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A Scalable Low-Overhead Rate Control Algorithm
for Multirate Multicast Sessions

Koushik Kar, Saswati Sarkar, and Leandros Tassiulas

Abstract—In multirate multicasting, different users (receivers)
within the same multicast group can receive service at different
rates, depending on the user requirements and the network conges-
tion level. Compared with unirate multicasting, this provides more
flexibility to the user and allows more efficient usage of the network
resources. In this paper, we address the rate control problem for
multirate multicast sessions, with the objective of maximizing the
total receiver utility. This aggregate utility maximization problem
not only takes into account the heterogeneity in user requirements,
but also provides a unified framework for diverse fairness objec-
tives. We propose an algorithm for this problem and show, through
analysis and simulation, that it converges to the optimal rates. In
spite of the nonseparability of the problem, the solution that we
develop is completely decentralized, scalable and does not require
the network to know the receiver utilities. The algorithm requires
very simple computations both for the user and the network, and
also has very low overhead of network congestion feedback.

Index Terms—Flow control, layered multicast, multirate multi-
cast, optimization.

I. INTRODUCTION

I N CONVENTIONAL or unirate multicasting, all receivers
of the same multicast group receive service at the same rate.

However, in general, different receivers belonging to the same
multicast group can have widely different characteristics. Thus,
a single rate of transmission per multicast group is likely to over-
whelm the slow receivers and starve the fast ones. Multirate
transmission, where the receivers of the same multicast group
can receive data at different rates, can be used to accommodate
these diverse requirements. Naturally, multirate multicasting is
the preferred mode of data delivery for many real-time applica-
tions, including teleconferencing and audio/video broadcasting.
Multirate transmission allows a receiver to receive data at a rate
that is commensurate with its requirements and capabilities and
also with the capacity of the path leading to it from the source.
One way of achieving multirate transmission is through hierar-
chical encoding of real-time signals. In this approach, a signal
is encoded into a number of layers that can be incrementally
combined to provide progressive refinement. This layered trans-
mission scheme can be used for both audio and video transmis-
sions over the internet [6], [28] and has potentials for use in
asynchronous transfer mode (ATM) networks as well [14]. In
the case of the internet, each layer can be transmitted as a sep-
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arate multicast group and receivers can adapt to congestion by
joining and leaving these groups (see [17] and [19] for internet
protocols for adding and dropping layers). Note that in multi-
rate multicasting, there is no unique multicast session rate and
one needs to consider receiver rates separately. Also note that in
this case, the transmission rate of a multicast session (multicast
group) on a link needs to be equal to the maximum of the rates
of all receivers downstream of that link.

Compared with unirate multicasting, multirate multicasting
allows more efficient use of the network resources. For efficient
use of the network, an effective rate control strategy is neces-
sary. The rate control algorithm should ensure that the traffic
offered to a network by different traffic sources remain within
the limits that the network can carry. Moreover, it should also
ensure that the network resources are shared by the competing
flows in some fair manner. It may, therefore, be desirable that the
rate control algorithm would steer the network toward a point
where some measure of global fairness is maximized.

There can be many acceptable definitions of fairness, some
well-known ones being max–min fairness [4] and proportional
fairness [12]. Fairness definitions can be generalized in a nice
way by using utilities. Utility of a user is a function connecting
the bandwidth given to the user with the “value” associated with
the bandwidth (note that throughout the paper, the terms “user”
and “receiver” are used synonymously). The utility could be
some measure of, say, the perceived quality of audio/video, the
user satisfaction, or even the amount paid by the user for the
bandwidth allotted to it. In this paper, we try to design the rate
control algorithms such that they maximize the sum of the util-
ities over all receivers, subject to the link capacity constraints.
This objective was proposed recently by Kelly [12]. It is easy
to see that various fairness objectives can be realized within
this utility maximization framework for different choices of the
utility functions (see [18]). Note that in our problem, the utility
functions can be different for different users (receivers). Thus,
this framework allows us to differentiate among receivers on the
basis of their requirements and/or revenues. This is important,
since receivers could have heterogeneous requirements and the
same amount of bandwidth could be valued differently by dif-
ferent receivers.

Recently, there has been a considerable interest in the
problem of fair allocation of resources for multirate multicast
sessions. However, most of the work in this area is concerned
only with the notion of max–min fairness (see [8], [22], and
[24]–[26]). Although there has been a lot of research on the
utility maximization problem for unicast case [9], [13], [15],
[16], [27], the multirate multicast case has not received signifi-
cant attention. It is worth noting here that certain factors make
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the multirate multicast problem significantly different and con-
siderably more complex than its unicast version. For instance,
the problem in the multirate multicast case is nonseparable and
nondifferentiable, unlike the unicast case (we discuss more
on this in the subsequent sections). The multirate multicast
utility maximization problem is addressed in [10]. Here, the
authors propose distributed algorithms for this problem; their
approach is based on dual methods. In this paper, we take a
different approach and derive a primal algorithm based on
nondifferentiable optimization methods. The algorithm that
we propose is distributed, scalable, and does not require the
network to know the receiver utilities. Also, both the user and
the network (link/node) subalgorithms are extremely simple
and the overhead of the communication between the network
and the user is very low. Moreover, in our algorithm, per-ses-
sion states need not be maintained at the network links. These
features make the algorithm attractive in terms of practical
deployment. On the other hand, the algorithms in [10] suffer
from several practical shortcomings (they have high overhead
of computation and communication and require the network
links to maintain per-session state). A detailed comparison
of the algorithm proposed in this paper and those in [10] is
presented in Section VIII of this paper. It is worth noting here
that in this work, we do not try to address the question of what
utility functions should be chosen, or how a desired fairness
criterion can be mapped to user utilities. Instead, we address
the question of how the globally optimal rates can be achieved
once the user utility functions are appropriately chosen.

The paper is structured as follows. In Section II, the rate con-
trol problem is presented formally as an optimization problem.
In Section III, we state the algorithm requirements, and out-
line our basic solution approach. In Section IV, we present an
iterative algorithm for the rate control optimization problem.
Section V presents the convergence analysis for this iterative
optimization algorithm. In Section VI, we describe how this al-
gorithm can be implemented in a real network. In Section VII,
we demonstrate the convergence of our algorithm in an asyn-
chronous network environment through simulations. We com-
pare our approach with the existing approaches in Section VIII,
and conclude in Section IX.

II. PROBLEM STATEMENT

First, we describe the network model and formulate the rate
control problem as a convex optimization problem. In the sub-
sequent sections, we will show how we can achieve the optimal
rates for this problem.

Consider a network consisting of a setof unidirectional
links, where a link has capacity . The network is shared
by a set of multicast groups (sessions). Each multicast group
is associated with a unique source, a set of receivers, and a set
of links that the multicast group uses (the set of links forms
a tree).1 Thus, any multicast group is specified by

, where is the source, is the set of links in
the multicast tree and is the set of receivers in group. As
already mentioned, the total rate of traffic of a multicast group

1We assume fixed path routing. So the tree associated with each multicast
group is fixed.

over any link on the tree must be equal to the maximum of the
traffic rates of all downstream receivers of the group. Also note
that unicast is a special case of multirate multicast (in the unicast
case, the tree reduces to a single path between the source and the
receiver).

Let be the set of all receivers over all multicast groups. Also
let denote the set of receivers using link . Each
receiver has a minimum required transmission rate 0
and a maximum required transmission rate . Moreover,
each receiver is associated with a utility function

, which is assumed to be concave, bounded and continuously
differentiable2 in the interval . Thus, receiver
has a utility when it is receiving traffic at a rate , where

.3 We will refer to the variables as the “receiver
rates.”

We are interested in maximizing the “social welfare,” i.e., the
sum of the utilities over all receivers, subject to the link capacity
constraints, as well as the maximum/minimum rate constraints.
The problem can be posed as

maximize

subject to (1)

(2)

Note that is the set of receivers of group that use link
. Thus, the term denotes the rate of traffic of

multicast group on link . Also note that when ,
the term in (1) should be interpreted as zero.

Note that in the above formulation, the setsare (bounded)
continuous intervals. Therefore, it is assumed that the receiver
rates can be continuous. In practice, however, bandwidth allo-
cations can be limited to some discrete levels only (for example,
in layered video, there will be some distinct bandwidth levels,
one corresponding to each layer). However, constraining the set

to a set of discrete points (between the lower and the upper
bounds on the receiver rates), makes the problem much harder
to solve. Discretization of the rates destroys the convexity of the
problem (it becomes an integer programming problem), which
is crucial for developing a distributed solution. In the following,
therefore, we develop a solution to the “convexified” or “re-
laxed” problem, as stated above. The actual rate is then com-
puted by “rounding” the rates obtained (as a solution of the con-
vexified problem ) so that they correspond to the allowed dis-
crete bandwidth levels. The rounding procedure, and the asso-
ciated issues, are discussed in Section VI-C.

III. PRELIMINARIES

In this section, we introduce some new terminology, which
will help us in describing the algorithms presented in the sub-
sequent sections of this paper. We then discuss the features that
are necessary in any multirate multicast rate control algorithm

2The differentiability assumptions are only for the sake of simplicity of ex-
position and analysis. The algorithms and convergence results presented in this
paper can be extended to nondifferentiable functions by usingsubgradients[23]
instead of the usual derivatives.

3We also assume thatU andX are known only to receiverr.
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Fig. 1. An example of a multirate multicast tree.

for the algorithm to be practically viable. In this section, we also
outline the basic solution approach that is used in deriving the
optimization algorithm presented in the next section.

A. Terminology

Consider Fig. 1, which shows an example of a multicast
tree where is the source node and is the set
of receiver nodes. The rest of the nodes in the multicast tree
can be classified intojunction nodesand nonjunction nodes,
as shown in the figure. Junction nodes are the forking nodes,
i.e., nodes where the multicast tree “branches off.” Thus, in
Fig. 1, are junction nodes. Receiver/junction nodes
of different multicast groups are considered to be logically
different, even if they are physically located at the same node.
In the rest of the paper, we assume that the receivers are only
at the leaf nodes of the multicast tree. There is no loss of
generality in assuming this, since a receiver at a nonleaf node
can be replaced by creating a new leaf node and placing the
receiver in it, and connecting the new leaf node to the nonleaf
node (where the receiver is actually located) by a link with
infinite capacity. Moreover, note that any leaf node must be a
receiver node. Theparentof a receiver/junction node refers
to the closest junction/source node in the upstream path from
toward the source. Also, bychild of junction/source node, we
would refer to any receiver/junction node whose parent is the
node . Thus, in Fig. 1, is the parent of , is the parent of

, and is the parent of . Similarly, is a child of , while
, are children of , and so on.
In general, we assume that the receiver decides its rate based

on its utility function and the network congestion feedback. It
then sends its request to its parent node. A junction node gathers
all such requests (from its children nodes), takes the maximum
of all the rates requested, and requests that rate from its parent
node. Requests go up the tree through the junction nodes in this
fashion until they reach the source node. The source sends traffic
to its children nodes at their requested rates; these nodes then
send traffic to their children nodes and so on, and the traffic
finally reaches the receivers at their requested rates.

B. Algorithm Requirements

In order to be practically viable, a rate control algorithm must
be decentralized. Thus, we would like to have a solution where
the nodes in the network act like processors in a distributed

computation system (where the coordinating information is ex-
changed in terms of congestion and rate feedbacks) and reach
the system optimum without any centralized coordinator.

Closely tied to decentralization is the issue of scalability. A
solution would not scale if, for example, the source or a junction
node in the multicast tree has to maintain some state information
for all downstream receivers of the tree. Since the number of re-
ceivers in the group can be large, this might lead to tremendous
processing/storage pressure on such a node, particularly if the
node is the source or a junction node close to the source. There-
fore, we would like to have a solution where processing/storage
overhead at a node in a multicast tree does not depend signifi-
cantly on the size of the tree.

The rate control algorithm must scale not only with the size
of a multicast group, but also with the total number of multi-
cast sessions going through a link/node of the network. There-
fore, we would like to have a solution where the network routers
are not required to maintain state information on a per-flow
(per-session) basis. However, due to the multirate nature of the
traffic, some state overhead is unavoidable for routers that are
junction nodes of one or more multicast sessions. This is be-
cause a junction node needs to store at least the rate informa-
tion about each of its children. Thus, a router has to maintain
per-session information for all multirate multicast sessions for
which it is a junction node. However, we would like to have a
solution where the routers would not need to maintain any state
information for a session for which it is a nonjunction node.
Thus, in such a solution, no per-flow state would be required at
the network nodes if all the sessions are unicast (since there are
no junction nodes in the unicast case).

Conformity with existing standards is another important cri-
terion. The rate control algorithm should be such that it can be
implemented without a major modification to the existing stan-
dards. In the current networking standards like IP multicast, a
junction node may not know the identity of all the downstream
receivers, but will only know the downstream nodes it must for-
ward a packet to. Therefore, we require a rate control algorithm,
which does not require a junction node to communicate with
nodes other than its immediate neighbors.

We would also prefer to have a solution where the complex
computations (required for the optimization process) are limited
to the end hosts only. For practical viability, the computations
that the core routers are required to perform must be kept simple.

It is also desirable that the overhead of information exchange
(required in the optimization process) between the network and
the end hosts is as low as possible such that it can be contained
within a few bytes in the packet header.

The rate control algorithm that we propose in this paper satis-
fies all of the above criteria. It is distributed and the user and the
network algorithms are appealingly simple. The algorithm also
has a low network feedback overhead. In the algorithm, the net-
work needs to know only the receiver rates. This, however, can
also be estimated by measuring the rates at the network nodes. In
our algorithm, with measurement-based estimation of receiver
rates, a router does not need to maintain per-session information
for sessions for which it is a nonjunction node; the per-session
information maintained for sessions for which it is a junction
node is also small. Moreover, a source/junction/receiver node
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only needs to communicate with its parent or children nodes and
does not need to know about the nodes further downstream/up-
stream. Thus, the solution is scalable and conforms well with
the existing standards.

C. Solution Approach

Note that in the unicast version of the problem, the link con-
straints are linear and the problem is separable. Separable
problems are amenable to distributed solutions [3]. In our case,
however, the problem contains some functions. The
functions, besides being nonlinear, couple several variables to-
gether, making the problem nonseparable. Moreover, note that
the functions are nondifferentiable. All these factors make
the problem significantly different than its unicast version. Ob-
taining a solution that satisfies all the requirements described in
the last subsection is an interesting and challenging problem.

The algorithm that we propose in this paper is developed
using nondifferentiable optimization methods, particularly
those based onsubgradients. A subgradient, defined in the
context of convex/concave functions, can be viewed as a gen-
eralized gradient, and may exist even if the gradient does not
(as is the case for nondifferentiable functions). See Appendix I
for the formal definition of subgradients and some of their
important properties. The motivation, derivation, and analysis
of our algorithm draw from results in subgradient optimization
theory, mainly those by N.Z. Shor and B.T. Poljak [20], [23].
The problem of nonseparability (as well as nondifferentiability)
of the constraint functions can be effectively handled using
subgradients. The use of subgradients thus allows us to develop
a simple distributed solution to the nonseparable problem.
Our algorithm is developed in such a way that the scalability
and other requirements stated above are also appropriately
addressed.

IV. A N OPTIMIZATION ALGORITHM

In this section, we present an iterative optimization algorithm
for the problem . The convergence properties of the algorithm
is investigated in Section V. In Section VI, we show how this
algorithm can be implemented in a real network in a distributed
and scalable way.

A. Notation

Before we present the algorithm, we introduce some notation
that we will use. Let be the set of all junction nodes (over all
multicast groups). Let be the set of all receiver and
junction nodes (over all multicast groups). For any , let
denote the parent node of. Thus, in Fig. 1, , ,
etc. For any , let denote the set of
all children nodes of . Thus, in Fig. 1,

, etc. For any , let denote the set of all links
whose immediate downstream junction/receiver node is. In
other words, is the set of all links between the nodes
and in the particular multicast tree to which and belongs.
Thus, in Fig. 1, consists of all links betweenand ,
consists of all links between and , consists of all links
between and , and so on. Now define the set as

. Thus, consists of all junction and receiver

nodes that are the immediate downstream nodes of sessions that
go through link .

For any , let denote the set of receiver nodes that are
included in the tree rooted at. Thus, in Fig. 1, ,

, etc. Now for each , define a vari-
able such that it denotes the rate of traffic that the junction
node receives from its parent node (we will call these “junction
rates” in analogy with “receiver rates”). Note that the junction
rates are functions of the receiver rates. Thus, for any ,

is defined as . Moreover, with this no-
tation, for any , . Also note that the
capacity constraint for link(cf., (1)) can now be simply written
as .

For any , let denote the set of all junction and
receiver nodes from the source node to, including but ex-
cluding the source node. Thus, in Fig. 1, ,

and so on.

B. An Iterative Algorithm

For any , let denote the rate of the receiver
node at the th iterative step. Then for any ,

denotes the rate of the junction nodeat the
th iterative step.
In our algorithm, the rate update procedure for receiverat

the th iterative step can be summed up as follows: in-
creases according to the “incremental utility” , while it
decreases according to the “congestion penalty” ( will
be defined shortly). The quantity can be thought of as a
measure of the congestion caused byat step and, thus, de-
termines the rate at which“backs off” on detecting congestion
in its path. As we will see later (when we describe the practical
implementation of the algorithm in Section VI), the congestion
penalty is basically the congestion feedback provided by the net-
work to the receiver (user). Before we describe the rate update
procedure in detail, let us define the congestion penalty formally
in terms of the receiver rates and network parameters.

First, we introduce a few variables that will be useful in
defining the congestion penalty . For each link ,
define as a zero to one variable denoting whether linkis
congested or not at step, i.e.

if

if
(3)

We will refer to the variable as the “link congestion indicator”
for link . Now, for each , define as

(4)

Therefore, indicates how many of the links in are con-
gested at step.

Let be the set of all source nodes (over all multicast groups).
Let be the set of all junction and receiver nodes whose
parent node is a source node. Thus, . Asso-
ciate a variable satisfying 0 with each .
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We will refer to as the “penalty splitting factor” associated
with junction/receiver node, the reasons for which will be clar-
ified shortly. Let denote the penalty splitting factor forat
the th iterative step. We require these penalty splitting factors
to satisfy certain conditions, as we will see later.

The definition of the congestion penalty, as will be stated
shortly, can be motivated as follows. Let us interpret as the
penalty to be paid for congesting link(by each of the multi-
cast sessions using link) at step . Now consider a junction
node belonging to any multicast group . Then is the
total penalty to be paid by for congesting the links in . Let
this penalty be charged to(recall that for links in , is the
closest downstream node belonging to’s multicast tree). Now
let split this penalty among its children nodes. Also, for any

, let be the factor that determines what proportion
of this penalty is charged to (thus, is charged a penalty
of ). Each child node then splits the penalty charged to
it amongst its children nodes (again according to the splitting
factors of the nodes that are charged) and this goes on until the
penalties are transferred to the receivers. It is then easy to see
that the penalty charged to receiver (for congesting the
links in ) is equal to . Note that for

any receiver node, the penalty for congesting the links in
is charged entirely to since it is the only downstream receiver
(of that group) for those links.

Now assume that the penalties of all links of the multicast tree
are split up amongst the receivers in the manner just described.
Then a receiver pays a penalty for each of the links it uses (i.e.,
the links in the path from the source to that particular receiver).
Note that for any receiver, represents the set of
links that uses. Therefore, the total penalty that receiverpays
is the sum of the penalties paid for the links in .

Now let us define the congestion penalty formally. For each
, define as

(5)

For , the term should be interpreted

as one. Note that is zero if none of the links that receiver
uses is congested. Moreover, note that in the special case of

an unicast session, the congestion penalty of the receiver of the
session is simply the number of congested links in the path of
the receiver/session.

Now, we state the update procedure for the receiver rates. In
the update procedure stated below, denotes a projection4

on the set . For each , is updated as follows:

(6)

where (the “penalty scaling factor”) is a positive constant and
0 is the step size at theth iterative step.

4SinceX = [b ; B ], thus, for any scalary, [y] = min(B ;max
(b ; y)).

C. Conditions on the Splitting Factors

For our algorithm to work correctly, at every step, the split-
ting factors must satisfy the following conditions:

(7)

(8)

if (9)

Constraints (7) state that the splitting factors are nonnegative.
Constraints (8) state that the sum of the splitting factors of all of
the children of a junction node must add up to one. Constraints
(9) state that the splitting factor of a node is zero if it is not
receiving the same rate as its parent. Since the rate of the parent
node is the maximum of the rates of its children, this implies
that the splitting factor of a node is zero if its rate is not the
maximum amongst the rates of all of its sibling nodes. In other
words, the penalty at a node is split amongst only those children
who are receiving the maximum rates.

Note that the above constraints allows us to have both frac-
tional and integral (zero and one) splitting factors. Choosing
fractional splitting factors, however, has certain drawbacks in
terms of practical implementation, as we will discuss in Sec-
tion VI. Therefore, in the rest of the paper, we will only be con-
cerned with integral splitting factors. In that case, (7) is replaced
by the following constraint:

(10)

V. CONVERGENCEANALYSIS

In this section, we investigate the convergence of the iterative
algorithm outlined in the last section. For simplicity, the con-
vergence analysis presented here assume that the splitting fac-
tors satisfy (8)–(10). However, the results can be shown to hold
even if the splitting factors satisfy the more general conditions
(7)–(9).

In the following, let denote the vector of
the receiver rates. Let denote the vector of receiver rates
at the th iterative step. Let denote the entire region in the

-dimensional space whereis constrained to lie due to (2),
i.e., . Thus, the set of
constraints in (2) can be equivalently written as .

A. Assumptions

In the convergence analysis, we make the following assump-
tions on the problem .

Assumption 1: (Feasibility):The problem is feasible, i.e.,
for all .

Note that in the special case when , the
feasibility assumption is satisfied.

Assumption 2: (Bounded Slope):There exists an
such that for all .

For the sake of simplicity of the analysis, we make an ad-
ditional assumption in this paper, as stated in Assumption 3.
However, this assumption is not necessary for guaranteeing con-
vergence. Refer to [11] for the convergence results in the more
general case.
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Assumption 3: (Strict Concavity):The utility functions
are strictly concave in the interval . Thus, for every ,
there exists a such that for all .

Note that the above assumption also implies that the optimal
solution of is unique. Let be the optimal solution of .
Define the overall user utility function as

and let be the corresponding op-
timal value.

Next, we state some convergence results under various con-
ditions of the step sizes.

B. Exact Convergence With Diminishing Step Sizes

Assume that the sequence of step sizes in (6) satisfies
the following criteria:

(11)

As an example, is a sequence that satisfies (11).
Let denote the maximum number of

receivers in any multicast group. The following theorem shows
that our algorithm converges to the optimum if the step sizes
satisfy (11).

Theorem 1: Consider the iterative procedure stated in
(3)–(6), with the splitting factors satisfying (8)–(10), and the
step sizes satisfying (11). Then for all , the sequence
of rate vectors converges to , the unique optimal
solution of .

The above theorem is proved in Appendix II. Note that from
the continuity of it follows that .

Theorem 1 states that there is a minimum value of the penalty
scaling factor beyond which our algorithm converges to the
optimal solution. Note that in the unicast case, this lower bound
on is simply the maximum derivative of the utility functions.

The algorithm can be also be shown to converge if the step
sizes satisfy where 0 1 and is a “suf-
ficiently large” constant. Note that all these step sizes satisfy

0. This condition is required due to the nondif-
ferentiability of the problem. In practice, however, it may not be
possible (due to precision limitations) or efficient (since it could
slow down the convergence rate considerably) to decrease the
step size beyond a certain value. In Section V-C, therefore, we
investigate the convergence of our algorithm with constant step
sizes.

C. Approximate Convergence With Constant Step Sizes

If the step sizes are constant, we can guarantee convergence
of the rates to a neighborhood of the optimum. The result is
formally stated below. A similar result holds even in the case
where the step sizes are not constant but converge to some pos-
itive value. Let be the set of all points at a distance of

or less from (the - neighborhoodof ), i.e.,
. Let denote the

Euclidean distance of a pointfrom any compact set .
Theorem 2: Let denote the sequence of rate

vectors defined by (3)–(6) (and the splitting factors satisfying
(8)–(10)) with . Then there exists a function

0 satisfying 0 such that for all
,

The above theorem can be proved along the same lines as The-
orem 1 and the proof is omitted for brevity. The theorem states
that for a constant step size, the distance of the rate vector from
a neighborhood around the optimum tends to zero and the size
of this neighborhood becomes arbitrarily small with decreasing
step size. For a given constant step size, the size of the neighbor-
hood depends on the parameters of the problem, including the
utility functions. Although obtaining a general explicit expres-
sion for the size of this neighborhood is difficult, implicit ex-
pressions of in terms of can be calculated [11]. However,
the size of the neighborhood calculated on the basis of these ex-
pressions could be very conservative. Note that the above the-
orem also implies that given any neighborhood around the op-
timum, we can choose the step sizeto be sufficiently small
so that our algorithm (with constant step sizes) achieves rates in
that neighborhood.

Note that guaranteed convergence requires bounded utility
derivatives (Assumption 2). If the utility functions have un-
bounded derivatives (as is the case for the function at

0), then the range of achievable rates can be restricted so
that the utility derivatives are bounded in the restricted range.
For instance, consider the utility function where the rate

can vary over the range0 . Since the utility derivative
is unbounded at 0, we could restrict the range to ,
where is some small positive number. Our algorithm can be
applied to the problem with this restricted range and the rates
achieved will be close to optimal.

VI. DISTRIBUTED IMPLEMENTATION

Now we describe how the algorithm described in Section IV
can be implemented in an asynchronous network environment
in a distributed and scalable way.

A. Protocol Description

First, we describe how the protocol works. As mentioned be-
fore, in our algorithms, a source/junction/receiver node needs
to communicate only with its parent and children nodes. As-
sume that each source/junction node sends congestion packets
(CP) (containing the congestion penalty information) to its chil-
dren nodes. Also assume that each receiver/junction node sends
rate packets (RP) (containing the rate information) to its parent
node. Thus, the CPs move in the downstream direction of the
tree, while the RPs move in the upstream direction (see Fig. 2).
The CPs that a junction node sends to its children are sent out
when the junction node receives a CP from its parent. More-
over, the RP that a junction node sends to its parent is formed
by merging the RPs that it receives from all of its children. As in
the figure, each CP contains a congestion penalty field, while
each RP contains a rate field.

A junction/receiver node communicates its rate request to its
parent node through thefield of the RP. This is to let the parent
node know at what rate it needs to send traffic to the corre-
sponding child. The parent node also uses these communicated
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Fig. 2. Message exchanges.

rates to determine which of the children are requesting the max-
imum rates, and penalize only those children. For this purpose,
each junction nodemaintains , the set of the chil-
dren requesting the maximum rates.

A source/junction node conveys the appropriate congestion
penalty to its children nodes through thefield of the CP. Note
that choosing fractional splitting factors makes the penalty term
fractional and this makes it difficult to convey it to the receiver
using a few bytes, without sacrificing precision. For good pre-
cision, we require that thefield be fairly large, and this results
in a high protocol overhead. To avoid this problem, we can just
assign integral splitting factors, i.e., zero and one. In this case,
conditions (8)–(9) require that a splitting factor of one be as-
signed toanyone of the children that is requesting the maximum
traffic rate, while a splitting factor of zero be assigned to all other
children (whether they are requesting the maximum traffic rate
or not). Note that it does not matter which one of the children
(amongst those that request the maximum rate) is chosen to pay
the penalty and the child that is penalized could be different at
different times (iterations). The algorithms described below as-
sume this kind of penalty splitting. This ensures that the number
of bytes that need to be allocated to thefield is small (we dis-
cuss more on this later).

Also assume that link (i.e., the node associated with link,
which is usually the node where the link originates) is respon-
sible for keeping track of the link congestion indicator variable

. Moreover, for any receiver/junction node, the node itself is
responsible for keeping track of the receiver/junction rate.

B. Link and Node Algorithms

On receiving RPs from all of its children nodes, a junction
node computes the maximum of the rates requested, and sends
an RP to its parent, setting thefield to this maximum requested
rate. When an RP is going through link, the node reads the field

and uses it to update the congestion indicator(see the link
algorithm below).

When sending a CP to a child, a source node stamps zero in
the field of the CP. Each link on the path to the child adds the
link congestion indicator (zero or one) in thefield of the CP.
A junction node transfers the field of the CP that it receives
from its parent node to the CP of one of the children that has
requested the maximum rate; thefields of the CPs for the rest
of the children are stamped as zero. Thus, when a receiver node
receives a CP, the field contains the appropriate congestion
penalty for that receiver, which it uses for updating its rate ac-
cording to (6).

Note that in real implementation, these control packets (CPs
and RPs) need not be communicated as separate packets; the
congestion penalty can be conveyed through a field in the data
packets, while the rate information can be conveyed through a
field in the acknowledgment (ACK) packets.

In the following algorithms, the step size for rate updates is
kept constant at .

Link ’s algorithm:
On receiving an RP:
1. Read the field to know the current
rate of that session, and forward the RP
on to the next link.
On receiving a CP:
1. Add to the field of the CP and
forward it on to the next link.
Periodically:
1. Update the link congestion indicator
as

if

if

Source node ’s algorithm:
On receiving an RP:
1. Read the field to know the new rate
requested by the child.
2. Send a CP to that child, setting the
field to 0.

Receiver node ’s algorithm:
On receiving a CP:
1. Read the field of the CP to know the
current congestion penalty.
2. Send an RP to the parent node, setting
the field to .
Periodically:
1. Update the receiver rate as

where is an estimate of the current
congestion penalty of .
Now, if , set , and if ,
set .
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Junction node ’s algorithm:
On receiving a CP:
1. Send one CP to each of the children
nodes, setting the field as follows:
(a) Pick any child node in , and set
the field of its CP to the field of
the CP received from the parent node.
(b) Set the fields of the CPs of all
other children nodes to 0.
On receiving an RP:
1. Read the field to know the new rate
requested by the child, and do the fol-
lowing:
(a) Update the junction rate as:

.
(b) Update as: .
2. On receiving RPs from all of the chil-
dren nodes, send an RP to the parent node,
setting the field to .

C. Implementation Issues

Note that in the algorithm described above, the receiver
could request any rate between its minimum and maximum
required rates. However, as discussed in Section II, in practice,
bandwidth allocation is constrained to occur only at certain
discrete levels (which are typically predetermined, and corre-
spond to the cumulative layer bandwidths). Therefore, a source
node (or junction node) can send traffic to a child node only at
a rate that corresponds to a discrete level close to the requested
rate. The granted discrete level can be the closest level no more
than the requested bandwidth (rounding down) or it can be the
closest level no less than the requested bandwidth (rounding
up). The latter, however, can result in rates that are infeasible.
Therefore, in practice, rounding down may be more preferable
and will result in rates that are feasible, and close to the optimal
(the degree of closeness (to optimality) depends on the density
of the discrete bandwidth levels).

Now let us calculate the number of bits that must be allocated
to the field of the CP. Firstly note that the value ofis upper
bounded by , the maximum number of links on a source-re-
ceiver path. This is due to the fact that in the worst case, all
the links from the source to a receiver can be congested, and
the penalty splitting factors of all the junction/receiver nodes on
that path could be one. This implies that we need to allocate

1 b to the field. Therefore, for most real networks,
including the internet, allocating just one byte for the conges-
tion penalty field should be sufficient (note that one byte would
allow 255 links on a path from the source to the receiver). Thus,
the overhead of the network congestion feedback to the receivers
is quite small.

The implementation of the link algorithm, as described in the
previous subsection, has an important drawback. Note that in the
implementation described, the link has to keep track of the rates
of all individual sessions that traverse that link. This implies that
a router has to maintain per-session state even for sessions for
which it is a nonjunction node. This is certainly undesirable, as
we have argued in Section III-B. However, note that the session

rates can also be estimated by traffic measurements at the links.
Also note that in order to determine whether a link is congested
or not, we only need to know thetotal rate of traffic at that link,
and not the individual session rates (see the link algorithm de-
scribed above). Thus, we could determine the value of the link
congestion indicator just by measuring the total arrival rate at the
link. Therefore, with measurement-based rate estimation, main-
taining per-flow state at the links is not necessary. It is easy to
see that with this modification, the distributed implementation
of our algorithm (as described in the previous subsection) satis-
fies all the desirable features listed in Section III-B.

However, note that if rates are measured (and not commu-
nicated), there has to be estimation errors. These errors will
be more significant because the traffic is sent at rates that are
slightly different from the requested (computed) rates (due to
rounding, as discussed above). We will discuss the effects of
these estimation errors on performance in Section VII.

D. One-Bit Congestion Feedback

As discussed, we require a byte in the packet header to carry
the network congestion feedback. Although using one byte of
the data packet/ACK packet header does not introduce a signif-
icant overhead, it is still interesting to investigate if the algo-
rithm can be implemented with a single bit of network conges-
tion feedback. In that case the algorithm could be implemented
with the proposed explicit congestion notification (ECN) bit.

For one-bit implementation, we could use an approach sim-
ilar to random early marking (REM) proposed in [1]. In this ap-
proach, there is a single bit for network congestion feedback in
each packet, and this bit is marked probabilistically at each link,
based on whether the link is congested or not. Each junction
node transfers this bit to the child receiving traffic at the max-
imum rate, in a way similar to that described in Section VI-B.
The receivers can then infer the congestion penalty by mea-
suring the number of marked packets received over some time
window. The packet marking process at the links and the penalty
estimation process at the receivers are described more formally
below.

If a link is congested according to (3), then a packet is marked
with probability 0 1 , chosen appropriately. If the
link is not congested, the packet is not marked. The marking
process in different links are independent; therefore, the proba-
bility that the packet is marked after traversingcongested links
is 1 1 . Let be the proportion of marked packets mea-
sured over some time window at receiver. Then the estimated
congested penalty of receiverdenoted by can be calculated
as

(12)

where is the maximum number of links on the path from a
source to a receiver, as before.

In Section VII, we evaluate the performance of this random
single-bit marking based implementation of our algorithm and
compare it with the original (deterministic) implementation de-
scribed previously.
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Fig. 3. Example network. (The numbers associated with the links are the link capacities (in MB/s). The propagation delay for each link is 1 ms.)

VII. SIMULATION RESULTS

Simulations carried out on various network topologies/
scenarios confirm that our algorithm, as described in Sec-
tion VI, achieves the optimal rates in an asynchronous slowly
time-varying network environment. In this section, we present
a few representative examples to demonstrate this fact.

Fig. 3 shows the example network that we consider, which
consists of two multicast groups sharing a 11-node 10-link
network. We assume layered multicasting, and each multicast
group can send traffic in 20 layers, each of the layers having
a bandwidth of 0.25 MB/s. Therefore, the maximum allowed
bandwidth is 5 MB/s, and bandwidth can be allocated in units
of 0.25 MB/s. Any particular discrete bandwidth level can be
achieved by sending an appropriate number of layers. Note
that layers are always sent cumulatively. Therefore, to achieve
a rate of 0.25 MB/s, the lowest layers need to be sent.
Note that in layered multicasting, each data packet belongs
to one particular layer. Therefore, a source/junction node can
send traffic to its child at a particular discrete bandwidth level
(computed by rounding down the rate requested by the child)
simply by sending/forwarding only those data packets which
belong to a corresponding set of cumulative layers.

In our experiments, the algorithms are implemented as de-
scribed in the previous section, and the step size of rate updates

is kept fixed. However, the congestion penalty is not sent
through separate control packets (CPs); instead, the congestion
penalty field is part of each data packet itself. Data packets,
that travel on the forward paths, are assumed to be 400 B each.
The rate information is carried on the upward path by RPs, as
described in Section VI. Each RP is assumed to have a length
of 40 B. Each receiver node/junction node sends out these RPs
to its parent node periodically (once every 0.05 s). In all of the
simulations described in this paper, maximum utilization of a
link is set to 95%. Therefore, a link determines if it is congested
or not depending on whether the overall estimated traffic on the
link exceeds 95% of its capacity or not.

In the network in Fig. 3, the utility functions of receivers
and are 0.5 1 , while those of the rest are 1
(where is expressed in MB/s). The minimum rate for each
receiver is zero, and the maximum rate is the capacity of the link
leading to the receiver. Note that sinceis connected directly
to the source, it behaves essentially like an unicast session. In
our simulation scenario, the sequence of arrivals/departures of

receivers are as follows. The receivers and arrive
at time 0. Receiver joins at 30 s, receiver joins at

60 s, leaves at 90 s, and leaves at 120 s. All
receivers start with an initial rate of zero. The receiver rates are
updated every 0.05 s. Note that a receiver will receive many data
packets between two rate update instants, and the congestion
penalty in the field of these packets could be different. In our
simulations, the congestion penalty estimate that a receiver uses
in the rate computation procedure is computed by averaging the
penalties over all data packets received since the last rate update.
For the simulation results presented in this section,0.15 (in
MB/s) and 1.2.

First, we consider the case where the rates are explicitly com-
municated to the links (the case with rate estimation at links is
considered later).

Fig. 4, which shows some rate plots in the time window
0–180 s, demonstrates the performance of our algorithm in
the particular example considered. Fig. 4 shows the computed
(requested) receiver rates of , and , along with the
optimal rates (these four receivers were chosen arbitrarily, and
rate plots of the other receivers also exhibit a similar trend).
The rates are plotted every 0.05 s, which is also the time
interval between successive rate updates at the receivers. Note
that the sudden changes in the optimal rates at30, 60, 90,
and 120 are due to the arrival/departure of receivers. The plots
demonstrate that the computed receiver rates track the optimal
rates closely even as the optimal rates change.

Observe that in the plots in Fig. 4, the computed rates do not
exactly converge to the optimal rates, but fluctuate rapidly, re-
maining close to the optimal rates. The thickening of the receiver
rate plots are due to these small but rapid fluctuations around
the optimal values. Recall that in Section V, we argued that due
to the nondifferentiability of the problem we need step sizes
close to zero in order to guarantee exact convergence. If the step
size is constant, but small, as in the case of the plots in Fig. 4,
then we can only guarantee that our algorithm achieves rates
that are close-to-optimal (Theorem 2). When the total traffic is
close to the link capacity, the link congestion indicator fluctu-
ates between zero and one, as can be expected from intuition.
Moreover, when multiple children request the maximum traffic
rate from a junction node, the penalty splitting factors for those
children will also fluctuate between zero and one, as can be ex-
pected from the description of the junction node’s algorithm
presented in the last section. This causes the receiver penalty
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Fig. 4. Convergence of computed rates (with explicit rate communication). (The straight lines represent the optimal (theoretical) rates.)

Fig. 5. Convergence of computed rates (with measurement based estimation of rates). (The straight lines represent the optimal (theoretical) rates.)

to fluctuate, causing rate fluctuations like those seen in Fig. 4.
Smaller step sizes cause smaller fluctuations, but also result in
lower convergence speeds. Thus, the choice of the step size is
a tradeoff between the convergence speed and the magnitude of
fluctuations. In practice, a receiver could choose large step sizes
initially (to ensure fast convergence), and reduce the step sizes
once it detects that its rate is fluctuating around the same mean
value (to reduce fluctuations when the rates are close to the op-
timal values).

Now consider the case where the links update their congestion
indicators based on measured rates. In our simulations, link con-
gestion indicators are updated after every 0.02 s (based on the
average arrival rate since the last update instant). Fig. 5 shows

the rate plots for this case (all other simulation conditions are
similar to the case in Fig. 4). The plots demonstrate that com-
puted rates track the optimal rates even when the link rates are
estimated by measurement. Comparing Figs. 4 and 5, we ob-
serve that the magnitude of rate fluctuations is slightly greater
(on an average) in the latter case. This is due to the errors in rate
estimation at the links.

Note that Figs. 4 and 5 show the computed (requested) rates.
The rate at which a receiver receives traffic will typically be
slightly less since it is computed by rounding down the re-
quested rate. The rates at which the receivers receive traffic are
shown in Fig. 6. The rates shown are the traffic rates measured
at the receiver (each point in the plot is computed by averaging
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Fig. 6. Convergence of received rates with 20 layers (with measurement based estimation of rates). (The straight lines represent the optimal (theoretical) rates.)

the receiver rates over a period of 1 s). The figure shows that
the actual received rates are fairly close to the optimal rates.
The slight difference between the optimal and the received
rates are due to the rounding down procedure, as mentioned
before. Note that the optimal rates plotted in the figure are the
optimal rates computed based on the relaxed problem, and not
the optimal rates of the actual discretized problem (which can
only be computed by solving a very complex integer program).
However, since the achieved rates are fairly close to the optimal
rates of the convexified problem, they are expected to be close
to optimal rates of the actual discretized problem (note that the
optimal objective function value of the convexified problem is
an upper bound on the optimal objective function value of the
discretized problem).

Recall that convergence of our algorithm is guaranteed only
when the constant is “sufficiently large” (Theorems 1 and 2).
However, setting to a very large value could reduce the av-
erage throughput considerably, as we would intuitively expect.
Therefore, the value of should be chosen carefully to en-
sure good performance in practice. Note the value ofin this
example is 1.2, which is less than the lower bound for guar-
anteed convergence, as stated in Theorems 1 and 2. Therefore,
this example also demonstrates that in practice, the rates can
converge to the optimal values even for a value ofsmaller
than the stated lower bound.

Note that in the scenario described above, there is a large
number of layers, and bandwidth can be allocated at fine gran-
ularity. However, in practice, there can be a few layers (4–5, for
example) and the bandwidth difference between layers can be
large. Thus, bandwidth can be allocated only at coarse granu-
larity. Fig. 7 plots the received rates when there are five layers,
each of 1 MB/s. All other simulation conditions are the same as
that in Fig. 6. The figure also plots the optimal rates (computed
based on the relaxed problem, i.e., assuming no discreteness in
bandwidth allocation), and the optimal rates rounded down so

that it corresponds to a cumulative layer bandwidth. As an ex-
ample, if the optimal rate is 2.4 MB/s, then the rounded down
optimal rate in this case will be 2 MB/s, whereas if the optimal
rate is 1.7 MB/s, the rounded down optimal rate is 1 MB/s. The
broken straight lines represent the optimal rounded down rates.
From Fig. 7, we see that the received rates lie between the op-
timal rates and the optimal rounded down rates. This fact was
observed in most of the simulations. In a few cases, however, the
rates lie between the optimal rates and the rounded up optimal
rates (defined in a similar way as rounded down optimal rates).
To sum up, in the case where there are few widely separated
layers, the rates achieved by our algorithms lie within one layer
(above or below) of the optimal rates of the relaxed problem.
This error of one layer is unavoidable due to the discreteness of
the problem.

In the simulations described above, all the layers have equal
bandwidth. However, in practice, the layers could have widely
different bandwidths, and so the discrete achievable bandwidth
levels may not be evenly spaced. Fig. 8 plots the received rates
for the case where the discrete bandwidth levels are geometric.
Here, we have five layers and the rates that can be allocated
are 0.25, 0.5, 1, 2, and 4 MB/s (therefore, the first layer has a
bandwidth of 0.5 0.25 0.25 MB/s, the second layer has
a bandwidth of 1.0 0.5 0.5 MB/s, etc.). The simulation
environment is the same as before. As the plots show, the obser-
vations in this case are similar to those described previously in
the context of Fig. 7.

Next, we evaluate the performance of the random marking
based single-bit implementation of our algorithm, as described
in Section VI-D. Fig. 9 plots the received rates in this case
with 0.25 and 4 [see (12)]. (Note that the max-
imum number of links on the path from a source to a receiver
in the network in Fig. 3 is Fig. 4.) The time window chosen
for averaging (for computation of the congestion penalty based
on packet marks) is 0.05 s, which is also the interval between
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Fig. 7. Convergence of received rates with five layers, uniformly spaced (with measurement based estimation of rates). (The unbroken straight linesrepresent the
optimal rates, computed based on the relaxed problem. The broken straight lines(� � �) represent the rounded down optimal rates.)

Fig. 8. Convergence of received rates with five layers, geometrically spaced (with measurement based estimation of rates). (The unbroken straight lines represent
the optimal rates, computed based on the relaxed problem. The broken straight lines(� � �) represent the rounded down optimal rates.).

successive rate updates at the receivers. All other simulation
conditions are the same as those in Fig. 6. The plots demon-
strate that the achieved rates track the optimal rates in this case
too. Comparison with Fig. 6 reveals that the rate fluctuations in
the case with random marking is greater than that with the deter-
ministic algorithm, as we would intuitively expect. Fig. 10 plots
the received rates with random marking, but with five layers of
1 MB/s each. Comparing with Fig. 7, we see that the obser-
vations in this case are similar, although the magnitude of rate
fluctuations is slightly larger with random marking. The simu-
lation results with geometrically spaced layers are similar, and
are omitted for brevity.

VIII. R ELATED WORK

In this section, we mention some of the recent work on the
unicast version of the problem that we have addressed in this
paper. We also compare, in detail, the algorithm presented in
this paper with an alternative approach to the same problem (the
multirate multicast case), presented in [10].

An aggregate utility maximization approach to flow control
was suggested recently by Kelly [12]. Recently, this problem
has received considerable attention in the context of unicast
networks. Several flow control algorithms, both rate-based and
window-based, have been proposed (see [9], [13], [15], [16],
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Fig. 9. Convergence of received rates with 20 layers, and random single-bit marking (with measurement based estimation of rates). (The straight lines represent
the optimal (theoretical) rates.)

Fig. 10. Convergence of received rates with uniformly spaced five layers, and random single-bit marking (with measurement based estimation of rates). (The
unbroken straight lines represent the optimal rates, computed based on the relaxed problem. The broken straight lines(� � �) represent the rounded down optimal
rates.)

[27]). These algorithms were derived using different optimiza-
tion approaches and we will not discuss them here. Amongst
these, the unicast algorithm presented in [9] is also based on
subgradient optimization methods. For the special case of all
unicast sessions, the algorithm presented in this paper reduces
to a form that has certain similarities with the algorithm in [9]
(particularly the fact that in both cases, the congestion feedback
from the network to the user is the number of congested links
on user’s path). However, compared with the algorithm in [9],
the all unicast version of our algorithm guarantees convergence

under much weaker assumptions on the receiver utility functions
and the penalty scaling factor.

For the case of multirate multicast sessions, the optimization
based rate control problem has not been adequately addressed.
As we have already argued in earlier sections, the nonsepa-
rability and nondifferentiability of the problem and the multi-
cast-specific requirements make this problem much more com-
plex than its unicast version. In [10], the authors address the
multirate multicast utility maximization problem and propose
dual-based algorithms for it. The algorithms are distributed and
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do not require the network to know the receiver utilities. The
processing, storage, and communication overheads at a junc-
tion node is proportional to its number of children. In spite of
these attractive features, the algorithms in [10] suffer from cer-
tain drawbacks which limit their practical viability.

In the algorithms in [10], the network determines its con-
gestion level based on certain “pseudorates,” which could be
different from the actual rates. The pseudorates cannot be in-
ferred from the actual traffic rates. These pseudorates need to
be stored at junction nodes and also to be communicated be-
tween a parent and children nodes, thus, increasing the storage
and communication overheads significantly. More importantly,
each link has to keep track of the pseudorate of each of the
sessions going through it (in order to update the link conges-
tion indicator). Therefore, the network links need to maintain
per-session state. Hence, these algorithms do not scale as the
number of sessions traversing a link increases. Moreover, the
pseudorates are communicated between a parent and its children
nodes, thus, increasing the storage and communication over-
heads significantly. As we have argued before, in our algorithm,
no per-session information needs to be maintained at the non-
junction nodes. Moreover, we do not have any extra overhead
of storing and communicating pseudorates.

In the algorithms proposed in [10], the congestion informa-
tion (“congestion prices”) that the network needs to communi-
cate to the users are real numbers that could vary over a wide
range. This poses a difficulty in communicating the price to the
end-host using a small number of bits. While one can use some
probabilistic marking policies (following the approach in [1]) to
convey the congestion information is a single bit, it is not clear
if such policies can provide theoretical convergence guarantees
(note that even if the algorithm converges in that case, the con-
vergence would be in some probabilistic sense). On the other
hand, our algorithm has guaranteed deterministic convergence,
and would require, in practice, no more than one byte in the
packet header for conveying the congestion information.

In terms of computational overhead too, our algorithm is sig-
nificantly better than those proposed in [10]. In the latter, the
junction nodes are required to solve a maximization problem.
This could impose a considerable computational overhead on
the core routers of the network. In our case, however, the al-
gorithms of the junction (as well as the nonjunction) nodes are
extremely simple and, therefore, the computational overhead on
the core routers is small. Moreover, in certain cases, the receiver
algorithm too could be much simpler in our case as compared
with that in [10] (note that the algorithms in [10] require the re-
ceiver to compute a maximizer, whereas in our case, the receiver
only needs to compute a derivative).

It is also worth noting here that the algorithm presented here
guarantees convergence for a wider class of utility functions as
compared with the algorithms in [10]. Our algorithm guarantees
convergence for linear utility functions, and also a wide range of
nondifferentiable utility functions, which is outside the frame-
work of the algorithms in [10].

Very recently, Deb and Srikant [7] developed an algorithm
that is quite similar to the one presented in this paper. Their
work, done independently and completed in parallel with our
work, is also based on primal subgradient techniques. However,
while congestion on a link is measured in terms of the packet

loss rate in their case, link congestion is indicated by a single
bit (congested/uncongested) in our case. Whereas the approach
taken in our paper can be considered to be a generalization of the
approach presented in [9] for the unicast case, the approach in
[7] can be viewed as a generalization of the approach proposed
in [13] and [27] for unicast sessions.

IX. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we considered the rate control problem for mul-
tirate multicast sessions, with the purpose of maximizing the
aggregate user utility. This utility maximization problem inte-
grates various fairness criteria in a common framework. We
presented a simple rate control algorithm that achieves the op-
timal rates for this problem and can thus be used to achieve var-
ious fairness criteria (by choosing the utility functions appropri-
ately). The algorithm is distributed, and scalable, both in terms
of the size of each session and the number of sessions in the
network. An attractive feature of the algorithm is that the com-
putational burden on the core routers, as well as the end-hosts,
is low. Moreover, the overhead of communication between the
user and the network is also small.

APPENDIX I
SUBGRADIENTS AND THEIR PROPERTIES

Definition I: [23] (Subgradient and Subdifferential)

Consider a convex and continuous functiondefined on a
convex set . Then a vector is called asubgra-
dientof at a point if it satisfies

where denotes the inner product.
Thesubdifferentialof at , denoted by , is the

set of all subgradients of at , i.e.

In general, subgradient at a point may be nonunique. How-
ever, if exists, then .

Next, we state two properties of subgradients (see [23,
Th. 1.12, 1.13 ]), which will be useful in our analysis.

Lemma 1

Let be a finite index set. Let , , be convex, continuous
functions defined on a convex set. Let and

, .

a) Let , where , ; then
.

b) Let . Define
; then , for all .

APPENDIX II

Proof of Theorem 1

First, we state a few lemmas that would be used in the proof
of Theorem 1. For each , define as

. Thus, the capacity
constraint for link can be simply written as 0.
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Now consider the following problem:

maximize

subject to

where is a nonnegative constant.
Let denote the optimal solution of (note that the unique-

ness of this optimum is guaranteed by Assumption 3).

Lemma 2

If , then .
The result is fairly intuitive. Comparing problemsand ,

we see that the link constraints in have been transferred to
the objective function in . The term can be
interpreted as the penalty associated with the violation of the
capacity constraint of link. Thus, the lemma states that when
the penalty associated with constraint violations is sufficiently
large, the optimal solution set of the unconstrained problem
becomes the same as that of. Results similar to the one stated
above have been observed in the optimization literature. For ex-
ample, see [2] (and the references therein) and [23] (Theorem
4.2), where the above result is shown to hold for a slightly dif-
ferent lower bound on . A rigorous proof of Theorem 2 is quite
complex and is stated in [11].

Now define a function as
. Thus, is the

problem of maximizing subject to . Let
, and . Let

denote the vector of the utility derivatives, and
denote the vector of the congestion penalties. Let

. Note that since
depends on the penalty splitting factors cf.
(5), so does .

Lemma 3

If satisfy (8)–(10), then .
Proof: Define , and

. Therefore, .
We will first show that . Define

. Then . Now for every

, let be a -dimensional vector
whose components are given as

if
if (13)

where is junction/receiver node immediately downstream of
link in the multicast tree to which belongs. Note that since
the splitting factors are either zero or one, the components
and are also either zero or one. Then combining (5) and (4), it
is easy to see that can be written as

(14)

Now for every and every , let

be a -dimensional vector whose compo-
nents are given as

if
if

(15)

Next we show that
. Consider any and any . Now

consider the following two cases.

1) : In this case, it is easy to see that is a
zero vector. Thus, , trivially.

2) : From (8) and (10), it is easy to see
that only one component of is one, and all the rest
are zero. (Note that for to be one, the splitting
factors of all the junction/receiver nodes in the down-
stream path from the link to receiver has to be one.
It is easy to see that this will happen for exactly one re-
ceiver of multicast group ). Let be such that

1. Then using (9), it is also easy to show that

. Then, from Lemma 1(b), it

follows that .

From cases 1) and 2), it follows that for
all and .

Note that . Hence, from Lemma 1 (a), it

follows that . Using

this fact, and Lemma 1 (b), it is easy to show that
. Then from (14), and using

Lemma 1 (a), it follows that
.

It is straightforward to show that . There-
fore, using Lemma 1 (a),

.

Proof of Theorem 1

We will first show that the sequence converges to .
Choose an arbitrary 0. Let 2 . For any 0,

define as . It follows
from [21, Th. 27.2] that there exists an 0 such that

(16)

Consider an for which . Therefore,
. Since (from Lemma 3), and using the

definition of a subgradient (Definition 1), we obtain

(17)

Note that is upper bounded (from Assumption 2), and so
are and . Therefore, is also
upper bounded. Let for all . Also note that the rate
update procedure for the receiver nodes, as stated in (6), can be
compactly stated as . Using these
facts and (17), we obtain

(18)
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(19)

Note that (18) follows from the fact that (use projec-
tion theorem).

Since 0, when is sufficiently large. For
all such , from (19), we get

(20)

Now, for the sake of contradiction, let us assume that there
exists a such that for all . Therefore,
there exists be such that (20) holds for all .
Summing up the inequalities obtained from (20) for to

, we obtain

(21)

which implies that as ,
since diverges. This is impossible, since

0. Hence, our assumption was incorrect. Hence, there
exists an infinite sequence such that

for all 1, 2, 3, . This implies that there exists
an such that (20) holds for all . Also, since 0,
there exists and such that for all .

Let . We show that for all
. Pick any . There can be three cases.

Case 1) for some : In this case, .
From (16), it trivially follows that

.
Case 2) 1 for some : In this case,

1 . Thus

(22)

From (22) and the fact that
(case 1), we get

(23)

Case 3) 1 for some : Note
that for all satisfying

. From (20), it follows that
. Summing up these inequalities ob-

tained for 1 to 1, we obtain
. Since

(case 2), it follows that .
From cases 1, 2, and 3, it follows that for

all . By virtue of the arbitrariness of, it follows that

0. Now, from Lemma 2, it follows that
if , then 0.
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