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Abstract—Network monitoring is an integral part of any net- resource needs based on constant interactions between mea-
work management system. In order to ensure end-to-end service surement and provisioning adjustment. A timely, efficient QoS

quality state% in serviceklevel dagreerr;]ents (Sl!-As)f' man_age(g cg)a monitoring is, thus, the key to a successful measurement-based
service provider network need to gather quality-of-service (Qo : :
measurements from multiple nodes in the network. For a large net- approach to ensuring QoS offering.

work with over thousands of flows with end-to-end SLAs, the infor- ~ One of the challenges in monitoring is the collection of mea-
mation exchanged between network nodes and a central network surement data, in particular, when managing a large network
management system (NMS) could be substantial. with many customer flows. The kind of flows of interest in this

In this work, we propose a mechanism called aggregation paper, called SLA flows, is between any two end points in an
and refinement based monitoring (ARM) to reduce the amount ISP network, and is an aggregated traffic governed by an SLA.

of information exchange. ARM is a generic mechanism that L9 . .
can be configured to run with different objectives, including SLA flows are long lasting; once an SLA flow is admitted, the

threshold-based, rank-based and percentile-based. The mech-flow usually stays up for an extended period of time. For an
anism enables the NMS to collect data from network nodes ISP managing a network consisting of a large numb€tQQ)
using a dynamic QoS data aggregation/refinement technique, of network devices and a large numberl000) of flows per

and to process these information differently depending on its device, the amount of information collected and processed can
measurement ObjeCtlve. be substantial

Our simulation results show that for these various objectives, the Thi d ib labl d efficient f K
selective refinement process is able to validate SLAs quickly, is an IS paper describes a scalableé and eilicient framewor

order of magnitude more efficient than a simple polling scheme, for a central network management system (NMS) of an ISP

and performs well across a wide range of traffic loads. to collect QoS measurement data from network devices for
Index Terms—Aggregation, monitoring, network management, SLA_vaI|d§t|on. In accordance Wlth network management
refinement, service level agreement, validation. terminologies, we refer to the object that collects and sends

measurement data at each router asagant We also use
the terms NMS andmanagerinterchangeably. Each agent
. INTRODUCTION collects QoS data of SLA flows on a per-hop basis, and the

HE MONITORING of end-to-end quality-of-service NMS is responsible for assembling the per-hop data it receives

(QoS) is increasingly critical to Internet service providerom agents to determine the end-to-end QoS of each flow. In
(ISPs). QoS guarantee has become a highly desirable feafffe Paper, the QoS parameters of intereseai:to-end packet
in Internet service offering. An ISP must collect QoS statistid@SSandqueuing delay .
through monitoring to convince its customers that it has met the | "€ Proposed monitoring approach, called aggregation and
QoS guarantees stated in respective service level agreem&gffgement based monitoringRM, deals with three different
(SLAs). It is also important for a service provider to constanti{onitoring objectives. With athreshold-basedobjective,
monitor network status in order to detect/predict QoS violatidil! 1ows with QoS parameters exceeding (or below) some
and to drive network control. thresholdsX are to be identified. For example, the manager

The needs of constant QoS monitoring is even more appar y want g_) ideir;/tifyv\?lthLAl\( ftl)ows dv)vt;th e_nd-tor;end paﬁket
in measurement-based approaches to resource provisio exceeding 1%. With enk-basedbjective, the topVt

[7]. Traditionally, ISPs have been over-provisioning resourc 9 S with r:asp;d to some QoS pararrtu?[te_rj arsftotﬁe |tdentéf||ii
to meet their service level agreements with customers, fr example, the manager may want to identilty the ten

approach that is not cost effective. Recent works on resou S With_ the highe_st e_nd-to-end packet IO.SS' Finally, with
bp percentile-basedobjective, the Nth percentile of a QoS

allocation [10] and [6] that build on both deterministic and ; be identified. F le. th
statistical models have yielded interesting results. Neverthele%@f""me'[er IS to. € identified. For example, the manager may
nt to determine the 98th percentile of end-to-end queuing

the provision based on these results is still conservative. . S
the other hand, a measurement-based approach starts fro Igy of all SLA flows. We believe that these three o_bject|ves
roughly-estimated provisioning. It then adapts to changes Eﬁo:(lal\leMaSnswers to an important subset of the questions asked
Data aggregationis a technique to control the overhead
of data exchange. By aggregation we mean that each agent
Manuscript received March 8, 2001; revised December 27, 2001. first partitions the set of flows it governs into a small number
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from aggregated data, it must figure out, for each value rand€MIP). Many management information bases (MIBs) have
the corresponding group of flows that the range is associateglen defined, including the remote network monitoring man-
with. To group flows as dynamically as possible (to generasgement information base (RMON MIB) [14], [15]. RMON
a close approximation) and yet not to explicitly identify flowsprovides significant expansion in SNMP functionality, in-
in each group (to minimize data exchange overhead) is a maloding support for off-line operations, more sophisticated data
challenge. processing and multiple managers. A drawback with these

The design of thé\RM framework is based on the following MIBs is that the MIB data tend to be fairly low level and
two observations: implicit conveying of group membershifocus on counters for hardware statistics and errors. A recent
through shared configuration; and selective refinement basdgl/elopment is the definition of a MIB module for performance
on monitoring objectives. management of service level agreements (SLA) [16].

First, the manager has the route for each individual SLA flow In a large network where the amount of management infor-
since these flows are typically traffic engineered based on techation available is enormous, the collection and processing of
nology such as multiprotocol label switching (MPLS) [13]. Ashese information become the bottleneck. A common approach
a result, the manager also knows all the SLA flows each ageatreducing monitoring overhead is to vary the polling frequen-
is monitoring. With these shared configuration, and using tliées based on the state and characteristics of variables being
same ordering scheme, such as the lexicographical order of flownitored. References [5], [8], and [17] present different ap-
identifiers, the manager and agents can refer to a group of flopr@aches to how the polling frequencies can be varied. However,
by using the index and length from the list of sorted SLA flowso data aggregation is performed, which limits the overhead re-
instead of enumerating the flow identifiers of interest. This olguction achievable.
servation motivates the proposed data aggregation scheme préa [9], the amount of information to be collected is reduced
sented in Section 111-D. by only collecting information that is required to satisfy the ob-

The second observation is that, in order to validate many Q@stive of monitoring. For example, if the end-to-end delay of
guarantees, the manager only needs fairly good QoS estimatepecific path is required, then only performance data of delay
from a small number of flows. This observation motivates theong the specific path will be collected. An inference engine
objective-dependent selective refinement strategies. Details @r@ised to map a request to the individual measurement com-
presented in Section IV. ponents. In [3], an instantiation &RM using threshold-based

Note that the reduction of data exchange overhead betwasjective is presented and evaluated. This paper presents a much
NMS and agents comes at the cost of additional aggregatimore powerfulARM framework with a generic algorithm that
computation by agents at network devices. Given that moderan be applied to multiple QoS monitoring objectives.
routers are beginning to provide hardware-assisted packet ad=nd-to-end measurements per SLA flow is ideal for deciding
counting and have large processing capabilities, this appeard tflow meets its SLA. A large scale end-to-end measurement
be a reasonable tradeoff. of packet dynamics over the Internet can be found in [11]. A

We conducted extensive simulations to study the perfatiscussion of using operation and management (OAM) cells to
mance ofARM in terms of monitoring overhead reductionmeasure end-to-end performance over a ATM network can be
In particular, we studied its performance using differerfound in [4]. While such measurements are appropriate for de-
monitoring objectives and under various network load, andrmining the end-to-end QoS, there are two potential problems.
aggregation granularity. First, the number of measurements taken is equal to the number

The monitoring algorithm proposed here is independent of flows with SLA and may not be scalable for a large network.
other SLA management mechanisms, such as admission contingddition, when problems are detected, locating the problem-
and bandwidth/buffer allocation schemes. The aggregation aatit links is not straightforward. Additional measurements in the
refinement are also independent of the QoS parameter be@imge of the network are still needed. It is precisely these prob-
monitored; the NMS maintains its responsibility for interpretinems that motivated our work.
the data end-to-end. Finally, the IETF IP performance metrics (IPPM) working

This document is organized as follows. Section Il discussgsoup has attempted to develop a set of standard metrics that can
related work. Section Il presents our monitoring frameworlje applied to the quality, performance, and reliability of Internet
ARM, followed by the description of objective-dependent redelivery services. For more details, refer to [12].
finement strategies in Section IV. Section V explains the simu-
lation setup and results. Concluding remarks are in Section VI. Il THE ARM FRAMEWORK
This section describes the proposed monitoring mecha-

nism—ARM . We first state the assumptions for our study and

Much effort on network monitoring has been devoted tthen outline the QoS measures of interests for SLA flows.
provide a unified monitoring framework including commorAfter that, we present the framework, discussing haRM
protocols for fetching management information, syntax fancorporates a novel aggregation technique for exchanging
defining monitoring information and management informationmeasurement data, how the NMS interprets the aggregated
The most popular protocols for network monitoring are théata, how the refinement takes place, and when the algorithm
IETF simple network management protocol (SNMP) [llerminates. The details of objective-dependent refinement
[2] and the ISO common management information protocetrategies will follow in Section IV.

Il. RELATED WORK
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A. Assumptions Agents perform initial
As mentioned in Section I, thARM framework assumes data aggregation
that SLA flows are long lasting, and for QoS reasons the route /
for each flow is traffic engineered based on technology such
as MPLS. The NMS is aware of the route for each individual NMS performs
SLA flow. Changes on such shared information occur at a much objective
slower time scale than that of monitoring sessigkBM also validation Agents perform

. . . segment refinement
assumes that NMS and each agent maintain the same ordering ac?,ording 1o NMS’s

view of SLA flow identifiers. / request

We assume that each router can collect packet delay, defined s':gnf:ﬂ:‘:ft:r
as the time difference between a packet entering and leaving the | refinement based
router. With the current technology, a router can compute this on objective
t!me dlﬁ‘eren_ce by tagging gll incoming packets with a 16-b 0 1. Execution flow.
timestamp with 1 ms resolution. Such a timestamp allows packe

delay for up to 65 s, which should be sufficient for most, if not

all, reasonable router performance. Note that this also assumes EtoE geny = Z Localjery - @)

that the clocks on the interface cards are synchronized to withinyote that (1) is a good conservative approximation when loss
1 ms. If a 16-bit timestamp is too expensive, a 8-bit timestamgtio Locali’__ at each router is small. The NMS can calculate
with 2 ms resolution is another option. For simplicity, we ashe end-to-end loss ratio based on a more precise equation, but
sume zero transmission delay between routers. that does not affect how the framework operates. The NMS can

We also assume that the per-flow packet arrival count, packgéo add a constant amount to (2) to account for transmission
departure count, and packet drop count are all readily availa@igiay between routers.

at each router.
Monitoring sessios are performed periodically (or onC. Execution Flow and Functional Components
demand). During each monitoring session the NMS gathersy gy 5qgresses the scalability and overhead issues in for-

per-hop QoS data and validates all SLAs. In order to dEt%Brding local measurements to the NMS for end-to-end SLA

and correct SLA violations in time, the interval betwee(}alidation Fig. 1 shows the execution flow ARM . In each
periodically performed monitoring sessions should be smaller L '

) . onitoring session:
than the SLA measuring period. .

The agent at each router maintains accumulated QoS value&) Each agent computes and forward§ an aggregation of
over time. However, during each monitoring session, the agent local measurements to the manager; o
uses the same value recorded at the beginning of the sessioﬁ) The manager processes the aggregated Qata to decide if
for reporting throughout the refinement process. In general each the_measurement object|ve_ha§ bgen r_net,
session duration is short enough that it is reasonable to assum ) While the measurement objective is still not naiet

the accumulated QoS values are relatively stable within each ) The manager requests, and the agents respond with re-
session. fined aggregated data;

5) The manager rechecks the measurement objective based

B. QoS Measures for SLA Flows on the refined data.
ARM consists of three major components: dynamic data ag-
gregation, objective validation, and selective refinement. It uses

; loss”  the data aggregation in Steps 1) and 4), the objective validation
and average end-to-end packet delli e,y ). Outof these -\ 50 Steps 2) and 5), and the selective refinement in

three parameters, our work has centered around the loss rayo . . S
SLA! _and the delaBLA We assume that the policing%ep 4). Every iteration of the agents sending in aggregated data

T
loss delay llowed by the NMS processing the data is callesand A
¥
at the edge can enforce the average throughpuy,,. monitoring session could continue for several refinement rounds

ﬂo;/rvr;e ;(?Sl"sﬁirstwrgﬂ IE;Q::V\_'?;E fg&ltzitar?;as‘gsgfztﬁoﬁSLlehtiI the manager meets its measurement objectives and termi-
P 9 9 ) o nates the session. The following subsections discuss the com-

i collects its local measurements: ponents in detail. Without loss of generality, the discussion is

* Loss Ratio(Localy;,,) = packet drop count of flow at  haged on a QoS parametegwhich could be either loss ratio or
hop j/packet arrival count of flow at hopj; average delay).

» Average DelayLocaly, ) = total packet delay sum of
flow 7 at hopj/packet departure count of floinat hopj.  D. Data Aggregation

Given the local loss ratio and average delay measurements . Lo
Local”  and Local’) of an SLA flow i at each hop, A naive approach to monitoring the performance of SLA

the hll(ﬁ;iqs approxirﬁlg?é; flow’s end-to-end measurementsﬂows is for the NMS to collect performance.mea_sure'ments
i of each flow from every network device. While this simple
as follows: polling scheme may be reasonable for a small network, it is
EtoEt — Z Localigss (1) inefficient, not scalable, and can cause severe overload as well
J

!
o as congestion at the NMS during each monitoring session.

Typical parameters of an SLA for a flowinclude: average
throughput $LA;,,,.); end-to-end packet loss ratiSI(A] ..);
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An enhancement to the simple polling scheme is a simpBegment Merging Algorithm
threshold scheme in which each agent only reports the mea-
surements of flows whose QoS values exceed some thresholddnput Parameters: a list of M data
The problem with such a scheme is the difficulties in selecting points, an initial aggregation threshold
the appropriate thresholds dynamically. Setting the threshold7, and the maximum number of segments N
too low can easily degenerate it into a simple polling schemng:

Setting the threshold too high can cause important data to be wgzlézeeaihsiéesmg;t corres Jc\)/{] dze??elnts,
overlooked. Worse yet, there is no easy solution to breaking data point 9 P

end-to-end QoS requirements into reasonable per-hop threshold
at each device. In addition, in times of congestion, information _ oo
overload can still oceur. ment is the data_l point itself, and the
The challenge in data aggregation is the tradeoff between data segment I_ength is 1. ) . .
exchange overhead and quality of approximation. We have éx- Merge adjacent segments iand i + 1
amined several grouping strategies. One way is to statically as- (Ui = Linw) < 7. Let  C be the number of
sign flows to groups. There is no additional overhead in cop- S€9MeNts remaining.
veying group membership information at each monitoring se3- While ¢ > N do
sion. However, without proper means to predict performance Sglect a segment k such that
similarity among flows, the static group assignment yields poor difference(k, k +1) is the smallest;
approximation. A second approach is to let each agent grogp Merge segment £ and k + 1 and subtract
flows dynamically based on their QoS values and notify the € Py one.
manger each group’s membership along with the aggregated
data. Though this approach provides good approximation, theFig. 2(a) shows a graphical representation of applying our
overhead of conveying such membership is now in the samegment merging algorithm to a set of 140 values. Fhén
order as that of conveying individual flow data, which defeatsis case is 8.
the purpose of data aggregation. When a network is in normal operating conditions, many
ARM uses a data aggregation technique baseclove ap- flows would have similar loss ratio or average delay. Step 2
proximationusingsegmentsThe basic idea s to visualize the semerges those data points that atese enougthin the initial
of per-flow ¢ values at each router as a curve, of which the flowhase to make the algorithm more efficient. The thresfhiodie-
identifiers in ascending order is theaxis and they value is the termines what is considered close enough. For example, flows
y axis. The agent at the router then uses a series of bounded 9@gh difference in packet loss smaller than—° may be con-
ments to approximate a curve. Each segment signifies a grougiefered close enough.
flows. The upper and lower bound values of each segment repreNote that this algorithm limits the number of output segments
sent the maximum and minimugwalue of the flows included to be at mostV. In general, the larger th® is, the better the
in the segment. We use three values to encode each segmgitk approximation, though at the cost of additional overhead.
the upper bound’/, the lower bound., and the widthS (i.e., A proper choice ofV should balance both the data exchange
the number of flows in the segment). As discussed in Sectiorolerhead as well as the number of iterations needed to complete
since the NMS and each agent share the same ordering vigwession.
a sequence of segment width is sufficient to convey the flows|n forwarding the list of segments to the manager, each agent
contained in each segment. uses a triple{ ', U, L) to represent a segment. Theand L
ARM uses a segment merging algorithm to generate the cug@ still upper and lower bounds of QoS values. Then the
approximation. In the beginning of a data aggregation sessi@fher hand, is the rightmost flow identifier in the segment, which
the algorithm makes each individualvalue a segment. Next, not only defines the segment boundary but also serves as the
the algorithm merges selective adjacent segments to form biggegment identifier.
segments. In order to decide which adjacent segments to merge,
we computedifference(é, ¢ + 1) between two adjacent seg-E. Objective Validation

ments, which represents the increase in uncertainly if segmentgyce the manager receives a series of segmentsvalues

¢ andi + 1 are merged. Adjacent segments with the smalleghn each agent, it must retrieve local QoS values, calculate
difference are merged. The merging process terminates wheghg-to-end measures, and then validate them against monitoring

The upper and lower bound of each seg-

desirable number of segments remain. objectives.

When two adjacent segmenisand ¢ + 1 are merged,  Retrieving localg value of each flow from a series of seg-
the resulting segment*™ carries the encodind/i-~ = ments is straightforward. Note that the segment series sent by
max(Us, Uig1), Linew = min(Li; Lit1), and S« = each agent to the manager approximates a curve, of which the
(Si + Si+1). We define flow identifier is thez axis and the; value is they axis. The

difference(i, i + 1) manager knows exgctly Fhe set of flows passing through each

agent and the flow identifiers. Hence, the manager knows the
= [(max(U;, U;y1) — min(L;, Liy1)) * (S; + Sit1)] index of thez axis. With a triplet(F, U, L) for each segment,
the manager can compute from left to right along:thexis the
— (U = L)+ S = (Vi1 = Liv) * Sin] - (3) 1 ’ o rebo,

upper and lower boung values of each flow reported in a seg-
as the increase in area due to merging, the smaller the bettement series.
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0.45

Max0-139 - F. Selective Refinement

Min0-139 ---%---
The purpose of our selective refinement approach is to refine

‘ thecoarsenetwork status pictures that the manager constructed

[ i based on reported segment series. As long as there are flows

ﬂ 1 ¥ that need refinement, the manager must selectively ask agents

‘ : to refine reported segments.

04

[ T-3 S A O R i

03

Again, to minimize data exchange overhead between the
j ; R ] NMS and agentsARM requires that the manager can only ask
025 1 each agent for refining up t&/,.;; entities, where the entities
Pl d o could be either flows or segments. When the number of flows
that need refinement is less tha¥),,;;, the NMS can easily
D just poll the corresponding agents for the exaealue of those
. . = ‘ . . flows. Otherwise, the NMS must select not more thdp,;
0 20 40 60 80 100 120 1w segments for refinement. Note that through the refinement
Flow Identifier . . . .
@ rou_nds_ in each .monltorlng session, the NMS and e_ach agent
maintain a consistent up-to-date view of segment series.

SLA Values

02

.15

0.45

Max36-139 -
Min36-139 ---%---

Max035 - Manager Selective Request Algorithm
“L Input Parameters: a list FS of flows in
the current round that need refinement,
the parameter Npou, and the current seg-
8 ment series H
5 1 if |FS| < Ny then
2  Poll the agent for the exact g value
of flows in FS;
3 else
o2r 1 4 Let CS = {s|(FSns;) # 0,s;, € H} be the
set of segments in H each of which
015 - - pos pos pros p 40 contains at least one flow in rs,
Flow Identifier |CS| =m;
(b) 5 Ask the agent to refine the segments
Fig. 2. Example of data aggregation and refinement in ARM. in some set RS C CS, where RS =CS if
m S Npoll-

Calculating end-to-engmeasures then follows. By applying  The strategies for choosings from CS'in Step 5 vary. We
(1) or (2), first on the per-hop upper bound and then on ttigck the firstV,.; segments ofZS in our experiments when
per-hop lower bound, the manager derives the upper and lower> Vpou- Other strategies could be, for instance, the segments
bound of the estimated end-to-epatalue for each SLA flow. in CS that contain the most flows in need of refinement, or the
We proposed three types of objectives, naméfyeshold- Segments that have the widest rangey afalues. Note that if
based, rank-basednd percentile-basedWith the calculated C'S = #, then the manager does not poll the corresponding
upper and lower bounds on end-to-epdtalue for each flow, agent.
the NMS then proceeds to validate monitoring objectives. For When the manager does polling in Step 2, the agent simply
the threshold-based objectives, it checks the boundealue replies with the exact values for the flows listed HS.
against the threshold. For the rank-based and percentile-baQéerwise, the agent performs the following algorithm to refine
objectives, it tries to rank the flows according to their bounddhe requested segments.
q values. . . .
The bounded value of some flows may be too loose to heI,r'lAgent Selective Refinement Algorithm
the NMS generate a definite answer. For example, for somelnput Parameters: a list of segments RS
flows the threshold may be between the upper and lower boundsin the current segment series to be re-
Ranking flows could also be difficult when the bounds of a fined, and the maximum number N of new
number of flows overlap. In such cases the NMS must decide segments to be reported at round k
which flows need tighter bounds (i.e., refinement) on their
values. 1 Use heuristics to select a number by
The approaches to selecting flows for refinement are depen- for refining segment s € RS into I
dent on the types of monitoring objectives. Section IV discusses new segments, where 1 < [ < |RS]|, and
selection strategies in details. What matters here is that at the Zﬁf' by < Ny
end of selection, the NMS identifies a set of flows that requi2 Apply Segment Merging Algorithm to ob-
further refinement. tain a set of new segments {su]l <i< b}
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3 Add a triplet (fii, Usi, Lyg) to a reply IV. OBJECTIVEEDEPENDENT SELECTION
message for each newly created segment STRATEGIES FORREFINEMENT
St
4 Szend the reply message to the manager. This section describes how the NMS determines, based on

monitoring objectives, which flows it needs refined QoS values.
In the discussionsEtoE] (upper), and EtoE] (lower),, de-

ote, respectively, the upper and lower bound values of a
8s parameter; (loss or delay) calculated at round for

LA flow f. A key observation through the refinement

The heuristics in choosirfg in Step 1 tries to strike a balance
between maximum increases in total number of segments
that some flows can get a best approximation quickly) and f

distribution of refinement to all segments (so that more ﬂowr%unds in a monitoring session is that the upper bound is

can get some value refinement). ) always monotonic nonincreasing and the lower bound is
For example, assume that a series Nasegments, all need 5\yays monotonic nondecreasing for each flow. That is,
refinement. Furthermore, assume that an agentis duetosend ~ ; ~ 1 EtoE! (upper), < FEtoE/(upper); and
= = 7 q = q

back 2N triplets in reply. Should the agent choose to evenlEtoEf(lower)k > EtoE! (lower),.

allocate two to each existing segment, then the manager gets a ? - !

new series 02N segments, with a moderate refinement on each L

flow value. However, should the agent choose to refine only ofie Threshold-Based Objective

existing segment, assume it is possible, then after recedMig A threshold-based monitoring objective often aims at

triplets from the agent the manager now has an updated segiegecting flows that have violated their end-to-end QoS

of 2V new segments plud/ — 1 existing segments (with no agreements.

refinement) for a total o8V — 1 segments. At each round k, EtoE[(exact), exists if
The allocation oft; is performed as follow. Initiallyp; =  EtoE] (upper), = EtoE] (lower),. The manager acts in one

|si]. If Zlif' b > Ni, we randomly decrease someso as to  of the following five cases listed under two broad categories:

comply with the restriction thazli"’f' b; < Nj. Inthis process, « EtoE/ (exact); exists, then

b is setto zero (i.e., norefinement on segmghtfitisreduced  _ Caqse I: Btof (exact); > SLAg. Flow f has violated

to less than two. On the other hand,Eli"’f' by < Ni, we its ¢ Q0S. The manager must take immediate actions

randomly increase sonig till the sum equalgVy,. to ease the problem.
Fig. 2(b) shows the result (of 15 segments total) after refining—  Case II: EtoE/ (exact);, < SLA/. Flow f is fine for

the first segment in Fig. 2(a) into eight additional segments. Ob- now.

serve that in order to reconstruct ttefinedsegment series, the  * EtoE({(exact)k does not exist, that is, some of the re-

manager only needs the eight tripléfs;, Uy, L1;),1 <i <8 ported values for flowf are SLA bounds, then

from an agent. — Case lll: EtoEf(upper)y > SLA] >
Since we use a triplet to encode each segment, there is in- EtoE({(lower)k. The manager cannot infer any-

trinsic 50% overhead if we have to report each data point as a thing definitely in this case.

segment versus a (flow_id, value) pair. —  Case VI: EtoE] (lower), > SLA(J;. Flow f is defi-
Corollary 1: Let the number of flows to be reported by an nitely in violation of its SLA.

agent bed/ and the maximum number of segments reported at—  Case VZEtoE({(uppel“)k < SLAg. Flow f is fine for

each round béV. In the worst caseARM needg2M/N) — 1 now.

rounds to complete a session, and the total overhex@d — In cases Il and V, depending on how close it is to a violation,

N). the manager may choose to take some actions such as rerouting

The worst case occurs when we evenly dividieo all seg- the flow. In general, since the manager has per-hop information,
ments that need refinement. Thus, in each refinement roundiagan spot problems at some hops even when the end-to-end
agent can only refinéV/2 existing segments (breaking themmeasure is fine.
each into two segments) for a total increase\gf2 segments ~ As the objective is to detect possible SLA violations, the
in the updated series each round. The agent can répeetg- only set of flows that require further investigation are those in
ments in the initial round. Hence, at roukdthe updated seg- Case llI.
ment series would hav& (k) = N + (k — 1) x N/2 seg-  Asimple example with 16 SLA flows over two tandem links
ments. For a complete accurate data on each #d® needs will be used to illustrate how threshold-based objective works.

k = (2M/N)—1rounds forX (k) be atleash/. Since the over- Figs. 3 and 4 depict the segment data that agents at the first and
head each agent encounters in a roursdNs the total overhead second hop sent to the manager. Fig. 5 reflects the calculated
is therefore3(2M — N). end-to-end QoS values that the manager maintains. In the ex-

WhenM = N, ARM finishes in one round, and the over-ample, the number of segments reported by each agent at round
head is3M compared witl2Af of a naive method that reportsk, Ny, is set to a fixed value of four for al. The QoS values
(flow_id, value) pairs directly. A&V becomes smaller, not only are generated randomly using an exponential distribution with
ARM needs more rounds to complete a session, the worst casan 3.
overhead approaches\/. However, as we will illustrate in ~ The first three columns of Figs. 3 and 4 show the flow
Section V, our experimental results show tA®M performs identifiers, the QoS values measured, and the segments sent
much better on average. to the manager by the agents on the first hop and second hop,
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Fig. 3. Aggregation and selective refinement hop 1.
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Fig. 4. Aggregation and selective refinement hop 2.

respectively, in round 1. Similarly, the first three column8. Rank-Based Objective

of Fig. 5 show the flow identifiers, the actual end-to-end r,nk-based objectives identify thétop-ranked flows based
QoS (computed as the sum of the values on hop 1 agfsome QoS values, for example, thidlows with the longest
hop 2 using the values along column two), and the QQgerage delay. In stating the objective, instead of defitnas

approximation after round 1. a single value, a range will be used. L&t{, N;;) represents

In this example, the objective is to find all flows withihe range. The NMS considers the objective met when it can
end-to-end QoS greater than 10. According to the data jibntify the topn flows, whereNy, < n < Ni;.

column three of Fig. 5, the QoS value of Flow 5 is obviously at round k, let the NMS sorts the entire set of flows it is
above 10 since the minimum value is 12.628. Similarly, ﬂowﬁlonitoring based on their end-to-end upper boung aélues
with upper bound below 10 do not need further refinemeng generate an ordered list of flows.

The Case Il flows are flow 6, 7, 8, and 9. As a result, the Definition 1: Let F/* be the flow that exhibits thith largest
manager requested for the agent on hop 1 to refine the segmgiler bound of QoS parametgn roundk in the ordered list.
[9, 0.791, 4.865] and the agent on hop 2 to refine theet U/* and Li* be the upper and lower bound end-to-end
segment [12, 0.654, 6.654]. After receiving the new (finefalues of the flow in positior at roundk.

segments in round 2, the only Case Il flow is flow 6 SinceVk > | > 1, EtoE](upper), < EtoE](upper),
(cf. Fig. 5, col. 4). A third round to refine the segmenaind EtoE] (lower), > EtoE](lower);, a flow f ranks
[7,4.245,5.958] onlink 2 is required to determine that flow 6 hasgher than a flowf’ if for any & > 0, EtoE] (lower);, >
a QoS value below 10. EtoE{ (upper)s.
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Fig. 5. Manager’s view of end-to-end QoS.

The approach to validating rank-based objective is to bretie set of flows S(JI’“ — S;’“) in order to identify more delimiter
the ordered set of flows into several distinct subset of flowsdexes between positionsnd; in the subsequent rounds and
such that flows in one subset is always ranked lower or hightermeet the termination condition.
than flows in a different subset. More precisely, if a set of flows A further optimization is performed sincg can be much
F is divided intom ordered subsetsF;}, 1 < j < m, and larger thani. Due to the limited number of segments per re-
n; = |F;| be the number of flows itF;, then the first»; flows finement, it is more efficient to focus on flows closer to the
belong ta*, the nextu, flows belong ta%;, etc. We name each target rank. Define a slack fact@f,c, 0 < FPiax < 1.
boundary position in the list delimiter index For examplep;  For each round, let the number of flows to be refined equal to
is a delimiter index which ends the block 8%, so is(n1 +n2) min{1, Psaa*(j —¢)} flows. These flows are selected starting
which ends the block af;. The task of validating a rank-basedrom the flow right afterFq”“. At least one flow must be refined
objective for QoS now becomes searching for a delimiter indexo ensure progress.
at positioni such thatvy < i < Ny. The same setup used to illustrate threshold-based objective in

Note that through the refinement rounds in each monitorirgection IV-A is used to illustrate rank-based objective. The ob-
session, a flowf may not occupy the same position in the orjective is to find flows with the three largest QoS valu€g,.
dered list due to ChangeslﬁtoE({(upper)k. is set to 0.3. From column three of Fig. 5, there are only two

Definition 2: The delimiter indexD:* exists if in roundk  delimiter indexes after round V™ and DY), Flow 5
Vj, 1< <e <1, L¥ > Ulk. The set of flows delimited by is rank one, the flow with the largest QoS value. In round 2,
Di¥, denotedSi¥, is the se{ F/¥|1 < j < i}. the manager requested refinement for flows 6 to 10, the flows

Theorem 1:1f Di* exists, tharv k' > k, Di¥" exists, and With the next five largest/i!, 1 < 4 < 16. Similarly, in round
S;k _ S;k 3, flows 6, 7, 9, 11,m and 12 are refined. Finally, at the end of

These delimiter indexes exhibit a nice property stated fRuUnd 3, the ordered list based on upper bound values is [5, 9,
Theorem 1, which greatly helps the refinement steps. Simpfy, 6: 1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 10, 8]. Three more flow
once the manager identifies a delimiter indB%* in round ~delimiter indexes are identified){” ), DY, and DYV
k, then the flows inSi* will always be ranked higher than Flows 5, 9, and 7 can now be easily identified as the 3 flows
any other flowf ¢ S;k in all subsequent refinement roundsWith the largest value. The NMS needs not know the exact or-

That is, wheni < N, the topV flows must at least include dering of the rest of flows.

all the flows in Si*. Hence, the manager can concentrate ) o

on requesting refinements on flows notS§. See Appendix C. Percentile-Based Objective

for the proof of Theorem 1. We consider two kinds of percentile-based monitoring objec-
Each monitoring session of a rank-based objective workstimes in our study. One is to validate the QoS value of some per-

the following way. In each round, the NMS calculates uppeentile of flows, such as “DX % of flows in the network have

and lower bound end-to-end QoS values and sorts the flows buss ratio less then a val&?” The monitoring terminates when

cording to their upper bound QoS values. It then searches tlee NMS can decide eitheY % of loss ratio upper bounds are

limiter indexes based on the ordered list. At each rolnd less thant” (the statement is true) ¢d — X)% of loss ratio

ADik, such thatV,, < i < Ny, thenSi* is the set of flows that lower bounds are greater thah(the statement is false).

meet the objective, and the session terminates. Otherwise, ther€he second kind is to find the QoS value of tkiéh percentile

is a pair of consecutive delimiter index@,i;’“ andD{I"“ suchthat flow in the network accurate to within a specific range. The

it < Np < Ny < j. Clearly, the NMS needs refined data oiNMS should report that th& th percentile flow exhibits a QoS
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valueY’, where the gap between the upper and lower bounds of °
Y is sufficiently small.

Note that rank-based objective is different from percentile-
based objective in that the former looks for the list of f§th
flows while the later looks for a bounded QoS value.

Let 7(X) be the flow position corresponding to the target
percentileX . For example, if there are 1000 flows, and the target
is the 98th percentile, thefi(98th) = 20.

To address percentile-based objectives, the NMS sorts the en
tire set of flows twice to generate two separate lists: one is based
on their upper bound values; the other, their lower bound values.
In Section IV-B, we refer to théth flow and its upper bound
value in the upper-bound ordered list at the rokras F;* and
U;k Here we add the notations that for the lower-bound ordered
list the:th flow and its lower bound value at round: arer’:
andL¥ , respectively.

Let E; be theith largest exact end-to-epdralue. Theorem 2
provides a nice property to relate the two ordered lists of QoS V. EXPERIMENTAL RESULTS
values. In successive refinement rounds, Theorem 2 states that
the gap betweet/;* andLi¥ shrinks and eventually converges In order to evaluate the effectiveness of the proposed algo-
toward the exact QoS value of thith flow, Ei. Note thatfi* rithm in monitoring the service performance of a network with

and Fi* need not be the same flow at rouhdConsequently. QoS guarantees, we conducted extensive experiments in a sim-
for aIILiqandk Lik < Ei < ik ulated network domain. The result reported in this section ad-
'Ly = Hqg = g

Theorem 2:For anyi, Vk, 1,1 > k > 0, L} < L} < dresses the following issues:

Ei < Uil < Uik, * the advantage of using the proposed monitoring algorithm
e= "4 = 1 in terms of overhead reduction;

« the tradeoff between overload and iteration time;

« the effect of changingVy, where Ny, is the maximum
number of new segments each agent reports at réund
(cf. the Agent Selective Refinement Algorithm).

» Case |1E,§‘S UP* <Y. The objective is validated. Only results for threshold-based and rank-based measure-
» Casell: B > Lf;f: > Y. The objective has failed. ments are presented.

« Caselll: UPF > Y > L’i’z. The verdict s still out. A flow
i should be refined in the next roundi* > v > L7*. A, Testbed Setup

qu the'fsehcond pgrcentile-Ease(;jL??tzjgctiv? the '\IIMS ﬁrlft de'The experiments were carried out over a randomly generated
termines if the gap betwedl” and L7~ is sufficiently small. 30 nodes topology shown in Fig. 6.

If an objective requires a tighter bound, the NMS searchesapaltl_he topology is organized as a single three level hierarchy
of consecutive delimiter indexeB* and D7, as described in i . I '
q a The highest level is the core routers consisting of nodes 0, 1,

Section IV-B for monitoring rank based objectives, such that
i <p < j. The setof flowsV'S = (5% — ;%) include the flow 574 2- The Nextlevel fouters are nodes 6, 7, 42, 15, 16, 20, 23,
f that should eventually end up at positipthrough refinement =™ an - Ihe restare edge routers.

rounds. The NMS also knows that whichever figis, its ¢ All links are duplex. The one-way bandwidth of each link
value is bounded by/z* andZ”* Hence. it can request refine-depends on the type of routers it connects at both ends. It is
ment on all flows ianS exce Ltqthose flowg’ € NS such that 20 Mb/s for links connecting two core routers, 15 Mb/s for ones

either EtoE ({ (upper)s < I2* or EtoE ({ (lower)y > U;”“. between a core and a next level router, and 10 Mb/s for the rest.

Again, the same setup is'used to illustrate percentile-based\!l €xperiments are performed using ns-2. An on—off model
objective. The objective here is to find out if the QoS valul$ used to generate traffic with different average rate and burst
of the third-highest flow is above or below ten. At the end o¥ize. Leaky bucket is used for policing at the edge routers. Input
round 1, from column three of Fig. 5, all flowssuch that traffic is selected from the four classes listed in Table I, which
ranges do not include ten are eliminated and the third-high&sows the leaky bucket parameters associated with each traffic
flow has QoS value between 2.045 and 11.519. Flows that fass used in the simulations. All flows in the simulation have
quired refinement are flow 6 to 9. Data obtained in round the same SLA, which allows average end-to-end delay of 150 ms
(column eight of Fig. 5) narrows the range to between 7.542 aadd loss ratio of 0.02. Within the network, packets are scheduled
10.823. Data from round 3 (column nine of Fig. 5) determineassing the first-in-first-out (FIFO) discipline.
that the third-highest flow has the QoS value 9.237. Notice thatThere is a local network management agent on each router.
using Theorem 2, this conclusion can be drawn without gettidgcentralized network manager collects aggregated data from
a smaller range for flow 9, which is between 3.533 and 9.404hese agents. For simplicity, in our simulation we placed a

Fig. 6. Simulation network topology.

With Theorem 2, the task of dealing with percentile-based
objectives is straightforward. For the first kind of percentile-
based objectives, the NMS checks at rodnthe QoS values
at the positiorp = T(X).
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TABLE | link, then only the loss ratio on that link is sent. This is the min-
TRAFFIC PARAMETERS FOR THEFOUR CLASSESUSED IN THE SIMULATIONS imum information required to identify a SLA violation without
Class L | Class 2 | Class 3 | Class 4 resorting to some form of aggregation.
r (kb/s) 128 128 64 64 Comparison is based on the total count of all data items sent
busy time (s) | 0.3 0.5 0.3 0.5 from the agents to the manager. Each data item, regardless of
idle time (s) | 0.7 0.5 0.7 0.5 its type, has a count of one. For the idealized schemes, each

update consists of two data items, one for the flow identifier
and the other for the measured value. B&M, the overhead
management link between each node and the central netwfrkone update is three (maximum value, minimum value, and
manager. Loss ratio and average delay were collected at efiotv identifier). In addition, a minimum overhead of two data
network node and samples of the statistics were reporteditems is incurred in alARM message exchanges to indicate the
the manager periodically based on the algorithm presentedninmber of delay and loss updates.

Sections Il and IV. Let I be the set of flows with loss violation in a session, and
J be the set of flows with delay violation in the same session.
B. Random Load Generator « For scheme-1, the count per sessioRiis(}",.; Hop; +

We developed a random load generator to generate network »_;c; Hop;), whereH op; is the hop count of flow.
traffic with various loading conditions. The load generator * Forscheme-2, the count per sessioRis(} ;. ; Min; +
mimics admission control procedures in practice. Itruns aflow >, ; Min;) where Min; is the minimum number of
generation loop. For each iteration in the loop, it randomly  hops to decide if violation occurs in flow ’
selects two edge routers as the source-destination pair for a» ForARM, the count per sessionY8 ' (2 + 35, (3 x
flow, and selects traffic class for the flow. The generator then — (HIS® + HY'™) 42 x (Plos 4 R‘,ik ) whereR =
attempts to “admit” the flow by securing its resources (in this  number of roundsK = number of links, and, for each
case averagebandwidtl) along its route. link % in roundr, H'$* = number of new loss segments,

To create overload situations on some number of links, flows H;l,flay = number of new delay segment3g* = number
are admitted even when there is insufficient link bandwidth  of loss polling updates, anﬂ’;l’flay = number of delay
along portion of the path. Nevertheless, a list of links that have  polling updates.

been “over-subscribed” is maintained. The flow generation For comparison, a simple polling approach requires a total
loop terminates when the number of admitted flows is at leasbynt of4 x (X;cr Hop;), whereF is the entire set of flows,

X and the number of over-subscribed links is more than  and Hop; is the hop count of flow. Each entry consists of the
The above steps result in reasonable traffic pattern variatiofge pairs (flow_id, loss value) and (flow_id, delay value). Note
but only within a range of overload conditions. In order to geRhat if the manager and agents share the sorted list of flows, as

erate a wide range of network load, where the number of floyg have assumed f&RM, a better polling approach will be
violating their SLAs varies from none to almost the entire sg§ send only the sorted QoS data without flow identifiers. Nev-
of flows, admission control is performed changing tverload  ertheless, it will only change the normalized values reported in
factor of each link. A link is now “over-subscribed” if the total oyr experimental results, but not the relative measures between
average throughput of flows admitted is less than or equal to tR&M and the other two idealized schemes.

product of overload factor and link bandwidth. All experiments ran for 100-s simulation time excluding a five

_ The overload factor reflects how willingly an ISP wants tQgconds warmup time. The performance of various algorithms
risk SLA violations. The smaller the factor, the more conservage evaluated by running each algorithm 50 times using different
tive the admission control is, and the lesser SLA violations thessic 10ads generated by the random load generator. The min-
network may observe. , _ imum number of flows in an experiment is 1000, the maximum

We setX = 1000 andY” = 8 for all traffic loads generated in i 1864 and the average is 1306. The minimum total data item
our experiments. The overload factor is varied from 0.5 t0 1.4t using simple polling in an experiment is 12 944, the max-

imum is 25868 and the average is 18 344.
C. Comparison of Monitoring Performance Using In the first experiment, the paramet¥y, is fixed at 16 for the
Threshold-Based Objective entire simulation runiV,.;; is fixed at 32 for all experiments.

The performance of our threshold-based monitoring schemel'he measurement overhead of all three schemes are normal-
is compared with two centralized off-line schemes which afeed by dividing the monitoring data item count by the total
expected to perform well. In both schemes, it is assumed tiggunt required in a simple polling approach. That s, if the count
all flow status are known by a singlértual management agentfor simple polling is 1000 and the count f&RM is 100, the
and this virtual agent only sends to the network manager datafermalized overhead fékRM is 100/1000 = 0.1.
lating to flows with SLA violations. Irscheme-]for each flow Fig. 7 shows the performance of scheme-1, scheme-2 and
with SLA violation the virtual agent sends to the manager Qo&RM relative to that of scheme-1 for the same traffic load. The
data of the flow collected at all hops. Btheme-2instead of z axis is the normalized scheme-1 overhead, and,thgis is
sending data collected at all hops for those flows with SLA vidhe respective normalized overhead of scheme-1, scheme-2, and
lations, only sufficient information is sent such that the manag8RM . The choice of scheme-1 normalized overhead forithe
can confirm their violation status. That is, if there are 3 hopis serves as an indication of the number of SLA violations
and a significant loss is occurring only on a single congestadthe network, though the relationship is not exact because the
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Fig. 7. Performance comparison between scheme-1, scheme-2, and ARMFig. 8. Comparison of scheme-1, scheme-2, and ARM¥or= 4, 16, 64,
and 128.

monitoring overhead also depends on the number of hops the

flows go through. To make the data easier to read, for eaciolations. It is due to the fact that once the lower bound of the

scheme we display only the mean value of the data within eaQoS values violates the SLA, the computation can terminate and

0.05 segment along theaxis. In other words, the value depictedhere is no need to obtain the actual values.

at z 4+ 0.025 corresponds to the mean of all values collected Fig. 7(b) shows the average number of iterations it takes

within the segment to x+0.05. As an example, in Fig. 7(a) thebefore ARM terminates using the sameaxis segments and

set of traffic loads that generates average normalized overhgadxis averages. When the number of violations is small,

betweerD.45 to 0.5 using scheme-1 generates average norméi-takes much longer to detect all violations because it is

ized overhead of 0.09 usirgRM with N = 16. harder to aggregate values and a much finer picture of the
When there is no SLA violatiodARM incurred a minimum network is needed before SLA validation can be completed.

normalized overhead of 0.02, whereas, scheme-1 and schentée®ever, as the number of violations increases, it becomes

have no overhead. However, as the number of SLA violatiorssier to detect violations as aggregationsufilar values

increases, normalized overhead ARM increases slowly and becomes more common.

performs better than scheme-1 for normalized overhead largeFig. 8(a) shows the improvement&RM over scheme-1 and

than 0.06. Beyond normalized overhead of OARBM performs Fig. 8(b) shows the improvement&RM over scheme-2 faivy,

even better than scheme-2. This may come as a surprise siseito 4, 16, 64, and 128. Fig. 9(a) shows the average number of

scheme-1 and scheme-2 are highly optimized schemes with vesynds forV, set to 4, 16, 64, and 128. In these experiments,

low redundant information exchanged. The difference is that ¥, is fixed during a single simulation run. The same segment

these two cases, exact values are exchanged. On the other hsind,of 0.05 is used on theaxis, so is the segment mean value

ARM provides only bounds on these values and can, thus, ag-they axis.

gregate many values into a single segment. Another advantagkig. 8(a) and (b) show that the overhead incurredBM in-

of ARM is that as the number of violations increases, the nareases withV,,. This is because wheNj, is large, the number

malized overhead does not increase linearly with the numberaffmeasurements collected in each round may be much more
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% ' ' ' ' ' ' T Nkt D. Comparison of Monitoring Performance Using Rank-Based
Objective

Nk=16 ---+---

In this section, the experiments focus on two issues:

] » How does the performance of rank-bagdriM scale with
load?
* How does the performance of rank-bagd®iM vary with
the slack parameter?

In all the results shown in this section, each point corresponds
to an experimental run and the dotted line corresponds to the
average value for ten runs. The objective in each experiment is
to find the topNV flows with the largest loss and delay measure,
whereX is any value between 5 to 20.

. s . . . s Fig. 10(a) shows the normalized overhead of rank-based
e oeeas . %% ARM with the overload factor varies from 0.7 to 1.4. The slack
@ factor is set to 0.1. Therefore, in each round, only ten flows
closest to the first delimiter is refined. The segment si¥g, is
' ' ' ' ' ' - set to 32.
Ni=6d ---oe | The result shows that the normalized monitoring overhead
Rk=128 - | increases as the load increases, though the overheaR if
is still significantly lower than simple polling. As the load in-
10} 1 creases, the number of flows with high loss and delay measure
P also increases making it harder to differentiate theoftows.
8r / [ ] Unlike the threshold-based objective, at very high load, the nor-

25

n
S
T

# of Iterations

o
T

# of lterations

malized overhead keeps increasing.

Figs. 10(b) and 11(a) show the impact of varying the slack
| parameter from 0.01 to 1.0.
S With a very smallF;, vValue of 0.01, only a small number
. e of flows are refined per round and the result is lower overhead
but may result in longer termination time. Whéty,i is set to
0 oo 0w o o1 om om om o o o= 1.0, the entire set of the eligible flows is passed to the selective

Normalized Overhead refinement process.
(b) The sudden increase in termination time in Fig. 11(a) is due

Fig. 9. Performance of ARM and dynamic ARM fo¥. = 4, 16, 64, and tO the number of flows that required refinement per round ex-
128. ceeding the number of the segme¥if added each round. In
Fig. 11(b), when a large;, of 64 is used, the sudden increase

than what is needed. The extent of such excessive measurenfféfft'mination time occurred at a largéy,q. value.

increases a&, gets larger. The average overhead incurred whenFom the result shown, a slack factor of 0.1 to 0.2 seems to
N, = 128 is about twice the amount of overhead incurred whdifive the best tradeoff between overhead and termination speed.
N; = 16. A smallerN,, is more efficient. On the other hand,

whenN,, is too small, the amount of new information collectedE. Summary of Results

in each round may be too little and many rounds are neededrq reqyits in the section can be summarized as follows:
before the algorithm can terminate. In Fig. 9(a), the average
number of rounds required whek, = 4 is about ten times
that required whenV,, = 128. A larger IV, can, thus, lead to
much shorter termination time.

The tradeoff in our scheme is between data collection
overhead and termination time. Fig. 9(b) shows a plot of the
normalized overhead vs. number of round for various values of * ' .
N, that clearly illustrates this tradeoff. The figure indicates that ~ the number of round required. The reverse is also true.
decreasingV, decreases the basic overhead of the algorithm * The effect of the slack factoFi.q. in Section V-D is
but at the same time increases the number of rounds it takes Similar to that of Ny, the maximum segment size per
for the algorithm to converge. On the other hand, increasing refinement. The difference is th&t .. is specific to the
N,, to 128 keeps the number of rounds to a very small value rank-based objective and takes into account the rank of
but increases the normalized overhead. In addition, since the flows after sorting. On the other hand, is objective
more data are sent in a single cycle, a lar@ér increases independent.
the load at the network manager. Thg, should not be set Before concluding this section, it is important to point out
beyond some threshold in order to avoid degenerafiRgl that while the performance oARM is fairly robust over a
into a simple polling scheme. wide range of traffic load, the quantitative resultAlRM may

* ARM is very efficient and performs well over awide range

of traffic load. In Section V-CARM is shown to perform
better than scheme-1 and scheme-2 in most cases except
where the number of violations is very low. This is true for

all N; shown.

A small NV, reduces the normalized overhead but increases
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Fig. 10. Performance of rank-based monitoring.
Fig. 11. Termination time of rank-based monitoring with overload fagtor
1.1.

change if the total number of flows in the network changes

by more than an order of magnitude. Hence, whABM

allows significant portion of the monitoring process to pi trigger manggement actions. In par“c!“a“ we can easily
automated, in order to optimize the performance, the val§§!€NdARM to identify not only flows that violate their SLAs,

of N, still requires some tuning depending on the number gt also those that receive significantly better services than
flows in the network. what their SLA stated. Based on such a monitoring tool we

plan to develop an SLA management application to adjust
provisioning among these flows. After all, it is a provider's
best interest to utilize available resources to satisfy as many

We have presented a generic monitoring framew&RM, SLA flows as possible.
to address the scalability in monitoring network QoS that can
pe configured to run with different objectives. The moniFor_ing APPENDIX
is based on hop-by-hop measurement of QoS values, aiming at PROOES
deriving qualitative status of flows and links that can quickly _ _
builds up a coarse picture of the network status that can be reJO prove Theorem 1, we present an interesting property
fined as required. With a dynamic data aggregation technig@@out the curve representing the sorted upper bound QoS
and an iterative refinement process, the proposed framewofRlues. Lemma 1 says that the curve can only move downwards
ARM , achieved substantial reduction in overhead and scafefoss the entire domain, regardless the shuffling of flow orders
well over a wide range of traffic loads. in refinement rounds. 4

ot : S Lemma 1: Vi, k, UX*D < ik,

Two future directions are of immediate interests to us. We » v Ve = Yq
plan to look at the monitoring issues with routers that employ P10 We prove it by cases.
more sophisticated queuing mechanisms such as weighted® Case I:Fi* andF;**") are the same flow. Since for every
fair queuing (WFQ) or support differentiated services. We  flow f, EtoE] (upper)+1 < EtoE](upper)y, we have
also plan to look into ways of using the monitoring results U;(’“’l) < U;"

VI. CONCLUSION
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, ‘ [10]
umk < Uik,
O
Theorem 1:If Di¥ exists, thar &' > k, Di¥ exists, and  [11]
Sik' — gik
q q " 2]
Proof: We prove fork’ = (k + 1). Once the proof is
in place, induction takes its own course for aify > k. By
Lemma 1, we have ) < U, For every flowf € Si*, by [13]
Definition 2 EtoE] (upper), > EtoE] (lower);, > Uézﬂ)k.
Hence, EtoE] (upper);, > EtoE({(upper)Fk+1) = Eth({ [14]
(lower) g1y > EtoE] (lower), > Uy > vft*+D )
Let DS be the set of flowg £ |1 < j/ < i}. Since the
upper bound of flowf in roundk+1 is greaterthaﬁfé”“)(k“), [16]
/ € DS. Therefore,Si* C DS. However, since the cardinality
of both sets are the sam@,ﬁwe haveS** = DS. Because [17]

EtoE] (lower) .41y > U(gH—l) ‘
DS, we conclude thab;* ) exists, andD's is Si* .
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Case II: Fi*+Y) wasF3*, wherej > i. That is,UZ* <
U;’“. Again, due to the monotonic nonincreasing property
of upper bound valueg:* ™) < Uk, Hencel; ¥ +Y <

Uik < Ui,

Case IlI: Fi*+D wasU"*, wherem < i. Thatis Uik <
Uk, For F;** to move down to theth flow in the sorted
listof roundk+1, some rowF;""“, m’ > ¢, must have be-
comery” "t m/ < . Moreover Uy *t < 'k

for the same monotonic nonincreasing property. Since,
m! < i, USFD < " 04D similarly, sincem’ > i,
Um'k < U We now havel/;* T < U;"”(k“) <

") for every flow f € SiF =
O

(5]

(6]

(7]

8]

9]

We can also prove a lemma about the curve representing the
sorted lower bound QoS values. Lemma 2 says that the curve
can only move upwards across the entire domain.

Lemma 2: LZL(kJ’l) > L.

Proof: Prove by cases similar to that for proving Lemmi

1. We omit details.

Theorem 2:For anys, Vk, 1, I > k > 0, Lﬁjz < L%q <
Ej < Ut < Uk,

Proof: It simply follows Lemma 1 and Lemma 2.

helped them improve the presentation. X. Wang contributed
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