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RSD-TR-16.84

Abstract

This paper describes an approach for the automatic inspection of solder joints on
printed circuit boards. We identify common defects in solder joints and classify a joint
as being good or belonging to one of the defective classes. This classification, rather than
just detection of defective joints, is motivated by our desire to automatically take correc-
tive action on the assembly line. The features used for classification are based on
characteristics of intensity surfaces. It is shown that features derived from facets and
Gaussian curvature are effective in the classification of solder joints using a minimum-
distance classification algorithm. We also demonstrate the use of class separation plots
to quickly study individual effectiveness of a feature or pair of features in classification.

Our results show the efficacy of our approach.
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1. INTRODUCTION

Computer vision and image processing' techniques have been applied to many
industrial inspection tasks [4]. In most applications, it is only necessary to determine
whether a part is acceptable or not. This decision is usually performed based on the
presence or absence of sub-parts, size of sub-parts, or surface finish. It is commonly
believed that the most difficult inspection tasks are those requiring inspection of surface
finish. Most early systems depended on binary images and were incapable of addressing
this problem; later systems started using gray images but still could not address this
problem successfully. The major problem in inspection of surface finish is that one
should eii.her have depth information at close points, or should exploit subtle variations

in intensity values. Photometric stereo has been applied to study surface defects [19].

In most applications, attention has been given to inspection as a problem separate
from the manufacturing process. It appears that just the detection of a fault is not
enough if we want to develop a completely automatic manufacturing system. It may be
required to find the type of defect and to decide the reason for this defect. If it is
found that there is a particular stage in manufacturing that may be responsible for the
defect, then a corrective action is in order. Clearly, for such a system, just detection of
fault is not enough. The research described in this paper, although it addresses only the
multiple unacceptable class inspection problem, is related to automated soldering of

electronic components onto printed circuit boards.

The solder joint inspection problem is more challenging than many other visual

inspection problems. It is a difficult area to apply computer vision techniques for
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automatic inspection because of the variability in the appearance of acceptable solder
joints. We have found that approaches based on edge detection or template matching
are not adequate for our goals. The structured light and binary vision approaches used
by others have provided only short-term narrowly-applicable solutions to this problem.
Moreover, in some applications it is not enough to say that a joint is no good; a bad
joint should be classified in one of several fault classes. Visual appearence of many
classes of defects is quite similar and poses a challenging problem even to human
inspectors. Laser heating inspection techniques have been implemented [17], but are
often not desired because of possible damage to solder joints. A gemeral approach of
the type we are pursuing, which is based on gray-scale images, will hopefully provide a
long-term widely-applicable solution to the inspection problem. If it is possible to
duplicate the inspection capabilities of human inspectors, gray-scale computer vision
will also provide ;uantitatively consistent and analyzable performance. It may even be
possible to inspect solder joints: faster than human inspectors. Figure 1 provides a table
of all the solder joint defects which we would like to be able to detect automatically.
Of course. it would be a significant result if we could reliably discriminate between ten

or so of these defects.

Faulty solder joints are very costly defects for electronic equipment vendors and
customers both. Woodgate [18] estimates that even a solder joint failure rate as low as
0.05% can cost a large manufacturing organization over three million dollars per year.
Any effective techniques to improve solder joint inspection will be welcomed by indus-

try and should have widespread beneficial results.
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The ultimate goal of this research project is to demonstrate the feasibility of an
automatic visual solder joint inspection system. To show feasibility without building
an entire inspection system, we have designed, constructed, and tested a preliminary
image analysis and classification section of the overall system which is diagrammed in
Figure 2. A simple minimum-distance classifier has been implemented to discriminate
between good and bad solder joints and among defect classes. We have used a variety
of solder joint classes and a large collection of different features in our experiments. A
person who was not familiar with the classification algorithm classified 1418 solder jognt
subimages for our experiments. The training and classification programs were executed
using the input data genérated by this person. The probability of missing a bad solder
joint averaged approximately 6% while the probability of a false alarm on a good solder
joint was in the neighborhood of 7% during these experiments. Both error probabilities
have been 0% on several particular images. The average probability of a correct
good/bad decision is then approximately 87% and has run as high as 98.4S¢ for particu-
lar images. Better average results (around 94%) were obtained when one of the authors
performed the preliminary human classification, but we wanted to verify the robustness
of the algorithm. The detailgd results will be described in Section 5 whereas the com-
putational details are described in Sections 3 and 4 of this report. It should be
emphasized that these numerical results apply to only one test printed circuit board
which has many different kinds of defective solder joints. See Figures 4 and 5. Also,
the test board is only somewhat like the real PC boards which will be encountered in
practice, but we expect that the same technique would work as well or even better on a

real board. We hope to test this in the near future. We did not determine a receiver
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operating characteristic (ROC) curve for this defect detector because no maximum likel-
ihood threshold was being used. We also wish to note that we are using one of the sim-
plest possible classification schemes to establish a base level of performance for evaluat-
ing more advanced classification techniques. We have attempted to make the system as
modular and as flexible as possible so that different feature lists, different class lists,
and different classification algorithms can be tried in a short amount of time with only
minor effort. Thve results we have obtained with our preliminary system are very
encouraging. 7

The features used in our system are based on the characteristics of the intensity
surfaces of solder joints. Some of the feature models are very close to the facet model
proposed by Haralick [8]; other features, which are related to Gaussian curvature. are
based on differeﬁtial geometry of surfaces. Thus, we consider intensity as the third
dimension (combined with x and y spatial directions) and study the characteristics of
the surfaces in a solder joint image to classify them. The motivation for this approach
is simple. Intensity values in an image are a function Qf the scene illumination. the visi-
ble surface geometry, and the surface reflectance. In an industrial inspection situation,
we are relatively free to demand a fixed orientation of parts and a constant scene
illumination. In the solder joint inspection problem, we know that the surface reflec-
tance of the solder alloy will be fairly uniform. Hence, in each solder joint subimage
taken from a particular fixed point of view, the only free variable in the intensity func-
tion is the solder joint surface geometry. This means that, under these constraints, the
variations in the tntensity surface of a solder joint are functionally related to the varia-

tions in the physical solder josnt surface. Rather than worry about the details of this
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functional dependence, we empirically note that all solder joints of a given class have
similar intensity surface structure which is related to the fact that they have similar
physical surfaces. For example, compare the different solder joint gray level image sur-
faces shown in Figure 3. One joint is definitely good and the other is definitely bad in
this case. Therefore, we look for features of the intensity surface which characterize its

shape and yield the most effective class discrimination.

2. REVIEW OF PREVIOUS WORK

Although a great deal of research has been done in the area of printed wiring
board inspection [8] [10] [15] [16] [20], very little work has addressed the inspection of
solder joints. This is probably due to the fact that relatively simple two-dimensional
processing techniques can be used to inspect printed wiring patterns whereas solder
joint inspection involves an extra degree of freedom. At least two other investigators

have explored the use of automatic visual processing to inspect solder joints.

Nakagawa [13] at the Hitachi Production Engineering Research Lab has reported
on a structured lighting approach. The advantages of this approach are the following:
1) The image processing/signal processing is very fast, 2) Results are not influenced by
the high gloss of the solder joints, 3) Range information is produced, 4) Only two
features are needed to discriminate among four cia;xses, 5) Perfect performance is
claimed for 483 solder joints. The disadvantages of this approach are also listed: 1)
Only profiles of the solder joint are used and it seems possible that small but important

defects can be missed; 2) Only good/bad decisions are made - the results indicate a lack

of separation between the unacceptable classes, 3) Waveform cleanup operations are
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required which could distort critical information, 4) Potential speedup of the inspection
process is limited because different profiles are digitized by x-y table motion. This
approach seems practical and worthwhile but also limited. His processing algorithms
are different for IC and discrete part solder joints, and it seems that this approach
would not generalize easily to handle other shapes which will be encountered when

inspecting PC boards using surface mounting.

Mclntosh [12] at the Honeywell Production Technology Lab reports on a special
lighting/bounding box/peround/hole technique. The advantages of this technique are
the following: 1) It is fast because it uses a binary vision approach to feature computa-
tion, 2) It is relatively inexpensive, 3) 99.8% flaw detection is claimed with less than
19 false alarm rate. The disadvantages are listed: 1) Binary vision may not be robust
enough for all kinds of defects (see Figure 1), and 2) Post-processing is required to dis-
tinguish between regular and oversize/irregular-shape joints. The use of a reference file
with the size and x-y locations of solder joints (similar to what we are using) is
described in the paper. This practical approach also seems worthwhile but limited.
The binary vision features seem likely to overlook some important details of the solder
joint surface. We also expect that this type of approach will have difficulty generaliz-
ing to handle the new surface mounting technology that may replace solder joints in

the near future.

3. QUALITATIVE DESCRIPTION OF INSPECTION TECHNIQUE

In this section, we present a qualitative discussion of our currently implemented

inspection algorithm and how various human decisions influence it. The next section

8 Solder Joint Inspection



RSD-TR-18-84

will cover the quantitative-formulas used to compute feature vectors and classification.
First, we will point out the assumptions necessary for our technique to solve the solder
joint inspection problem as opposed to the general computer vision/image understand-

ing problem.

3.1. Assumptions

Any automated solder joint inpection system must be able to relate regions of
particular images to individual solder joints on a printed circuit board or else it will be
incapable of determining which solder joint on a given PC board is defective. This
“bookkeeping” mechanism must know the x-y location and size of every solder joint
on a PC board and where the subimage of that solder joint will occur in a digitized
image. We assume that the joint size and location information in board coordinates
will be available from a PC board design/manufacturing database for each type of
board to be inspected. (If this information is not available, it is possible to determine
joint size and location automatically using image processing algorithms to segment the
PC board into joints and background. However, this computed information would not
be as accurate as the manufacturing information and is, therefore, not preferred.) The
distance to the camera and other camera parameters will determine the size in pixels
of various joints. It is also assumed that a precision x-y table will tell us which solder
joints are contained in a given image using the current x-y readout and the initial x-y
readout. With the appropriate registration and calibration algorithms, we can seg-
ment every image into solder joint subimages and background PC board. This is the

fundamental assumption upon which all our algorithms are based. This assumption is
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certainly not valid in the general computer vision problem but can be justified for
industrial inspection purposes.

We also assume that lighting will be sufficiently diffuse, intense, and uniform
during inspection so that saturating bright specular reflections are avoided and all
solder joint surfaces are adequately illuminated. Our laboratory experience and the
images in Figures 4 and 5 indicate that this is a reasonable assumption. We do not

require structured, colored, or other special lighting.

The classification method which we have been using classifies registered subim-
ages via the computed characteristics of the gray level surface. These subimages could
be pictures of anything in principle as long as we assume that subimages from dif-
ferent classes are enough different and subimages from the same class are similar
enough that reliable classification decisions can be made. The notions of similarity
and difference are with respect to the representative features which we compute from
the subimages which characterize the gray level surface. This assumption may or may
not be reasonable depending upon the list of classes of solder joints, the list of features
to be extracted from the subimages, and the mathematical details of the classification
algorithm. Stated differently, inspection performance depends upon the class list. the
feature list, and the classification algorithm as well as the actual data. No matter how
reliable an inspection algorithm is, there is always the possibility that it can be made
more reliable by the appropriate changes in the feature list, the class list, or the algo-

rithm (unléss of course it is already perfect).
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3.2. Dataflow

Given an image of solder joints on a PC board, the first step in our processing is
to segment the image into solder joint subimages and background. In practice, we
expect to have a program which would read the PC board manufacturing/design data-
base and generate the appropriate data we need for classification. Since we do not
have access to such a database, we currently generate the data needed for classifica-
tion and training manually. ’rhis is done using the solder joint segmentation (SJS)
program which we have implemented. This program operates as foliows: 1) The user
selects the appropriate size box so that one solder joint exactly fits the box. 2) The
user interactively moves the box cursor so that it surrounds each solder joint, one at a
time. 3) The user gives each solder joint a classification based on his or her own opin-
ton while the box cursor surrounds it. 4) The user exits after all appropriate solder
joints have been classified. The SJS program labels each joint and draws a box around
it as the classification/segmentation proceeds so that the user knows which joints he
or she has already classified. All information is logged in the SJS file for that image.
Each solder joint has an identification number, an x-y pixel location, a size in pixels,
and the presumably correct classification of the joint. See Figure 6 for an example of
an SJS file. Figures 7 and 8 show how the SJS file information is used to label solder
joints in the image. In the working inspection system, this file would be written
automatically from the design/manufacturing database using another program and

would not contain human inspector classifications.

A subset of representative solder joints is selected from each image's SJS file and

set aside as a trasning SJS file. The training SJS file and the associated image are
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presented as input to the training program. Each class is handled one at a time. The
SJS file is scanned for all joints of a given class. For each joint of the given class, we
extract the subimage from the original image using the segmentation data and com-
pute all candidate features. The mean, standard deviation, maximum, and minimum
of each feature are computed for each class as the training program executes. The
training program outputs a mean feature vector for each class in the form of a mean
feature/class (MFC) matrix. It also outputs the mean, standard deviation, maximum,
and minimum informétion for each class to another file so that class separation graphs
can be plotted. In summary, for each image of a section of a PC board, we are
currently associating it with a SJS file, a SJS training file, a mean feature/class

matrix, and a mean/std.dev./max/min file.

The class separation graphs mentioned above allow the user to get a quick idea
of how good a particular feature or pair of features are after the training phase. It
will also allow us to apply heuristic decision rules concerning the extracted features in
future tests. Examples of class separation plots are shown in Figures 9 and 10. In
Figure 9, the box height for each class is determined by the reciprocal variance of the
feature for that class. The width is determined by the maximum and minimum
feature value of the class. The mean value is denoted by a black line, and the half-
height box shows the standard deviation about the mean. The ideal feature is one
where the class boxes are tall and do not overlap (only one feature would be needed in
this case). In Figure 10, the maximum and minimum of each feature determine the
size of the box. The small class-labeled box is the mean-mean point whereas the inter-

mediate size boxes show the standard deviations. The ideal pair of features has small
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non-overlapping class boxes (only one pair would be needed in this case).

After the training phase, the classification processing can begin. The classifica-
tion program accepts the original image, the associated SJS file, and the mean
feature/class matrix as input. A feature weight file must also be specified as input,
but it does not directly correspond to any particular image. It allowé us to scale
feature values so that we can emphasize or ignore particular features quickly and
easily. The rclassiﬁcation program processes each solder joint in the SJS file by
extracting the given solder joint from the original image, computing all features,
weighting all features, and computing a distance metric to all class mean feature vec-
tors. The class with the minimum distance metric is assigned as the classification of
the given solder joint. We compare the computed classification with the previously
assigned human inspector classification and note all incorrect and correct classifica-
tions, all missed bad joints, all false alarms on good joints. After each classification
run, a summary of class correctness, false alarm rate, miss rate, and good/bad decision
correctness results is written out along with the name of the mean feature/class
matrix file and the feature weighting file which were used during program execution.
If the results are not satisfactory, the feature weighting file can be modified and
another classification run can be executed. The flow of data between the segmenta-
tion program, the training program, and the classification program is summarized in

the dataflow diagram in Figure 11.
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3.3. Solder Joint Feature Selection

The selection of good numerical features is critical to the success of a classifica-
tion algorithm. A good solder joint inspection feature is a quantitative function with
the following qualities: 1) It can be easily and quickly computed from a solder joint
subimage, 2) The values which the function takes on should cluster close together for
all subimages of a given class, and 3) The clusters of values for different classes should

be spaced far apart. Usually, it is very difficult to find such features.

Classification is a relatively simple process when the dimensionality of the classif-
ication information is small. Therefore, we tr.y to compute a few numbers which best
represent the images from which they were computed. There is no general existing
theory which tells one which features to compute given the data one wishes to classify.
The feature list is usually determined by the person designing the classification algo-
rithm. However, given a large set of existing features, there are ways to decide which
features are better than others. These methods are discussed at length in the statisti-
cal pattern recognition literature [5] [7]. We have attempted to utilize some of the
covariance matrix techniques, but we have not yet assembled a large enough database

to yield reliable statistical results.

3.4. Solder Joint Class Selection

The selection of good classes is also very important to the success of a classifica-
tion algorithm. For instance, we could decide to only use two classes: acceptable and
unacceptable. With our minimum-distance classifier, we would average all the

features over all members of the two classes and compute the closest mean vector to
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decide the classification. We have not done this because most of the features we are
currently computing exhibit the following characteristic: some joint classes such as
holes, which are unacceptable, have feature values which generally lie below the
acceptable feature values while other joint classes such as fills and excess solder have
feature values which generally lie above the acceptable feature values. The overall
means for acceptable and unacceptable joints, therefore, lie fairly close together with
the distribution of values spread out over a wide range. This was easily seen using the
class separation graphs. The twelve member class list given below and the training
SJS file of a particular image were used for these graphs. In this set of plots, the
height of the main box for a given class is determined by the reciprocal standard devi-
ation of the feature for that class. The width of the box is determined by the max-
imum and minimum values of the feature taken on by solder joint subimages of that
class. A smaller box which has half the height of the main box shows the range of the
standard deviation of the feature for the given class. Each class is labeled above the
main box at the mean point of the class. Individual features are described in detail in

section 4.

We have generally followed the philosophy that joints which look similar from a
given view should be classified together. Therefore, we used the following 12 member
class list:

A = Acceptable (dark to medium)
B = Acceptable (medium bright to bright)
C = Cup-shaped fill

D = Disturbed or Deformed solder
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E = Excess solder (bulbous shape)

F = Fill

H = Hole (no lead)

[ = Insufficient solder

N = No solder (with lead)

O = Outgassed joint

P = Pitted joint (small holes in fillet)

U = Unknown miscellaneous unacceptable class
The performance of the classifier was not bad with these 12 joint classes as will be dis-
cussed in section 5. Figures 9 and 10 demonstrate the separation and overlap of

classes for two different features and two different pairs.

Better classification has been obtained for some images using a smaller modified

six member class list which combines the above 12 classes:

A'={A B}

C'={C}

E'={ED}

F'e{F}

H <{H}

N'<{N1,0,P U}
The advantages of a smaller class list are the following: 1) Less computation to deter-
mine joint class during classification, and 2) Better separation of class means. The
disadvantages of a smaller class list are 1) Less information is available concerning

what is wrong with a given joint, and 2) Class variances tend to increase. Trade-off
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decisions must be made concerning the advantages and disadvantages.

4. QUANTITATIVE DESCRIPTION OF FEATURES AND CLASSIFICA-
TION

In this section, we will mathematically describe the features we are using to clas-
sify the solder joint subimages and the classification process itself. The features are
grouped into four categories: 1) basic features involving sums of gray levels, 2) inertia
features of the volume defined by the subimage, 3) the faceted surface area feature, 4)
Gaussian curvature related features. Before we treat the individual features, we must

first discuss some preliminary topics.

4.1. Brightness and Size Normalization

We have attempted to choose features of solder joint subimages which can be
made invariant to solder joint size and brightness levels and are dependent only upon
the structure of the gray level surface, which is responsible for the visual appearance
of the solder joint. It is assumed that we are given discrete image data in the form of

an n, x n, rectangular array of digitized gray values which range between 0 and

y
2nbits _ 1 where nbits is the number of bits used in digitization. All of our gray-scale
images are digitized to 8 bits yielding the usual 256 gray levels. The number of
numerically different images that can be represented with this image data is 98n: 1y
which is quite large. A 6 x 6 window of an 8-bit image can represent over 10% dif-
ferent window subimages. Attempts to classify these subimages must somehow reduce

the dimensionality of the original data while preserving the relevant "information”

content.
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For computational purposes, a gray scale image will be defined as a set of

discrete ordered triples:

Image = {(ij,k) 1 k = f(ig); 1€ {0,1,...,11,—1}, JE {0,1,...,ny—l}, k€ {0,1,...,2""“'-1}

where f is a function of two variables. Brightness normalization is accomplished by
dividing all gray levels by f., the maximum gray level in the image, which is

defined as

fmax = max [ (17).
5

This normalization maps all gray levels in an image to the interval [0,1]. We will

denote the normalized gray level function as

(1)) = L) for all (1,5).

fmax
Size normalization is accomplished by mapping all pixel locations into the unit square
centered at the origin [-0.5,4+0.5] x [-0.5,40.5]. The pixel size depends upon n, and
n, . We define coordinate functions z (i) and y (j) so that the symmetry conditions

|2 (0)] = |z (n, - 1)] and |y (0)] = [y (n, - 1)| are met:

(1+2i-n,)

2n,

1) =
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(1+2j-n,)
2n

W)=
y

This combination of size and brightness normalization maps all subimages into sur-
faces which lie within the unit cube. If we were to interpolate continuous surface
information from this representation, it is our hope that the interpolated surface data

would be relatively invariant to light intensity changes and changes in the size of the

image.

4.2. Basic Features

We map solder joint subimages into a normalized form so that we can compute
representative features which characterize the visual appearance of the solder joints.
Normalized volume is one feature that immediately comes to mind. For example,
acceptable solder joints usually have large central peaks yielding a small normalized
volume whereas a hole filled with solder with no component lead (referred to as “fills™
) usually has a flat gray level surface yielding a large normalized volume. This feature

is defined as

T T s

The normalized volume is the mean normalized gray level. We also use a normalized
standard deviation feature ¢ which is a measure of the variance of the normalized

gray level surface about its mean value:
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2

B
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ﬂ

n.-1 n

Z i: A a])
_ f tot

z y t=0,=0 max

Note that these features are independent of the ordering or spatial distribution of pix-

els in the image. A simple but useful method to introduce the effects of the spatial

distribution of gray levels is to compute volumes in fixed regions of the solder joint

subimage. We introduce two features, the central subwindow volume and the outer

frame region volume:

Vg = ————— % % [(i)

csw
ey Sma 1491 < 02 |l < 02

Vor = n, nyl f max 1;1')12;04 I A
4 |y > 0.4

Plated-through holes with no component leads and little or no solder (referred to as
just “holes™ ) have a significantly smaller central subwindow volume than other
classes of solder joints. The region parameters, 0.2 and 0.4, were chosen to isolate the
plated-through solder-pad metal and the component lead areas of a typical solder joint
subimage. These features seem to be quite good for discriminating among various
joint classes. It may be worthwhile to experiment with different regions' volumes for

different shaped solder joints (e.g., rectangular vs. circular).

4.3. Inertia Features

The next set of features are based on the three-dimensional inertia properties of

the uniform-density solid volume bounded by the four planes z = +0.5, y = £0.5
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and the two surfaces defined by z (f,7) and the upside down surface -z (1,). Note
that the volume of this object is just twice the normalized volume computed above.
We use the surface twice instead of only once to bound the volume in an attempt to
increase the effect of the surface shape upon the inertia values and to simplify a few
computations. The general expression for the inertia temsor of a mass distribution

relative to a given coordinate system CS is given conveniently by

[Ies 1=[ff p(e)(rTr[1]-rrT )dsdyd:

where r = (z,9,2) is the 3-D coordinate vector relative to the CS coordinate sytem,
[1] =3 X 3 identity matrix, superscript T denotes transpose, underbars denote

vectors, brackets denote matrices, and p( r ) = Object density function.

The center of mass vector for a mass distribution p ( r ) is given by

fcm=fff1p(_[)drdyd:.

We represent each pixel in our normalized image representation as a rectangular block

uniform-density mass distribution where the block’'s volume is directly proportional to

the intensity at that pixel. The (1,7) pixel block has dimensions Az X Ay X 2z (1,j)

where Az = -;IL and Ay = L . The height of the block is twice the normal-

z ny

ized gray level with the center of the (1,5) pixel block located at (2(1),1(7),0). We
compute the center of mass coordinates of the image volume assuming unit density as
1 n,-1 na,-1

en = Gy Y Y m(ig) )

1=0;,=0

z
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1 n, -1
Yem = =7 — Z aj) y(]
‘ 2Vt 1=0 ;go
Zem =0

where the mass function m (1,5) is given by

( 7]) =2 AI Ay (’)j)

The parallel axis theorem, which is proven directly from the definition of the inertia
tensor. tells us that if we know the inertia tensor | I,,, | relative to a coordinate sys-
tem with its origin at the center of mass, we may compute the inertia tensor relative

to any other translated coordinate system as follows:

(Lo ) =L |+ My (2T2[1]-20T)

where v = the translation vector from the old center-of-mass coordinate system to
the new coordinate system and M,,, is the total mass of the mass distribution. The
inertia tensor for a uniform-density rectangular block of dimensions a X b X ¢ and

mass M, is well-known:

M,,, bitc? 0 0
[ Iblock (avvaaAItot ) ] = - 0 C'+(12 0
12 0 0 a 2+b 2

The total inertia tensor about the center-of-mass of the image volume is then com-

puted by summing the appropriate inertia tensors of the individual pixels:
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3

n-1 n-1
[l 1= S % oot ( 82,8922 (5),m (i) ) + m (5) (2 (6T 0 ([ 1] - v (i) v (597 )

e
i=0j =0

where v (1) =(2.m - 2A%), Yo - UJ), 0 ).

This total inertia tensor for the image volume is then diagonalized to obtain the
principal moment of inertia features which we refer to as as [, , I,; , I., where I,
is the moment of inertia around the 2-axis. Since the z-component of v (1,j) is always
zero, the matrix can be diagonalized using analytic formulas for 2 X 2 matrices. The
trace of the inertia tensor is computed as a feature since it is invariant to orthogonal
coordinate transformations, and it combines the principal moment values into one
number. The sum of diagonal minors is also computed as a fe.ature since it shares the

same invariance properties as the trace. The trace and diagonal minor sum (dms) are

computed as follows:

tr [ Itot ] = Iaa + Ibb + Icc

dms [ Itot ] = ]aa Ibb + Ibb Icc + [cc Iaa

We do not use the determinant of the inertia tensor because this quantity was found
to have very high variance and was not useful for classification. The ratio of the aver-
age of I,, and [, to I,, is used as a feature as a measure of the inertia along the
intensity axis as compared to the inertia about axes in the x-y plane. This concludes

the discussion of features based upon image volume inertia.
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4.4. Faceted Surface Area Feature

The surface area of the gray level surface is an indication of the undulating qual-
ity of a surface. It is similar to the standard deviation feature except the spatial dis-
tribution of pixel gray levels is taken into account. Each set of adjacent four pixels
are considered as the vertices of a non-planar quadrilateral. The quadrilateral is
divided into two triangles in a fixed manner. The sum of the areas of the two trian-
gles is computed as the area of the quadrilateral. The sum of all quadrilaterals in the
image surface is the total faceted surface area of the image. For an nXn constant
intensity image, the surface area is (n—l)z. We divide the computed surface area by
the constant intensity surface area to normalize this feature. The surface area com-
puted using this method will be compared to the surface area computed using the first

fundamental form of a surface, which is discussed in a later section.

Assume we are given four adjacent pixels in the image:
fig). fu+1)), f(i+1), f(++1,741). We form the four 3-D points {

P1. Do F3 P4} given by the following vectors:
pi=0 1+ i fEnl
pa=[#1 j [(+1)])]
ps=[ i L [(41)]T
pa=[i+1 j+1 f(+15+1)]T

We now consider the two triangles of the quadrilateral separately. Let p; p» ps
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determine the first triangle. We compute two difference vectors first.
di=p2-p;

dy=p3-pi

The unit normal to the triangle, which is used to define the z-direction, is computed as

follows:

41Xds

n, = ————
= ldyXxdall

We use d | to define the x direction:

The y-direction is then determined by n, and n, as follows:

n, =, Xn,

These normal vectors now provide us with a rotation matrix with which we can rotate

all three points into the x-y plane:

[R]=[1n |2 | 2 |

Since we have chosen d; to define our x-direction, we can compute the area of the tri-

angle, by computing two vector inner products:

1
areal = 5 (Ll, Tiil) (I"_y Tﬁd,:z}

Solder Joint Inspection 25



RSD-TR-16-84

Similarly, we compute ared2 using the same formulas applied to p4 p3 po. The
area associated with the four adjacent pixels f (1), f (i+1,9), f (tj+1), f (1+1,5+1)

is given by

a (t,j) = areal + area2

and the total normalized surface area is given by

1 n -2 n,-2

A= ———— Y ) a (1)
(n:—l)(ny—l) i=0;=0 ’
Note that A = 1 when the gray level surface is flat and increases as the surface con-
tains more and more undulations. We note that there are other formulas for comput-
ing the area of a triangle which use only the lengths of the triangle sides [11] and do

not consider surface normals.

4.5. Gaussian Curvature Related Features

Some preliminary research concerning the use of the Gaussian curvature function
for characterizing the shape and visual appearance of a gray level surface has been
completed. Several features related to Gaussian curvature are currently computed for
our classification algorithm. They will be described in detail in this section, but first
we must introduce some basic formulas from the differential geometry of surfaces.

There are many good introductory textbooks on the subject (e.g. [14]).

We shall consider a continuous gray level surface S of the form:

26 Solder Joint Inspection



RSD-TR-16-84

S = { (z,y,z) =/ (z,y)

The sampled gray level image surface I corresponding to S will be of the form intro-

duced earlier:

Ji ={ (i,],k) ck = ./(i’j)

The first fundamental form of a surface is determined by the following coefficients

assuming. of course, that the first partial derivatives exist:

E=1+f* F=/ff G=1+f% ¢=E«G-Fi=1+[2+]>

The second fundamental form of a surface is determined by the following coefficients

assuming. of course, that the second partial derivatives exist:

f-: M= L N=

fyy 0
—_— b=L+N-M:*
Vg ] Ve

L =

These two fundamental forms play an important role in many key theorems in the dif-

ferential geometry of surfaces.

The gradient vector of first partial derivatives is given by

vi=[f 4 1|7

The Hessian matrix of second partial derivatives is given by
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Hess [ = { ;:: ;:: }

The mean curvature function of a smooth surface is given by

H=(EN+GL—HM)
29

The Gaussian curvature function of a smooth surface can be expressed in several dif-

ferent ways:

Kzi _ det ( Hess f) _ det ( Hess [) _ Jo2 Ly —fzy2
g g° w1 (L+£2+4,%)°

It can be shown that 1) K >0 for all points (z,y) where the local neighborhood of the
surface has an ellipsoidal shape, 2) K <0 for all points (z.y) where the local neighbor-
hood of the surface has a saddle shape, 3) K=0 for all points (z.y) where the local
neighborhood of the surface is flat (planar) or cylindrical. This means that A{zy)

does characterize the shape of a surface to a certain extent.

Now suppose that we wish to compute features based on the Gaussian curvature
of the gray level surface. The first problem is that the image data is discrete and may
or may not correspond to a smooth differentiable surface. The second problem is that
even if we do compute a meaningful discrete version of the Gaussian curvature of an
image's gray level surface, this discrete data still maintains the same dimensionality of
the original image and is, therefore, not directly useful as a feature. Several features

which are scalar variables have been chosen for computation. Most of the Gaussian
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curvature related features that we are currently using are experimental in nature and

generally need more work.

The computation of the partial derivatives themselves from discrete images is not
a trivial problem. We have used window operators of the type utilized by Beaudet [2],
Bolle and Cooper [3], and Haralick [9] for quadratic surfaces. These window operators
provide a least squares estimate of the five partial derivatives required above using a
best fit quadratic surface. The windows are convolved with an image to provide the

numbers used for the partial derivatives in the expression for K.

As we noted before, the positiveness and the negativeness of the Gaussian curva-
ture function does tell us something about the surface shape at individual points.
Hence. we can obtain two size and brightness normalized features by computing the
percentage of pixels with positive K values and the percentage of pixels with negative

K values:

card{ (17) : K(s5) > 0 }

Py = n, n,
card{ (£0) : Kl1y) < 0
p_ =
n, n,

where card is the cardinality set function which indicates the number of elements in a
given set. Separate brightness normalization operations are not required for Gaussian

curvature related features because all features are based on derivative information.
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We also compute the average Gaussian curvature, the average mean curvature,
the average second fundamental form determinant, and the avcrage square root of the
first fundamental form determinant as features:

1 a,-1 n -1

K,y = Y Y K()

2% 1m0 =0

1 n,-1 n, -1

H" - H('vj)
g n; Ny .‘go jgo

1 n, -1 n, -1 '
barg = — Y ¥ by

2Ny (=m0 jm0

-1 n,-1
Vi =—— & ¥ ViTiy

It turns out that the last feature here can be interpreted as an approximation of the
surface area of the continuous image gray level surface. The integral of the square
root of g over the surface parameter space gives an exact expression for the area of a
smooth surface which is very similar to the expression for computing the arc length of

curves:

Area = [[\J(1+[,2+[,%) dz dy

We see that n, n, \/;“g is a discrete approximation to this integral. In addition, we
compute the ratio of the faceted surface area A and the differential geometry surface
area V¢,, which may be an indication of overall image surface smoothness. This

concludes the discussion of Gaussian curvature related features.
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4.8. Minimum-Distance Classification Algorithm

We have described each of the individual features in the preceding section. We
now combine these features into a feature vector a with the number of features

np = 20. The order of the individual components within the vector is decided arbi-

trarily and is of no importance:

— T
a=[a @ Qg
o] Vtat =0 Qg = ch g = Vit ( ch + Vor )
ay = Vo[r Qs Iaa ag = Ibb a7 = Icc
min f (1,7)
([aa +[bb ) — ¢ I =4 I Y]
Qg = a1 ag = tr [ Ly | ayg = dms [ I, | Qg =
“lee fmax
Q= Kavg a3 = Havg a4 = barg
Qs =P+ Qg = -
A
17 = V40 a)g=A Q9 =
gavg

This defines the feature vector (20 numbers) which is used to represent each solder

joint subimage ( n, n, numbers). All symbols have been defined in previous sections.

The first step in the classification algorithm is the training exercise. Using some
strategy. a group of solder joint subimages are collected which best represent a given

class. We will assume that we are working with n, classes of solder joints. Each
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class will be referred to as C; where ¢ is an integer between 0 and n,-1. For our
experiments, n, was either 6 or 12 and () was always used as an acceptable class.

We also assume that we have npc solder joint subimages of class C; for training.

The training phase computes a mean feature vector g, for each class C;:

l 1
g = E X

where o is the k-th training sample of the i-th class. These mean vectors are com-
bined together to form the mean feature/class matrix [ A{F'C' | which is needed by the

classification program:

[MFC|=[pol | | e |-

The training phase is complete when the mean feature/class matrix has been com-
puted. The training program we have implemented also computes a standard devia-
tion vector. a maximum vector, and a minimum vector for each class for subsequent
analysis and class separation plots.

We now assume that we have n; solder joint subimages of class C; to be classi-

fied. The total number of solder joints to be classified is then

The classifier only knows that it has n,, solder joint subimages to classify. For the

j-th joint subimage, we compute a feature vector a; where 0 <7< ny. The jth
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joint has the human inspector’s classification ¢; % which is unknown to the classifier.

The classifier computes a distance metric d;; from a; to each of the ng class mean

vectors f, :

dy = || [ diagd w)] (2 - ) I

where u is the feature weighting vector which contains a scale factor for each of the
np features, diag{ _) converts any vector to a diagonal matrix, and ||( _)|| denotes
the vector norm. Different vector norms can be used to compute the distance metric.
Let 1; represent the i-th component of the vector v . We tried the following three

vector norms to see if any one worked better than the other two:
Elvi ' ’ Eviz ) m?lxlv;l
' ' !
We found empirically that performance did not vary much for the different norms.
The Euclidean metric (sum of squares) performed slightly better for the few test cases
we tried. We did find empirically that for misclassifications one of the metrics would
compute the right class about half of the time. This means that we are fairly close to
making the right decision for many of the mistakes. We have not yet decided how

this behavior can be used to increase classification accuracy.

The j-th joint then receives the algorithmic classification ¢; ® which corresponds
to the minimum distance obtained between a; and the mean vector of the particular

class:
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This concludes the description of the minimum-distance classification algorithm.

4.7. Performance Measurement

We can quantitatively measure the performance of the classification algorithm on
solder joint images. Our error performance percentages were computed as follows:

1 . A
Peorrect_clase = —n— card Qi =
tot

=L card{a- Lot c,h}

Dincorrect_claas o] 7
Mot

I

=L card {a~ ¢;® = Acceptable €& cJ-" = Unacceptable ]

Pmies -
"roz

Plalee_dlarm = L card {_c_rj t¢;* = Unacceptable & e = Acceptable

J
Mot
Pgoodfbad_correct = 1- (pms'u + pfalu_alarm)

We feel that the correctness percentage of good/bad decisions (acceptable vs. unac-
ceptable solder joints) is the most important index of performance. The miss rate per-
centage is the next most important because a human being will probably be operating

the touch-up station in the near future and can decide not to touch up a given joint if
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it is a false alarm (it looks acceptable). The false alarm rate percentage is important
though because too many false alarms would defeat the purpose of having an
automatic inspector in the first place. The correct class and incorrect class percen-
tages are not as important as the above performance indices, but they are very useful

for two reasons:

(1) The type of unacceptable class can yield important information regarding the
status of the wavesoldering machinery [1]. This would be very useful in
automating the entire manufacturing system. If the unacceptable classifications
are wrong, it may lead assembly line operators to look for the wrong problem in

the soldering section of the assembly line.

ng (ng - 1) . . .
(2) There are possible error transitions between classes. By moni-

2

toring these error transitions during the inspection algorithm development and

testing cycles, we can formulate ways to improve performance.

Our experiments indicate that certain error transitions are much more likely than oth-
ers; 1n fact, some error transitions mever occur. Sometimes performance can be
improved by modifying the weighting vector to deemphasize features which have too
much overlap between the two classes of the most likely error transition.

The meaning of each error percentage should be kept in mind while perusing the

experimental results shown in the next section.
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5. EXPERIMENTAL RESULTS

A small database of thirteen (13) images was assembled for testing our preliminary
inspection algorithm. Seven images of different sections of a test PC board were digi-
tized with each image containing subimages of more than 190 solder joints each. These
seven images were Iabelea Al, A2, A3, A4, A5, A6, A7 Image Al is typical of these
images and is shown in Figure 4. The total number of solder joint subimages in these
seven images is 1418. Six more images were digitized with about 64 solder joints in
each image containing a total of 378 solder joint subimages. These six higher spatial
resolution images contain a subset of the 1418 solder joints in the first seven images.
These six images were labeled Bl, B2, B3, B4, B5, B6. Image B4 is typical of these
images and is shown in Figure 5. All images were digitized with the camera directly
over the PC board. The lighting and camera aperture were held fixed for all thirteen
images. The PC board was moved manually under the camera and light to focus on
different sections of the PC board. The experimental inspection results given below
were obtained using the 13 different mean feature/class (MFC) matrices generated by
the training program (one for each image), three different feature weighting vectors,
and the two different class lists mentioned earlier in the report. We refer to the indivi-
durl classification runs with some combination of the above items as an experiment.
The three weight vectors are given in Figure 12. Weight Vector 1 was only partially
optimized using the manual procedure mentioned previously for the six class list.
Weight Vector 2 uses only five out of twenty features and can be considered as an
abbreviated feature list of quickly computable features. It was optimized for five

classes on an image similar to the ones shown in this report. Weight Vector 3 uses
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nincteen out of twenty features and was optimized for the Al image and the 12
member class list. None of the weight files have attempted to optimize performance
over several images. We plan to replace this ad hoc approach with more rigorous sta-

tistical pattern recognition approaches.

Experiments 1-3 and 4-8 should be considered as a group; the results for these
experiments are shown in Figures 13 and 14. In each of these experiments the mean
feature/class (MFC) matrix created by the training algorithm from each individual
image was used to classify its own corresponding image. (This is the mode of operation
that the classification algorithm was designed to handle; other experiments were done
to check the robustness of the algorithm by mixing MFC matrices with different
images.) We used the twelve (12) member class list and weight file 1 for Experiment I,
weight file 2 for Experiment 2, and weight file 3 for Experiment 3. We used the six (6)
member class list and weight file 1 for Experiment 4, weight file 2 for Experiment 3,
and weight file 3 for Experiment 8. For Experiments 1-3, note that the average and the
Al image performance tend to improve as the weight file changes from 1 to 2 to 3 while
the performance for the other images changes in unpredictable ways. On the other
hand, Al image performance gets worse in Experiments 4-6. Experiment 6 had particu-
larly bad performance which may be due to the fact that weight file was optimized for
the twelve class list as opposed to the six class list used in this experiment. Note that
the A5 image does poorly with the twelve member class list for all weight files and
quite well with six member class list for weight files 1 and 2. A complex multidimen-
sional distribution of data is responsible for this behavior. The best performance

occurred for the B4 image in Experiments 1 and 3. The worst performance in this
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group of experiments occurred for B4 in Experiment 6. |

In Experiments 7-9, we used the six member class list with weight file 1 and a
fixed mean feature/class matrix for each group. The mean feature/class matrix was
different in each experiment to see how performance changes. The results for these
experiments are shown in Figure 15. The average performance does not change signifi-
cantly with different MFC matrices indicating that the class features for a given set of
images are relatively constant across images. In-the future, we will compute class mean
vectors across several different images to see if multiple image performance improves
with a mean MFC matrix.

The results of all the above experiments are included in the report to demonstrate
how performance can vary with class list, feature list, feature weighting vector, and
training data. There is clearly much room for improvement, but the results are defin-
itely encouraging, especially foi particular images. We have not yet addressed the mul-
tidimensional problems in any sort of optimal way.

We suspect that performance will increase for real PC boards for the following
reasons:

(1) Real PC boards generally use round, circular solder pads yielding smoothly
rounded solder joints. The appearance of the acceptable joint surface should be
much more consistent than the appearance created by joints with square solder
pads.

(2) Most of the joints on real boards will be acceptable joints. In our experiments,

acceptable joints are in the minority, and we are currently trying to distinguish
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among many different types of subimages. When inspecting real PC boards, one
is trying to sift out solder joints which look unusual, different from the acceptable

majority of joints. Algorithms might be tailored to take advantage of this fact.

6. FUTURE RESEARCH DIRECTIONS

The performance of our preliminary inspection algorithm is encouraging. We

expect that many improvements can be made to our current techniques.

8.1. Better Feature Selection

Better feature selection refers both to computing new individual features which
are more representative of the solder joints classes and to computing combinations of
features which provide even better class discrimination. As we noted earlier, indivi-
dual feature selection is not based on an exact science. By concentrating on the errors
of our current algorithm, we may find clues which will lead us to better features. In
addition. our planned multiple view research may require introduction of some new
features to handle the fact that we will get different appearances of solder joints from

different viewpoints.

Combinations of features may provide better performance than what we can get
with our simple weighting scheme. The statistical pattern recognition literature will
be able to help us in this area after we have gathered enough data. In addition, many
heuristic approac-hes may also be of assistance. We hope to experiment with several
different ways of combining features to get better features and compare their perfor-

mance to our current algorithm.
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We also plan to improve our mean features by writing some new software which
will make it easy to compute the mean feature/class matrix of many different images.
The variance of the mean features across many images will also be analyzed when this

is done. We currently compute statistics for only one image at a time.

8.2. Better Classification Algorithms

As we have mentioned, the minimum-distance classifier is a very simple classifier.
There are many different kinds of classifiers, statistical and non-statistical, which
could be applied to this problem. Expert systems, for example, make reliable decisions
through the interaction of the input data with various production rules. Distance
metrics applied to feature vectors are not used at all. Multi-level decision processing
may also be helpful to us. If a decision on an n x n solder joint subimage is doubtful,
it is possible to redigitize the subimage at double the spatial resolution and reclassify.
There are currently no explicit decision confidence factors in our current approach
which can be used for this purpose. We hope to survey several different decision-
making techniques, select; a few of the more promising methods for implementation,

and test them against our current algorithm.

6.3. Multiple View Classification

It seems likely that classification performance could be improved if information
from multiple views were combined. Also, some joints have defects which are not
easily observed from directly over the PC board and, therefore, cause only small per-
turbations to the gray level surfaces which we classify. We plan to evaluate the use of

multiple views of solder joints for more reliable inspection.
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6.4. Sensitivity Analysis

Inspection algorithms will usually have certain parameters involved which change
the performance. In our current algorithm, for example, we are planning to investi-

gate the effects of the following parameter changes:

(1) Alter solder joint sizes and/or locations in the solder joint segmentation file in
random or uniform ways and check inspection performance to compute sensi-

tivity to size and location-errors.

(2) Check classification performance for different lens f-stops and different lighting

configurations to compute sensitivity to illumination changes.

(3) Check classification accuracy for the same solder joints at different spatial resolu-

tions to compute sensitivity to size changes (changes in camera distance from PC

board).

8.5. Registration and Calibration Analysis

Our inspection algorithm depends upon the ability to use pre-segmented images
using information about the PC board, the camera and lens, their separation distance,
and x-y table positions. It is important that we determine how accurately and repeat-
ably we can predict the exact location of a solder joint in a digitized image. This will
mainly depend on the precision of the x-y table and the manner in which the PC
board is gripped by it. Judging from what others have done, it seems that this will
not be much of a problem. If this analysis is in agreement with the size/location sen-
sitivity analysis and if classification performance is improved to acceptable levels

(99%+), it may be appropriate to construct a physical prototype automatic inspection
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system.
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Solder Joint Defects

Defect Name

Brief Description of Defect

No Solder

No Solder at all on Joint

Cold Solder

Solder not sufficiently heated to form joint

Disturbed Solder .

Solder Joint disturbed during solidification

Grainy Solder

Contaminants in solder cause graininess

Excess Solder

Too much solder for joint inspectability

Insufficient Solder

Not enough solder for good joint structure

Dewetted Pad

Solder retracts from solder pad surface

Dewetted Lead

Solder retracts from component lead surface

Non-wet Pad

Solder wets lead but not pad

Non-wet Lead

Solder wets pad but not lead

Ieicling Solder forms sharp peaks on joints

Webbing Solder strands sticks to surrounding insulation
Pinholes Small holes form in joint fillet surface

Blowholes Large holes form in joint fillet surface

Solder Pits Hole or depression in solder where bottom is visible

Oil Entrapment

Oil droplets trapped with solder joint

Solder Bridging

Solder makes unwanted connections with other leads

Rosin Joint

Rosin Flux surrounds lead rather than solder

Solder Balls

Solder adheres to board in balls (not at joints)

Spatter Spattered solder adheres to board (not at joints)
Internal Voids Open pocket within joint with no external signs
Bubbles Open pocket within joint causing bulge in fillet
Outgassed Joint Severe explosion disrupts joint surface

Grit & Dirt Surface of joint dirty limiting inspectability

Flux Residue Residual Flux remains on PCB causing problems
Bad Leads Component leads are too short, too long, bent over

Figure 1. Solder Joint Defect Table!

This table of solder joint defects was compiled from information obtained from the following sources:
IPC Workshop Handbook, Handbook of Machine Soldering by Woodgate, Solders and Soldering by Manko,
AWS Soldering Manual, BM Wavesoldered Solder Joint Quality Troubleshooting Guide.
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Flle Creator= ang

Creatlion_Time= Fri Jul 27 15:30:01 1984
Image_Filename= Al
Number_of_Joints_in_Image= 196
Number_of_Joints_in_File= 77
Size_of_Solder_Joint_Subimages= 24 x 24

id= 1 Ix= 176 ly= 326 ws= 24 class=
ia= 2 ix= 177 ly= 228 ws= 24 class=
Id= 3 ix= 143 1y= 361 ws= 24 class=
id= 4 Ix= 142 ly= 326 ws= 24 class=
id= 5 iIx= 39 ly= 195 ws= 24 class=
id= 6 ix= 38 iy= 293 ws= 24 class=
id= 7 iIx= 37 ly= 261 ws= 24 class=
id= 8 ix= 72 1ly= 226 ws= 24 class=
Id= 9 ix= 107 1y= 260 ws= 24 class=

d

d

d

o

d

e

e

e

e
id= 10 ix= 142 ly= 260 ws= 24 class= e
ia= 11 ix= 141 ly= 126 ws= 24 <class= e
id= 12 ix= 175 ly= 126 ws= 24 class= e
id= 13 ix= 107 iy= 126 ws= 24 class= e
id= 14 ix= 314 Iy= 227 ws= 24 class= e
id= 15 ix= 382 ly= 224 ws= 24 class= e
id= 16 ix= 246 ly= 424 ws= 24 class= h
id= 17 ix= 313 iy= 456 ws= 24 class= h
id= 18 ix= 348 ly= 456 ws= 24 class= h
id= 19 ix= 175 iy= 160 ws= 24 class= h
id= 20 ix= 143 iy= 60 ws= 24 class= h
id= 21 ix= 176 iy= 61 ws= 24 class= h
id= 22 ix= 244 ly= 258 ws= 24 class= h
id= 23 ix= 210 iy= 291 ws= 24 class= h
id= 24 ix= 347 1y= 93 ws= 24 class= h
id= 25 ix= 416 iy= 126 ws= 24 class= h
id= 26 ix= 416 ily= 26 ws= 24 class= h
id= 27 ix= 450 ly= 28 ws= 24 class= h
id= 28 ix= 483 iy= 28 ws= 24 class= h
id= 29 ix= 484 1iy= 61 ws= 24 class= h
id= 30 ix=485 1ly= 93 ws= 24 class= h
Id= 31 ix= 484 iy= 126 ws= 24 class= h
id= 32 ix= 484 iy= 158 ws= 24 class= h
id= 33 ix= 485 1y= 192 ws= 24 class= h

Figure 8. Solder Joint Segmentation File Example
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Weight Vector
w= [w, w wy |’
Weight Vector Table
Related Feature | Component Vector 1 Vector 2 Vector 3
Vi w, 100.0 320.0 100.0
o w, 10.0 0.0 10.0
Viw Wo 600.0 800.0 600.0
Vo w, 200.0 0.0 200.0
Vo Wy 1000.0 0.0 1000.0
I, W 200.0 100.0 200.0
L we 200.0 0.0 200.0
L. w- 600.0 600.0 600.0
[ ratio W 0.0 80.0 10.0
tr 1, g 100.0 0.0 100.0
dms I, , W 1.0 0.0 1.0
min f W 1.0 0.0 100.0
R 1o W 1.0 0.0 0.0
H,.. Wy 1.0 0.0 1.0
boea Wy 1.0 0.0 1.0
P4 W s 1.0 0.0 60.0
p_ W g 1.0 0.0 100.0
V0400 Wy 1.0 0.0 1.0
A W g 1.0 0.0 1.0
A ratio W g 1.0 0.0 20.0

Figure 12. Weight Vector Table
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Experiment 1: Twelve Member Class List and Weight File 1
Image | MFC | Good/Bad_% | Miss_% | False_Alarm_% | Correct_Class_%
Al Al 94.4 3.8 2.0 61.7
A2 A2 82.7 9.8 7.8 61.9
Al A3 94.9 3.8 1.5 70.6
Ad A4 85.7 5.8 8.7 58.7
Ab AS 75.4 17.5 7.1 60.7
A6 A6 86.2 8.8 5.2 55.2
A7 A7 84.4 2.4 13.3 53.1
Bl Bl 89.3 8.9 1.8 69.6
B2 B2 87.5 1.6 10.9 73.4
B3 B3 77.3 9.1 13.6 65.2
B4 B4 98.4 0.0 1.6 60.9
B5 B5 84.4 12.5 3.1 68.8
B6 B6 84.4 3.1 12.5 68.8
AVG --- 86.5 6.6 6.8 63.7
Experiment 2: Twelve Member Class List and Weight File 2
Image | MFC | Good/Bad_% | Miss_% | False_Alarm_% | Correct_Class_%
Al Al 95.4 3.1 1.5 7
A2 A2 80.2 13.7 6.1 60.4
A3 Al 91.9 5.6 2.5 69.0
Ad A4 85.7 4.1 10.2 61.2
Ad Ad 75.4 16.6 8.1 54.0
Ab Ab 87.6 9.0 3.3 52.4
A7 7 83.4 1.9 14.7 54.0
Bl Bl 87.5 10.7 1.8 69.6
B2 B2 95.3 0.0 4.7 79.7
B3 B3 81.8 6.1 12.1 69.7
B4 B4 95.3 0.0 4.7 59.4
B5 B5 82.8 9.4 7.8 68.8
B6 B6 89.1 3.1 7.8 68.8
AVG - 7.0 6.4 6.6 63.4
Experiment 3: Twelve Member Class List and Weight File 3
Image | MFC | Good/Bad_% | Miss_% | False_Alarm_S¢ | Correct_Class_%
Al Al 96.4 2.6 1.0 4.5
A2 A2 83.2 9.6 7.1 67.0
A3 A3 95.9 2.0 2.0 76.6
A4 A4 91.8 2.6 5.6 66.8
AS A5 81.0 12.3 6.6 65.9
A6 Ab 89.0 5.7 5.2 61.9
A7 A7 88.2 0.9 10.9 57.8
B1 Bl 91.1 7.1 1.8 714
B2 B2 92.2 0.0 7.8 79.7
B3 B3 77.3 10.6 12.1 66.7
B4 B4 98.4 0.0 1.6 60.9
B5 B5 84.4 12.5 3.1 71.9
B6 B6 82.8 3.1 14.1 73.4
AVG --- 88.6 5.3 6.1 68.8

Figure 13. Experimental Results for Twelve Classes
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Experiment 4: Six Member Class List and Weight File 1

Image | MFC | Good/Bad_% | Miss_% | False_Alarm_% | Correct_Class_ %
Al Al 94.9 4.1 1.0 70.9
A2 A2 83.8 8.6 7.6 72.1
Al A3 95.4 1.5 3.0 75.6
A4 A4 81.1 5.1 13.8 64.3
AS Ad 91.9 3.3 4.7 74.4
Ab A6 88.6 3.8 7.6 71.0
A7 A7 82.9 3.8 13.3 67.8
3] Bl 91.1 8.9 0.0 73.2
B2 2 87.5 1.6 10.9 73.4
B3 " B3 77.3 9.1 13.6 65.2
B4 B4 96.9 1.6 1.6 65.6
B5 B5 84.4 12.5 3.1 68.8
B6 B6 84.4 3.1 12.5 68.8

AVG 87.7 5.2 7.1 70.1
Experiment 5: Six Member Class List and- Weight File 2

Image | MFC | Good/Bad_% | Miss_% | False_Alarm_¢¢ | Correct_Class_
Al Al 93.4 5.1 1.5 64.3
A2 A2 85.8 7.6 6.6 71.6
A3 Al 93.9 2.5 3.6 73.6
A4 A4 82.7 3.1 14.3 62.2
AS AS 89.6 3.3 7.1 70.1
Ab Ab 89.5 3.8 6.7 72.9
A7 AT 81.0 2.4 16.6 65.4
Bl Bl 87.5 10.7 1.8 78.6
B2 B2 95.3 0.0 4.7 78.1
B3 B3 81.8 6.1 12.1 69.7
B4 B4 95.3 0.0 4.7 65.6
B5 B5 82.8 9.4 7.8 68.8
B6 B6 89.1 3.1 7.8 68.8

AVG --- 88.3 4.4 7.3 70.0

Experiment 6: Six Member Class List and Weight File 3

Image | MFC | Good/Bad_¢¢ | Miss_% | False_Alarm_¢¢ | Correct_Class_%
Al Al 76.5 23.0 0.5 9.2
A2 A2 73.1 21.8 5.1 15.2
A3 A3 83.8 15.7 0.5 13.2
A4 A4 77.0 19.4 3.6 13.8
Ad Ad 68.2 30.3 1.4 10.9
Ab Ab 65.2 32.9 1.9 19.5
A7 A7 67.8 25.1 7.1 13.7
Bl Bl 92.9 7.1 0.0 12.5
B2 B2 67.2 29.7 3.1 12.5
B3 B3 72.7 16.7 10.6 13.6
-B4 B4 53.1 46.9 0.0 9.4
B5 B5 65.6 34.4 0.0 28.1
B6 B6 67.2 26.6 6.3 28.1

AVG --- 71.6 25.3 3.1 15.4

Figure 14. Experimental Results for Six Classes
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Experiment 7: Six Member Class List and Weight File 1
Image | MI'C | Good/Bad_% | Miss_% | False_Alarm_% | Correct_Class_%
Al Al 94.9 4.1 1.0 70.9
A2 Al 88.8 5.8 5.6 75.6
A3 Al 94.9 1.5 3.6 78.7
A4 Al 87.2 3.1 9.7 67.9
A5 Al 92.4 4.3 3.3 75.8
Ab Al 88.6 4.8 6.7 74.3
A7 Al 86.7 4.3 9.0 70.6
Bl Bl 91.1 8.9 0.0 73.2
B2 Bl 89.1 6.3 4.7 54.7
B3 Bl 75.8 7.6 16.7 47.0
B4 B1 82.8 12.5 4.7 60.9
B5 Bl 78.1 14.1 7.8 62.5
B6 Bl 73.4 14.1 12.5 53.1
AVG --- 86.5 7.0 6.6 66.6
Experiment 8: Six Member Class List and Weight File 1
Image | MFC | Good/Bad_% | Miss_% | False_Alarm_% | Correct_Class_‘¢
Al A4 85.2 9.2 5.6 55.6
A2 A4 85.3 7.1 7.6 68.0
A3 A4 91.9 2.0 6.1 70.6
A4 A4 81.1 5.1 13.8 64.3
AS A4 89.1 5.2 5.7 68.7
Ab A4 83.3 4.3 12.4 64.8
A7 A4 79.1 8.1 12.8 64.9
B1 B4 89.3 10.7 0.0 66.1
B2 B4 89.1 9.4 1.6 65.6
B3 B4 81.8 6.1 12.1 56.1
B4 B4 96.9 1.6 1.6 65.6
B5 B4 87.5 6.3 6.3 73.4
B6 B4 87.5 4.7 7.8 65.6
AVG --- 86.7 6.1 7.2 65.3
Experiment 9: Six Member Class List and Weight File 1
Image | MFC | Good/Bad_% | Miss_% | False_Alarm_% | Correct_Class_ ¢
Al A6 85.2 13.3 1.5 60.2
A2 Ab 88.3 5.1 6.6 75.1
A3 Ab 93.9 1.0 5.1 69.0
A4 Ab 87.2 2.0 10.7 55.1
AS A6 86.7 8.5 4.7 66.8
Ab Ab 88.6 3.8 7.6 71.0
A7 Ab 86.7 2.8 10.4 69.2
Bl B6 87.5 10.7 1.8 67.9
B2 B6 84.4 7.8 7.8 51.6
B3 B6 80.3 4.5 15.2 42.4
B4 B6 98.4 0.0 1.6 67.2
BS BS 85.9 0.0 14.1 68.8
B6 B6 84.4 3.1 12.5 68.8
AVG --- 87.5 4.8 7.7 64.1

Figure 15. Experimental Results for Fixed MFC Matrices
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