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RSD-TR-7-84

DISTANCE FUNCTIONS AND THEIR APPLICATION TO ROBOT

PATH PLANNING IN THE PRESENCE OF OBSTACLES!

ABSTRACT

An approach to robotic path planning, which allows optimization of useful
performance indices in the presence of obstacles, is given. The main idea is to
express obstacle avoidance in terms of the distances between potentially colliding
parts. Mathematical properties of the distance functions are studied and it is
séen that various types of derivatives of the distance functions are easily charac-
terized. The results lead to a general formulation of path planning problems and
suggest numerical procedures for their solution. A simple numerical example

involving a 3-degree of freedom cartesian manipulator is described.

"This work was supported by the Air Force Office of Scientific Research. AF Systems Com-
mand. USAF under grant F 49620-82-C-0089.
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1. Introduction

The generation of robotic motion to accomplish a given task is often broken
down into two steps: path planning - the off-line determination of time func-
tions which specify a suitable time dependence of mechanism configuration vari-
ables such as manipulator joint angles, path tracking - accurate on-line imple-
mentation of the motion through feedback control. Other types of motion con-
trol may occur too. Examples include the use of a vision-directed control sys-
tem for part acquisition at the beginning of a motion, and force control in an
assembly operation at the end of a motion. See [1, 2] for more details and refer-

ences.

This paper is concerned with the path planning problem. The standard
approach is to specify a geometric path (lacking time evolution) as a series of
segments in end-effector space. Then smooth, time-dependent functions are fit-
ted to these segments in the space of configuration variables. A crucial aspect of
such path planning methods is the implementation of physical constraints. The
most important of these are limits on the configuration variables and actuator
inputs, and obstacle avoidance. There is a rather large literature on the compu-
tation of shortest geometric paths to avoid obstacles (see, e.g., [1, 3, 4, 5] and
the literature discussed in these references). But the research to date has limita-
tions in treating multiple-member mechanisms and objects in three dimensional

space. The determination of motions to meet actuator constraints is difficult
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because of the complexity and nonlinearity of the equations of motion. The
result has been a rather conservative approach to the fitting of time functions to
geometric paths [1, 2]. Some attempts have been made to optimize motion, but

they are in one way or another limited. See, for example [1, 6, 7, 8].

A few examples may give a better understanding of these issues. Figure 1
shows the first, a crane or cartesian manipulator. The payload K, is translated
and rotated in the plane. There are limits on the translations ¢ ;(¢) and gqo(¢)
and Ko,...,K; are the obstacles. There is no limit on the rotation g4(¢). The
task is to move the payload from position A to position B and minimize the
energy consumed in the move. Determining an admissible motion as a sequence
of translations and rotations such as P, is not difficult. But determining a

motion which meets the control constraints and minimizes the energy is.

The second, more complex, example is the interaction of two manipulators
in a common workspace. Again, there are objects K |,K,,...: the moving parts
(links) of the manipulators and the fixed obstacles in the workspace. During the
motion of two manipulators, interference of the objects, including collisions
between the moving parts of the two manipulators, must be avoided. Minimiza-
tion of a suitable performance index, say the time of travel to transfer a part
from the gripper of one manipulator to the gripper of the other, would tend to
bring the manipulators together. Thus collision avoidance is likely to be an

active constraint. The constraint is especially complex because there may be
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many pairs of objects which can collide.
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Figure 1. The Cartesian Manipulator with Payload i, , and

Obstacles KoK 7 .

The distances between potentially colliding parts, such as K; and K, in

Figure 1, can be used to express the obstacle constraints.

They must all be

greater than zero if collision is to be avoided. This observation provides the

central focus for this paper.

We examine carefully the properties of the dis-

tances expressed as functions of the configuration variables. Under certain con-
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ditions we find they are differentiable functions and have derivatives which can
be expressed by reasonably simple formulas. These results are useful in path
planning problems. They lead to an optimal-control formulation and suggest

procedures for obtaining numerical solutions of quite general problems.

The plan of the paper is as follows. In Section 2 the optimal control prob-
lem is given a precise statement and its connections to the examples are dis-
cussed. Section 3 contains the main mathematical results on the continuity and
differentiability of distance functions. The results are expressed in a fairly gen-
eral form and may have other applications such as on-line collision avoidance
control schemes [9]. One approach to the numerical solution of the optimal con-
trol problem is outlined in Section 4. The problem of numerical solutions has
many diverse and difficult aspects and our study of it has just begun. Thus the
presentation in Section 4 should not be considered as final or completely author-
itative. It does raise critical issues and gives some useful ideas for addressing
them. Section 5 shows a few numerical results for the example of Figure 1.

Section 6 contains some concluding remarks.

This report is an amplification of results which first appeared in [10].

2. Path Planning as a Problem of Optimal Control

In this section we establish a general framework for path planning prob-

lems. It is an optimal control problem with special state constraints expressed
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by distance functions.

The following notations and definitions are used: z€ER ™ is a column with
components z' ,AER™*" is an m by n matrix with elements A ] J, ER™ X" is

the identity matrix, the ! denotes transpose, <z,z>=z'z is the inner product

1
on R" |z|=<z,z> % is the norm on R",z<0 means z' <0 for =1,...,n. For

§15,CR", =zER"™,AER"*"  let: SiESo={zt  25:2,€5,2,€5,},
AS 1 ={Azz,€S,}, and S;={z} denote a singleton. Functions of several

variables which have continuous partials of order up to order k are said to be
ck .
The optimal control problem involves the minimization of

J =L, (2(0),z(r)) + [L(z(t),u(t))dt (2.1)
0

subject to the constraints

z(t) = f(z(t),u(t)), a.a.t€[0,a], (2.2)
h(2(0),2() = 0, (2.3)
g(2(t),u()) <0, tE[0,7]. (2.4)

Additional requirements are: 0<7<a where 7 is either fixed or free and a is
fixed; x(-)EX, where X denotes the set of absolutely continuous functions from

[0,a] into R™ ; u(-)EU, where U denotes the set of measurable, essentially

Distance Functions 7
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bounded functions from [0,a] into R?. It is possible that the components of g
are either functions of z only or # only. Thus (2.4) can implement both state

and control constraints. The problem data satisfy

Assumption A.1: Let n,p,Ny,N;, be positive integers. The functions

L,:R® XR®—-R, L:R™XR?—-R, fR®XRP—R", hR"™xXR"—R™M
g:R™ XR? >R™ are C1,
To this rather general optimal control problem we add constraints

corresponding to obstacle avoidance. These constraints require
K; (2(t)NK; (2(t)) = ¢, telo,,(i,5)€l, (2.5)

where the sets K;(z)CR™ describe the space occupied by parts of the robotic
mechanism and its environment, I is the set of index pairs corresponding to the

parts which must not collide and ¢ is the empty set. The sets have the form
Ki(z) = T;(z)C; + {p:(2)}. (2.6)

In applications m = 2 or 3. The sets C; characterize the shape of the (rigid)
parts; the matrix T; and the vector p; specify the rotation and translation of
the parts due to robotic motion. In applications, the matrices T; are orthogonal

1

and, therefore, nonsingular.

It is convenient to describe the requirement (2.5) by the distance between

the sets:

8 _ Distance Functions
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d; (z) = min{|z; -z |:z €K; (7),2; EK; (z)}. (2.7)
To make sure (2.5) holds with some margin for error, we impose the conditions
dg-d;; (z(1)) <0, tefo,7, (i,f)el, (2.8)
where the d;7>0 are measures of the margin. The constraint data satisfy

Assumption A.2: Let m and N, be positive integers and IC{I,...,NO 32,

The sets C;CR™, ¢ =1, ..., N,, are compact. The functions p;:R" =R ™,
T;:R*—R™X™ {=1,.,N, ,are C!. For each z€R", T; (z) is orthogonal,

i =1,..,N,.

Thus the complete optimal control problem consists of minimizing J sub-
ject to (2.1) - (2.4) and (2.6) - (2.8). The problem data satisfy assumptions A.1

and A.2.

As will be seen from the results of the next section, the properties of d;;
depend on the properties of C; and C;. In particular, A.2 implies dj is
Lipschitz continuous but not necessarily differentiable. The lack of differentia-
bility dées not upset most results on the existence of optimal solutions (see, e.g.
[11]), but it does complicate the application of necessary conditions and numeri-
cal optimization techniques. As discussed in Section 3, if either C; or C; is
strictly convex d;; is continuously differentiable on the domain of interest and
the complications are avoided. In specific applications it is often possible to

achieve the strict convexity without introducing significant modelling errors.
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For instance, K in Figure 1 can be approximated by the slightly bulged set
shown by the dashed lines. Moreover, most nonconvex objects, such as

K| JK 7, can be represented satisfactorily by the union of convex sets.

In this paper we restrict our attention to robotic mechanisms which satisfy

dynamic equations of the form

M(q(t))a(t) + Fla(t),q(t)) = H(q(t))u(?). (2.9)

Here: g(t)€ER? describes the configuration of the mechanism, M(q)ERPX? is a

nonsingular inertia matrix, F(q,q) represents a variety of force terms including

actuator damping, H(q)ERP?X? is nonsingular, u(¢{)ER? is the actuator input.

By choosing n = 2p and z = (q,q) it is clear (2.9) can be written in the form
(2.2).

Consider the formulation of the optimal control problem for the example of

Figure 1. A fairly accurate dynamic model is

mig () + et gt () =hTui(t), i =123 (2.10)
where the m® are the inertias of the (essentially) uncoupled axes, the ¢' A* are
parameters of DC motor drives, and the u* are motor control voltages. Limit
constraints on ¢'(),¢%(¢) and ¢3(¢), and on u '(¢),u2(¢),u3(¢) are imposed by the
choice of g. The beginning and ending points A,B give ¢(0) = ¢4 ,¢(7) = qp
and ¢(0) = ¢(r) = 0; these conditions determine 4 . The energy required to

transfer the payload in a fixed time ris

10 . Distance Functions
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(w' (£)2-b% u’ (t)q" (t))dt, (2.11)
1

I []ee

T
J={
04
where the b° >0 are motor parameters. Clearly, N, = 7] = {(1,2),....(1,7)},

and m = 2. Only K, is dependent on z;K; = C; for i =2, ...,7.

Similar remarks apply to the second example of Section 1. The components
of q are variables such as joint angles which describe the configuration of the
two manipulators. Since the dynamics of the two manipulators are not coupled,
the matrix and vector functions M(q),H(q),F(q,q) have a special, partly uncou-
pled structure. Of course, the system (2.9) is nonlinear and much more complex
than (2.10). In addition, there are constraints of the form (2.3) and (2.4) to
implement the desired starting and ending positions and limits on the configura-
tion and control variables (joint torques or forces). For minimum time, 7 is free
and L,=0,L=1. The index set Iis likely to have many elements, particularly

if the various links are to be represented by the union of several convex sets.

Our numerical approach produces a smooth approximation to the optimal
q(t) and »(¢) . This is an advé.ntage because they may be used to provide nomi-
nal inputs for the manipulator control system. Similarly, AM(q(¢)) and
F(q(t),q(t)) are available and may be useful in implementing the feedback con-

trol law.

Provided motions satisfying the constraints exist, both of the example prob-

lems have optimal solutions. This follows from standard existence theorems.

Distance Functions 11



RSD-TR-7-84

See [11], Chapter 9.

3. Properties of Distance Functions

We now consider the distance between two sets in R™ which are the
images of fixed compact sets under affine mappings. It will be shown that the
dependence of the distance on the parameters of the mappings is Lipschitzian,
but not necessarily differentiable in the Frechet sense. Clarke [12, 13| has
developed a theory of derivatives for Lipschitz continuous functions and we
apply it to obtain important properties of the dependence. Our results have

obvious connections to the problem of the preceding section.

To simplify the presentation, we abstract the notation of the previous sec-

tion. For i =12 let: C; CR™ be compact, p; ER™ ,T; ER™X™ |

Ki(T;,p;) = T; C; + {p; } (2.1)
= {z2:z2 = T; w + p; , weC; }.
The quadruple (T |,p T 9,p ) is written as
P=(TpyTopo)eP = (R™Xm xR ™ )2, (3:2)
The distance between K ; and K, is
d(P) = min{|z-z5|:2 €K (T 1,p),22€K o( T2, 2)} (3.3)

Clearly, the minimum exists and thus d:P =R is defined by (3.3).
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It is worth noting that the compactness of C'; and C, seems to be essen-
tial. The example, C| = {z:2,> e} CR%C,= {2:2,< -1}CR? P=
(14,0,14,0), shows that the minimum may not exist if C, and C, are merely
closed. Replacing the "min” by "inf” does not solve the problem but leads to
another difficulty: d may be discontinuous. This can be seen by perturbing P in

the example (for instance rotate C'5 about the origin).

Inner products and norms on R ™X™ and P are introduced in the obvious

way. For T,TER™X™ and P,PcP:

<T, T> — i T"J- Tf].,
_ b=l ~ (3.4)
<P7P>= E (<Tk7Tk>+<pkﬁk>)
k=12
The inner product on R ™X™ has the property that for z,w€R ™
<zw' \T> =7 Tw. (3.5)
1 1
The norms are: |T| = < T,T>2 ||P|= <P,P>?2.
Theorem 3.1 There exists M >0 such that for all P,FEP
|d(P) - d(P)|[<M|P - P|. (3.6)

Proof. Clearly,

Distance Functions 13
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d(P) = min{|T w, + 7y - Towy - Pol:w,EC ,wo€C}

+HP1py) —(To- Towy - (Fa— po)l
for all w,EC,, w,EC, Pick w,,wy to minimize |T ,w,+ p; - Towy - pol.
Then it follows that

d(P)<d(P) + ”Tl -T|IMy + |py - Pl

_ ! (3.8)
+ ||[To - Tol|Ms+ P2 - pol,

where M; = max{|w|:w€C;},i = 1,2, and || T|| is the spectral norm of T. Not-
ing ||T|I<IT|, |T;|<|Pl,|lp;|<|P| and setting M = M, + M, + 2 gives
d(P) - d(P)<M|P-P|. Interchanging the roles of P and P gives

d(P) - d(P)<M|P - P| and thus (3.6) follows.

While d is uniformly Lipschitz it does not necessarily have a Frechet
derivative (gradient) syd. This can be seen from the sets K| and K, in Figure
1. If K is rotated clockwise from its indicated position about its center, the
distance between K ; and K, changes at a different rate than if it is rotated
counterclockwise. The theory of Clarke [12, 13] does apply. Specifically, it will
show that d has a generalized gradient dd and a directional derivative D *d .
See the Appendix for definitions of the various derivatives and a summary of

results appropriate to what follows.

Let

14 Distance Functions
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P+ = (peP:d(P)>0}. (3.9)

By the continuity of d it follows that P+ is an open set. Consider

P+ X C X Cya—R defined by

n(Pwy,wo) = |Tywy+ py - Towz - pol. (3.10)
Then

d(P) = min{n(P,w ;,wo):w EC |,w,€C,}. (3.11)

Note 7540 on its domain. Thus, 5 is differentiable with respect to P. Specifi-

cally, letting

WP,wy,we) = n(Pw,wo) (T ywy+ py - Towy - po) (3.12)
gives

an . .

—— (P,w,wo) =~ (P,w{,ws)wi, :

aT? ( 1We) ( LW W] (3.13)
9 )
—n—,- (P’wl’w2) = 7‘ (valvw2)' (3.14)
op1

By collecting together all the partial derivatives of n with respect to the ele-
ments of P = (T ,,p,T9,po) We can view 7 pn(P,w,w,) as an element of P.

In particular, it is the quadruple

VP n(P7w19w2) == (’711) ]’ Ty — 7w2' y T ’7)a
. (3.15)
7 =Pwwy).

Distance Functions 15
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With these notations and those of the Appendix it is now possible to character-

ize the derivatives of d.

Theorem 3.2 For all PEP+,8d(P) and D *d(P;') exist and are given by
0d(P) =cof(yw, yywg ) = APwy,ws)(wy,wa)EW(P)}, (3.16)

D+d(P’P)=mln{<VP '](P)wlvw2)vp>:(wl,w2)e W(P)}

= min{YP,w,wy)' (T w+p - Towqe-po)(w,,wo)€W(P)}

(3.17)

where
W(P) = {(w,wo)€EC X Coin(P,w,,w,) = d(P)}. (3.18)

Proof. It is only necessary to note (3.11) and use Results 3 and 4 of the

Appendix with the following substitutions: P—z,(w, wz)—vu,P*—»O,

C X 02—+U , = — ¢,d— ~ f,P—v. The required conditions on ¢ and 7, ¢ are
verified immediately from (3.10), (3.12), and (3.15). The second formula for

D *d follows from (3.5) and (3.15).

Theorem 3.3 Suppose PeP+ and
W(P) = {(#1(P),¥2(P))} = singleton . (3.19)
Then d has a gradient at P which is given by
Vd(P) = v pn(P,,(P),o( P)). (3.20)

Moreover, for PEP

16 Distance Functions
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< d(P),P> = A(P,iy(P)4g(P)) (T yy(P)

—~ ~

N (3.21)
+ 01~ Too(P) - pa)

Proof. Use Result 1 of the Appendix with the same notation as used in the

proof of Theorem 3.2.

Some simplifications in the above results occur if convexity assumptions are

added.

Theorem 3.4 Suppose C'; and C, are convex. Then for all peP: (C1)

W(P) is convex , (C2) 4(P,w (,w,) is independent of (w |,w,) for (w,,w,)€W(P).

Proof. Result C1 follows because W(P) is the set of minimizers for a con-
vex function (n(P,,’)) on a convex set (C;XC,). It is clear that for
(w,w4)EW(P), W(P,w,,ws) = |z|"'z where z is a minimizer of |z| on K(Typy)
- I{o(T9,ps). Since there is only one element of minimum norm on a closed

convex set, result C2 follows.

Because of C2 it is possible to write
AP, wywae) =7, (P) (wy,wa)EW(P). (3.22)

From (3.15) with ':1:: 7. (P) this shows that 7p n(P,,") is affine on C{X C,.

Hence (3.16) and (3.17) are simplified:

8d(P) = {(yw,' 1wy )7 = 7, (P)(w,,wo)EW(P)}  (3.23)

Distance Functions 17
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~ ~ ~ o~

D*d(P;P) = min{~, (P (Tyw+p - Tawypo)(w,w)EW(P)}. (3.24)

~

Note D *d(P;P) is obtained by minimizing an affine function on the convex set
W(P).
With still stronger conditions d is C! . Let
N= {PeP+: T, T, are nonsingular }. (3.25)

Since det T; ,# = 1,2, is continuous on R ™X™ it follows that PA’} is an open set.

Theorem 3.5 Suppose the sets C'|,C, are both convex and at least one is
strictly convex. Then: (SC1) W(P) is a singleton for all PeP ¥, (SC2) d res-

tricted to P § is CL.

Proof. Conclusion SC2 is a consequence of SC1 and Result 2 of the Appen-

dix. Now consider the proof of SC1. For PeP+ it is easily shown that
Vv, "(P’wlvwi.’) = - (—l)i Ti’ 7(P?wl’w2)' (3'26)

From this ¢, n(P,w,w5)#0,# = 1,2, for PGPR,’ and (w ,w9)€C ;X C,. Since
(wy,wo)EW(P) solves (3.11), (w,wo)€ W(P) implies w; € boundary C; i=1,2.

Assume, contrary to SC1, that (@ ,w,)7#(w,,w,) are both in W(P). It follows
from T, and T, nonsingular and C2 that @,#w, and @Wo,#w, From Cl,

Aw; + (1 - N)w; € boundary C;,i = 1,2 and 0<A<1. This contradicts the

18 Distance Functions
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assumption that either C'; or C, is strictly convex.

Extensions of the above results are possible. First, Clarke’s theory may be
applied to the characterization of d on all of P. This is because n(P,w,w,) is
Lipschitz at n = 0 , even though it doesn’t have a Frechet derivative at n = 0 .
However, the details are more complex and of no value in the collision avoidance
problem where we require d(P)>0. Second, if T, and p, are fixed, Theorems
3.1-3.5 still apply to dependence of d on T,p,, even though C, is only closed.
A more complex method of proof must be used and, again, the result has limited

practical value. In the real world fixed obstacles are of finite extent.

4. Numerical Solution of the Optimal Control Problem

Numerical solution of the optimal control problem (2.1)-(2.4), (2.6)-(2.8) is a
complex task which raises a number of questions. These include: (1) approxi-
mation of the infinite dimensional system by a finite dimensional system, (2)
imposition of the equality constraints (2.2) and (2.3), (3) treatment of the ine-
quality constraints (2.4) and (2.8), (4) choice of the descent algorithm, (5) effi-
cient calculation of the various functions and their derivatives, (6) determination
of a good initial approximate solution which is feasible, (7) achievement of rea-
sonable computational cost. It is not clear what algorithmic approach addresses
these questions in the best way. In this section we present one approach which

appears to have a number of advantages. It assumes the system dynamics are

Distance Functions 19
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described by (2.9) and the function A is affine. This permits the solution of a
wide class of path planning problems, including the examples discussed in Sec-
tions 1 and 2. To keep the notation reasonably simple and to emphasize the
conceptual issues, the approach is described in general terms. Actual implemen-

tation of the approach involves attention to important, complex details.

Questions (1) and (2) are resolved together in the following way. The state
z(t) is approximated by restricting it to a linear subspace of X. Specifically,

the approximation is

K .
g(t,a) = Y o' ¢;(t) (4.1)

1=1
where a€R K and the ¢; are basis functions for the subspace. It is assumed
that the ¢, are at least twice differentiable. The most natural choice for the ¢;

are piecewise polynomial splines of limited support [14]. The equality constraint

(2.9), which is another way of writing (2.2), is satisfied by choosing u(¢) equal to

u(t,a) = HY(q(t,0))(M(q(t,a))q(t,a) + F(q(t,a),q(t,a))). (1.2)

The functions g(¢,a) and g(t,a) have obvious expressions in terms of g.ﬁ,- and ;p‘.,-,
which are easily computed if the ¢, are splines. Moreover, for mechanical mani-
pulators there are efficient recursive procedures [15, 16] for evaluating the left
side of (4.2). Specifying the finite dimensional approximations of ¢(t),q(t) and
u(t) in the above way provides an exact solution of (2.9), avoiding numerical

integration of (2.9). By defining z(¢,a) = (¢(¢,a),q(t,a)) it is clear z(¢,a),u(t,a)

20 Distance Functions
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solves (2.2). The integration of (2.1) still requires a numerical scheme, but a
simple quadrature formula suffices. Similar ideas have appeared previously in

the literature. See, e.g. [17].

Now consider the constraint (2.3). Since h is affine,
h(2(0),2(7)) = H119(0) + H129(0) + Hyq() + Hoppq(r) + h, =0, (4.3)

where h, €ER N",H,-J- erMxr Setting ¢(¢t) = ¢(¢,a) in (4.3) yields an affine
constraint on a . Provided the ¢; and H;; satisfy reasonable assumptions the

constraint on o has a solution which can be expressed by
a = Ila + (4.4)

where acR KM 7TERKE MeR KXWH-M) — ppye (2.3) is satisfied by expressing o

in terms of @ by (4.4).

Having obtained exact solutions of the (more troublesome) equality con-
straints, we accept approximate implementation of the inequality constraints.
The approach is to use interior penalty functions [18, 19]. This causes the con-
straints (2.4), (2.8) to be satisfied, but increases J somewhat because the penalty
functions force the solution away from the constraint boundaries. The penalty
function approach requires the constraint set to have an interior. This is a phy-

sically reasonable condition for our problem.

The penalized cost has the form
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r

J(a.p) = L, (2(0,a),2(r,a)) + [L(z(t,a),u(t,a),p)dt (4.5)

o

where

-— NI
L(z,u,p) = L(z,u) + p 3] B; (-g; (z,2))
1=1

(4.6)
+p Y By(di(z) - d).
(el
The functions fB; and B; have the following properties: [:(0,00)—R is

C!3(e)>0 and % (¢)<O for all e,f(e)—co as e—0 . An example of such a

function is

Ble) = B (eg™' + e12-2), 0<e<E, fle) = 0,e>F, (4.7)

where the numbers €,6>0 measure respectively the point where the penalty
becomes active and the strength of the penalty. The parameter x>0 is selected
in the usual way to establish a trade-off between bad conditioning of J and

acceptably small degradation of J .

Finally, J must be integrated numerically. This gives j(a,u)% J(a,p)
where

~

Jlo,p) = L, (2(0,a),2(1,0)) + ia; L(z(t; a)u(t; a)p) (4.8)
=0

Here, the ¢t;,0; determine the “time grid” and the method of numerical
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integration. It is important that the ¢; be close together, particularly where the
penalty terms are changing rapidly. Otherwise, the penalty terms in L may fail
to enforce the inequalities (2.4), (2.8). On the other hand, the computational
cost grows almost linearly with v . At a given ¢ = £, only a few of the con-
straints (2.8) are likely to be active. Therefore, many calculations can be elim-
inated by having a simple scheme which omits evaluation of d;; (z(¢,a)) when

the sets K; and K; are widely separated.

The last step in the overall solution process is the numerical minimization

of L}(c—v) = }(Hc—y + mp) . From the preceding section it follows that J , which
depends on d;; (z) , is Lipschitz but may not be C'! . The numerical minimiza-
tion of such functions presents both theoretical and practical difficulties [20, 21,
22]. The resulting algorithms tend to be complicated, since they involve a
smoothing of the generalized gradient in order to determine a direction of des-
cent. For our problem it seems much simpler to carry out the “smoothing”
directly by using the suggestion of Section 2: Assume the Cit =1,...,N, , are
convex and at least one of the sets C; ,C; 1s strictly convex for each (i,j)EI . By
Theorem 3.5 this causes the d;;(z) and hence J to be C'!' . Then standard
minimization algorithms, which have excellent convergence properties, may be

used.

To begin the minimization an initial choice of & must be made. Because of

the interior penalty function, the corresponding initial path must satisfy strictly
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the inequalities (2.4) and (2.8). In many problems, an admissible path is evident
from the geometry; alternatively, one may be generated algorithmically by the
methods of [3, 4]. Once an admissible path is known, & can be determined by a
spline fit of the path (this another advantage of doing the computations in
terms of ¢(¢) rather than u(¢) ). For example, in Figure 1 there is an obvious

sequence of translations and rotations which achieve a transfer from A to B.

Efficient minimization algorithms also require the evaluation of vj . For-
mulas for v.} are obtained by applying the chain rule of differentiation to the
series of expressions which define J . We omit the details, but comment on the
terms which are computationally most expensive: the derivatives of d;; (z) and

u(t,a) .

Application of (3.21) gives

ody . _  _ . _ 0T B
Py (Z) =5+ - 47 (5 * - 5 ) (— (D, *
z oz 1.9)
P - 2L .- 2 (g "
r)— ryw, - I}).
dz*k oz* ! ok

Here, 2 %z x are the (unique) minimizers from (2.7) at =7 and
w+= T,/ YZ)F * - p(T),l = i,j . All the terms which show explicit depen-
dence on Z are rather simple functions of ¢ and T,"YZ) = T}' (7)l =1 .

Thus, the greatest potential for computational expense is the solution of (2.7).

There are a variety of approaches ranging from the use of quadratic program-
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ming algorithms to the derivation of explicit solution formulas. Several of the
approaches are being investigated for numerical efficiency, along with pro-

cedures for approximating convex sets by strictly convex sets.

The most difficult computation in the differentiation of (4.2) with respect
to a is the differentiation of M(q) and F(q,q) with respect to the components of
q and q . For some systems, such as the one in Figure 1, the computation is
easy. General manipulator dynamics offer a greater challenge. Some interesting
methods for treating them have been developed and will be reported in a later
paper.

It is worth noting that the computations described in the preceding two
paragraphs have exactly the same form at each ¢; . Moreover, the distance
minimizing problem for each (i,j)EI are independent of each other. Thus it
would be possible to greatly speed the computations by using a computer with

parallel processors.

5. Numerical Solution of the Example

To test the ideas of Section 4 the system in Figure 1 was solved numeri-
cally for several cases. The following paragraphs give the details.

The dynamics and cost are given by (2.10) and (2.11) with

' =b"=h' =1,1=123, and m'=m

o
-

= 1. There are six cases as

summarized in Table 1. The constraints (2.3) and (2.4) correspond to:
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9(0)=(2,2,0) ,q(1)=(18,2,0) ,¢(0) = ¢(7) = 0,0<¢'(1)<20 ,0<q*()<10.
The payload K, is .8 units wide and 2 units long. It is made strictly con-
vex by bulging its sides slightly into circular arcs of radius 100. The distance

minimizing problems are solved easily so that their solutions can be expressed

explicitly by relatively simple formulas.

The functions ¢, (¢) represent a cubic spline basis for ¢l(¢),q%(¢),q%¢) :
specifically, the components of ¢, (t) are normalized B-splines of order 4 [14]
with the knots producing 40 equal intervals in [0,7]. Thus K = 3X43 and
dima = 3X39 = 117. The j; and §,; in (4.6) have the form (4.7) with € = .2
and 3 = 1. The remaining parameters in (4.6) are df = .1 and p = .1 for all
cases. The formula (4.8) was obtained from the composite Simpson’s rule where
the time grid partitions each spline knot interval into I' equal sections , where
I' =8 . Points along the piecewise rectilinear path P, in Figure 1 were used to
generate an initial spline for the optimization algorithm. A BFGS - type algo-
rithm [23] was used to carry out the minimization. Typically, vj% 0 was
obtained in about 300-600 evaluations of J and vj. Smaller values of
p(p = 1072,107%) were also tried in several cases. The result was a somewhat
improved cost (approximately 10%) and a closer approach to the obstacles. The
poorer conditioning of the penalized cost did not affect the number of iterations
significantly, although convergence did require the use of a better initial path

than P, .
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The resulting paths for cases 1 through 6 are indicated in Figures 2 through
7. The energies of the initial and final paths as obtained in the computational
process are given in Table 1. The optimization produces appreciable reductions
in cost. This is no doubt due to the rather abrupt starting and stopping along
the initial path. As expected, the optimal cost decreases as either 7 increases or

m3 decreases.

The use of Simpson’s rule ensures that the actual cost, being a piecewise
cubic polynomial in this example, is integrated exactly for all the above cases.
However, the penalized portion of the cost is not, and the distance constraints
(2.8) may be violated at values of ¢ between grid points. This was observed to
happen when I' = 1. The paths obtained in [10] had this difficulty, although it
was not detected at the time [10] was written. A plot of distance versus time

for each object pair in the index set is given in Figure 8 for case 1.
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TABLE 1. NUMERICAL RESULTS

CASE T m3 INITIAL COST FINAL COST
1 20.0 0.25 214.75 3.8374
2 20.0 1.0 214.75 4.9214
3 20.0 4.0 214.75 5.6072
4 20.0 16.0 214.75 6.0235
5 40.0 0.25 26.84 0.5030
6 40.0 1.0 26.84 0.6397
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Figure 2. Final Path for Case 1.
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6. Conclusion

In this paper we have formulated an optimal control problem which
includes a great variety of path planning problems. Obstacle constraints are
expressed in terms of the distances between potentially colliding parts. We have
studied the properties of these functions and found that they are continuously
differentiable and have simple gradient formulas provided ”strictly convex”
modelling of part shapes is used. An algorithmic approach to the optimal con-
trol problem has been proposed and has proven successful for a cartesian mani-

pulator in 2-space.

Manipulator problems in 3-space are much more complex than our example,
but we feel that the ideas we have set forth will prove fruitful in their solution.
The distance function approach may also be useful in finding admissible
geometric paths; in this case the “dynamics” are very simple since they are
integrators whose function is to produce smooth connecting paths. Unlike many
of the presently known geometric approaches [1, 3, 4, 5], there is no conceptual

problem in treating multi-member mechanisms in 3-space with this approach.

7. Appendix

Here we summarize some results of Clarke [12, 13] on the differentiability
of Lipschitz functions. In all of what follows O is an open subset of R" and

7:O =R s locally Lipschitz.
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It is known that f has a Frechet derivative (gradient) at almost all points of

O , i.e., for such points z there exists 7f(z)ER™ with
6z (f(z + 62)-f(z)-<V/(z),62>)—0,62—0. (A.1)

The usual one-sided directional derivative at z is denoted by D *f(z;v) and, pro-

vided the following limit exists for all vER™ , is defined and characterized by
o l(f(x + av) - f(z) - aD *f(z;v))—0,a]0. (A.2)

The generalized gradient of f at z is

ofiz) = cofw:flz; )=w,vf(z; )exists,z; —z}, (A3)
where co denotes the convex hull. For all zEO the set df(z)ER™ is nonempty,
compact, and convex.

We now state the results which are needed in Section 3.

Result 1 ([12], Prop. 1.13). The following statements are equivalent:
df(x) = {&} , a singleton; f(z) exists; v f(z) = &.
Result 2 ([12], Cor. of Prop. 1.13). The following statements are equivalent:

fis CL0f(z) is a singleton for each 20 .
The remaining results concern the function
f(..r) = max{g(z,u):uEU}, (A.4)
where g:OXU—+R and U is compact. It is assumed that ¢ satisfies the fol-

lowing conditions (somewhat stronger than those in [12]): (1) ¢ is continuous;
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(2) g is locally Lipschitz in z , uniformly for velU ; (3) the Frechet derivative of

g with respect to z,57, g(z,u) , exists and is continuous on OxU.

Result 3. D *f(z;v) exists for all 20 . Moreover,

D *f(z;v) = max{< vy, g(z,u),v>:u€EM(z)}, (A.5)

where
M(z) = {veU:g(z,u) = f(2)}. (A.6)
Result 4. The generalized gradient exists and is given by
0f(z) = co{v, g(z,u)ueM(z)}. (A.7)

These results follow from Theorem 2.1 of [12], with the trivial modification

in the proof of the Theorem that O replaces R " .
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