiv-
ity or detecting performance problems, identifying intruders,
allocating plans and tasks, and deploying distributed solutions
and joint missions [298], [299]. However, the challenges
consist of assessing feasibility and finding an architectural ap-
proach for combining blockchain-based consensus algorithms
with real-time distributed learning systems, while assuring
incentive information exchange and compatibility with the
already existent local processing protocols [258]. In addition,
the incentive mechanism is also vital for the consensus design
[300], [301].

4) Fairness: Fairness attracts increasing attention in recent
years, especially in the scenario where multiple participants
are evolved in one learning task [302]. A max-min fairness
distributed learning system has been developed in [303],
where multiple clients are matched with the bandits with the
minimum regret. Furthermore, collaborative fairness in FL has
been investigated in [304]. Although several works throw out
the idea of fairness, there is a lack of a common definition of
fairness in distributed learning. Whether attending the same
rounds of training or allocating training trials according to the
users’ capability represents fairness is still an unclear question.
In addition, the relationship between fairness with security and
privacy also requires further discussion.

C. Complexity Reduction

1) Lightweight encryption: One of the oldest and most pop-
ular techniques used in information security is cryptography,
and its use to protect valuable information is usually relying
on symmetric encryption and decryption algorithms such as
elliptic curve cryptography (ECC), homomorphic hash func-
tion, and secret sharing technology. A secure lightweight ECC-
Based protocol, i.e., Broadcast based Secure Mobile Agent
Protocol (BROSMAP) [305], has been improved to fulfill
the needs of Multi-agent based IoT Systems in general and
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obtained better performance than its predecessor with the same
security requirements. HE assisted MPC framework [176],
enabling a participant to compute functions on values while
keeping the values hidden, can allow certain mathematical
operations (such as aggregation) to be performed directly on
ciphertexts, without prior decryption. However, cryptography
algorithms usually require complicated computation protocols
and may not be achieved efficiently.

2) High-efficiency secure protocol: Secure protocols are
designed to enable computation over data distributed between
different parties so that only the result of the computation is
revealed to the participants, but no other private information.
Secure protocols usually combine several efficient security
and privacy techniques, e.g., MPC, DP, and HE, and need
several interactions to exchange intermediate results. However,
too many interactions may increase the information leak-
age risk, communication, and computing overhead. Besides,
it is also challenging to explore generic secure protocols
over remote parties, especially for complicated scenarios and
various applications. To realize an efficient communication
protocol in a trusted and secure environment, an alternative
way is to increase the transmission rate using an intelligent
reflecting surface (IRS) by smartly reconfiguring the wireless
propagation environment, with the help of massive low-cost
passive reflecting elements integrated on a planar surface and
to enable cover communication [306].

3) Model compression: High accuracy of large neural
networks is often achieved by paying the cost of hungry
memory consumption and complex computational capability,
which greatly impedes the deployment and development in
distributed systems [307]. To efficiently accelerate the learning
process, privacy preservation-based methods, such as compact
model [308], [309], tensor decomposition [310], data quanti-
zation [311] and network sparsification [312], are recent key
advances.

D. Distributed ML and Futuristic Technologies

1) Robotics: Distributed ML can enhance the ability to
identify and control robotics with remote and distributed con-
trol or wireless connections to clouds. This scenario requires
high precision control, which raises increasing security issues
and vulnerability to transmission errors [313], [314]. How to
preserve the integrity of the control system and how to prevent
information leakage during data transmission needs further
investigation. In addition, ethical issues related to bionic robots
are hotly debated concerns [315], [316].

2) Virtual reality (VR) and augmented reality (AR): ML and
its distributed styles can improve the quality of generated im-
ages and videos, such as GAN and diffusion models. With the
rapid development in VR and AR-based applications, private
information from generated videos may lead to personal infor-
mation leakage [317], [318]. Adversaries can take advantage
of the fake videos to analyze the unique behaviors, personal
interests, and background environments of participants [319].

3) Distributed quantum computing: Quantum ML operates
based on quantum mechanics, taking advantage of superposi-
tion to store and process information [320], [321]. However, if

information sources are from distributed clients, information
leakage and inside or outside attacks may occur during data
transmission. Thus, conducting the protection on distributed
ML raises several challenging problems, such as identifying
attackers, ensuring the integrity and availability of transmis-
sion data, and preserving privacy.

4) Metaverse: Metaverse seamlessly integrates the real
world with the virtual one. It allows avatars to carry out
rich activities, including creation, display, entertainment, social
networking, and trading. Thus, it is promising to build an
exciting digital world and transform a better physical scenario
by exploring the Metaverse [322], [323]. Intuitively, the break-
throughs of AI in the real world motivate people to realize
the Metaverse. For example, distributed ML via integrating
distributed data from Metaverse users can provide technical
support for Metaverse systems to reach or exceed the level of
human learning. This can significantly affect the operational
efficiency and the intelligence of the Metaverse. Intelligent
voice services provide technical support, such as voice recog-
nition and communication. However, several new security and
privacy challenges that can compromise the systems or divulge
users’ privacy raise attention in the interaction process, such
as the communication between metaverse users and service
providers.

5) Digital twin: The digital twin can fill the gap between
physical systems and digital spaces. Leveraging FL to con-
struct digital twin models of IoT devices based on their
running data has been proposed in [324], [325]. The physical
security of IoT devices is critical as they can be damaged,
destroyed, or even stolen by attackers. Digital twin systems
also have other priorities than the traditional network/system
security requirements because of their interactions with the
physical components. For instance, defects in a critical product
may lead to death, injuries, or environmental damage. For this
reason, safety could be ranked as the top security requirement.
Safety can broadly be defined as the avoidance of harm or
hazard to the physical environment and infrastructure that
could occur from system faults [326]. Meanwhile, the pos-
sible privacy leakage from the interactions with the physical
components must also be considered.

6) Web 3.0: Web 3.0 has attracted considerable attention
due to its unique decentralized characteristics [327]. In Web
3.0, data presents a distributed storage structure, so there will
be no central node for data management, significantly reducing
the service cost of managing data. Web 3.0 emphasizes the
protection of users personal data, and therefore, as a key tech-
nology to solve the data privacy problem, privacy computing
is becoming the immediate need of Web 3.0 existence. Privacy
computing technology can analyze and calculate data under the
premise of protecting data privacy and security, which provides
a strong guarantee for the efficient and safe circulation of data
across industries and organizations.

7) Generative design AI: Generative design uses AI to
come up with multiple design variations for products or parts.
This leads to a faster generation of design options than would
be developed through manual design, which leads to faster
product development times and more creative choices to select
from. For example, the meteoric rise of diffusion models
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has been one of the most significant developments in ML
in the past several years [328]. Although generative design
AI can improve the qualities of several tasks, it also relies
on massive data and may induce several security and privacy
issues, especially for fake digital assets, like photos or videos,
that are indistinguishable from real things.

E. Development of IEEE standardizations, policy, and regu-
lations

Privacy and security are paramount considerations in the
field of distributed learning, where data is shared and pro-
cessed across various decentralized nodes. To ensure a robust
and trustworthy environment for distributed learning systems,
several IEEE standards, policies, and regulations come into
play. These guidelines help establish a solid foundation for
protecting user data and maintaining the integrity of the
learning process.

1) IEEE Standards:

• IEEE 1363 (Standard Specifications for Public-Key Cryp-
tography): Encryption is vital for securing data in dis-
tributed learning. IEEE 1363 provides specifications for
public-key cryptography algorithms, ensuring confiden-
tiality and integrity of communication in distributed sys-
tems.

• IEEE P2089 (Standard for Privacy Impact Assessment for
Internet of Things): This standard provides a framework
for assessing the privacy impact of IoT systems, which
often play a crucial role in distributed learning scenarios.
It guides the identification of potential privacy risks and
suggests mitigation strategies.

• IEEE 3652.1-2020 (Guide for Architectural Framework
and Application of Federated Machine Learning)3: It
provides a blueprint for data usage and model building
across organizations and devices while meeting applica-
ble privacy, security and regulatory requirements in FL.
In detail, the description and definition; the categories and
the application scenarios to which each category applies;
the performance evaluation; and the associated regulatory
requirements of FL are defined.

• IEEE P7000 series (Model Process for Addressing Ethical
Concerns During System Design): Distributed learning
involves ethical considerations, and this series offers a
comprehensive model process to address ethical concerns
throughout system design and development. It empha-
sizes transparency, accountability, and user consent.

2) Policies and Regulations:

• GDPR (General Data Protection Regulation)4: Although
not an IEEE standard, GDPR is a significant regula-
tion that affects distributed learning. It emphasizes the
protection of personal data and requires explicit user
consent for data processing. Organizations handling data
in distributed learning must adhere to GDPR’s principles
to ensure user privacy.

3https://standards.ieee.org/standard/3652 1-2020.html
4https://ec.europa.eu/info/law/law-topic/data-protection en

• HIPAA (Health Insurance Portability and Accountability
Act)5: In healthcare-related distributed learning applica-
tions, HIPAA plays a crucial role. It sets regulations for
protecting the privacy and security of patient’s health
information, including data used in distributed learning
scenarios.

• NIST (National Institute of Standards and Technology)
Guidelines6: While not IEEE-specific, NIST provides
guidelines on security and privacy, including those ap-
plicable to distributed systems. NIST’s cybersecurity
framework and privacy framework offer valuable insights
for building secure and privacy-preserving distributed
learning systems.

• IEEE Code of Ethics7: While not a policy or regulation
in the legal sense, the IEEE Code of Ethics guides
professionals working in technical fields, including dis-
tributed learning. It encourages ethical behavior, respect
for privacy, and responsible decision-making.

VIII. CONCLUSIONS

As an important and emerging technology, distributed ML
has the capability to leverage the incremental amount of data
in UEs to the maximum extent. However, this emergence raises
increased concerns about privacy and security. In this survey,
we have proposed a new framework, which divides distributed
ML into four levels for the purpose of understanding privacy
and security issues. Moreover, we have discussed and summa-
rized the state-of-the-art related to these issues and revealed
the particular characteristics of adversaries at each level. In
addition, several research challenges and future directions have
also been discussed.
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