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Abstract—

In this work, we study a fundamental tradeoff issue in
designing dynamic hash table (DHT) in peer-to-peer net-
works: the size of the routing table v.s. the network diame-
ter. It was observed in Ratnasamy et al. that existing DHT
schemes either (a) have a routing table of size O(logan)
and network diameter of O(logan), or (b) have a routing
table of size d and network diameter of O(n'/?). They
asked whether this represents the best asymptotic “state-
efficiency” tradeoffs. Our first major result is to show that
there are routing algorithms which achieve better asymp-
totic tradeoffs. However, such algorithms all cause severe
congestion on certain network nodes, which is undesirable
in a P2P network. We then define the notion of ‘“congestion-
free” and conjecture that the above tradeoffs are asymp-
totically optimal for a congestion-free network. Though we
are not able to prove (or disprove) this conjecture in full
generality, our rigorous formulation of the problem and
techniques introduced in proving slightly weaker results
serve as the basis for further exploration of this problem.
Our second major result is to prove that, if the routing al-
gorithms are symmetric, the aforementioned tradeoffs are
asymptotically optimal. Furthermore, for symmetric algo-
rithms, we find that O(logan) is a magic threshold point for
routing table size as follows. The “congestion” factor domi-
nates the “reachability” factor in determining the minimum
network diameter when the routing table size is asymptoti-
cally smaller than or equal to O(logan), and it is the other
way around when the routing table size is asymptotically
larger than O(logan). Our third and final major result is
to study the exact (instead of asymptotic) optimal tradeoffs.
We propose a new routing algorithm that reduces the rout-
ing table size and the network diameter of Chord both by
21.4% without introducing any other overhead, based on a
novel number-theoretical technique.

I. INTRODUCTION

As peer-to-peer (P2P) file sharing systems become in-
creasingly popular in recent years, scalability has been

Routing table size

4 _..- Maintain full state

__ Asymptotic tradeoff curve
N

Plaxton et al., Chord, Pastry, Taperstry

dogn | N ‘ - CAN

_Maintain no state
<=d '

Network diameter

‘ 14
0(1) O(logn) O(m ) O(n)

Fig. 1. Asymptotic tradeoff curve between the routing table size and
the network diameter

recognized as the central challenge in designing such sys-
tems. Early systems such as Napster and Gnutella all
have some design limitations that prevent them for be-
ing scalable: Napster uses centralized directory service,
while Gnutella employs flooding when searching for ob-
jects. To meet this challenge, various distributed hash ta-
ble (DHT) schemes have been proposed in different P2P
systems [1], [2], [3], [4], [5]. The basic idea of a DHT
scheme is to use a hash table-like interface to locate the
objects, and to distribute the duty of maintaining (in the
face of node joins/leaves) the hash table data structure to
all participating P2P nodes. In DHT schemes, each node
stores files that correspond to a certain portion of the key
space, and uses a routing table (referred to as a “finger
table” in Chord [4]) to forward the request for an object
not belonging to its key space to appropriate ‘“next-hop”
nodes. The request will eventually be forwarded to a node
responsible for (the key of) the object through a chain of
such “next-hops”.

This paper studies a fundamental tradeoff issue in de-
signing DHT: the number of neighbors (equivalently the



size of the routing table) vs. the network diameter, the
number of hops a request needs to travel in the worst case.
In a network consisting of n nodes, it is straightforward
to see that when n neighbors are maintained (the “full di-
rectory” case) at each node, the search cost is O(1), and
when each node only maintains one neighbor (essentially
a “logical ring”), the search cost is O(n). This plots two
points on the tradeoff curve shown in Fig. 1. In practical
systems, neither extreme is desirable: the “full directory”
approach involves heavy maintenance cost due to frequent
Jjoins and leaves of the P2P nodes, and the O(n) diame-
ter incurs intolerable network delay. Such a tradeoff has
been referred to as the “state-efficiency” tradeoff Uin[7]. It
was observed in [7] that existing DHT schemes either (a)
have a routing table of size O(logan) and network diame-
ter of O(logan), which includes Chord [4], Taperstry [1],
Plaxton et. al. [2], and Pastry [3], or (b) have a routing
table of size d and network diameter of O(n'/4), which
includes CAN [5]. It was asked in [7] whether ©(logan)
and Q(nl/ 4) are the asymptotic lower bounds for the net-
work diameter when the routing table sizes are O(logan)
and d, respectively. We clarify and rigorously formulate
this interesting question, and answer it in a comprehensive
way.

The first major result of the paper is to clarify this trade-
off problem. We first formally characterize the metrics in-
volved in the tradeoff. Then we show that there are routing
algorithms which achieve better asymptotic tradeoffs than
both (a) and (b) above?. However, we observe that these
algorithms all cause severe congestion on certain network
nodes even when the load is assumed to be uniform. In
retrospect, one can intuitively see that “congestion-free” is
indeed one of the key properties a good DHT routing algo-
rithm should possess. Finally, based on this observation,
we define the notion of “congestion-free”. We conjecture
that if the network is required to be “congestion-free”, the
aforementioned tradeoffs (a) and (b) are indeed asymp-
totically optimal. Though we are not able to prove (or
disprove) this conjecture in full generality, our rigorous
formulation of the problem and the techniques introduced
in proving slightly weaker results (described later) serve
as the foundation for further exploration of this problem.

The second major result of the paper is that, if the
routing algorithms are symmetric® (defined later), we
can prove that the aforementioned tradeoffs are indeed
optimal. ~ Furthermore, we show that O(logan) is a

!The term was originally introduced in [6] in a similar but different
context.

2This is the reason why, in Fig. 1, we deliberately do not put any of
the existing DHT schemes on the optimal asymptotic tradeoff curve.

%It can be shown that all existing DHT schemes are symmetric.

magic threshold point for the routing table size. If the
routing table size is asymptotically smaller or equal to
O(logan), “congestion-free” constraint prevents the algo-
rithm from achieving the smaller network diameter when
the “congestion-free” constraint is not imposed. When the
routing table size is asymptotically larger than O(logsan),
however, the “congestion-free” condition no longer plays
this “bottleneck” role. This may explain why many ex-
isting DHT algorithms [1], [2], [3], [4] stay around this
magic threshold.

Our third and final major result is to study the exact
(contrary to asymptotic) tradeoff between the routing ta-
ble size and the network diameter. We first rigorously for-
mulate this tradeoff problem as an optimization problem
and explain that finding its solution can be prohibitively
expensive in terms of computational complexity for large-
size networks. Then we propose a new routing algorithm
that reduces the routing table size and the network diam-
eter of Chord [4] both by 21.4% without introducing any
other overhead, based on a novel number-theoretical tech-
nique.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the background and related work. The
aforementioned three major results are established in Sec-
tion III, IV and V, respectively. Section VI concludes the

paper.

II. BACKGROUND AND RELATED WORK

In this section, we survey the routing aspects of the ex-
isting DHT schemes. Throughout this paper, other aspects
will be discussed only when they become relevant to rout-
ing. In a P2P system using a DHT scheme, each node is
responsible for storing certain parts of the key space. The
routing and self-stabilizing (reacting to node joins/leaves)
algorithms running on each node collectively implement a
hash table-like interface that allows each node to perform
lookup, insertion, and deletion of objects.

In DHT schemes, a routing algorithm is characterized
by the routing tables employed at each node. Like in
Chord [4], we assume that both the name space and the
key space of the network are 0,1,---,n — 1. We let k
denote the size of the routing table at each node. At a
node of identification ¢d, the routing table basically con-
sists of a set of entries {(Sjq, Jia;i) h1<i<k. The rout-
ing algorithm is simply the following: forward a request
for key o to node R(id + J;q;) if @ —id € S;q;. Here
R() is the node currently (subject to changes due to node
joins/leaves) responsible for the key 3, and the arithmetic
is in the cyclic sense (i.e., modulo 7). For the correctness
of routing, Jiq; # Jia; and S;(S; = 0 when i # j,

and |J Siq,; consists of all the keys not handled by the
1<i<k



node id. In symmetric DHT algorithms (defined rigor-
ously later), where S;q; and J;q; are all independent of
id, we simply write them as S; and J;.

In Chord [4], n = 2%, §; = [2071,2¢), and J; = 2071,
where 1 = 1,2,-- -, k. The size of the routing table is ex-
actly logon, and the network diameter is also logan. Al-
gorithms used in [1], [2], and [3] are similar, except that
they use different basis (Chord uses 2). In Tapestry [1], for
example, 7 = d%, Sjuqtj = [F*d, (5 +1) xd*), Jiudsj =
jxd',wherei=0,1,---,o—landj =1,2,---,d — 1.
Pastry [3] is similar to Tapestry except that d is chosen as
a exponential of 2. In both algorithms, the network diam-
eter (loggn) is smaller than Chord’s, but the routing table
size is larger ((d — 1)loggn). However, in terms of asymp-
totics, these algorithms all maintain a routing table of size
O(loggn) and achieve a network diameter of O(logan).
CAN [5], on the other end, maintains no more than a con-
stant number d of neighbors. In CAN, S; = [z°71, %)
and J; = 21 where % = n. The network diameter is
O(nl/%).

It is asked in [7] whether (O(logan), O(logen)) and
(d, O(n'/%)) are indeed the optimal asymptotic tradeoffs
between the routing table size (first coordinates) and the
network diameter (second coordinates). We clarify and
answer this question in the next two sections. The closest
work to ours in the theoretical computer science domain
is [6], which studies this tradeoff in a general network.
However, they do not address the important issue of con-
gestion. Also they use the storage cost to gauge the rout-
ing table size, while we use the self-stabilizing overhead.
Both issues make a major difference in the tradeoff results
and also the techniques needed to derive such results.

ITI. RIGOROUS CHARACTERIZATION OF THE
TRADEOFF PROBLEM

In this section, we first rigorously characterize the met-
rics involved in the tradeoff. Then we show that O(logan)
and O(nl/ d) are not the asymptotically optimal network
diameter values when the routing table size is constrained
by O(logan) and d respectively. We show, however, that
the schemes which achieve better tradeoffs cause severe
congestion to certain network nodes. After we rigor-
ously define the notion of congestion, we conjecture that
if “congestion-free” is added as an additional constraint,
O(logan) and O(n'/) indeed are the asymptotically op-
timal network diameter values.

A. Characterization of the metrics involved in the tradeoff

In this section, we formally characterize the notion
of the routing table size in the DHT context. Recall

from Section II that a routing table consists of entries
{(Sid,i, Jia;i) h1<i<k and we use k to denote the “size”
of routing table. In other words, in measuring the rout-
ing table size, we count the number of different “next-
hops” (neighbors). This is different from the way they
are counted in [6] (counting the storage cost of S;q;) and
IP routers (counting the number of IP prefixes). Count-
ing the number of neighbors make sense in DHT, since
there are frequent joins and leaves of nodes, and the cost
of maintaining the routing table is directly proportional
to the number of neighbors. In other words, the number
of neighbors measures the cost to pay for self-stabilizing
(adapting to node joins/leaves). The storage cost metric
as used in [6] and IP routers, on the other hand, become
irrelevant in the DHT context given today’s storage price
and technology.

Counting the number of neighbors, however, is the
correct measure only for stateless routing algorithms.
A stateless routing algorithm makes a routing decision
based only on the destination address (i.e., object key in
the request). Therefore, in a stateless routing algorithm,
a node does not need to know about node joins/leaves
other than those that change some of its “next-hop” val-
ues (i.e., identity of the neighbors), since they will not
affect its routing decision. All existing DHT schemes are
stateless. Contrary to stateless routing is to let the rout-
ing decision be based on both source and destination ad-
dresses. In such algorithms, a node id may have to react
to the join and leave of a node even though it does not af-
fect id’s neighboring relationship with other nodes. This
certainly would add more complexity to both the rout-
ing and the self-stabilizing aspects of the DHT. Whether
such “stateful routing” will bring some performance ben-
efit (and hopefully outweigh its overhead) is an interesting
topic for future research.

In the rest of the paper, we assume that the network
under consideration consists of n nodes, 0,1,::-,n — 1,
handling the key spaces {0}, {1}, ---, and {n — 1}, re-
spectively. Clearly, here we implicitly assume that every
node in the name space exists and is alive. That assump-
tion, however, sounds a little ironic: if we know that all
the nodes exist and are alive, why not send the request for
key « to the node « directly? Note however that in this
case, the routing table size is actually O(n).

Tradeoff analysis is essentially to study the lower bound
of one metric while fixing the other. All lower bound
results target worst-case performance. Assuming certain
traffic or join/leave patterns, one can design routing algo-
rithms [8] that employ heuristics (e.g., route caching) to
enhances average performance. Such heuristics, however,
will not be able to improve the performance lower bound



in the worst case. So our worst-case tradeoff results do
not conflict with better tradeoff (average) results achieved
using such heuristics.

B. Network diameter lower bounds

It has been asked in [7] whether O(logan) and O(n!/®)
are the best achievable network diameters when the rout-
ing table sizes are O(logan) and d respectively. Our an-
swers to both questions are “no”. We show that there
exists networks of diameter O(mgi(?fiﬁgzm) and O(logan)
when the routing table sizes are O(logan) and d respec-
tively.

We formulate the network as a directed graph (V, E).
V is the set of all participating DHT nodes and FE is the
neighbor relationships among them. There exists an edge
from node 7 to node j if node j is one of node 7’s neighbor.
We associate a cost of 1 to each edge so that the network
diameter (naturally) becomes the maximum distance be-
tween any two nodes. We further require the network to
be strongly connected (i.e., every one can reach everyone
else). Under this formulation, the questions above become
whether O(logan) and O(n'/®) are the best achievable
network diameters when the out-degree of each node is
bounded by O(logan) and d, respectively. The following
proposition shows the opposite.
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7 levels

[

Fig. 2. The constructive proof of Proposition 1

Proposition I—Upper bounds: There exists a
strongly-connected  directed graph of diameter
(M?(?ij;gn)) in which the out-degree of any node
is no more than loggn. There also exists a strongly-
connected directed graph of diameter O(loggn) in which
the out-degree of any node is no more than d.
Proof: We only prove the first part and the second
part follows by similar arguments. Fig. 2 shows such a
graph that satisfies the aforementioned condition. There

is a pseudo “root” in this graph and a directed (logan-

)-ary tree* grows from this “root”. This allows the
“root” to reach everyone else in at most log(jog,n— 1)1 =

__logm ___ repns. Also every node other than the root
logz(logan—1) .

has a directed edge back to the root. This allows ev-
ery node to reach every other node through the root.

So the network diameter is at most 92" ___ | 1 =
loga(logan—1)
( logan

W). Note that the maximum out-degree at each
node is no more than logan. |

Remark: Note that 'O(loglz"(?ijgzn)) and O(loggn) are
also the lower bounds, since when each node’s out-degree
is bounded by z, a node can only reach z! other nodes
using paths no longer than /.

We can see that the routing algorithm used in the net-
work shown in Fig. 2 is essentially centralized: the root
has a high in-degree and handles most of the traffic. This
is undesirable in P2P networks since the root will become
the performance bottleneck and central point of failure.
Our initial hypothesis was that if we bound the degree sum
(in-degree plus out-degree) at each node to O(logon) and
d, the network diameter bounds O(logan) and O(n'/%)
become optimal. This is unfortunately false, as shown by
the following proposition.

log(n)
log(log(n)/2)

levels

Fig. 3. The constructive proof of Proposition 2

Proposition 2: There exists a strongly-connected di-
rected graph of diameter O(logl;(fl’i(f;gm) in which
each node’s degree sum (in+out) is no more than

(logl;(?izgn)). There exists a strongly-connected directed
graph of diameter O(log(q/2)n) in which each node’s de-
gree sum is no more than d.

Proof: Again we only prove the first part since the
arguments for the second part are similar. Fig. 3 shows
such a graph that satisfies the aforementioned condition.
There is again a pseudo “root” in this graph and a directed

(logTQ")—ary tree grows from this “root”. This allows the

“For simplicity of discussion, we omit the use of floors and ceilings
when appropriate.



“root” to reach everyone else in at most log (1092n)logn =
2

% steps. Also every node other than the root has
0g2(—5—

a directed edge to its parent. This allows every node to

. logan logan
reach every other node in 2—%92" __ — __togan
Y I Q(lngzn) (logz(logzn))

steps (through their lowest common ancestor). Clearly,
in this network, no node’s degree sum is more than logan.
|
Observant readers can see that the network construc-
tion in Fig. 3 is still a “cheat”: intuitively the root is still
the point of congestion. So we come up with the con-
jecture that if we impose an additional “congestion-free”
constraint, the aforementioned diameter lower bounds
(O(logan) and O(n'/%) may actually be optimal. In the
next section, we rigorously define the notion of congestion
and introduce the our main conjecture.

C. The notion of congestion and our main conjecture

In this section we precisely define the notion of
“congestion-free” and use that to formulate our conjec-
ture. Note that it makes sense to talk about congestion
only when a communication load is specified. We artifi-
cially impose a uniform all-to-all communication between
any pairs of nodes. In other words, for any pair of nodes
1,7, 1 # 7, we impose a unit of traffic from ¢ to j. In the
P2P network context, this means that node ¢ is looking for
an object that node j is responsible for. Altogether a load
of n(n — 1) units is imposed on the network. With this ar-
tificial load imposed, we define the notion of congestion-
free as follows.

Definition 1: We say that a network is c-congestion-
free (¢ > 1) if the amount of traffic going through or
arriving at each node is no more than ¢ times of the av-
erage.

This definition needs to be carefully explained. Sup-
pose the average path length from a random node % to an-
other random node j is [. We have the following propo-
sition stating that the average load on a node is (n — 1)l
and its proof is essentially a Little’s Law [9] argument.
The above definition basically says that no node should
have more than ¢(n — 1) load. Note that all existing DHT
schemes are 1-congestion-free when all nodes in the iden-
tification space exist and are alive, due to Lemma 1 in the
next section.

Proposition 3: The average amount of traffic going
through a node is (n — 1)I.

Proof: We write down all n(n — 1) sequences of
node identifications corresponding to the communications
paths between all pairs of nodes. Each occurrence of a
node in a sequence in which it is not the source node con-
stitute a unit load to that node. The total number of such

occurrences for all n nodes are In(n — 1), since the av-
erage path length is [ and the first node (source) in each
sequence should not be counted. So the average load on

each node is (n — 1)I. [ |
We are now ready to formulate the main conjecture of
this paper:

Conjecture 1: When the network is required to be c-
congestion-free for some constant ¢ > 1 and uses stateless
routing (defined before), Q(logan) and Q(n'/%) are the
asymptotic lower bounds for the network diameter when
the routing table sizes are no more than O(logen) and d,
respectively.

This mathematical “clean” conjecture turns out to be
extremely difficult to prove or disprove (even to my math
colleagues working in the field of graph theory). We pose
it here as an interesting and challenging open problem that
merits further research. In the next section, we show that
this conjecture is true for a class of routing algorithms
known as symmetric. The proof leads to our discovery of
O(logan) as a magic threshold point for the routing table
size.

IV. ASYMPTOTIC TRADEOFFS FOR SYMMETRIC
ALGORITHMS

In this section, we first prove a slightly weaker result
than the conjecture posed in the last section. We show
that when the routing algorithms are weakly symmetric
(defined below), Q(logon) and Q(n'/4) are indeed the di-
ameter lower bounds for any network with routing table
size O(logan) and d, respectively. Then we show that
O(logan) is a magic threshold point for the routing table
size. If the routing table size is asymptotically smaller or
equal to O(logan), “congestion-free” constraint prevents
the algorithm from achieving the smaller network diame-
ter when the “congestion-free” constraint is not imposed.
When the routing table size is asymptotically larger than
O(logam), however, the “congestion-free” condition no
longer plays this “bottleneck” role. This may explain
why many existing DHT algorithms [1], [2], [3], [4] stay
around this magic threshold.

We again assume that the name space is 0, 1, ---,n — 1
and all the nodes in the name space exist and are alive.
We recall from Section II that the routing table at node id
consisting of entries {(S;q, Jid,i) }1<i<k- At node id, a
request for key « is forwarded to node id + J;4; (equal to
R(id+ J;q,;) under our “all-there all-alive” assumption) if
a — id € S;q;. Note that all the arithmetic is in the cyclic
sense (i.e., modulo n). The following defines the notion
of weak and strong symmetry.

Definition 2: A routing algorithm is said to be weakly
symmetric, if for any pair of nodes id and id’, J;q; =



Jia i forall 1 <4 < k. A routing algorithm is strongly
symmetric if it is weakly symmetric, and for any pair of
nodes id and id’, Sjq; = Sig ; forall 1 <17 < k.

For the correctness of routing, Jiq; # Jiq; and
SiNS; = O wheni # j,and |J S;q; consists of all

1<i<s
the keys not handled by the node id.

In the following discussion, we will use the notation J;
(instead of J;q;) in weakly symmetric algorithms, and S;
(instead of S;q ;) in strongly symmetric algorithms. Also,
we will refer to the set {J;}1<i<k as the jump set and
J!s as jump sizes, since they specify how much a request
(packet) will advance (‘“jump”) in the name space from its
current node, in the next step on its way to the destination.

We can see from the above definition that weak symme-
try only requires the “jump sizes” to be the same in all the
nodes. Strong symmetry, in addition, requires all “routing
tables” to be homogeneous. Using symmetry arguments,
one can show that strong symmetry implies congestion-
free. Weak symmetry, however, does not carry this impli-
cation in general.

Lemma 1: A
congestion-free.

Proof: [Sketchy] Straightforward through symmetry
arguments. |

Remark: When all the nodes in the name space exist
and are alive, all existing DHT schemes are congestion-
free due to their strong symmetry natures.

We are now ready to prove the main theorem of this
section, which states that the Q(loggn) and Q(n'/?) are
indeed the optimal achievable network diameters for sym-
metric routing algorithms, when the routing table sizes are
no more than O(logen) and d, respectively. Note in the
following theorem that we only require weak symmetry,
which does not imply congestion-free in general. There-
fore, the result is not in the strict sense weaker than con-
jecture 1.

Theorem 1: Let k be the number of neighbors each
node maintains. For a network that has name space
0,1,---,n—1and uses a weakly symmetric routing algo-
rithm, the followings are true:

strongly symmetric algorithm is

e (a) The diameter lower bound for the network is

Q(logan), if k < | 2logan].

e (b) The diameter lower bound for the network is

Q(n'/%), if k < d. Here assume d > 2.

Proof:  Let {J;}1<i<k be the set of jump sizes,
which are the same for all nodes due to the weak sym-
metric assumption. Suppose the network diameter is .
We pick an arbitrary node #d and consider all paths from
node id to all other nodes. There are n such paths (in-
cluding the empty path to itself). We define a function
f:P — (ZU{0})**!, where P is the set of such paths

and Z |J{0} is the set of non-negative integers, as follows.
For any path p € P, we denote as a,; the number of
jumps of sizes z; used in the path, 1 = 1,2,---, k. We

k
know that }_ a,; < I since [ is the network diameter. We
i=1

k
define ap 0 =1 — ) ay;, and clearly a, o > 0. Then we
i=1

define

f(p) = (ap,(), Ap1y° " 7ap,/€)

We claim that f is injective (one-to-one). We prove this
claim by contradiction. Suppose that there are two paths
p,q € P, such that a,; = ag;, 2 = 0,1,---,k. Then
clearly Ele Qpi * Ty = Zle g, * T;. So starting from
the node id, both paths necessarily end up at the same
destination. This contradicts our definition of P as the set
of paths used to reach different destinations.

The size of the range, which is the number of vectors
(ag,a1,a9,---,ax) that satisfy the equation ag + a; +
-+4+ap=1landa; >0,1=0,1,2,..., k. We know from
elementary combinatorics that this number is equal to the
number of different ways to put / indistinguishable balls
into k + 1 different bins, which is equal to (H,;k) Since
f is injective, the size of the range should be no smaller
than the size of domain, which is n. Therefore, (l:k ) > n.
Now we are ready to prove both (a) and (b)

o (a) It suffices to show that [ > %Lloggnj. First, we
show that [ > k. We prove by contradiction and

suppose | < k. Note that (H,;k) is an increasing

function of I. So (“4*) < (¥I*). However, given
any € > 0, by Stirling’s formula (z! ~ \/27r—:c(§)w)
IRy < (1 +€) * 22’“\/% < 2%k < n for large
enough n and k. This contradicts our prior assump-
tion that ("t¥) > n. Therefore | > k. We proceed
to show I > Z|logan|. We again argue by contra-
diction. Suppose ! < 3|logon]. Note that (H,;k)
< (Hl'l) (easy to verify through combinatorial argu-
ment), since [ > k. However, when | < %Lloggnj,
we have (‘1!
Therefore (‘1%) < (‘") < n, a contradiction.
« (b) We need to show that [ has to be Q(n'/4). Since
(+d)?* > (*1% > n, we have I +d > loggn and

therefore | > n'/% — d, which is Q(n'/9).

) < n due to the same argument above.

|
In fact, using the same argument ((“1¥) > n) we can

prove the following result, which is more general than
Theorem 1(a).

Proposition 4: Let k be the number of neighbors (jump
sizes). For a network that has name space 0,1,---,n — 1



and uses a weakly symmetric routing algorithm, its diam-

eter lower bound is Q(logan) when k = O(logsen).
Proof: [Sketchy] Assume that k£ < ¢ * logon and

apply Stirling formula to the LHS of (H'k) >n. |

Although the arguments used in the proof of Theorem
1 give us accurate asymptotic bounds, it may not offer
an accurate estimate on the constant factor. For example,
in the proof of Theorem 1(a), we essentially show that
the diameter lower bound is approximately %loan when
k is approximately %loggn. However, we have not been
able to design a new scheme that achieves the (%loggn,
%loggn) tradeoff>. This is because in our estimation of
the range size in the proof, some elements in the range
may not be the image of any paths. In other words, there
may exist two vectors (a, ab, ..., a}) # (al, ay, ...,a}) in
the range such that Xk: a;J; = Xk: alJ;. The (unique) path

i=1 =
in P of length Z a;J; will map to at most one of them,

and the other one Wlll not be the image of any path. There-
fore, it can be interesting to further sharpen the estimate
on the constant factor through perhaps more sophisticated
combinatorial arguments.

We can also see from the proof of Theorem 1 that
k = O(logan) is a magic asymptotic threshold. When
k is a constant, (H'k ) is approximately 1¥. However, when
k becomes 3logon, (H,;k) is approximately 22*. It is also
a magic threshold in the following sense. Recall from
Proposition 1 and its remark that for a general network
(without assuming symmetry) the diameter of a network
is at least O(loggn) through simple reachability argu-
ments. Theorem 1 shows that this ideal lower bound is
superseded by the need to achieve congestion-free rout-
ing, when the number of neighbors k is no larger than
O(logan). In other words, below the O(logan) thresh-
old, congestion factor dominates the reachability factor.
However, we can show that when the number of neighbors
k is asymptotically larger than O(logan), we can indeed
achieve the bound dictated by the reachability argument.
In other words, the congestion no longer plays a “bottle-
neck” role. This is shown in the following proposition.

Proposition 5: There exists a 1-congestion-free net-
work of diameter é (0 < a < 1) in which the number
of neighbors at each node is bounded by O(n®).

Proof: We construct the network to be strongly sym-
metric so that it is automatically 1-congestion-free due
to Lemma 1. We let n = z¢ for simplicity of discus-
sion (to avoid getting into floors and ceilings). In our

5We did however achieve (0.7864log2n, 0.7864logan) tradeoff in
Section V.

U SZ?

where S; = {1271, 221 ... (z — 1)z}, The rout—
ing algorithm is essentially a “greedy” one: given a re-
quest for a key « that arrives at node id, id will forward
it to ¢d + j, where j = max{s|s € S,s < a — id}.
Clearly, this algorithm is strongly symmetric. Now we
show why the network diameter is no more than d. Sup-
pose that a node sends a request to another node that is §
(0 < 6 < n —1) larger (in the cyclic sense) in the name
space. Since n = z%, we can write § as an z —ary number
of at most d digits ag_1a4_o...ag, where § = f 01 a;x".

Since a;z' € S; C S, the “greedy” routing algorithm
will route this message in at most d jumps: ag_1z% !,
ag—ox® 2, ..., and apz’. |

Remark: Note that the reachability argument in this
case will give use the diameter lower bound log(payn =
1/a, which is equal to the bound established above.

In this section, we show that when the routing algo-
rithms are weakly symmetric, O(logan) and O(n'/%) are
indeed the diameter lower bounds for any network with
routing table size O(logon) and d, respectively. This
shows that existing DHT schemes (all strongly symmet-
ric) indeed achieves the optimal asymptotic tradeoffs. We
also show that O(logon) is a magic asymptotic threshold
for the routing table size, which separates the tradeoff re-
gion dominated by congestion and the region dominated
by reachability.

construction, the jump set at each node is § =

V. ON THE EXACT OPTIMAL TRADEOFFS

The previous sections show that as symmetric algo-
rithms, all existing DHT schemes achieve the optimal
asymptotic tradeoffs. However, it is not clear whether
they have achieved the optimal tradeoff down to the con-
stant factor. In particular, we would like to know whether
the (logan,logan) tradeoff in Chord [4] is optimal. In
this section, we formulate this tradeoff problem as an op-
timization problem: finding the minimum network diam-
eter while fixing the number of neighbors & in a network
of size n. However, we are not able to find a closed-
form solution for or an efficient algorithm to compute the
problem, even though such a solution obviously exists for
each (n, k) pair. Nevertheless, we construct an algorithm
that achieves (0.786logan,0.786l0ogan) tradeoff using a
novel number-theoretical technique. In other words, it is
21.4% smaller in diameter than Chord and uses 21.4% less
neighbors (“fingers”). This result is interesting in three as-
pects:

1) Since the number of neighbors is directly propor-

tional to the self-stabilizing overhead, any sizable
reduction is desirable. Moreover, we pay nothing



(and even get paid!) for this reduction: the network
diameter is also reduced and there is no other over-
head.

2) Our result shows that Chord’s tradeoff is not optimal
down to the constant factor. This opens the door for
further optimization.

3) The number-theoretical technique used is thought-
provoking and may lead to the discovery of a gen-
eral framework to optimize such tradeoffs.

A. Formulation of the problem

An optimal tradeoff problem can be viewed as an opti-
mization problem: optimizing one metric while fixing the
other. In this section, we formulate the tradeoff between
the routing table size and the network diameter as the fol-
lowing optimization problem. We assume that the net-
work consists of n nodes 0, 1,2, ...,n — 1 and the routing
table is weakly symmetric®. We assume that the jump set
consists of kjumps 1 < J; < Jo < ... < Jp <n—1. The
problem is to find a best jump sequence {J;}1<i<x that
minimizes the network diameter. Let Ps(J1, Jo, ..., Jx) =
{(a1,a2,--,az) : XF 1 a;J; = 0 (mod n),a; > 0}.
Then the network diameter h(Jy, Jo,---, J,) as a func-
tion of {J;}1<i<k is equal to

min
(al 7a25"'aak)€P5(J1 12500,

max
1<6<n—1

k
Jk) i:zlai

k
min >~ a; is the minimum
ai €Ps(J1,J2,,Jk) i=1
cost to reach a node that is larger than the source node by
¢ in the name space. Therefore, we would like to find an

algorithm that, given k, computes the following:

This is because

argmain

W Joee J
1SJ1<J2<...<Jk§n_1[(17 2,5 Ji)]

Unfortunately, we are not able to find a closed-form so-
lution to this optimization problem. Also, for large n, &,
we so far are not able to find an efficient algorithm (brute-
force search takes n* steps) that computes the optimal
jump set and the network diameter. Nevertheless, using
a novel number-theoretical technique, we are able to con-
struct a routing algorithm that achieves better tradeoffs
than Chord.

B. Our new “number system”

We have designed a novel symmetric routing scheme
that is able to achievable a network diameter of
0.786logon when the number of neighbors of each node

6Note that a weakly symmetric algorithm can by stateful.

are no more than 0.786/ogon. In other words, it maintains
21.4% less neighbors than Chord [4] for the same network
size, and achieves 21.4% less worst-case network delay.
The construction of the scheme is based on the following
novel number-theoretical technique.

x*x=1-2x —

. X X X 2X

Fig. 4. Our “number system” in a normalized name space

To explain the intuition behind the scheme, we normal-
ize the name space into a unit interval [0,1), shown in
Fig. 4. In other words, the network nodes in this sys-
tem are 0, 1/n, 2/n,..., (n — 1)/n. The jump set used
in Chord can be viewed as 1/2, 1/4, 1/8, 1/16,..., 1/n
in the normalized name space. In our scheme, we let
z = /2 — 1 ~ 0.414 and the jump set consists of z,
22, .., zF where zF ~ 1/n (e, k = log(l/w)n). Note
that z is the root of the equation 1 — 2z = z2, as shown
in Fig. 4.

Essentially, the goal here is to approximate every real
number in [0, 1) using these jump sizes, when allowing a
“remainder” smaller than 1/n. Given a number y € [0, 1)
to approximate, there are three cases at the very begin-
ning:

o (a) Ify € [0, z) then do nothing for this step.

o (b) Ify € [z,2z), we subtract z from it (a “jump”
of size z in the normalized name space) and the “re-
mainder” y — z is in [0, z).

o (0)Ify € [2z,1), we subtract z from it for two times,
and the “remainder” y — 2z is in [0, z2).

The above procedure will be repeatedly executed in

a recursive fashion. In other words, such approxima-
tion steps (like (a)—(c)) will be performed in smaller and
smaller intervals [0, [2?]), 1=0,1,2,....k, until the remain-
deris in [0,1/n). The intuition of steps (a)—(c) is the fol-
lowing. If a number y belongs to case (a), it is already
“better-off”” in terms of path length (so we do nothing in
the current step). This is because, if ¢ belongs to case (b)
or case (c), 1 or 2 additional jumps of size x are needed
to reduce the remainder to the case (a). Since case (c) re-
quires one more jump (hop) than case (b), we compensate
this difference by allowing its remainder to jump to the
region [0, z?%) (since 1 — 2z = ) instead of [0, x) as in
case (b). In this way, we “equalize” the cost to approx-
imate numbers in regions [z,2z) and [2z,1). Note that
such equalization is done in a recursive way, spreading its
“equalization” benefit recursively.



C. Our new routing scheme

Now we go back to the original (not normalized) name
space 0,1,2, - - -, n — 1. In our routing scheme, the routing
table consists of the following jump sizes: [zn], [22n],
oo [£F71n] = 2, [¥n] = 1. So the number of neighbors
in this network is k = log(/;)n =~ 0.786logan, which
is 21.4% less than in Chord [4]. The routing protocol is
essentially the same as in Chord. When a request destined
for node id’ reaches node id, the current node (id) will for-
ward it to id + [z'n] where [z'n] < id' —id < [z'Tln].
The maintenance of the neighbors in the face of node
joins/leaves (i.e., self-stabilizing) is also similar to that
is used in Chord. In other words, we only change the
jump sizes in the routing table and leave all other mecha-
nisms intact. We can also see that our routing algorithm is
strongly symmetric. So by Lemma 1, it is 1-congestion-
free. Compared to Chord, it reduces the network diameter
by 21.4%, shown in the following Theorem.

Theorem 2: Under the routing algorithm shown above,
the network diameter is no more than [log(1/,)n]| + 1 =
0.786logam.

Proof: [Sketchy] It suffices to prove the following
invariant: if the difference y between the destination node
and the current node in the name space is in [0, [nz']),
then either (a) after no more than one jump, the remainder
falls into the region [0, [nz?*17), or (b) after two jumps,
the remainder falls into the region [0, [nz?T2]). In other
words, each jump is rewarded by an additional exponent
on z, and after at most [log(l/w)n-| + 1 jumps we are done
(we get down to [0, 1), which can only be 0, as the jumps
are in integers). However, this invariant is trivially true
since we deliberately constructed the network this way
(z? = 1 — 2z as shown in Fig. 4). [ |

Therefore, our algorithm achieves a
(0.786logan, 0.786logon) tradeoff, which is better
than Chord’s tradeoff (logom,logon). This represents a
21.4% reduction on both metrics.

D. Analysis of the average path length

There is one (minor) loser in this picture, however,
which is the average path length, averaged over all pair-
wise communications. In this section, we show that our
scheme increases the average path length by about 22.7%,
compared to Chord. Nevertheless, the proposed routing
scheme is still a bargain, since the scheme reduces both
network diameter and the routing table size by 21.4%.
Also, as we explain before, given a stochastic model of
node joins/leaves, heuristics such as route caching may be
used to enhance the (average) performance significantly.

In the following, we show the calculation of the in-
crease in the average path length. Due to the recursive

nature of our algorithm, the increase in the average path
length can be exactly calculated: no need for simulation.
Its derivation exhibits the beauty of recursion.

Let h(6) be the exact path length that is needed to reach
a node which is ¢ larger than the source node in the name
space (in the cyclic sense). Then the average path length
for the name space of size n, denoted as f(n), is equal
to (35, h(8))/n. Note that the average path length in
Chord is exactly %l ogyn. Therefore, our goal is to find out
lim f(n)

n—oo logan
compared to Chord. This is shown in the next Theorem.

lim L = 2(22 + 1)ejlogm2 ~

T—00 %logzn
1.227, where ¢; = ‘fﬁl andz =2 — 1.

Proof: [Sketchy] For simplicity of discussion,, we
would like to avoid “floors” and “ceilings” involved in
manipulating the function f, which is defined only on
the integer domain. We instead work on the (approxi-
mate) extension of function f to g, which is defined on
the real domain. g(n) is defined as follows. We let [(t) be
the “hop counts” (path length) needed to represent a real
number ¢, using the jump set nz, nz?, nz3, ... (these are
real numbers). We define g(n) as + [¢*1(¢)(dt). It can be

n
shown (through complicated floor and ceiling operations)

that f(n) = g(n).

We define ¢'(y) := y * g(y) (i.e., g’ is the total while
g is the average). It is much easier to work with ¢'(y).
We obtain the following recurrence relations due to the
recursive nature of the routing algorithm:

, which is how much worse our scheme did

Theorem 3:

gd(n) = 24¢(zn) + g (z*n) + zn + 22%n
g (zn) = 24'(z%n) + ¢ (z®n) + 2%n + 223n
g (z%n) 24" (z%n) + ¢'(z*n) + 23n + 220

We evaluate g(n) = 1g'(n) based on the recurrence

relations above. We obtain

k-1

g(n) = Z(ajxj + 24,27 + o(logan)
7j=1

where {a;}1<i<k is in turn generated by the following re-
currence relation:

Ajy1 :2ai+ai_1,z':2,3,---,k—1

The initial conditions are a; = 1 and as = 2. Solving
this recurrence relation, we obtain

ai=crtdeory, i=1,2,-- k-1
where ¢; = \f}l, co = ‘f}l, r1 = 1+ +/2, and

7‘2:1—\/§.



~
~

ciri. Also, note that riz = (1 +

v2)(v/2 = 1) = 1. So we have

lim
n—oo

(a;29+2a;27 1) = nli_)ngo(Zx—i-l)qxjr{ = (2z+1)c; [4]

Therefore

[5]

: fn) _ 1 g9(n)

nlggo Llogon limy, 00 3logan
k-1 . -

>z, (29 +2a;20 1)

(6]

= lim
n—oo

>ois) (ajai 420,07 4)
k—1

= 2(2z + 1)c1logy /52

~ 1.227

%loggn

k—1
%logzn

= lim (7]

(8]

(9]

VI. CONCLUSIONS

In this paper, we study the fundamental tradeoffs (both

asymptotic and exact) between the size of the routing ta-
ble and the network diameter. We rigorously formulate
this tradeoff problem and show that there exists algo-
rithms which achieve better tradeoffs than existing DHT
schemes. However, all of these algorithms cause intoler-
able levels of congestion on certain network nodes. After
formulating the notion of “congestion-free”, we conjec-
ture that the tradeoffs achieved by existing DHT schemes,
namely, (O(logan), O(logan)) and (d, nt/%), are indeed
asymptotically optimal if the network is required to be
“congestion-free”. We then prove that, for symmetric al-
gorithms, these two tradeoffs are indeed asymptotically
optimal. Furthermore, we find that O(logan) is a magic
threshold on the routing table size, which separates the
tradeoff region dominated by congestion and the region
dominated by reachability. Finally, we formulate the
tradeoff in the exact sense as a challenging optimiza-
tion problem. We construct a new routing scheme based
on a novel number-theoretical technique, which main-
tains 21.4% less neighbors than Chord and has a diameter
21.4% less than Chord.

(1]

(2]
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