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Abstract—This paper surveys the current state of the art in
affective computing principles, methods and tools as applied to
games. We review this emerging field, namely affective game
computing, through the lens of the four core phases of the affective
loop: game affect elicitation, game affect sensing, game affect
detection and game affect adaptation. In addition, we provide a
taxonomy of terms, methods and approaches used across the four
phases of the affective game loop and situate the field within this
taxonomy. We continue with a comprehensive review of available
affect data collection methods with regards to gaming interfaces,
sensors, annotation protocols, and available corpora. The paper
concludes with a discussion on the current limitations of affective
game computing and our vision for the most promising future
research directions in the field.

Index Terms—Affective computing, games, player modelling,
affective loop, survey, taxonomy.

I. INTRODUCTION

OVER a third of the Earth’s population is playing games
by now—with the projected number of gamers rising

up to 3.3 billion by 2024 [1]. We could argue that game
playing at this massive scale is probably the largest ongoing
experiment of human behaviour and experience. The emotional
patterns that a player goes through are deeply interwoven in
the design of any game. That central role of affect interaction
in this domain make games an ideal test-bed for the study of
affective computing (AC) [2]. Games, however, are not merely
an important domain for AC. As a matter of fact, games have
shaped and advanced the AC field in numerous ways given
the unique challenges they pose and opportunities they bring
to affective interaction.

Looking at digital games through the lens of the affective
loop [3], one can only observe benefits for AC research and
innovation. When it comes to emotion elicitation, games define
one of the richest forms of human-computer interaction and
thus offer highly multimodal and dynamic ways to elicit affect.
Moving on to affect sensing, the availability of game engine
and sensor technology brings AC researchers unprecedented
opportunities for measuring manifestations of affect way be-
yond physiology, verbal and non-verbal communication (e.g.
game analytics and in-game social activity). Affect detection
benefits from the massive gameplay corpora available in the
wild e.g. over streaming services [4]. Finally, affect adaptation
in games can be achieved via highly diverse stimuli that vary
from AI-controlled expressive agents to content generators of
various types [5], [6].

In this paper, we survey the emerging research area at
the intersection of affective computing and games, namely

affective game computing. In particular, we build on the
affective loop paradigm [3], [7] (see Section II) and survey
core contributions in the areas of affect elicitation, sensing,
detection and adaptation in games (Sections III–VI). We use
indicative examples from both the game industry and academic
research showcasing the advancements of AC through games
but also the benefits AC offers to games and their development.
Throughout our survey, we identify core terms, methods and
approaches that we, later on, use to situate the affective game
computing field as a whole (Section VII). Moreover, our
survey puts an emphasis on state-of-the-art data collection
methods in games relating to interfaces, sensing devices, and
annotation protocols (Section VIII) and the available affect
corpora (Section IX). The paper concludes with a detailed list
of current limitations of the available methods and technolo-
gies (Section X) and outlines a number of promising future
research directions for affective game computing (Section XI).
We feel (and hope) that all aforementioned studies, methods,
resources and tools contained in this survey paper will serve
as a guide for affective game computing researchers and will
also lower the entry bar for any newcomer to this emerging
research and innovation field.

A. Contributions of this Paper

The field of affective computing in the domain of games has
been studied extensively over the last 15 years. The literature
is rich in this application area—as one can observe through
the volume of references in this paper. Despite the variety and
breadth of the studies covered, however, only a few papers
have reviewed this research field in a comprehensive and
detailed manner to the degree this paper does. Indicatively,
an early short survey of the field focused on the relationship
between emotion and games [8] and introduced the concept
of the affective loop in games. The edited volume Emotion
In Games [9] provides broad coverage of several aspects
of affective computing research in games but it does not
survey the field comprehensively and in a systematic fashion.
In [10] Yannakakis and Togelius offer an entire chapter on
player modelling—the use of computational means to capture
aspects of playing behaviour and experience—which touches
upon some of the aspects covered here. Two more recent
relevant surveys include the work of Robinson and Clore [11]
who examined the use of physiological sensors in the field
of human-computer interaction and Navarro et al. [12] who
surveyed biofeedback interaction specifically in videogames
for general entertainment.
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In contrast to all the aforementioned attempts, this paper in-
troduces the affective game computing field and surveys it in a
holistic, systematic, and comprehensive manner. In particular,
the paper covers both industry and academic examples, and
it offers a taxonomy of terms and methods through which
we can map the critical studies in the field. Furthermore,
the paper surveys existing corpora, methods and annotation
protocols, provides guidelines for the newcomer in this field
and discusses the next most promising research steps forward.

II. AFFECTIVE GAME LOOP

The affective loop first introduced by Sundström [7] and
Höök [3] has become a dominant AC paradigm that is able
to represent any affective interaction in a general fashion. The
affective loop comprises four core sequential phases that en-
able an affective interaction: affect elicitation, affect sensing,
affect detection and affect adaptation. When the affective loop
principle is applied to games the resulting paradigm has been
defined as the affective game loop [8] (see Fig. 1). Before
delving into the details of the AC and games survey, in this
section, we outline the key elements of each phase of the
affective game loop as follows.

1) Elicitation: In this initial phase of the loop the game
yields affective responses to players via a multitude
of available affect elicitors such as game agents and
game content. We detail those elicitors and survey the
corresponding literature on game affect elicitation in
Section III.

2) Sensing: Once affect is elicited, players manifest it in
numerous ways. The second phase of the affective game
loop is responsible for sensing those manifestations via
sensor and tracking technology as detailed in Section
IV.

3) Detection: Given appropriate signals obtained from the
sensed multimodal player input and human demonstra-
tions of affect (such as player experience annotations)
one can build mathematical formulations (e.g. via sta-
tistical machine learning) that are capable of inferring
the annotated affect accurately based on the user signals.
Details on game affect detection methods are provided
in Section V.

4) Adaptation: In the last phase of the affective game loop
the game is required to offer the next sequence of in-
game stimuli so that the experience of the player is set
within predetermined bounds. We survey methods and
studies on game affect adaptation in Section VI.

III. GAME AFFECT ELICITATION

As mentioned earlier, games are equipped with a rather
diverse set of stimuli that are capable of eliciting a wide
spectrum of emotions in players. In this section, we provide a
taxonomy of such stimuli independently of the affective states
they might be able to elicit. Importantly, the context of the
game environment, the game genre, the form of interfacing, the
number of players, potential social aspects of the game, and the
overall objective of the game are foundational and they impact
any other in-game elicitor covered here. For our taxonomy

Figure 1. A high-level illustration of the affective game loop. The orange
arrows depict the core steps of the loop via elicitation, sensing, adaptation,
and detection. The grey arrows show how affect annotation can be integrated
into the loop.

of elicitors we largely adopt and build upon the taxonomies
introduced by Yannakakis and Togelius [10]. In particular, as
summarised in Table I we identify three categories of affect
elicitors in games namely game context, game agent and game
content. We discuss these categories in detail below followed
by an indicative example of affect elicitation in games in
Section III-A.

Game context refers to the game’s genre, the platform
used, and the game’s characteristics that collectively define
the momentaneous state of the game. A player can obviously
affect the dynamic aspects of the game context (i.e. the game
state) and vice versa, the game context can affect the gameplay
and elicit affect patterns. The importance of game context is
critical for player affect modelling as the context of the game
needs to be considered for reliable affect detection. Simply
put, any player’s reactions cannot be dissociated from the
stimulus that elicited them. Following the taxonomy intro-
duced in [10] the core game characteristics that fall under
the game context group include: the number of players, the
observability of play, the stochasticity of the game, the time
granularity, and the action space for the player (see Fig. 2).
Under the game agent category, we fit any affect elicitor
related to AI-controlled agents that might be available in
the game. Examples include agent facial expression, verbal,
and non-verbal agent behaviour, social agent behaviour, and
individual agent behavioural patterns that can affect a player’s
experience. Finally, game content refers to any content type
existent in a game that is not related to AI agent behaviours as
those are covered in the game agent category (i.e. the virtual
environment [13]). Building on the categorisation of Liapis
et al. [5] each game is viewed as a synthesis of creative
facets available which include the design of the games (i.e.
rules and mechanics), the game level, and the creative ways a
human plays the game (i.e. gameplay). Depending on the game
available content types may include visuals, audio, narrative,
and even novel control modalities [14].
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Table I
A TAXONOMY OF GAME AFFECT ELICITORS

Category Subcategory Elicitors
Genre Shooter, platformer, racing, strategy, adventure, etc.
Platform Mobile, AR, VR, console, desktop.
Number of players single, one-and-a-half, two-player, multi-player

Context Observability Fully observable vs. partially observable game
Stochasticity Deterministic vs. non-deterministic game
Time granularity Real-time vs. continuous
Action Space Player actions available: 2 to many

AI Agent Navigation, expression, exploration, verbal/non-verbal interaction
Content Visuals, Audio, Narrative, Game Design, Levels, Gameplay [5]

Figure 2. Characteristics of Games: Examples across the dimensions of
Stochasticity, Observability, and Time Granularity. While classical algorithms
such as minimax are only able to solve games in the red square, AI methods
that can approximate a decision tree (e.g. Monte Carlo Tree Search) can
solve games in the blue squares as well. Adopted from [10] with authors’
permission.

All the above-mentioned elicitors can affect the experience
of play and are met in various configurations in games. It is
rarely the case—as in most other domains of AC—that only
one elicitor type (e.g. an image, or a sound) is active at a
time. In games, instead, affect elicitors are orchestrated [6],
[15] in groups thereby offering rich and multifaceted affective
interactions [14]–[19]. As an example of such an orchestration
process think of a scary story that is told by an expressive
agent who is placed in a dungeon level with the corresponding
visual and audio effects, and the appropriate virtual camera
placement, and lighting.

It is important to note that the game context is static
meaning that no aspect of it can be altered by the player or the
game. As a result, the game context cannot act as a dynamic
affect stimulus when the affective loop reaches its adaptation
phase. One could think of games that change their genre, their
mode of interaction (e.g. from VR to desktop) [20] and the
number of players but those alterations are rare. Therefore in
this section, instead of surveying the existing literature with
respect to all possible affect elicitors in games, we will survey
only the game context category. We will then survey AI agents
and content in Section VI as these two categories include
dynamic stimuli that can be altered during the game affective

interaction.
Aspects of the game context have been predominantly

included as a modality of input for affect detection in games
(e.g. [21]–[30] among others). In most of these studies (e.g.
[23], [24], [30]) the game context does not refer to any of the
aspects included in Table I but rather to aspects of the game
environment such as level features. We could argue that the
game context aspects covered in Table I become highly rele-
vant for affect detection once one performs studies on general
affect modelling [31]–[34]. Very few studies have explored
modalities of user input in isolation of the game context. For
example, Makantasis et al. [35] built models of affect based
solely on physiology for the purpose of comparison against
models that fused aspects of in-game video and audio.

A. Indicative Examples

In this section, we will provide an indicative example of
affect elicitors that have been used in a game that realises
the game affection loop. In particular, we will outline the
StartleMart Post-Traumatic Stress Disorder (PTSD) game
(see Fig. 3) which was designed and developed as a form
of virtual exposure therapy [36], [37]. The game adapts to
the level of stress of PTSD patients—as measured via their
skin conductance—by triggering certain auditory and visual
stimuli including war sounds, stressful social settings and war
flashback moments. When it comes to the context of the game,
StartleMart can be characterised as a training game with a
health purpose (i.e. PTSD treatment) (genre) that takes place in
a supermarket, played in desktop (platform) by a single player
(number of players). The game is partially observable (observ-
ability) as it features a first-person view over a 3D level, it is
deterministic (stochasticity) and continuous (time granularity),
and the player actions are limited to moving around in a
continuous environment and picking objects (action space).
The game context as described above acts as a mild stressor
for patients suffering from PTSD. A pre-selected number of
in-game stimuli—provided in the form of audio, visuals and
video cut-scenes—act as personalised intense stress elicitors.
More details about StartleMart can be found in [36]–[38].

IV. GAME AFFECT SENSING

Moving on to phase 2 of the affective game loop in this
section we will first survey the multiple ways we can sense
how a player feels based on their manifested emotions (see
Section IV-A) and we will then survey the available methods
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Figure 3. Screenshots of StartleMart [36]; a biofeedback game designed as
a virtual stress inoculation and exposure therapy tool.

we can obtain affect annotations and labels in games (see
Section IV-B). From an affect modelling perspective, we will
first focus on the input of the model and then cover its
output. Similarly to Section III, we start by introducing our
taxonomy, then survey the corresponding literature and end
with an indicative example that is presented in more detail.

A. Sensing the Input

Player emotional manifestations may be sensed through
variations of gameplay patterns, alterations in a player’s atten-
tion, level of focus, and changes in the player’s physiology,
facial expression, posture, and speech. Monitoring such alter-
ations may assist in recognising and constructing the player’s
model.

Any affect model of players relies on data of the mani-
fested affective experience. Such data define the input of the
affect model and can be obtained directly through the game
engine or with the help of additional sensors. These sensors
are either available through the various platforms (e.g. eye-
tracking featured in a VR headset) or they are integrated into
the game (e.g. a skin conductance sensor that interfaces with
the game)—for a recent survey of physiological sensors in
affective game research see also [11]. Following the player
modelling taxonomies of [8], [10] we argue that sensing affect
manifestations in games can be of the two main categories:

gameplay and objective sensing. The two categories are de-
tailed in the remainder of this section and summarised in Table
II.

1) Gameplay: As games affect the player’s cognitive pro-
cessing patterns and cognitive focus our core assumption is
that players’ in-game behaviour is linked directly to their
experience. As a result players’ affect can be derived through
the analysis of their in-game interaction patterns considering
game context variables [39], [40]. Gameplay refers to anything
a player does in a game environment which is collected via
in-game logs of any type such as user interface selections, pref-
erences, or in-game actions. In particular, gameplay includes
any aspect that can be derived from the interaction between
the player and the game directly. Such aspects—also broadly
known as player metrics [41], [42]—include detailed attributes
of the player’s behaviour which are based on interactions with
game elements such as objects, non-player characters, and
levels. Popular examples of attributes that are directly linked
with gameplay include spatial locations of players and key
events viewed as heat maps [43] trajectories or aggregated
descriptive data [32], communication with other players or an
audience [4], all the way to pixel colours of the game’s footage
[33], [34].

A key limitation of gameplay is that the player affect is only
observed indirectly. For example, a player that shows limited
interaction through their logged gameplay data could be either
planning their next quest, talking to their friend over the phone
or even feeling bored with the game. It is also important to note
that affect models that are derived from gameplay data do not
necessarily generalise across all players and games. Therefore,
it is crucial that affect models are fine-tuned to the needs of
players, and manifest gameplay experiences of player personas
[44] and ultimately individual players. One might even argue
that gameplay data is not even relevant for particular games or
players as the ad-hoc design of the gameplay attributes might
not be useful for capturing certain aspects of player affect.

2) Objective: This category refers to any signals available
as a response to in-game stimuli. In particular, objective ways
of sensing affect include physiological signals—electrodermal
activity (EDA), electrocardiogram (ECG), electromyogram
(EMG), electroencephalogram (EEG) [45]–[47]—camera-
based signals including facial expression, head pose, gestures
and body movement [48], [49], and verbal signals including
speech and body movements.

The analysis of physiological manifestations of psychology
(i.e. psychophysiology) is well studied by now; see [11],
[28], [50]–[52] among many. It is widely evidenced that
arousing or tense events cause dynamic changes in both
sympathetic (increase) and parasympathetic (decrease) nervous
systems whereas low arousal (e.g. relaxing or resting) states
increase the activity on the parasympathetic nervous system.
Such activity may cause observable alterations, for instance
in a player’s facial expression, head pose, and EDA [53],
[54]. A significant body of literature has focused on the
relationship between a player’s physiology in response to
their gameplay patterns [21], [55]–[61], relying on ECG [62],
photoplethysmography [60], [62], [63], EDA [36], [38], [57],
[64], respiration [60], EEG [45], [65]–[67], and eye movement
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Table II
A TAXONOMY OF GAME AFFECT SENSING

I/O Category Subcategory Sensing Options
Input Gameplay Ad-hoc gameplay features, pixels, audio, preferences, in-game actions

Objective Physiology EDA, ECG, EEG, EMG
Camera-based Facial Expression, Head Pose, Gestures, Body movement
Verbal Speech

Output Subjective Human demonstrations of experience, annotations, questionnaires

[68], [69]. In addition to physiology, the player’s bodily
expressions can reveal real-time affective responses from the
gameplay stimuli. Such input modalities, have been explored
extensively in games and include facial expressions [70]–[74],
muscle activation [22], [75], body movement and posture [68],
[70], [76]–[78], haptics [79], and gestures [80], On a higher
level, objective input can be viewed largely as either verbal
or non-verbal. Verbal input includes speech-based modalities
[81]–[85], while no-verbal input may rely on text [86]–[88] or
any of the above-mentioned modalities.

The limitations of objective inputs are several. First, most of
the sensors are not available in a player’s natural habitat (i.e. in
the wild); second, most sensors are intrusive, thereby, affecting
gameplay at large; third, the signals obtained are usually noisy
due to environmental conditions and hardware limitations. We
discuss these limitations in more detail in Section X.

B. Sensing the Output

The output of any affect model is usually a set of particular
states (e.g. happy), a scalar (e.g. the emotional dimensions of
arousal and valence), or an ordinal relationship (e.g. tension is
higher now than before). Sensing the output is predominately
achieved through a subjective annotation process by the player
themselves (first person) or by others (third person) such as
game experience designers, peers or external observers. Those
annotated labels ideally need to be as close to the ground
truth of playing experience as possible [10]. Sensing the most
reliable affect labels for players is a tedious and laborious
task which defines a challenge in its own right. The area of
affect annotation is long studied in the literature, yet there
are still many open research questions left for the design of
the ideal annotation collection protocol. First, who provides
the labels (first or third person); second, is player experience
represented as states or instead as intensity/magnitude; third,
should annotations be provided in discrete time periods or
continuously; fourth, should the annotators be asked to give a
magnitude label (e.g. frustration is 0.8) or an ordinal relation-
ship (e.g. frustration is higher in this level segment). Some of
these questions are addressed in the remainder of the paper;
particularly Sections V and VIII.

C. Indicative Examples

At the moment of writing, there are a number of examples
of commercial games that utilise physiological input from
players. One particularly interesting example is Nevermind
(Flying Mollusk, 2015), a biofeedback-based adventure horror
game that adapts to the player’s stress levels by altering the
game’s content including visuals and sounds (see Fig. 4) [89].

Figure 4. A screenshot of Nevermind (Flying Mollusk, 2015) showcasing
the elements of the game that can alter to elicit stress to the player. Image
obtained from Erin Reynolds with permission.

A number of sensors which monitor the player’s heart rate
variability, skin conductance, facial expressions and gestures
are available for affective interaction with the game.

Our second affect sensing example comes from a collabora-
tive project between academic and industrial partners named
Apex of Fear (2022)1. Apex of Fear is a VR horror game
experience that adapts to its players’ fear levels in real-time
based on their psycho-physiological measures. The multimodal
sensing capacities of Apex of Fear include electrodermal
activity, respiration, electrocardiography, electromyography,
eye tracking, and in-game events (see Fig. 5). The game is
currently in its beta testing phase through which user data
is collected for constructing reliable models of in-game fear
based on the physiological manifestations of players.

Both of these examples focus on sensing the input rather
than the output. While surveys and continuous annotation
tools to measure player experience are used extensively in
games research [90] and game industry user research [91], they
rarely show up in commercial games. A possible explanation
of why this happens is that most commercial games are
presented as black boxes to the players. Game designers value
immersive experiences highly [92], therefore, pointed surveys
that measure the output of emotions directly can uncover
the inner workings of game systems, revealing the smoke-
and-mirror nature of games. Recent advancements, however,
within large-scale language models (LLMs) point towards
a promising direction incorporating human affect labels for
shaping and defining large-scale affect models in games. As
shown by Lambert et al. [93], reinforcement learning from
human feedback can greatly enhance the performance and

1https://apexoffear.com/

https://apexoffear.com/
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Table III
A TAXONOMY OF GAME AFFECT DETECTION METHODS

Category Subcategories Learning Target
Supervised Learning Regression Numerical values

Classification Nominal categories
Preference Learning Ordinal relations

Reinforcement Learning Offline vs Online, Inverse Reinforcement Learning Simulation of a human-like affective process

Figure 5. A screenshot of Apex of Fear (2022). The dashboard showcases
the player view and the multiple modalities available for sensing the players.
Computational models of affect can be used to adapt the levels of fear
according to a predetermined experience curve.

Figure 6. Game footage from Tom Clancy’s The Division (Ubisoft, 2016).

personalise the output of large foundation models such as GPT-
3 [94] and GPT-4 [95]. Human feedback may take the form of
like/dislike labels or preferences among options (i.e. generated
texts and/or images).

Even though general like/dislike labels already encode a
form of affective feedback, detailed survey methods used
in the games industry could inform future affect models in
games. A good example of such a survey is the Ubisoft Player
Experience Questionnaire (UPEQ) [96] designed to assess the
motivational drives of players. The UPEQ questionnaire has
been used successfully to model player’s motivation based on
simple behavioral patterns of players in the role-playing third-
person shooter game Tom Clancy’s The Division (Ubisoft,
2016) [97] (see Fig. 6).

V. GAME AFFECT DETECTION

In the third phase of the game affective loop, a compu-
tational model is requested to detect player affect based on

the player modalities available. Because this affect model is
trained to predict labels, the task of affect detection is largely
viewed as a supervised learning paradigm [51] through which
measurable attributes of the player (model’s input) are mapped
to the player’s affect state (model’s output). Any supervised
learning method can be used for inferring such a mapping,
including decision trees and random forests, support vector
machines, and shallow or deep neural network architectures.
The data type of the affect label available determines the
output type of the model and, in turn, the machine learning
approach that is applicable. Numerical data can be modelled
using regression methods whereas nominal variables, such as
emotion categories or arbitrary bins of numerical data (e.g.
high vs low values based on a split criterion) are modelled
via classification methods. Finally, ordinal observations (e.g.
pairwise preferences or forced choices) can be trained via
preference learning methods. It is also possible to create
ordinal observations from numerical values (e.g. change in
score) or even from nominal values in some cases (e.g.
arousal intensity of labelled emotions) [98]. We detail the three
supervised learning types below (see Table III).

When the affect labels that need to be predicted are interval,
affect modelling can be achieved via regression algorithms
including linear or polynomial regression, artificial neural
networks and support vector machines. Modelling player affect
via regression has certain limitations and will most likely
yield unreliable models as regression assumes that the target
value to be predicted follows a numerical scale. A number of
comprehensive studies [98]–[104] provide sufficient evidence
against the use of regression for player experience modelling.
Values obtained via magnitude-based annotation (e.g. ratings)
should instead be converted to ordinal values via the second-
order process described in [98].

If instead of numerical values player affect is represented
as a set of classes (e.g. high vs low engagement) any clas-
sification method is applicable for learning to predict affect.
Classes can represent both aspects of player experience—e.g.
excited or frustrated player—and aspects of playing behaviour
such as quest completion times (e.g. low vs. high completion
time). Classification is ideal for modelling player experience
if discrete annotations of experience are available as target
outputs [105]–[108]. Converting numerical values to classes
(e.g. convert arousal annotations between 0 and 1 to low vs.
high arousal) might introduce data biases which, in turn, might
prove to be detrimental for modelling player affect [98], [99],
[109].

Alternatively to regression and classification, preference
learning [98], [110] methods can learn to predict affect from
ordinal data such as affect ranks or preferences. The target
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values in the preference learning paradigm provide information
for the relative relation between instances of the label we at-
tempt to learn. For instance, labels are obtained by comparing
two game levels in terms of engagement [111] or they can
be retrieved via ordinal processing of an arousal trace [90],
[112]. Largely speaking, the data analysis of ordinal labels
follows the first-order process described in [98]. A large palette
of algorithms is available for the task of preference learning
including linear statistical models and non-linear approaches
such as Gaussian processes [113], deep and shallow artifi-
cial neural networks [114]–[117], neuro-evolutionary methods
[118], and support vector machines [119]. Many of those
methods are available in online accessible tools [120].

Grounded in extensive studies available in the literature
[98], [99] and supported by contemporary research [117],
[118] the selection of a supervised learning approach for
modelling player affect becomes obvious. We argue that pref-
erence learning is a superior supervised learning method for
player affect modelling, classification provides a good balance
between simplicity and approximation of the ground truth of
player experience whereas regression is based on numerical
affect annotations which, in turn, yield models of questionable
validity and reliability.

A. Affect Detection as Reinforcement Learning

The affect detection task is traditionally viewed through the
lens of supervised learning. However, alternative approaches
have emerged beyond this paradigm recently. In particular,
methods from reinforcement learning have shown great po-
tential for modelling player affect (see Table III). The key
motivation for the use of reinforcement learning (RL) for mod-
elling player affect is that it can capture the relative valuation
of affective states as encoded internally by humans during
play [121]. According to the RL perspective for modelling
players, the derived RL policy can capture internal player
states with no corresponding absolute target values such as
decision-making, learnability, cognitive skills or style [122].
The player model that is built via an RL process is expected to
offer a psychometrically-valid, abstract simulation of a human
player’s internal cognitive and/or affective processes. An agent
equipped with such a model can be used to interpret human
play, or featured in AI agents which can be used as playtesting
bots or as believable human-like opponents [123]–[125].

These non-traditional ways of detecting players’ affect are
still in their infancy with only a few studies existent in racing
and Atari-like 2D games [123], [124], [126], racing games
[125], serious games [127] and first-person shooters [121].

B. Indicative Examples

We use racing games as the genre of the indicative examples
we discuss in more detail here. Focusing on the game industry,
the Drivatar imitation learning system of the Forza Motorsport
series (2005–2022, Microsoft Game Studios) is the longest-
standing AI within a game title. Building on a set of simple
rules and behavioural cloning techniques back in 2005 Drivatar
has evolved to feature deep neural network approaches (in
2022) that imitate the way any player drives a car and

Figure 7. A screenshot of the Solid Rally racing game [128] (top) and the
generated behavioural and arousal traces of an RL agent that learns how to
play like and “feel” like a human expert player (bottom) [124], [128].

simulate the player’s driving style2. Even though modelling
in Drivatar relies on behavioural human demonstrations it
is indicative of what player affect modelling can achieve in
commercial-standard games if human affect demonstrations
can be provided.

Moving from the game industry to a recent research example
in the area of affect modelling the work of Barthet et al.
[124], [125], [128] is worth outlining. The authors in that
series of papers import the highly successful reinforcement
learning algorithm Go-Explore [129] to the field of affect
modelling in their attempt to model both behavioural and
affective patterns of play. The resulting algorithm, namely Go-
Blend, is able to blend human demonstrations of behaviour
and affect in a common representation thereby allowing for
believable playtesting. The generative Go-Blend agents are
able to play and “feel” like human players of racing games by
imitating their play and arousal traces (see Fig. 7).

VI. GAME AFFECT ADAPTATION

Computer games—as opposed to traditional media con-
tent such as images and videos—are interactive media that
continuously react to the users’ input. This interactivity can
naturally accommodate mechanisms for real-time adaptation
of game content aimed at adjusting player experience and
realising affective interaction [130]. One of the main reasons
we can achieve meaningful affect-driven adaptation in games
is because players are prepared for personalised experiences
more than in any other form of human-computer interaction
[8]. The relationship of players to adaptation mechanisms
in games is highly dependent on their playing style, mood,
experience, personality, and on the efficiency of the adaptation
with regards to player needs.

2A video detailing the evolution of Drivatar is available here: https://www.
youtube.com/watch?v=JeYP9eyIl4E

https://www.youtube.com/watch?v=JeYP9eyIl4E
https://www.youtube.com/watch?v=JeYP9eyIl4E
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The last phase of the game affective loop involves the
adaptation of in-game elements for eliciting particular affective
patterns. We refer to such elements as actionable as they
are linked and can directly affect player experience. Games
may evolve and adapt to the player in many different ways
and convey emotions through a variety of techniques and
effects. Any adaptation process that will eventually close the
affective interaction between the player and the game should
be able to decide which stimulus (or playful experience)
will be presented next, when it should be presented, which
actionable game elements should be adjusted, and how [8],
[131], [132]—for a recent survey on biofeedback interactions
see [12]. Viewing affect-based adaptation from a high-level
perspective it appears that the game can adjust its agents—
(or non-player characters) if those are available—or adjust its
content to the affective needs of its player(s). Both of these
actionable in-game element types can be manipulated in ways
that lead the player to become more emotionally involved with
the game. We review these categories in the remainder of this
section.

A. Agents

Several games feature agents or non-player characters that
may act as opponents, collaborators, or assistants [10]. Inde-
pendently of the type of agent and its role such agents might be
required to express emotion during their interaction with the
player(s) and elicit specific emotional patterns. Emotion ex-
pression can be achieved in a completely scripted manner (e.g.
behaviour trees) all the way to machine-learned behavioural
generation approaches (e.g. procedural personas). Approaches
may rely upon popular emotion agent architectures [133]–
[135], underlying cognitive models [136], or personality trait
models [137].

It is important to note that emotion modelling plays a dual
role when it comes to game agents: emotions both guide an
agent’s decision-making capacities but they also affect the
expressions of different emotional states (e.g. fear or sadness).
Procedural animation is key for the latter with several impres-
sive breakthroughs achieved for real-time animated characters
[138] via generative systems [139].

B. Content

Not all games feature non-player characters but all games
have some form of content such as visuals, audio, game rules,
game levels, and narrative; those content types can be defined
as the creative facets available in games [5]. An affect-driven
adaptive process could in principle alter those creative facets
independently or in an orchestrated manner [6], [10]. The
area widely known as procedural content generation (PCG)
has offered several methods varying from simple search-based
methods [140] all the way to deep learning-based approaches
[141] for the task. Of particular importance for the scope
of this paper is the experience-driven PCG framework [130],
[142], which views game content as an indirect building block
of player affect and proposes mechanisms for synthesising
personalised game experiences. Game content adaptation that
may affect the emotional patterns of players can take the form

Figure 8. The ERDL framework (top) and an example of a Super Mario
Bros level it generates (bottom). The play traces of three dissimilar agents
are overlaid on the level. EDRL moderates the divergence of game level and
gameplay based on Koster’s theory of fun [150] and it designs levels endlessly
via RL algorithms.

of game rules [143], difficulty [144], lighting [145], camera
profiles [62], maps [146], levels [147], tracks [148], narrative
structures [149], and music [131]—among many other content
types.

C. Indicative Examples

Affect adaptation in the games industry usually takes the
form of Dynamic Difficulty Adjustment (DDA) [10], [151],
[152]. In DDA, certain agent properties (e.g. enemy’s health,
speed and position) are predominately altered to match the
skill of the player. Rubber-banding in racing games (e.g. in
the Forza series mentioned earlier) and difficulty scaling in
games like the Resident Evil series (Capcom, 1996-2023) are
among the most popular methods for DDA in the games
industry. While adaptation in games considers primarily a
player’s behaviour, there are games such as Left 4 Dead
(Valve, 2008) that follow the experience-driven PCG [130]
paradigm and, thereby, consider aspects of in-game tension
and player’s emotional intensity to adapt the game [153].
The game’s AI Director observes the players’ performance,
follows a predetermined tension curve and modifies the in-
game experience by altering a number of content types: the
number and location of opponents (zombies), the pacing of the
game and audiovisual effects3. The AI Director of Left 4 Dead
(Valve, 2008) defines a seminal use of adaptive AI in games
and since its introduction in 2008 it has found multiple uses
across games such as the Far Cry series (Ubisoft, 2004-2021)
and Watch Dogs 2 (Ubisoft, 2016).

As an indicative research example in affect-driven adap-
tation, we will cover Experience-Driven (ED) PCG via Re-
inforcement Learning (RL) or EDRL for short [154], [155].
EDRL is able to generate various facets of game content
(e.g. game levels and gameplay patterns) that follow partic-
ular experience patterns via RL methods; see Fig. 8. More
specifically, the method was applied for the online and endless
generation of game levels and gameplay patterns in the game
of Super Mario Bros. Inspired by Koster’s theory of fun [150],
reward functions were formulated as moderate degrees of level

3A video detailing the core aspects of the AI director is available here:
https://www.youtube.com/watch?v=Mnt5zxb8W0Y

https://www.youtube.com/watch?v=Mnt5zxb8W0Y
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Table IV
SUMMARY OF SURVEYED STUDIES ASSOCIATED WITH THE FOUR CORE PHASES OF THE AFFECTIVE GAME LOOP—ELICITATION, SENSING, DETECTION,

AND ADAPTATION. THE STUDIES ARE PLACED UNDER EACH OF THE FOUR PHASES BASED ON THEIR PRIMARY FOCUS WITHIN THE AFFECTIVE LOOP.
THEY ARE ALSO PLACED UNDER ONE OF THE MAIN CATEGORIES OF EACH PHASE BASED ON THEIR RESEARCH EMPHASIS.

Phase Category Papers
Elicitation Context [15] [32] [156] [20] [157] [158] [159] [14] [28]

AI Agent [16]
Content [13] [19] [160] [18] [17] [6] [23] [36]

Sensing Gameplay [8] [42]
Physiology [11] [47] [46] [161] [61] [12]
Camera-based [48] [69] [72]
Verbal & Speech [82] [162]
Subjective measures [4] [96] [163]

Detection Classification [45] [117] [107] [108]
Preference Learning [103] [164] [109] [111]
Reinforcement Learning [44] [124] [125] [122] [128]

Adaptation Content [132] [89] [144] [63] [131] [165] [141] [149] [145] [147] [140] [154] [155]
Agents [139] [166]

or gameplay divergence. The resulting multifaceted EDRL is
not only capable of generating fun levels efficiently, but it is
also robust with respect to dissimilar playing styles and initial
game level conditions.

VII. A HOLISTIC VIEW OF AFFECTIVE GAME COMPUTING

This section provides a holistic overview of the field of af-
fective game computing, focusing on state-of-the-art research,
active areas, and research gaps in the field. Beyond the survey
above, here we aim to show key examples of research across
each phase of the affective loop. While our survey gave an
overview in light of the larger field of affective computing
and user modelling, our holistic overview highlights papers
with a videogame focus. First, we outline the methodology
we used (Section VII-A) and then we analyse our findings
(Section VII-B).

A. Methodology

Sections III—VI pull knowledge from the last two decades
of research in affective game computing, This section, instead,
complements our literature review with a survey of recent
papers (i.e. past 4 years) from the primary publication venues
of affective game computing research: the IEEE Transactions
on Games (ToG) and IEEE Transactions on Affective Com-
puting (TAC) journals, and the IEEE Conference on Games
(CoG), the Conference on the Foundations of Digital Games
(FDG), the Computer-Human Interaction in Play Conference
(CHI-Play), and the Conference on Affective Computing and
Intelligent Interaction (ACII).

Table IV shows the outcome of this survey complemented
with seminal works over the last 20 years of affective game
computing. The table is organised based on the core aspects
of the affective game loop—elicitation, sensing, detection,
and adaptation. While many of the presented papers utilise
multiple—if not all—aspects of the affective loop, we have
selected papers that focus on a specific phase of the loop
with the corresponding high-level categories defined in earlier
sections of the paper.

B. Analysis of Findings

In this section we discuss overall observations regarding
the papers identified under each one of the four main phases
of the affective loop (Table IV.) Elicitation encompasses
papers that focus on the emotional impact of games and
their measurement. We divided these papers based on the
game facet they consider. While many studies seem to put an
emphasis on the game context, most of them focus on specific
genres and platforms. In particular, the horror genre [15], [17],
[156] provides a popular research test-bed, possibly due to the
visceral emotions that emerge during consuming horror media.
VR and AR games are also popular for studying the impact
of gameplay context on player experience [20], [157], [158].
Even though there are some studies dedicated to the ways the
action space of the game affects the player experience [14],
[28], there are no studies found that focus on the impact of
the number of players, observability, stochasticity, and time
granularity on player affect. When it comes to AI agents, there
is surprisingly little research dedicated on how these agents
can be used for emotion elicitation despite the field of be-
lievable non-player characters [167], [168] being very active.
Unsurprisingly, most studies with a primary focus on affect
elicitation are investigating the impact of the game content
and the game environment [13], virtual objects [19], sounds
[18], game events [28] or multiple facets of content [6] on
affect elicitation. Summing it up, it appears that there are two
major research gaps identified in game affect elicitation. First,
there is lack of fundamental research into how components of
the game context affect the player experience. Second, there is
an untapped opportunity to utilise the research that has gone
into creating more emotive and human-like agents for emotion
elicitation in affective game computing studies.

Sensing appears to be a well-researched phase, with a
special focus on physiology and peripheral signals (e.g. [11],
[12]). Similarly, thanks to the ubiquity of web cameras,
camera-based methods are also popular [48], [69]. While
gameplay on its own can be a strong predictor of the player
experience—and it is often the only modality available in the
wild [42]—most studies in affective game computing aim for
a multimodal approach instead. Finally, the field of voice-
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based sentiment and emotion analysis is overshadowed by
more traditional user modalities such as physiological signals.
This latter finding is surprising as in the world of eSports [162]
and streaming services, access to player voice and commentary
are easier than ever. Regarding subjective measures, game
affect sensing appears to adapt traditional affective computing
labelling techniques to games—from annotation tools [90],
[112] to Likert-like surveys [96]—but there is relatively little
research effort put on the design of game-specific annotation
tools—with VR and AR platforms being the exception [169]
due to the involvement required from players.

Almost all studies presented involve some form of detection
as it is the machine learning aspect that often aids the
evaluation of other components of the affective loop. Most
studies with a primary focus on detection traditionally involve
supervised learning. While regression is still used from time to
time for predicting aspects of player behaviour (e.g. purchase
decisions [170]), when it comes to affect modelling, the vast
majority of the surveyed research studies have a preference
for classification methods. This is despite a long line of
research advocating for the ordinal processing and modelling
of emotions [98], [99]. More interestingly, we observe a con-
temporary increase of interest in affect-driven reinforcement
learning [122], [124], [125]. Seeing how imitation learning
algorithms are already being used in the games industry (see
Section V-B about Forza Motorsport), we expect a rapid
growth of interest in RL-based affect detection.

Finally, we take a look at studies mostly linked to the phase
of adaptation (bottom row of Table IV). One could argue that
most commercial games that use some type of player-based
adaptation employ a form of the affective loop. Similarly in
academia, the research area of game affect adaptation is getting
some serious traction in recent years. As Table IV shows, there
are plenty of research projects that focus on affect adaptation
and intelligent interaction based on sensing and emotion
detection. Unsurprisingly, similarly to studies focusing on
elicitation, most studies involving game affect adaptation focus
on the game content instead of interactive agents [139]. While
the holistic approach of experience-driven procedural content
generation allows for more in-game adaptation opportunities
[130], the lack of emotive agents in affect adaptation reveals a
notable gap in the research field. Despite the successful affect-
adaptive methods showcased in the literature, the widespread
adoption of these techniques in commercial-standard games is
still in its infancy. One of the biggest obstacles in this regard
appears to be the field’s reliance on often intrusive biosen-
sors. While most physiological sensors can provide valuable
multimodal data, such data are often very hard to reliably
capture in the wild. We expect that future research avenues
will investigate methods that would allow rapid deployment
in games via camera-based technology or via the use of user-
agnostic models—e.g. learning from in-game footage pixels
or via privileged information [34], [35].

This section completes the survey and taxonomy of affective
game computing. In the second part of this paper (as initiated
in Section VIII) we survey the tools available for reliable data
collection in games and review the various game affect corpora
that are currently available (Section IX).

VIII. COLLECTING AFFECTIVE DATA IN GAMES

Many tools for affective computing research can support
games user research applications; however, games impose a
number of unique challenges. Indicatively, different gaming
interfaces provide different affordances both for play and data
collection. Therefore, any dissimilarities across game controls
and platform configurations would likely yield discrepancies
in the collected telemetry and peripheral signals. Keeping a
focus on affective data collection the remainder of this section
provides an overview of popular gaming interfaces (Section
VIII-A), and available tools for sensor data collection (Section
VIII-B) and annotation (Section VIII-C).

A. Gaming Interfaces and Telemetry

When it comes to selecting a game interface for an affective
game computing experiment there are several aspects that
need to be considered. Desktop computers provide the most
straightforward way of data collection. Since players have to
be seated in front of a computer—operating with a keyboard
and a mouse—they are generally less obstructed. This makes
desktop setups ideal for laboratory studies. Designing and
running experiments from a desktop computer also implies
an easier integration between the experimental games and
the research software. Due to the generally similar setup,
crowd-sourcing methods for data collection can be relatively
reliable. On the flip side, desktop computers come in many
different hardware configurations, which can affect the game
performance, user experience, and quality of the data. Some of
the available consoles, instead, such as the Microsoft XBox4,
the Sony PlayStation5, and the Nintendo Switch6 include
specialised gaming hardware. Due to the standardised hard-
ware and software, the collection of data related to player
experience on these platforms can be more consistent. These
specialised systems, however, also pose a major limitation as it
is generally hard to integrate console software with research-
based hardware such as biosensors; the latter has often to be
operated from a separate desktop computer.

As both desktop and console games are generally played
by sitting in front of a monitor, the collection of traditional
in-game behavioural telemetry, facial features, eye tracking
information, and biosignals is relatively easier. In contrast,
games that require full body movement are harder to inte-
grate with more intrusive biosensors—especially the ones that
involve electrodes and wires. Nevertheless, these games (and
the platforms they are played on) provide unique affordances.
Thanks to advances in computer vision and wearable technol-
ogy, several exer-, VR-, and mobile games already integrate
peripheral sensors into their systems.

Mobile games use regular smartphones as their platform.
Due to the interactions afforded by these phones, the collected
telemetry can cover an input space different to traditional
consoles and desktop computers—such as tapping patterns and
gestures. Many smart accessories are readily interfacing with
smartphones, making it easy to collect peripheral data from

4https://www.xbox.com/
5https://www.playstation.com/
6https://www.nintendo.com/switch/

https://www.xbox.com/
https://www.playstation.com/
https://www.nintendo.com/switch/
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different biosensors—such as photoplethysmography obtained
via a smartwatch. The drawback of the platform is the un-
certainty and obfuscation of the gameplay context. Notably,
mobile games usually are played across many different en-
vironments for very short periods of time or with irregular
breaks during the experience.

Exer(cise)-games exist on both console and mobile plat-
forms. They usually rely on peripheral sensors that collect
body movement and biosignals [20]. The particularity of
such games with regards to affective game computing is that
they often employ a number of sensors to capture various
modalities of the player. As players of exergames tend to
(and have to) move their body throughout the game, the
placement and arrangement of any physiological sensor poses
a major challenge. Beyond the obstructed play, the motion and
experimental artefacts that are embedded in the collected data
make data cleaning and processing a non-trivial task [171].

Beyond console, desktop and mobile platforms, VR and VR
platforms—which become increasingly popular over the last
few years—open a promising avenue for rich multimodal data
collection in games; the Apex of Fear (2022) project covered
earlier is one such example. VR Headsets such as the Meta
Quest7, Valve Index8, HTC Vive9, and HP Omnicept headset10

may provide a unique 360◦ immersive experience [158]. The
VR headsets available generally block almost all obstructions
coming from the physical environment and many can be used
for multimodal data collection including gaze and physiology
(see more discussion in Section X).

Generally speaking, affect data collection based on passive
affect elicitors, such as images, is usually combined with
signals obtained via physiological and other peripheral sensors.
In games, however, it is a dominant practice to collect data
from in-game telemetry in addition to any other sensor data
and independently of the game platform used. This type of be-
havioural data can be very powerful, especially in multimodal
applications. The form of such data, however, highly depends
on the given game and purpose of collection. While some
game engines offer standardised methods to collect various
types of user data, these methods often focus on data relating
to monetisation (see for example the Unity Analytics11).

B. Sensing Devices and Tools

One of the most comprehensive surveys of affective com-
puting research and development tools to date shows that even
though there is a continuous development of new tools, most
studies end up using custom-made solutions [172]. This is also
largely true for data collection, labelling, data processing, and
machine learning platforms and tools, and it makes intuitive
sense, especially when it comes to collecting data from games.

Collecting physiological sensor data is typically achieved
through a vendor-based solution. The market is filled with re-
liable solutions for EEG, EDA, HR, and eye-tracking sensors.

7https://www.meta.com/quest/products/quest-2/
8https://store.steampowered.com/valveindex
9https://www.vive.com/
10https://www.hp.com/us-en/vr/reverb-g2-vr-headset-omnicept-edition.

html
11https://unity.com/products/unity-analytics

Some of the popular vendors include Emotiv12, Empatica13,
Intel Realsense14, Plux15, Polar16, Shimmer17, and Tobii18,
among many others. Most of these vendors offer processing
software as well, although open-source solutions do exist. A
recent survey on the field of affective game research showed
that the most popular modalities employed include heart
activity, followed by facial recognition and EDA [11]. Beyond
specialised sensors, conventional cameras are also often used
to collect recordings of subjects. Vendor-based solutions exist
to process such multimodal data (i.e. Affedex [173] for facial
recognition); researchers, however, may prefer to use open
source tools such as OpenCV19 for general computer vision
tasks or OpenFace [174] for facial recognition.

While most affective computing methods can be transferred
to game research without any major hiccups, sensing technol-
ogy, in particular, brings two core challenges to the table. First,
playing is usually physically active—even if the user plays
on traditional platforms using a controller—which means that
any sensor used for data collection has to afford a degree of
comfort and free movement. Second, because games generally
impose a high level of cognitive load on the user, there is
an expected loss of affect expressivity. Due to this limitation,
some more popular detection methods—such as face-based
affect recognition—might be less relevant when applied to
games [175], [176].

C. Annotation Tools

In this section, we review the available annotation tools
that could be used for collecting affect labels in games. We
also discuss the appropriateness of these tools for affective
game computing. Table V summarises our survey on popular
annotation tools that were introduced during the last two
decades22. One of the major trends of the affective computing
field is the shift from discrete and more complex annotation
methods towards simpler, continuous labelling techniques.
Early annotation tools such as ANVIL [178] or ELAN [179]
(released in 2001 and 2006, respectively) focused on measur-
ing discrete categorical emotions. While the Natural Language
Processing field still uses such tools for labelling speech and
text and certain annotation software still offers categorical
labelling options (i.e. NOVA [187]) the field of affective com-
puting started to shift away from such tools relatively early.
With the advent of machine learning, moment-to-moment
affect modelling became feasible—and with it, continuous
annotation tools started to be used more widely. Traditional
annotation tools such as FeelTrace [177] (released in 2000),
AffectButton [181] (first released in 2009), and AffectRank
[163] (released in 2015) measure multiple dimensions of affect
at once—in some cases up to three dimensions. Annotation

12https://www.emotiv.com/
13https://www.empatica.com/
14https://www.intelrealsense.com/
15https://www.pluxbiosignals.com/
16https://www.polar.com/
17https://shimmersensing.com/
18https://www.tobii.com/
19https://opencv.org/
22N/A indicates that an installer is “not-available”.

https://www.meta.com/quest/products/quest-2/
https://store.steampowered.com/valveindex
https://www.vive.com/
https://www.hp.com/us-en/vr/reverb-g2-vr-headset-omnicept-edition.html
https://www.hp.com/us-en/vr/reverb-g2-vr-headset-omnicept-edition.html
https://unity.com/products/unity-analytics
https://www.emotiv.com/
https://www.empatica.com/
https://www.intelrealsense.com/
https://www.pluxbiosignals.com/
https://www.polar.com/
https://shimmersensing.com/
https://www.tobii.com/
https://opencv.org/
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Table V
A REVIEW OF ANNOTATION TOOLS

Tool Dimensions Label Installer

FeelTrace [177] 2 dimensions
(arousal-valence)

bounded continuous
circumplex N/A

ANVIL [178] Categorical labels discrete labels Standalone installer
ELAN [179] Categorical labels discrete labels Standalone installer

EmuJoy [180] 2 dimensions
(arousal-valence) bounded continuous Standalone installer

AffectButton
[181]

3 dimensions (pleasure-
arousal-dominance) bounded continuous Standalone or online

ANNEMO [182] 1 dimension
(configurable) bounded continuous Node.js package

GTrace [183] 1 dimension (negative to
positive) bounded continuous N/A

CARMA [184] 1 dimension (negative to
positive)

bounded discrete
(configurable) Installer (requires MATLAB20)

AffectRank [163] 2 dimensions
(arousal-valence) discrete circumplex Adaptation through PHP and

JavaScript

RankTrace [185] 1 dimension (tension) unbounded continuous C# source (pre-built version
available; requires VLC21)

DARMA [186] 2 dimensions
(configurable)

bounded continuous
(optional circumplex)

Installer (requires MATLAB,
VLC, and a joystick)

NOVA [187] 1 dimension or
categorical (configurable)

bounded continuous or
discrete labels Standalone installer

PAGAN [112] 1 dimension
(configurable)

unbounded and bounded
continuous and discrete
binary (configurable)

No installation (online)

RCEA [188] 2 dimensions
(arousal-valence)

bounded continuous
circumplex N/A

RCEA-360VR
[169]

2 dimensions
(arousal-valence) bounded continuous Python package

tools of that period were inspired by the Circumplex Model
of Emotions [189] and generally used to label the arousal-
valence-dominance spectrum.

While the two-dimensional annotation scheme is still pop-
ular nowadays we note a shift towards one-dimensional la-
belling tools (from 2013 onwards) including GTrace [183] (re-
leased in 2013), ANNEMO [182] (released in 2013), CARMA
[184] (released in 2014), RankTrace [185] (released in 2017),
and PAGAN [112] (released in 2019). Similarly to FeelTrace
in multi-dimensional labelling, GTrace became the new foun-
dation for one-dimensional annotation tools. The bounded,
continuous annotation method quickly spread and became
popular in human-computer interaction and affective comput-
ing studies [190]–[193]. The first new annotation method to
break the mould was RankTrace, with an unbounded protocol
aimed to collect data specifically for preference learning [185].
Nevertheless, GTrace and its derivatives remain one of the
most popular annotation tools to this day.

The core strength of one-dimensional labelling tools is the
reduced cognitive load they cause to annotators compared to
multi-dimensional labelling in which annotators are requested
to split their attention [183] across multiple dimensions and la-
bels. Focusing on one affect dimension at a time reduces noise
and provides a higher face validity. Multi-dimensional tools,
however, can produce annotations at a higher rate. Moreover,
as labels across different dimensions are collected simultane-
ously, the labels are less susceptible to recency effects [194]
compared to those obtained from repeated one-dimensional
protocols. For all aforementioned reasons, multi-dimensional
annotation methods are still popular today. Meanwhile a series

of new such tools have being developed recently including
DARMA [186] (released in 2018) and two versions of RCEA
[169], [188] (the original was released in 2020 and the VR
version was released in 2021).

Another, even more recent, trend is the shift from annotation
tools which are usable in a lab setting towards those that are
usable in the wild. Many traditional and popular tools require
researcher oversight, which limits the dataset size collected.
In addition to this issue, the new social reality brought on by
the COVID-19 pandemic pushed the field even more towards
crowd-sourcing affect labels. PAGAN [112] is one of the
first frameworks developed with crowd-sourcing capacities
in mind. Compared to earlier annotation tools, PAGAN is
highly configurable and supports multiple different annotation
techniques including a GTrace and a RankTrace variant. While
PAGAN tackles the issue of crowd-sourcing by using an
online platform, other annotation tools offer mobile integration
(RCEA [188]), VR integration (RCEA-360VR [169]) or aim
to alleviate the need for annotators through automatic labelling
(NOVA [187]). We can observe this shift towards crowd-
sourcing and mobile integration in custom, yet-to-be-released
annotation tools as well [195], [196], and we expect more
reliable crowd-sourcing methods to appear as the focus will
continuously shift from the lab to real-world (in the wild)
experiences.

IX. GAME AFFECTIVE CORPORA

Instead of building a new affect corpus from scratch one
may apply affective computing methods directly to existing
corpora. Unlike traditional affective computing datasets, how-
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ever, player modeling research often focuses on player experi-
ence aspects that are not directly linked to affect. Many player
experience datasets for instance are annotated with high-level
game-related concepts, such as frustration, perceived challenge
[197], [198], engagement [198], and fun [197], [199]. Never-
theless, affective computing methods are still applicable; and
conversely, such datasets can offer interesting new test-beds
for affective computing applications. This section reviews a
number of available affect corpora that are build using games
as the underlying context of interaction.

While, traditionally, affective computing datasets are col-
lected through induced emotions and posed expressions, in
recent years we witness a notable shift towards spontaneous
emotion elicitation and naturalistic settings. During the last
decade, a new wave of datasets has started to employ popular
multimedia as elicitors of affect [200]–[202]. Using artefacts
such as clips and still images from popular movies has proven
to be a reliable and cost-effective way to elicit emotions in a
natural way. The resulting datasets, however, only focus on a
specific type of passive elicitation that comes with consuming
traditional media. The latter half of the decade, instead, has
seen a rise in affect corpora that employ interactive elicitation
methods including dyads [203], [204], group tasks [205], board
games [206], and videogames [32], [198], [199].

There are two major differences one can identify between
traditional affective computing and game-based corpora. The
first difference is that traditional affective computing cor-
pora use third-person annotation (i.e. RELOCA [203], LIRIS-
ACCEDE [207], Aff-Wild [201], AffectNet [202], SEWA DB
[204]) whereas game-based datasets, instead, use primarily
self-reports (i.e. MazeBall [197], PED [198], FUNii [199],
MUMBAI [206], AGAIN [32]). The second major difference
between affective computing and player experience datasets
is the wider focus of the latter on experience aspects that
often cover behavioural or user states. In fact, most player
experience datasets do not consider affect labels or affect
manifestations at all. While there is definitely a mapping
between affect and higher-level concepts such as fun and
engagement, revealing such a relationship might not be as
trivial. With this in mind, the survey of datasets presented
in this section focuses on game-based datasets that have some
connection to affective computing; in particular, they either
consider physiological signals and/or are annotated using
traditional affective dimensions such as arousal or valence.
For the sake of clarity, we also omit datasets that might have
been influential in the past but are not available anymore—
such as the Tower Game [208] or the GeMo [209] datasets—
and popular game-based datasets that do not include affective
labels—such as the Obstacle Tower dataset [210].

Table VI presents our survey of 11 datasets which can
be used for affective game computing research. Most of the
datasets presented here are quite recent, (i.e. 8 of the 11
are released in 2019 or later) showing the potential and the
emerging nature of the field. Moreover, most of the examined
datasets focus on one specific context; i.e. the genre of the
game. While the AGAIN dataset [32] was designed explicitly
to offer a wide array of different games, the Atari-HEAD [214]
and MUMBAI [206] datasets also provide more varied inputs

in their own niche (arcade- and board-games, respectively).
Many game datasets contain video data of the gameplay
footage, which is ideal for deep learning applications and for
mapping pixels to affect directly [33], [34]. While pixel-based
affect detection might be a harder task on datasets collected
on board or social games (i.e. MUMBAI [206] and GAME-
ON [205]), datasets that provide a large amount of gameplay
footage are ideal for computer vision methods (i.e. Atari-
HEAD [214] and AGAIN [32]). Five out of the eleven affective
game computing corpora feature physiological signals that
are more commonly used in traditional affective computing
research, while only 3 of them feature eye-tracking data. In
addition to traditional features, many game datasets (5 of the
11 surveyed) contain behavioural and contextual data in the
form of game telemetry and player input. This type of data has
proven to be robust as a predictor of game-related emotional
states [4], [164], [216].

Even though all datasets surveyed contain multiple modal-
ities of user signals, not all of them offer affect labels.
Specifically, 3 of the surveyed datasets (i.e. GSET Somi [211],
eSports Sensors Dataset [213], and Atari-HEAD [214]) do
not provide affect labels of any sort. The rest of the corpora
provide a wide array of experience labels, mostly related to
high-level game-related outcomes such as fun, challenge, and
engagement. Two of the surveyed datasets feature emotional
labels (GAME-ON [205] and IRAFFE2 [215]) whereas 3 of
them contain at least one type of affective label (RAGA [212],
MUMBAI [206], and AGAIN [32]). As mentioned earlier,
affect labels in games are predominately self-reported and not
usually annotated by a third person.

Reflecting over Table VI one can observe a substantial
increase in interest and availability of game-based datasets
over the last few years; there are still, however, many aspects
of player experience that have not made it to an affect
corpus as of yet. Moreover the design of the various data
collection protocols comes with limitations. Most notably the
wide spectrum of labels used across the corpora makes it
hard to compare datasets and transfer any knowledge gained
across corpora. While it is understandable that game-related
outcomes are more important than basic affective dimensions
for game user researchers, some level of standardisation would
go a long way towards making these datasets more accessible
and reusable. Nevertheless, affective corpora—as the ones
surveyed in Table VI—that are based on interactive elicitation
bring a new perspective to affective computing at large, as such
elicitation methods were largely unsupported by traditional
datasets up until recently.

X. CONSIDERATIONS AND DISCUSSION

After surveying the affective game computing field as a
whole, the available tools for data collection and finally the
datasets available, in this section we will discuss a number
of considerations that are linked to this field. Specifically,
we will start by outlining a number of ethical considerations
and we will then briefly touch upon the current hardware
limitations that can be detrimental to research advancements
and breakthroughs in the field.
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Table VI
AFFECTIVE GAME COMPUTING DATASETS. “N/A” INDICATES THAT A CATEGORY IS “NOT-APPLICABLE”.

Database Game Type Games Video
(hours) Participants Modalities Annotation Labels Annotators Tasks

MazeBall [197] Navigation 1 N/A 36
BVP (HRV),
EDA, game
telemetry

Pairwise

Fun, challenge,
frustration,
anxiety,
boredom,
excitement,
relaxation

self-report 1

PED [198] Platformer 1 6 58
Gaze, head
position, game
telemetry

Discrete (5-step),
pairwise

Engagement,
frustration,
challenge

self-report 1

GSET Somi
[211] Rail Shooter 1 6.75 84 Eyetracking,

gameplay video N/A N/A N/A 1-3

FUNii [199] Action 2 N/A 190

ECG, EDA, gaze
and head
position,
controller input

Continuous,
discrete

Fun (cont.), fun,
difficulty,
workload,
immersion, UX

self-report 2

RAGA [212] Racing
(VR and PC) 2 N/A 33 ECG, EDA,

EMG, resp.
Continuous
bounded Arousal, valence self-report 2

GAME-ON
[205] Escape room 1 11.5 51

Video, audio,
and motion
capture data

Discrete
(5–9-step)

Emotions,
cohesion,
warmth,
competence,
competitivity,
leadership, and
motivation

self-report 5

eSports Sensors
Dataset [213] MOBA 1 N/A 8

EEG, BVP (HR),
EDA, EMG,
temp., hand and
head gestures

N/A N/A N/A 11

Atari-HEAD
[214] Arcade 20 117 4

Eyetracking,
gameplay video,
game telemetry

N/A N/A N/A 20

MUMBAI [206] Board-game 6 46 58
Gameplay, facial
video, and facial
action units

Discrete labels

Valence,
attention,
gameplay
experience,
personality

56 (3rd-person)
58 (1st-person)

6

BIRAFFE2 [215] Platformer,
navigation 3 23 103

EEG, EDA,
game video,
game telemetry,
facial recognition

Continous
(automated) and
discrete (survey)

Emotions,
NEO-FFI and
GEQ survey

automated
(emotions),
self-report
(survey)

3

AGAIN [32]
Racing,
shooter,
platformer

9 37 124 Game video,
game telemetry

Continuous
unbounded Arousal self-report 9

A. Ethical Challenges

With the acceleration of widespread AI adoption, various
ethical considerations around the field have become more
important than ever. While, on the one side, we can observe
an unprecedented increase of AI use in both academia and
industry, on the other side, we can see the growing public
anxiety towards the very same systems [217], [218]. Although
many ethical frameworks exist to address these anxieties,
the industry as a whole has been slow to react [219]. This
section highlights some of the challenges in Responsibility,
Transparency, Auditability, Incorruptibility, and Predictability
[220] that future game affective applications will have to face
[221], [222]. The interested reader may refer to [223] for a
recent in-depth discussion of ethical considerations related to
the various uses of AI in and for games.

The first challenge is to establish a well-defined chain of
responsibility and ownership over affect models, the data they
train on, and their output. A major issue in this topic is the
decoupling of the data, the model, and its output. Because the
results provided by an affect model are thought to be “inferred”
instead of “observed”, the chain of responsibility becomes
opaque [224]. Even though the responsibility of transparent

data handling is well-defined in documents such as European
Union’s General Data Protection Regulation (GDPR) [225],
the research community is still lagging behind [226]. The issue
is not trivial both on the academic and industrial levels by the
fact that affective corpora—despite being deeply personal—
is not protected under the current legal frameworks [219].
We already note proposals for a change in regulations [227]
addressing some of these issues, and expect future affective
interaction applications to be upheld to more scrutiny.

Transparency is a core challenge of AI as a whole. While
seemingly a clear-cut issue which can be tackled by ex-
plainable AI systems [228], [229], in reality, the issue is
complicated by the transparency–efficiency trade-off [230].
This phenomenon describes the detrimental effect of bias
against AI [231] to human-machine cooperation. Resolving
transparency in games is even more challenging due to the
“smoke and mirrors” nature of the medium.

Auditability is more of an industry-specific challenge rather
than an academic one, as recent research studies already strive
for external validity and reliability. Industrial applications of
affective game computing should consider the audit process
during their development cycle. As the field moves more and
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more towards large-scale foundation models [232], the role
of planned audits to maintain transparency will become more
and more a necessity.

The challenge of Incorruptibility refers to the robustness of
the system against any kind of manipulation. While short-lived
research-focused projects are generally not expected to receive
many adversarial attacks—if any; industry applications and
even large-scale crowd-sourced studies have to face external
attackers. However, beyond malicious users, computer models
can also be corrupted by internal forces. Biased affect models
can encode and perpetuate socioeconomic and sociopolitical
biases that lead to direct or indirect harm to the users [233]–
[235]. Unfortunately, incorruptibility is a wicked problem in
the field as often there is no apparent way of ascertaining
algorithmic bias before the system is deployed.

The final challenge for ethical AC applications is Pre-
dictability. Similarly to auditability, academic studies in gen-
eral fare well on this front because predictability is somewhat
analogous to the internal reliability and validity of the system.
Beyond this, predictability can help increase transparency and
incorruptibility by ensuring the reliability and fairness of the
application in question [236].

The framework presented here as adapted from [223] de-
scribes the universally understood challenges when it comes
to AC applications in games. These issues have served as
a bedrock for discussions and proposals surrounding ethical
player modelling [221], ethically aligned design [237], ethics
in human-AI interaction [236], AI trustworthiness [238], and
general ethical AI guidelines [239].

B. Hardware Limitations

As already mentioned in Section VIII sensing affect via ob-
jective measurements offers rich information about the player’s
experience; a major limitation, however, is that several of these
sensors can be invasive, impractical or even impossible in the
wild. Pupillometry and gaze tracking for instance, are sensitive
to variations in light and screen luminance. Camera-based
sensing (e.g. facial expressions and body posture) requires a
well-lit environment which is often not available when we
play videogames in our living rooms for instance. However,
the recent rapid advancement of mobile, smartwatch and VR
hardware with integrated eye tracking and physiology sensors
(e.g. see the recent HP Omnicept headset gives such sensing
technologies entirely new opportunities and use within games
[240]. Speech and text may offer some alternative unobtrusive
and highly accessible modalities which are only applicable,
however, to games that feature those modalities. This includes
games in which a) speech is a control modality [241], [242], b)
text is used as means of communication across the audience of
a streamed game [4], c) speech or chat is used for multiplayer
coordination, d) natural language processing is used as a game
control in text-based adventure games or interactive fiction.
Finally, existing hardware for EEG, respiration and EMG
(if not embedded within a VR headset) requires the place-
ment of sensors on the player’s body thereby making those
physiological signals intrusive and rather impractical, to say
the least. Recent sensor technology advancements however,

especially via state-of-the-art VR headsets (see Section VIII)
have revived the use of physiological signals for commercial
standard applications [52].

XI. THE ROAD AHEAD

In this section, we will cover the two areas we think will
be the most challenging for future research in affective game
computing. In particular, we first discuss current and future
research in the area of artificial general intelligence (AGI)
and emotion in games, and we move on to discuss particular
computer vision research areas that appear to be of high value
for affective game computing research. We end with a small
section dedicated to large language models (LLMs) and their
potential impact on affective game computing.

A. AGI and Affective Game Computing

Damasio’s work [243] suggests that our ability to recog-
nise human emotion across contexts and people of dissimilar
moods, cultural backgrounds and personalities, acts as a facil-
itator of decision-making and general (emotional) intelligence
[244]. While the research reviewed has reached important
milestones, all key findings suggest that any success of affec-
tive (game) computing is heavily dependent on the domain,
the task at hand, and the context in general. This limitation of
specificity is also present in games [8]. The vast majority of the
studies presented focus on modelling player experience within
a particular game and a narrow player base, and under well-
controlled conditions (e.g. [130], [176], [245], [246] among
many).

Assuming that the game affective loop can be successfully
realised within a particular game, the next long-term and
ambitious goal for affective game computing is to achieve
a good level of generality across games of the same genre
of other genres. For affective game computing to become
general, models are required to recognise general emotional
and cognitive-behavioural patterns across contexts of players
and games. So far the literature is rather sparse in this area
with only a few available preliminary studies. Early work
focused on the ad-hoc design of general metrics of player
interest for prey–predator games [247], [248] followed by
player experience models that can operate to a satisfactory
degree across dissimilar games [31], [249], [250]. Recent work
in the area is driven by the AGAIN dataset [90] through
which a number of promising studies have been performed to
test for the generality of player arousal models across games
[32], [251]. Discovering entirely new representations of player
emotive manifestations across games, modalities, and player
types appears to be a critical step towards achieving general
player affect models. Methods from representation learning
and transfer learning could be of great assistance to this cause
[251]. In the next section, we discuss how such computer
vision methods can further advance the study of affective game
computing.

B. Computer Vision for Affective Game Computing

Computer vision research brings methods with great poten-
tial for the future of affective game computing. Recent work
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in the use of convolutional neural networks has shown that it
is possible to solely rely on gameplay footage and in-game
audio for predicting player affect with high levels of accuracy
[33], [34], [117]. What is fascinating about pixel-based affect
modelling is that it is general and user-agnostic: it is general as
it can eventually represent any affective patterns by observing
the game footage pixels; it is user agnostic as it does not
rely on any other personal information about players beyond
their gameplay (e.g. manifestations of affect via the physiology
of facial expressions). These two properties make pixel-based
affect models operational in the wild. Making players affect
models usable in the wild is key for the models to be usable in
games. A recent direction with great promise addressing the
operation of affect models in the wild is the use of privileged
information [35]. Privileged information allows models to be
trained with game lab data (e.g. including physiology, speech
and facial expression) and operate without these modalities
which are not available in a player’s living room (i.e. in the
wild).

Complementary to the above computer vision methods,
self-supervised learning (SSL) methods such as contrastive
learning define a recent machine learning paradigm which has
been widely and successfully employed for learning general
representations of data [252]. SSL methods attempt to learn
by processing different views of the same input that have sim-
ilar representations. Although contrastive learning is gaining
traction for computer vision tasks such methods have found
applications in games [253], [254] and affective computing
[255], [256] only recently. SSL-based affect modelling as-
sumes that affect information is an inherent property of the
manifestations of affect and thus can be fused and learned in
a contrastive learning manner. Early results of Pinitas et al.
[256] suggest that when affect is used as a label to contrast
multimodal data arousal models achieve supreme classification
performance compared to end-to-end classification.

C. LLMs for Affective Game Computing
Large scale language models such as GPT-3 [94] and GPT-

4 [95] appear to offer promising, yet largely unexplored,
methods for affective game computing. We envision the use
of LLMs for learning and interweaving game context and
affect demonstrations as e.g. in early experiments reported in
[257]. In principle, an LLM that is hosted in a game engine
could predict any affective state transition including states
where “the game is more engaging” and thereby change the
surrounding environment or spawn a number of enemies to
get the player to a supposedly more engaging state. Learning
to generate affect transitions via foundation models builds on
the experience-driven procedural content generation paradigm
[130] but with a contemporary touch. Generative affect-based
AI methods including GPT variants and diffusion models [258]
will likely expand beyond text-to-(affect)-image applications
[259], to text-to-video, text-to-3D models and finally text-
to-games with prescribed affect patterns [257]; text can be
replaced (or complemented) by other modalities including
images and sound.

Compared to the very specific game state transitions that
an LLM could use to play a game the relationship between

game context and player affect appears to be more general
[32]. One can thus argue that such relationships could po-
tentially be learned from many games rather than one. We
could then imagine the future development (or fine tuning) of
large foundation models that are capable of representing and
inferring affect transitions based on in-game observations and
affect demonstrations. Referring to our earlier discussion about
AGI, it remains to be seen to which degree we can build a
generalised computational game experience designer, and how.

XII. CONCLUSIONS

The domain of games has advanced the ways we represent,
model, and annotate emotion over the last decade. It is their
highly interactive nature, the complex spatiotemporal and
rich behaviour of their users, and the availability of multiple
sensor data that have helped such advancements collectively.
Affective computing has also advanced game design and devel-
opment. For instance, affect-driven adaptation and automatic
player experience design are becoming gradually the norm
across a number of game genres (e.g. horror and racing).
This paper surveyed this exciting intersection of AC and
games and introduced the field of affective game computing
through the phases of the affective loop. The paper also
introduced a taxonomy of terms and methods used largely
in affective game computing and placed exemplar studies on
this taxonomy. Finally, this survey offers the interested reader
a comprehensive list of data collection tools and datasets that
are directly accessible for research in this field.

With this paper we survey the past, capture the present and
offer a vision about the future of this field. In our attempt
we tried to be as comprehensive and inclusive as possible
(as indicated by the reference list of this article). Despite
the best of our intentions, however, we are aware that some
studies were omitted or not discussed thoroughly due to space
considerations. Evidently, while a lot has been achieved in
affective game computing until nowadays, there are still many
open research questions left to be addressed. We hope that this
paper will act as a key driver of groundbreaking research and
innovation in this emerging field.
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[92] F. Tencé, C. Buche, P. De Loor, and O. Marc, “The challenge of
believability in video games: Definitions, agents models and imitation
learning,” arXiv preprint arXiv:1009.0451, 2010.

[93] N. Lambert, L. Castricato, L. von Werra, and A. Havrilla, “Illustrating
reinforcement learning from human feedback (rlhf),” Hugging Face
Blog, 2022, https://huggingface.co/blog/rlhf.

[94] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, no. 4, pp. 681–694, 2020.

[95] OpenAI, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[96] A. Azadvar and A. Canossa, “Upeq: ubisoft perceived experience
questionnaire: a self-determination evaluation tool for video games,”
in Proceedings of the International Conference on the Foundations of
Digital Games (FDG). ACM, 2018.

[97] D. Melhart, A. Azadvar, A. Canossa, A. Liapis, and G. N. Yannakakis,
“Your gameplay says it all: Modelling motivation in Tom Clancy’s The
Division,” in Proceedings of the Proceedings of the IEEE Conference
on Games (CoG), 2019.

[98] G. N. Yannakakis, R. Cowie, and C. Busso, “The ordinal nature of
emotions: An emerging approach,” IEEE Transactions on Affective
Computing, 2018.



19

[99] ——, “The ordinal nature of emotions,” in Proceedings of the Confer-
ence on Affective Computing and Intelligent Interaction (ACII), 2017,
pp. 248–255.

[100] S. Ovadia, “Ratings and rankings: Reconsidering the structure of values
and their measurement,” International Journal of Social Research
Methodology, vol. 7, no. 5, pp. 403–414, 2004.

[101] A. Metallinou and S. Narayanan, “Annotation and processing of
continuous emotional attributes: Challenges and opportunities,” in
Proceedings of the Proceedings of the IEEE Conference and workshops
on automatic face and gesture recognition, 2013.

[102] G. B. Langley and H. Sheppeard, “The visual analogue scale: its use
in pain measurement,” Rheumatology International, vol. 5, no. 4, pp.
145–148, 1985.

[103] G. N. Yannakakis and H. P. Martı́nez, “Ratings are overrated!” Fron-
tiers in ICT, vol. 2, p. 13, 2015.

[104] G. N. Yannakakis and J. Hallam, “Rating vs. preference: A comparative
study of self-reporting,” in Proceedings of the Conference on Affective
Computing and Intelligent Interaction (ACII). Springer, 2011, pp.
437–446.

[105] R. S. J. d. Baker, G. R. Moore, A. Z. Wagner, J. Kalka, A. Salvi,
M. Karabinos, C. A. Ashe, and D. Yaron, “The Dynamics between
Student Affect and Behavior Occurring Outside of Educational Soft-
ware,” in Proceedings of the Conference on Affective Computing and
Intelligent Interaction (ACII). Springer, 2011, pp. 14–24.

[106] A. Kleinsmith and N. Bianchi-Berthouze, “Form as a cue in the
automatic recognition of non-acted affective body expressions,” in
Proceedings of the Conference on Affective Computing and Intelligent
Interaction (ACII). Springer, 2011, pp. 155–164.

[107] D. Giakoumis, D. Tzovaras, K. Moustakas, and G. Hassapis, “Auto-
matic recognition of boredom in video games using novel biosignal
moment-based features,” IEEE Transactions on Affective Computing,
vol. 2, no. 3, pp. 119–133, 2011.

[108] X. Chen, L. Niu, A. Veeraraghavan, and A. Sabharwal, “Faceen-
gage: robust estimation of gameplay engagement from user-contributed
(youtube) videos,” IEEE Transactions on Affective Computing, 2019.

[109] H. P. Martı́nez, G. N. Yannakakis, and J. Hallam, “Don’t Classify
Ratings of Affect; Rank them!” IEEE Transactions on Affective Com-
puting, vol. 5, no. 3, pp. 314–326, 2014.
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