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Simulation System for Analog and Digital 
Transmissions 

GIULIANO BENELLI, VITO CAPPELLINI, MEMBER, IEEE, AND ENRICO  DEL RE, MEMBER, IEEE 

Abstract-In  this paper a  complete  communication  system  simulation 
package is described,  which  includes  digital as well as analog  operations to 
be performed on the  signal  to be transmitted. The package  simulates  the 
transmitter,  the  communication  channel, and the  receiver. 

The  digital  transmission  simulation  considers  data  communication sys- 
tems with  digital  filtering,  source  and  channel  coding  performing  the 
operations of  transmitter  coding  and receiver  decoding.  The  two  coding 
operations  can  be  realized  both  separately and  independently  and  in a 
strictly  connected  or  “integrated”  form. 

The analog  transmission  simulation  includes  the  modulator,  the  trans- 
mitter  pulse  shaping  filter,  the  communication  channel,  the  receiving  filter, 
and the  demodulator. This section is very general, so that  it  allows  the 
simulation  of  both  analog  and  digital  transmissions. 

Simulation  results are presented  regarding  some  combinations of the 
following  techniques:  predictive  source  coding,  block codes able to correct 
random  and  burst  errors,  and  modulation techniques  such as AM, M-level 
PSK, FSK, and MSK. In  particular, the paper  presents  the  results  of  the 
analyses of  an  integrated  source-channel  coding  applied to digital  transmis- 
sions and  of a  system  transmitting  both  voice and data  for  a VHF 
communication  link  between  ground  and  aircraft  for  air  traffic  control 
applications. 

I. INTRODUCTION 

T HE design and performance evaluation of a complete 
communication system  is  very difficult because of the 

number of different parameters and subsystems that can be 
chosen and varied. Although powerful methods are avail- 
able  to  the design and system engineer for a theoretical 
analysis, in many cases the computer simulation of a 
complete communication system  as  well as some of its 
parts is a convenient practical approach-and sometimes 
the only practical approach. As a- few examples we can 
mention the analysis and design of digital communication 
systems where finite-precision arithmetic operations are  to 
be taken into account at various points, or where perfor- 
mance evaluation parameters such as the probability of 
error  and  the redundancy reduction factor (compression 
ratio) must be determined. Computer simulation is also 
useful in  the analysis and design of analog communication 
systems when analytical methods become too cumbersome 
to yield numerical results, or theoretical solutions are of 
limited use in practice. 

In this paper  a complete communication system simula- 
tion package is described for  both analog and digital 
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transmissions. The package simulates the transmitter, the 
communication channel, and  the receiver. The  input signal 
can be either analog or digitized analog or digital data.  The 
simulation of  data communication systems includes the 
operations of digital filtering, source and channel coding 
and decoding. In particular, source and channel coding 
and decoding can be realized both separately and indepen- 
dently  and in a strictly connected or  “integrated” form. 
The integration of the two techniques in a unique opera- 
tion permits one to match the channel coding to the source 
coding, such that  the overall sensitivity to errors intro- 
duced by the communication channel is greatly reduced. 
The package includes the simulation of the modulator, the 
transmitter pulse shaping filter, the physical transmission 
channel, the receiving filter, and  the demodulator. This 
part is  very general, so that  it allows the simulation of both 
analog  and digital transmissions. It operates in both  the 
time domain and the frequency domain, through the  ap- 
propriate ’use of the fast Fourier transform algorithm. 
Section I1 describes the general organization of the simula- 
tion system  with its  input and-output capabilities. Section 
I11 describes in detail the processing section of the simula- 
tion package, which includes the digital and analog trans- 
missions. Finally, as illustrative applications of the simula- 
tion package, Section IV  shows the results obtained for two 
different communication schemes: an entirely digital com- 
munication system including source and channel coding, 
and  a hybrid communication system able to transmit both 
voice and data in the same bandwidth. In particular, the 
latter scheme has been considered for aircraft-to-ground 
and ground-to-aircraft communications in an air traffic 
control environment. 

11. GENERAL STRUCTURE OF THE SIMULATION 
SYSTEM 

The general organization of the simulation system  is 
shown in Fig. 1. The system consists of an  input section, a 
processing section, and an output section. 

The  input section can deal with both analog signals and 
digital data. Analog signals are first sampled and  quan- 
tized. The sampling frequency and the number of quantiza- 
tion bits as well as  the quantization law  (e.g., linear or 
nonlinear quantization) can be arbitrarily chosen according 
to the characteristics of the signal and  the transmission 
system to be analyzed. The digital signal is stored in  an 
intermediate memory (generally the computer magnetic 
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Fig. 1. General  organization of the simulation  system. 

tape or disk). In case of external digital data, they are 
directly stored in  the intermediate computer memory. 

The processing section includes the computer central 
unit  that reads and appropriately processes the stored 
digital information in order to simulate the transmission 
system to be analyzed, as will be described in  more detail 
in the following section. The  computer may also generate 
particular data  patterns with  specified statistics and vari- 
able length in order to simulate some  desired random data 
or signals,  necessary, for example, for the modeling of 
noise in the analog  communication  channel  and of random 
and  burst errors in digital transmission. 

The results of the computer processing are supplied to 
the output section. Here the results can  be directly out- 
putted, as those concerning the overall performance (e.g., 
the error statistics and/or the signal-to-noise ratios) of 
transmission systems,  or can  be stored in an intermediate 
memory, as is generally the case for the  output signals or 
data from the simulated transmission. system. After an 
appropriate digital-to-analog conversion, the output sec- 
tion can  supply the analog signal suitable for a tape 
recording and for a direct display. 

111. PROCESSING SECTION 

The flow-diagram  structure of the .whole  processing  sec- 
tion is  shown in Fig. 2. 

From the input section, the stored version of the input 
signal is read first. 

In the case of digital transmission system simulation, the 
processing section can  perform the operations of digital 
filtering, source coding, and  channel coding. Afterwards 

, , N , O Y ,  , ~ , 
YSTEM 

DIGITAL MODULATOR 
FILTERING 

1 I 1  
SOURCE 
CODING 

CHANNEL 
COOING 

FILTER 

ANALOG 

FILTER 

CHANNEL 
DIGITAL U OEMOOULATOR 

CHANNEL 
DECODING 

SOURCE 
DECODING 

EVALUATION 

OUTPUT SECTION 

Fig. 2. Processing section. 

two possible alternatives can  occur  and be simulated. In 
the first one (logical simulation), only the two-state (0 and 
1) digital stream of data is of interest in any point of the 
transmission system-in other words, only the logic value 
of the digital data has to be considered and simulated. In 
t h s  case the simulation system requires a pure digital 
channel. After the digital channel simulation, the channel 
and source decoding operations at the digtal receiver are 
performed. In the second alternative (physical simulation), 
the waveform of the transmitted digital signal is of interest 
and therefore must  be simulated. This is the case, for 
example, when baseband or modulated digital transmission 
must  be analyzed. Therefore, the simulation system  re- 
quires the modulator to shape the digital data, the trans- 
mission filter, the analog channel, the receiver filter, and 
the demodulator.  At this point digital data  are again ob- 
tained at the receiver and  must  be  decoded as in the 
previous case (channel decoding  and source decoding). 

When  analog transmission systems must  be analyzed, 
after having  received the digitized input signal, the process- 
ing section simulates the transmitter-channel-receiver 
chain  by  means of the same processing  blocks as shown in 
Fig. 2. Of course, after the demodulator,  in this case, no 
channel and source decoding operations have to be per- 
formed. 
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At  the  end of this simulation procedure, the recovered 
digital data  or digitized analog signal at the receiver output 
are processed to obtain meaningful parameters for system 
performance evaluation, and can be compared with the 
system input  data or signal to  obtain, for. example, the 
statistics of the  error  rate of digital transmission systems 
and  the signal-to-noise ratios  for analog transmission sys- 
tems. 

The structure shown in Fig. 2 is clearly able to simulate 
the most general transmission system of interest. Of course, 
it can be easily adapted when dealing with particular 
systems having a simpler structure. Any block but  the 
decision blocks can  be bypassed without affecting the 
operations of the other blocks. 

Each block of Fig. 2 corresponds to  a program package 
with standardized input  and  output interfaces to com- 
municate with other blocks. This allows a great flexibility 
in  the actual system configuration and use. 

A detailed description of the capabilities of the blocks of 
Fig. 2 is  given in the following subsections. From  a general 
viewpoint we should mention here that the data generation 
with particular statistics shown in Fig. 1 is included in the 
digital and analog channel blocks of Fig. 2, as required for 
a correct simulation of the  actual transmission channel 
behavior. Another general feature is the source decoding 
operation available in the source coding block (simply 
obtained by a duplication in this block of the source 
decoding program package). This capability is required to 
evaluate the  separate  contribution of each operation to the 
whole signal distortion:  the comparison between the recon- 
structed signal at  the system output  and  the  input signal 
measures the overall system distortion;  the comparison 
between the reconstructed output signal and the signal 
decoded at the source coding block yields the distortion 
only due  to  the transmission channel; the comparison, 
performed inside the source coding block,  between the 
input signal and  the signal obtained after. the cascade 
application of the source coding and decoding gives the 
distortion  due  to  the redundancy reduction operation. In 
this way, in  addition  to  the overall distortions introduced 
by the transmission system, the  separate  contributions of 
the  different operations can be easily evaluated and com- 
pared. 

In the following  two subsections the blocks performing 
the simulation of digital and analog transmission systems 
are described, respectively, pointing out the capabilities of 
the program simulation package. 

A .  Digital Transmission Simulation 

The simulation of a digital transmission system includes 
the  operations of digital filtering, source coding and decod- 
ing (data compression), channel coding and decoding, and 
the effects of the digital transmission channel when the 
simulation of the physical channel is  not of interest. 

Digital Filtering: Generally, both finite-impulse-re- 
sponse (FIR)  and infinite-impulse-response (IIR) digital 
filters are of interest. From an implementation point of 

view, several structures can be simulated for either FIR or 
IIR digital filters [l], namely: 

1) the direct form, which implements directly the digital 
convolution for FIR filters or  the finite difference equation 
for  IIR filters; 

2) the cascade form, which corresponds to writing the 
filter transfer function as  a  product of second-order fac- 

3) for FIR filters, the frequency-sampling structure, 
where equally spaced samples of the filter frequency re- 
sponse are directly used; 

4) for FIR filters, the structure based on  an  appropriate 
use of the fast Fourier transform (FFT) algorithm (over- 
lay-add or overlay-save methods), where the filtered signal 
is obtained through the inverse transformation of the prod- 
uct of the discrete Fourier transforms (DFT's) of the input 
signal and  the filter impulse response; 

5 )  for  IIR filters, the parallel form, which implements 
the transfer function through a parallel connection of IIR 
second-order sections. 

Any of the previous realization structures can be simu- 
lated in the digital filtering block. Once the filter structure 
has been chosen, the program reads the  structure parame- 
ters as external data. They are supplied by an ancillary 
program that designs the filter to be used in the simulation 
and determines the finite-precision representation of its 
parameters, in order to meet the filter specifications. This 
software organization allows a convenient separation of the 
filter design and implementation phases. Of course, the 
filter implementation software also includes the simulation 
of the finite-precision arithmetic operations of the  actual 
filter: floating-point or fixed-point arithmetic with trunca- 
tion or rounding. 

Source Coding and Decoding: Many algorithms for data 
compression or source encoding are available in  the litera- 
ture. We briefly describe some of the better known algo- 
rithms  to underline the principal characteristics and  prob- 
lems, which are encountered in  the simulation of these 
algorithms. 

Algorithms using prediction or interpolation are widely 
used in data compression for their efficiency and simple 
implementation [2] ,  [3]. In algorithms using prediction, at 
the nth sampling instant  a prediction of the value of the 
present sample is performed based on M previous samples 
[2]. If the difference between the present sample y, and the 
predicted sample yp, ,  is  lower than  a prefixed tolerance 
value A, then the prediction is considered correct and the 
sample y, is  not  transmitted; otherwise it is transmitted. 

The predicted sample y,, , is obtained by a linear weight- 
ing of M previous samples: 

tors; @- 

M 

y p , n =  C ajyn-j. (1) 
j = l  

By varying M and the coefficients a,, many different 
algorithms can be obtained. For example, when M = 1 we 
obtain  the zero-order predictor (ZOP) (al  = 1), while for 
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M = 2 we obtain  the first-order predictor (FOP) (a l  = 2 
and u2 = 1)  and so on. 

Data compression algorithms using interpolation utilize 
both some past and  future samples to predict the present 
sample and  are very similar' to  predictor. algorithms [2]. 
Also, in this case the most utilized algorithms are zero-order 

Another  important .class of algorithms are the adaptive 
algorithms, which. adapt themselves to  the signal time 
evolution [3],  [4]. 1.n such algorithms, the prediction of the 
sample at  the  nth instant is still obtained from ( l ) ,  but the 
ai are varied to follow the time signal activity. The coeffi- 
cients aj are deterniined in such a way as  to minimize a 
specified error criterion as, for example, the mean square 
error.  In this case tliey are chosen in order  to minimize the 
mean  square prediction error 

' interpolator  (ZOI)  and first-order interpolator (FOI). 

where N is  the  number of preceding samples which the 
predictor utilized to learn the signal time evolution. Many 
other modifications of this technique, linear and nonlinear, 
are also considered in the  literature [3],  [4]. 

In  data compression algorithms, time information sym- 
bols must.be transmitted together with nonpredicted sam- 
ples, to give the exact time position- of each received 
sample. The most commonly used methods of time infor- 
mation insertion are [3] 

1)  time information representing the number of non- 
transmitted samples; 

2) time information identifying the absolute position in 
the frame of the  transmitted samples. 

In general, the second method requires a higher number 
of bits than  the first method, but  it  is less sensitive .to 
channel  errors [5]. 

The simulation structure of the previously described 
algorithms is  quite similar. The subroutine, which performs 
the compression operation, has as  input  data  the signal 
samples, the time duration of the signal, the coefficients aj 
utilized for the prediction, and  the tolerance value A .  The 
output  data of the  subroutine  are  the compressed vector, 
which contains nonpredicted samples and  the time infor- 
mation symbols, and  the compression .ratio, (see Section 
111-D on performance evaluation). At the receiver a decom- 
pression subroutine is required to reconstruct the signal 
from  the compressed vector. Detailed examples of sub- 
routines  for  the implementation of the compression and 
decompression operations  are shown in [3] for the ZOP 
algorithm. In the adaptive algorithms, it is necessary to 
implement, together with the compression algorithm, a 
subroutine which computes the coefficients ai utilized in 
the prediction of the samples. 

Other  important  data compression methods, which have 
found a wide application, are differential pulse code modu- 
lation  .(DPCM)  and  delta modulation (DM) [3], [4]. The 
structure of the simulation program for DPCM  and DM 
algorithms is similar to that of predictor and  interpolation 

algorithms. The. structure of DPCM algorithms depends 
strictly on the particular methods utilized for the predic- 
tion of the actual sample and  for encoding the difference e, 
between the present and  predicted. samples. For example, 
encoding en by a Huffman 'code, it is  necessary to imple- 
ment a table which  gives, for each value of e,, the corre- 
sponding codeword. 

Other codes that can be implemented by the source 
coding block are tree codes using a fidelity criterion to 
adapt their strategy to the source behavior. 

The efficiency of a compression algorithm is often given 
through the compression ratio, the mean square error, and 
the .peak error as explained in Section 111-D. 

Channel  Coding and Decoding: After data compression 
or source encoding, a channel coding operation is generally 
introduced  to reduce the effects of chaqnel -:noise and 
disturbances. The methods used for channel coding are 
strictly dependent  on  the characteristics of the noise intro- 
duced .by  the communication channel. 

The memoryless channel is modeled as a binary'symmet- 
ric channel (BSC), shown,in Fig. 3, where p represents the 
bit  error probability and q = 1 - p .  The channel with  mem- 
ory is simulated using a model proposed by Gilbert [6]., In 
this model,. the channel is described using a Markov. chain 
with two states (Fig. 4). State B (burst) simulates the 
behavior of the communication channel during  ,the  burst 
periods, while state G (good) simulates the behavior of the 
communication channel during periods between bursts. We 
have denoted with pG and pB the probability o f  transition 
B + G and G + B,.respectively, with q G  and qB the  proba- 
bility ,of remaining in state G and  .B, respectively. Of 
course,'q, = 1 - p B  and qB = 1 - iG. TO simulate the  burst 
behavior of the  ,channel,  the transition probability pG and 
p B  are.generally assumed small. In the states B and G ,  an 
error probability equal to h and k,  respectively,  is present. 
In general h >> k ,  to take  into account that  in the, burst 
state .the error probability is high. An error probability  is 
included in the  state G to simulate random  errors  in  the 
time between bursts [7]. , 

The time in whxh the model remains in a state  is 
assumed to have a geometric distribution yith mean l / p B  
for  state G and l / p G  for  state B. These hypotheses seem 
reasonable in many cases. 

Some of the more interesting classes of block codes, 
utilized in our simulation program, are briefly described in 
the following. 

A block code, having a codeword length equal to n and k 
information symbols, is  defined, by .a matrix G, called 
generator matrix, having dimension k X n [8]. If d is  the 
information vector with k components, then the corre- 
sponding codeword c is  obtained by 

c = dG. (3) 

The code can  be defined also through the parity-check 
matrix H ,  having dimension (rn - k ) x  m. If c is a code- 
word, then 

n 

c . H T =  c,h;=O (4) 
i = l  
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.eo 

Fig. 3. Model for a  binary symmetric  channel. 

Fig. 4. Gilbert model for a digital channel with  memory. 

where T indicates matrix transposition and hi is the ith 
column of H. If  we denote with r the received vector, .then 
r = c + e where e is the error vector. The syndrome s is a 
vector with m = n - k components and is defined as 

n 
s = p H T = e . H T =  eihi ( 5 )  

i = l  

where e; is the ith component of the vector e. 
Channel encoding and decoding operations for a block 

code  or a convolution code can be performed by using the 
generator matrix G or the parity-check matrix H. In our 
simulation program we utilize the parity-check matrix be- 
cause when k > m (as in most cases) the matrix H has 
lower dimensions than  the matrix G. The codes considered 
in our simulation are in a systematic form, where the first k 
symbols of every codeword are  the information symbols to 
be encoded and  the last m symbols are'  the redundancy 
symbols. 

In order  to simplify the  structure of the simulation 
program, the channel encoding operation (4) and  the 
syndrome computation (5) use the same subroutine with 
different input parameters. The block diagram of this 
subroutine, called CODDEC,  is shown in Fig. 5. If the 
parameter IDEC is equal to 0, this subroutine is  used for 
the channel coding operation, while if IDEC = 1, it is  used 
for  the  computation of the syndrome vector. The parame- 
ter L is defined in  the main program and is set equal to k 
when the subroutine is  used for simulating the channel 
coding operation, while it is set .equal  to n when the 
subroutine  is used for computing the syndrome. The vector 
IVET(1) represents the information symbols when the 
channel coding 'is performed, while it represents the re- 
ceived vector when the syndrome is computed. Analo- 
gously, S ( I )  contains the redundancy symbols or the syn- 
drome symbols according to whether the channel coding or 
the syndrome computation is simulated. 

An  important subclass of block codes are the cyclic 
codes, which contain many good  classes of codes and' are 
particularly simple to implement. A cyclic code ( n ,   k )  can 
be defined through a polynomial g ( x ) ,  having degree equal 
to n - k.  If d ( x )  is a polynomial associated with the 

START 

FORI=l ,Z.  ..., M 

COO(I+K)=S(II 
F W  I=1,2 ...., M 

' s -  RETURN 

Fig. 5. Block  diagram of the  channel  coding and decoding for a code 
using  the  parity-check  matrix. 

information symbols, then this polynomial is divided by 
g ( x ) :  

d ( x )  = q ( x ) g ( x ) + r ( x )  (6) 

where q ( x )  and r ( x )  are the quotient and the remainder of 
the division of d ( x )  by g ( x ) ,  respectively. The correspond- 
ing codeword f ( x )  is then 

f ( 4  = d ( x ) - r ( x )  = q ( x ) g ( x ) .  (7) 

Cyclic codes for random error correction, implemented in 
our simulation system, are BCH codes, Hamming codes, 
and Golay codes, while for burst  error correction, Fire 
codes and Burton codes have been considered [8]. 

Coding and decoding operations for cyclic  codes are 
performed on Galois fields, GF(q"), where q is a prime 
number and m is an integer; therefore, in the simulation of 
cyclic codes, it  is necessary to establish and store a table, 
whch gives, for each element of GF( q"), its binary repre- 
sentation.  This table is obtained through a subroutine 
which simulates the behavior of the shift-register corre- 
sponding to the primitive polynomial which generates the 
Galois field [8]. A similar subroutine  is also utilized for  the 
computation of the syndrome, during the decoding opera- 
tion. 

The simulation of Galois fields, particularly of high 
orders, often requires high computer processing time. Codes 
defined on  the field GF( p )  of the integers modulo a prime 
number p are; on the contrary, computationally simpler for 
implementation and simulation on a general computer. 
Some good  classes of codes defined on these fields are 
known. A typical example is the binoid code [9], [lo], 
which can be used for  burst-error correction: If 
a,, a,, . . . , up are the p elements of GF( p ) ,  a binoid 
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code able to correct a burst with length b or less  is defined 
by a parity-check matrix H :  

where Zb is the b X b identity matrix. 
Other  important burst-error-correcting codes defines on 

the field of integers modulo p are generalized Hamming 
codes [ll]. 

Integration of Datu. Compression and Channel Coding: 
Data compression algorithms are often very sensitive to the 
channel  errors; indeed, the signal is reconstructed using a 
lower number of bits with respect to  the  input  bits; there- 
fore, an  error  can  introduce a greater distortion. This is 
particularly true, for example, for predictor and interpola- 
tor algorithms [12]-[14]. For these algorithms, the errors 
tend to  propagate  for many samples and  can even' destroy 
the  shape of the signal for a long time interval. In many 
cases, it is convenient to strictly integrate the channel 
coding operation within the  structure. of the compressed 
data to optimize the two operations.. We describe a typical 
example of the integration of data compression and  chan- 
nel coding, when predictors or  interpolators  are utilized [6].  

As we have previously outlined, in  data compression 
algorithms using predictors or interpolators, a time infor- 
mation symbol {ti} is transmitted after each nonpredicted 
sample y j .  Therefore, the transmitted vector is of the form 

(Y l ,   t , ,  Y2,  t,, . . . 9 Y ; ,  t i , .  . . 1. (9) 

If the symbol ti represents the time position in a frame of 
the nonpredicted sample yi (second method), then the 
sequence t i  is strictly increasing. This property can be 
utilized to detect and correct some error  patterns  and, 
therefore, to aid the channel decoding. If errors change 
some t,! such that  the sequence is  not increasing, the  errors 
are detected. If the ith received symbol t,' is such that 
t( > ti+, or tl! < ti - 2 ,  then we can suppose with high proba- 
bility that  the  th received symbol is wrong. Then tl! can be 
replaced by a value equal to  the mean t i - ,  and ti+l. This 
procedure enables us to correct, approximately, the errors 
in many situations, particularly when the transmission 
channel is without memory. In this case, the errors are 
often isolated and two or more consecutive symbols rarely 
are simultaneously altered by a channel. Then the condi- 
tions for an exact identification of erroneous symbols are 
often met. 

Of course, this procedure is not suitable in the presence 
of burst errors. In fact, many consecutive symbols ti can be 
altered by a burst  and the previous conditions are often not 
satisfied. Now we illustrate a new strategy using the second 
time information method, which also presents a good per- 
formance  for  burst-type errors. The general structure of 
this algorithm is shown in Fig. 6. The  data compression 
operation  is performed so that a fixed number of samples 
greater than N,, is  not eliminated consecutively. At the 
receiver, first,  the ti succession is examined to see if the 
sequence of ti is increasing and obeys the previous restric- 

START 

Tw=1 
K = 1  

N E=O t '  

t 1  

KA=K 
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T ~ K A + J - ~ I ' T I K A - ~ ~ + [ ~ ~ K E ~ ~ ~ ~ K A - ~ ~ ] * J / ~ N E + ~ )  

J 1.2 ....., NE 

DECOMPRESSION 

STOP 
J'1.2. . .  ,,,lKE-KA+ll 

I 

Fig. 6. Block diagram of an integrated data decompression and  channel 
decoding algorithm. 

tion on Nm,. Until this is verified, either no  error  or some 
undetected errors occurred and therefore nothing is mod- 
ified. When some consecutive ti are detected in  error fol- 
lowing the previous criterion, they are replaced by  new ti 
equidistant between themselves and with values included 
between the last exact value which precedes them and  the 
first exact one  found  after  the wrong one. The values of the 
samples relative to  the wrong ti and those immediately 
following are modified because they are generally in error: 
the values that  are now assigned to the wrong samples are 
obtained through a weighted mean of the values of the 
exact samples which precede them and of those which 
follow them. The weights  given to the exact samples are 
inversely proportional to the distance between the sample 
to be replaced and  the exact one. Of course, this procedure 
can also be utilized on memoryless channels, excluding the 
part relative to the  interpolation of samples because errors 
are uncorrelated. An improvement is obtained in t h s  way, 
particularly for high bit error probability. Nevertheless, 
errors on samples are  not detected. The problem can  be 
solved using a slight error protection of samples. In Section 
IV, as examples, we will consider each sample yi encoded 
through a parity-check code with one redundancy bit  able 
to detect an odd number of errors. When a sample yi is 
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detected in error, its received value is replaced by a weighted 
mean between the  adjacent samples which are correctly 
received. This  procedure permits us to  obtain a net im- 
provement in  the performance whde the compression ratio 
is not significantly reduced. 

B. Analog Transmission Simulation 

In the simulation of modulated signals, it  is often con- 
venient to deal with an equivalent baseband model to 
reduce computation time and sample number. In this  re- 
spect, if s ( t )  is a modulated signal having a frequency 
spectrum band limited in the  band ( fo - B, f o  + B) ,  where 
fo is  the carrier frequency and 2B i f o ,  it  can be written 
either in the form 

s ( t )=A( t ) cos [o , t++( t ) ]  

where wo = 2nf0, or in the form 

s ( t ) = x ( t ) c o s w , t - y ( t ) s i n ~ , t  (11) 

with 

x ( t )  = A(t)cos+(t) 
= s( t )  cos wot -t i( t )  sinoot 

y ( t )  = A(t)sin$(t) 
= b(  t )  cos wot - s( t )  sinmot (14 

where b(t)  is  the Hilbert transform of s( t ) .  The signals x(  t )  
and y ( t )  are the in-phase and  quadrature components of 
s ( t ) ,  respectively, and  are low-pass signals in the frequency 
range up  to B [15]. 

As an example, a PSK modulated signal can be written 
as 

s ( t )  = m c O s ( w O t  + +,), kT< t < ( k  +1)T (13) 

where E is the average power of the signal, +, is 0 or 7~ if 
the kth data d,  to be transmitted is 0 or 1, respectively, 
and T is the symbol interval. 

An MSK modulated signal can be written as [16] 

~ ( t )  = ~ c o s ( w 0 f  + E d , t  7r + a,) 

where the constants (Yk are determined in such a way as  to 
obtain a phase continuity at the end of the. signaling 
intervals: 

The MSK signal can also be written in the form 

n 

- yzng( t  - 2 n T -  T)sinwot] (16) 

where 

7r for - T < t < T  
(17) 

elsewhere 

and  the sequence of binary symbols y, = f 1 is obtained 
recursively from the d ,  [16]. Therefore, the MSK signal 
(14) is expressed in  the form (16). The form (16) is also 
valid :kat: the PSK case, setting yzn = 0, T = T , / 2 ,  with T,  
the PSK symbol time interval and 

= { elsewhere. 
for - T < t < T  

In this way the same subroutine can be utilized to 
simulate both PSK and MSK modulations. 

Other modulations considered are  quaternary PSK 
(QPSK) and FSK for data transmission and amplitude , 

modulation for the transmission of analog signals as will be 
used in the example of Section IV. 

In the simulation chain of Fig. 2, including the modula- 
tor, the transmission filter, the analog channel, the receiv- 
ing filter, and  the demodulator, the signals are generally 
represented by their equivalent baseband model (baseband 
representation). An exception to this computationally effi- 
cient approach  for the signal representation is  when deal- 
ing with nonlinear operations, as will be outlined in the 
following. 

Transmission Filter, Analog Channel, and Receiving FiIter: 
The block diagram of the program package usually em- 
ployed in the simulation of analog transmission systems  is 
shown in Fig. 7. The simulation of the transmission filter, 
the analog channel, and the receiving filter is carried out in 
the frequency domain through the appropriate use of the 
fast Fourier transform (FFT) algorithm. The baseband 
representation of the modulated signal is first transformed 
in the frequency domain by means of the FFT algorithm; 
then the operations of multiplication by the samples of the 
transmission filter frequency response, multiplication by 
the samples of the analog channel frequency response, 
addition of the  FFT-transformed samples of the baseband 
representation of the additive channel noise, and multipli- 
cation by the samples of the receiving filter frequency 
response are performed in this order. Finally; the obtained 
result is transformed again in the time domain by applying 
an inverse FFT algorithm before supplying the signal to 
the  demodulator  input.  It is well known that the correct 
time behavior of the signal from two or more linear sys- 
tems in cascade can  be obtained through the use of the 
FFT algorithm by applying the overlay-save or overlay-add 
methods [l]. Either method can be used in the simulation 
package at the choice of the user. 

The software organization of Fig. 7 is able to simulate 
linear transmission systems and channels with additive-type 
noise. This is by far the most frequent case. In the  few 
cases where nonlinear operations are involved in some part 
of the signal path (for example, in the presence of a 
nonlinear channel), the corresponding simulation package 
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Fig. 7. Block diagram of the analog  transmission  simulation. 

operates  in  the time domain. This is easily obtained includ- 
ing  an inverse FFT transformation at the package input 
and a direct FFT transformation  at  the package output 
after  the time domain nonlinear simulation.. Generally, in 
this case, the simulation operations  cannot be performed 
on the  baseband signal representation and require the 
recovery of the signal in  the correct modulated form. 

C. Importance  Sampling Techniques 

The  error  probability is one of the most important 
parameters which characterize the performance of a com- 
munication system. In many cases such a parameter as- 
sumes very  low  values. To evaluate, through a computer 
simulation, the  error  probability P, in a communication 
system, a  number of samples n > 1O/P, is required. For low 
P,, the  number of samples, which must be processed using 
standard  Monte  Carlo simulation techniques, can become 
prohibitively high. Some simulation methods are available 
which permit a reduction in the sample number n and 
therefore in  the  computation time [17], [18]. These tech- 
niques are essentially based on the strategy of increasing 
the  error causes and weighting the obtained values at the 
output  to compensate for the previous distortion. These 
techniques are called reduced variance or importance sam- 
pling techniques. 

We now illustrate the general principles in the applica- 
tion of the  importance sampling to  compute the error 
probability. If x ( t )  is the  input signal, and y ( t )  the re- 

Fig. 8. Exam le of undistorted, p ( n ) ,  and  distorted, p r ( n ) ,  Gaussian 
probability  aensity  functions used in importance  sampling  techmques. 

ceived signal, then 

where n ( t )  is the noise in the communication channel. In a 
Monte  Carlo simulation, samples x k  and nk of the  input 
signal and noise, respectively, are generated. At the  output 
of the communication system, the samples yk  are  computed 
and compared with a threshold V: if yk is greater than V, 
an  error is detected. Then, using a  standard  Monte  Carlo 
simulation, the estimated error probability after n processed 
samples is 

where u ( t )  is the  unit step function. The principle of the 
importance sampling technique is to increase the probabil- 
ity of the noise samples that give rise to errors at  the 
output. This is obtained by modifying the probability 
density function p ( x )  of the noise. For example, we con- 
sider the case in which the  probability density function 
p ( x )  is a  Gaussian  function with variance u (Fig. 8). In the 
importance sampling a new Gaussian probability density 
function p * ( x )  is utilized having a higher variance u*. In 
such a way, noise samples from tails have a higher proba- 
bility, and therefore error events are more frequent. When 
an  error event occurs using importance sampling tech- 
niques, such an  error must be weighted with a function 

Therefore, if n* is  the number of samples processed with 
importance sampling techniques, then the  error probability 
is 

The problem of the choice of the  distorted probability 
density function p * ( x )  is discussed by Shanmugan and 
Balaban [18]. 

Using these techniques, high gains in the number of 
samples which must be processed and, therefore, in  the 
computation time are  obtained. Of course, a loss in the 
accuracy of the P, co'mputation is often obtained. with 
respect to  the  standard  Monte  Carlo simulation. Neverthe- 
less, such losses are often low and  not  important, as 
depicted in [17]. 



BENELLI et a/.: SIMULATION SYSTEM FOR ANALOG AND DIGITAL TRANSMISSIONS 85 

D. Performance Evaluation 

The performance evaluation of analog or digital 
transmission systems is carried out  in the corresponding 
block of Fig. 2, after  the analog signal has been de- 
modulated or the digital data have been decoded. 

For analog transmission the following parameters are 
generally computed: 

0 received signal mean power, evaluated without the 
addition of the channel noise shown in Fig. 7; 

0 received noise mean power, evaluated without 
transmission signal; 

0 mean and peak error signals,  where the error signal is 
defined as the difference between the received and 
transmitted signals (at  the user’s  choice, the system output 
signal in the presence or  in the absence of channel noise 
can be considered as  the received  signal). 

For digital transmission the following parameters are 
evaluated: 

0 probability of error of the received data; 
0 compression ratio C,, defined as the  ratio of number 

of bits of the  input signal to  the  number of the received 
bits (when source coding is included); 

0 mean and peak error signals (defined as before), when 
the transmission of digitized analog signals is simulated. 

IV. EXAMPLES OF APPLICATION OF THE 
SIMULATION SYSTEM 

In this section we present some interesting results ob- 
tained from the simulation package previously described. 
In particular, the results refer to two different communica- 
tion schemes. The first scheme simulates the digital part of 
a communication system and includes data compression 
operations  and channel coding. The second scheme simu- 
lates a complete communication chain, including the ana- 
log section. 

The first scheme  was considered to evaluate the perfor- 
mance of data compression in noisy conditions and their 
integration with the channel coding operation [13], [19]. To 
characterize the performance of these systems using data 
compression, we have simulated four structures: un- 
compressed-uncoded (UU), compressed-uncoded (CU), 
uncompressed-coded (UC), and compressed-coded (CC). 
For all these cases, we have obtained the compression ratio 
C, and the rms error e (as a percentage of the full scale 
signal). In  the  CU  and CC systems, e value includes the 
distortion introduced by the compression error  and  chan- 
nel  noise. To show the different influence of these  two 
error types, we have also computed the rms error due only 
to the channel noise. It was obtained by exploiting the 
capabilities of the simulation system according to  the dis- 
tortion evaluation procedure outlined in Section 111. In  the 
following, the results considering only the distortion in- 
troduced by the channel noise are denoted without asterisk, 
while  the total distortion error  is indicated with asterisk. 

In the figures, data compression algorithms using the 
first time information method (Section 111) are denoted 
with index 1, algorithms using the second time information 
method with index 2, and the system in Fig. 6 with index 3. 

In the following results, the communication channel is 
simulated using the Gilbert model (Fig. 4), which describes 
approximately the behavior of some channels with mem- 
ory, as telephone channels. The algorithm utilized for data 
compression is the ZOP algorithm. The code for burst error 
correction is a Samoylenko binoid code (90,SO) defined in 
a Galois field G F  (31). In the binary transmission the code 
is of the type (450,400) and is able to correct all the bursts 
of length 21 bits or less. The transmitted signal,  which is  an 
electrocardiogram (ECG), is first processed  using a third- 
order low-pass digital filter and then compressed by a ZOP 
algorithm with floating aperture. For a tolerance A = 2.18 
percent with respect to the full scale, we have obtained an 
rms  error z = 1 percent. It is clear that  in the CU and CC 
cases it is impossible to go  below this value. The rms error E 

versus the channel error probability P, or signal-to-noise 
ratio S / N  is shown in Figs.  9-11 for all the simulated 
systems. In Table I the compression ratio C, for the 
different systems is shown. It includes the encoding bits as 
well as the time information bits when present. For high P, 
the  error e is mainly determined by the channel noise,  while 
the influence of the compression distortion is  negligible. By 
reducing P,, the importance of the compression errors 
becomes higher and higher. It is  important to note  that 
using the second method for time information (CU,), the 
improvement is small with respect to the CUI case. At the 
same time the C, value is reduced to 2.6. In  the CC, case, 
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Fig. 1 0 .  rms error E versus P, for  a channel  with  memory. 
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Fig. 11. rms error versus  signal-to-noise ratio for a memoryless channel. 
Index p indicates  systems  with  simple  parity-check  coding  (see  Section 
111). 

particularly for low P,, we have an improvement for z with 
respect to CC,,  but the compression ratio is reduced to 2.2. 
The third system  (CU,)  shows. a very high efficiency; in 
fact, the rms error due  only to the channel error is  lower 
with respect to the  UU  and UC cases and  to the other 
cases. This follows from the ability to identify in  many 
cases the errors in the time synchronization and,  from this, 
also to reduce  the influence of the errors in the most 

TABLE I 
COMPRESSION RATIO FOR SOME SIMULATED DATA COMPRESSION SYSTEMS 

System 
uu uc CUI CU, cu, cc, cc, cc, 

c a  1 0 . 8 9  3.07 2.6 2 . 6  2.13 2 . 1 6   2 . 1 6  

important  bits of the sanzples. The CC,  case  generally has 
an efficiency similar to CU,. In fact, when an uncorrect- 
able burst happens, the code.can correct some errors in the 
time  information symbols and some information necessary 
for the identification of the error positions is lost. In this 
case a higher z can result. 

The second  scheme is a communication system for the 
simultaneous transmission of voice and  data using the 
same carrier. The voice signal is transmitted by  modulating 
the carrier amplitude, while the data signal modulates the 
phase of the  same carrier [20], [21]. This scheme  was 
studied for the introduction of a data link between aircraft 
and  ground stations through a simple and  economical 
implementation. The general block  diagram of this com- 
munication system  is  shown in Fig. 12. It is an interesting 
and complete  example, as it includes two types of modula- 
tion, amplitude (AM) and digital (phase or frequency), 
transmit and receive filters, communication channel, chan- 
nel coding, and so on. 

The digital modulations utilized for data transmission 
are  binary PSK (BPSK), quaternary PSK (QPSK),  FSK, 
and MSK [21]. 

The  bandpass filters in the communication chain were 
modeled as Butterworth filters with the following char- 
acteristics: 

transmit ,filter: fourth  order, with - 3 dB single-side 
bandwidth 7.5 kHz; 

0 receive filter: eighth order, with - 3  dB single-side 
bandwidth 5 kHz. 

They were implemented in the frequency  domain as 
shown in Fig. 7. ' 

The signal was  processed in blocks of 2048 samples; the 
sampling  frequency was  chosen as 19 200 Hz. 

We give first some tests of importance  sampling tech- 
niques to evaluate the bit error probability in the data 
signal for this communication system. These tests were 
carried out in the absence of amplitude  modulation  and 
using the BPSK modulation for data transmission. In Fig. 
13 we present 'the bit error probability versus the bit 
number Nbit utilized for the simulation for two different 
signal-to-noise ratios S / N  in the communication channel. 
Curves (a) refer to a signal-to-noise ratio equal to 6 dB, 
while  curves (b) refer to a signal-to-noise ratio equal to 
4.16 dB. These high bit error probabilities were also ob- 
tained, through a standard  Monte  Carlo simulation, per- 
formed with Nbit = 3500. They are shown  by the horizontal 
dotted lines in Fig. 13 for comparison. It is important tc 
note  that the simulated communication chain is quite gen. 
era1 and includes many nonlinearities. Nevertheless, also ir 
these cases the accuracy of the  importance  sampling i! 
high, as it was also verified from other results obtained i1 
the simulation of a radar receiver [17]. The gain in thc 
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Fig. 12. Block  diagram of the communication  system  transmitting both 
voice and  data. 
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Fig. 15. Signal-to-noise ratio (dB)  versus  the  bit rate for a  voice and 
data communication  system. 

amplitude  and phase. In order to estimate the distortion 
introduced by data  and phase modulation on the voice, the 
signal at the  output of the AM detectorf,(t) is compared 
to the original signal f(t), which modulates the carrier 
amplitude. An  error signal e ( t )  = f i ( t ) - f ( t )  is therefore 
obtained. The simulation program gives some parameters 
relative to this error signal as  -the mean power and the 
signal-to-noise ratio S/N, .  Some different signals were 
considered in the simulation as analog trans&tted signal 

2 3 4 5 6 7 8 9 1 0 1 1 1 2  
[21]: 

SIN 1) a tone at 937.5 Hz frequency 
Fig. 14. Probability of error P, versus  signal-to-noise ratio S / N  (dB) for 2) a tone at 1875 HZ frequency 

a  hybrid modulation system  (AM-PSK)  at  a  bit rate us = 600 bits/s. 3) a sum of five tones, given  by 

computation time  using importance sampling techniques is 
often h i g h .  

In the following, some results are presented for  the 
system utilizing a hybrid amplitude-phase modulation for 
the simultaneous transmission of voice and  data signals. 
An application of the importance sampling technique is 
shown in Fig. 14, where the probability of error P, versus 
the signal-to-noise ratio S / N  is reported for the communi- 
cation system of Fig. 12 with AM-PSK modulation and  a 
bit  rate us equal to 600 bits/s. 

An  important problem in this communication system is 
the interference between the two types of modulations: 

5 
f(t) = Qicos[2ai(468.75)t] (23) 

i = l  

and the coefficients Qi are Q, = Q3 = 2/9; Q2 =1/3; Q4 = 

Q, = 1/9 
4) a real voice signal having a time duration of 4 s. 
The real voice signal is sampled and stored in  the 

computer. After the simulation, the received samples are 
converted to  an analog form  and recorded on  a  tape for a 
subjective quality assessment from listeners. As an exam- 
ple, in Fig. 15 the signal-to-noise ratio S / N ,  versus the bit 
rate us is reported for  the case in which the signal, modulat- 
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systems of both theoretical a id  practical  interest. 
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