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Abstract—We consider the role of switching in minimizing the
number of electronic ports [e.g., synchronous optical network
(SONET) add/drop multiplexers] in an optical network that
carries subwavelength traffic. Providing nodes with the ability
to switch traffic between wavelengths, such as through the use
of SONET cross-connects, can reduce the required number of
electronic ports. We show that only limited switching ability is
needed for significant reductions in the number of ports. First,
we consider architectures where certain “hub’ nodes can switch
traffic between wavelengths and other nodes have no switching
capability. For such architectures, we provide a lower bound on
the number of electronic ports that is a function of the number of
hub nodes. We show that our lower bound is relatively tight by
providing routing and grooming algorithms that nearly achieve
the bound. For uniform traffic, we show that the number of elec-
tronic ports is nearly minimized when the number of hub nodes
used is equal to the number of wavelengths of traffic generated by
each node. Next, we consider architectures where the switching
ability is distributed throughout the network. Such architectures
are shown to require a similar number of ports as the hub archi-
tectures, but with a significantly smaller “switching cost.” We give
an algorithm for designing such architectures and characterize a
class of topologies, where the minimum number of ports is used.
Finally, we provide a general upper bound on the amount of
switching required in the network. For uniform traffic, our bound
shows that as the size of the network increases, each traffic stream
must be switched at most once in order to achieve the minimum
port count.

Index Terms—Optical networks, synchronous optical network
(SONET), traffic grooming.

I. INTRODUCTION

AVELENGTH-division-multiplexing (WDM) is in-

creasingly being deployed to provide high-capacity
metro core networks. Typically, these networks have a syn-
chronous optical network (SONET) ring architecture, where
each node in the ring uses a SONET add/drop multiplexer
(ADM) to electronically combine several lower rate streams
onto a wavelength, e.g., 16 OC-3 circuits can be multiplexed
onto one OC-48 stream. With WDM, multiple SONET rings
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can be supported on a single fiber; however, each additional
ring will require additional ADMs. The cost of these electronic
ports dominates the cost of such a network. Managing this
cost is particularly important in the cost-sensitive metro en-
vironment. To reduce the number of electronic ADMs, WDM
add/drop multiplexers (WADMSs) can be employed; WADMs
allow a wavelength to either be dropped at a node or to optically
bypass a node. When a wavelength is not dropped at a node,
an electronic ADM is not required for that wavelength. The
required number of SONET ADMs can be further reduced by
grooming the lower rate traffic so that the minimum number of
wavelengths need to be dropped at each node.

The benefits of grooming with WADMs have been looked at
in a number of recent papers including [1]-[17]. The general
grooming problem is NP-complete [1]. However, for several
special cases, algorithms have been found that significantly
reduce the required number of ADMs. For example, for uni-
form all-to-all traffic, algorithms have been found for both
bidirectional rings [2], [4], [5] and unidirectional rings [1].
Heuristic algorithms for general (nonuniform) traffic have
also been presented in [8]-[11]. In much of the work on
grooming, such as [1], [3], [8]-[10], it is assumed that each
low-rate circuit must stay on the same wavelength between
the source and destination. This assumption can be relaxed
when a node is equipped with a SONET digital cross-connect
(DXC), which allows for the electronic switching of low-rate
streams between SONET rings (i.e., wavelengths). The added
flexibility provided by DXCs can enable the traffic to be more
efficiently groomed, leading to a reduction in the required
number of ADMs. An example of this is given in [1], where it is
shown that even a single-hub node with a DXC can reduce the
required number of ADMs over a network with no switching
capability, even when the hub node is required to have an
ADM on every wavelength. In [5], it was shown that the cost
savings, in terms of ADMs, with a single-hub architecture can
be as high as 37.5%. In other work, such as [4], it is assumed
that every node can cross-connect every wavelength that is
dropped at that node. Clearly, more switching capability will
not increase the required number of ADMs. However, there is
a nonnegligible cost associated with providing this electronic
switching. Therefore, in addition to minimizing the required
number of ADMs, it is also desirable to limit the amount of
switching in the network.

In this paper, we consider architectures that are efficient both
in terms of the number of ADMs used, as well as the amount
of switching provided. First, we consider multiple-hub archi-
tectures, which are a generalization of the single-hub architec-
ture in [1]. In this case, we assume that there are two types of
nodes in the ring—hub nodes and nonhub nodes. Each hub node

0733-8716/04$20.00 © 2004 IEEE



BERRY AND MODIANO: ROLE OF SWITCHING IN REDUCING THE NUMBER OF ELECTRONIC PORTS IN WDM NETWORKS

1397

SONET
mm SONET ADM gross-
3
2

1
Node 1 Node 1 Node 1

Node 4 Node 2 Node 4 Node 2 Node 4 Node 2
Node 3
SONET SONET
. H cross- .
a) static b) S|ng|e hub connect C) dual hub commoct

Fig. 1. Possible grooming architectures.

can cross-connect every wavelength dropped at the node, while
nonhub nodes have no DXCs. In this case, we study the number
of hub nodes needed to minimize the number of ADMs in the
network. We bound the number of ADMs needed for a multihub
architecture and provide algorithms for traffic grooming in such
a ring. Next, we consider distributed hub architectures, where
each node in the ring may have limited cross-connect capability.
In this case, each node is able to switch traffic between only a
subset of the wavelengths dropped at that node. We introduce
a new notion of “switching cost” that quantifies the amount of
switching used in a ring. We give examples to show that a dis-
tributed hub architecture can result in an efficient use of ADMs,
as well as a smaller switching cost than a multihub architec-
ture. We identify a class of rings, where a distributed hub ar-
chitecture can be found that requires the minimum number of
ADMs. We again provide a heuristic algorithm for grooming
and switching in this type of ring. Finally, we consider an upper
bound on the average amount of switching needed in a network
that minimizes the required number of ADMs. This bound is
general in that it applies to an arbitrary topology and is useful in
that it provides additional insight into the amount of switching
needed in a network.

II. MULTIPLE-HUB ARCHITECTURES

In this paper, we primarily consider unidirectional ring net-
works such as a UPSR SONET ring. This is done mainly to
simplify our description; as will be evident, much of the fol-
lowing can be easily generalized to bidirectional rings and, in
some cases, to arbitrary mesh networks. Let the network nodes
be represented by the set Sy = {1,2,..., N}. Also, for sim-
plicity, we assume that all traffic has the same granularity of g,
i.e., g low-rate circuits can be combined on each wavelength.

In Fig. 1, three possible ring architectures for a ring with N =
4 nodes are shown. Fig. 1(a) is a static ring without cross-con-
nects. In this architecture, no switching is employed, hence,
each circuit must be assigned to a single wavelength that must

be processed (dropped) at both the source and the destination.
For example, all traffic between nodes 1 and 2 must be assigned
to A;. This static architecture is the traditional SONET ring ar-
chitecture that has been used in the studies of [1]-[3]. Fig. 1(b)
depicts a single-hub architecture, where a large cross-connect is
located at one hub (node 3). The cross-connect is able to switch
any low-rate circuit from any incoming wavelength to any out-
going wavelength. With this architecture, each node can send
all of its traffic to the hub node, where the traffic is switched,
groomed, and sent back to the destination nodes. Finally, shown
in Fig. 1(c) is a multiple-hub architecture, with two hub nodes
(nodes 1 and 3). Each hub node has a small cross-connect that
can switch traffic among the wavelengths dropped at that node.
Each node on the ring can send a fraction of its traffic to one of
the hub nodes, where it is properly groomed and relayed to its
destination.

To illustrate the potential benefit of the multiple-hub archi-
tecture, consider a unidirectional ring with NV = 9 nodes, where
each wavelength supports an OC-48 and traffic demand is uni-
form with two OC-12s between each pair, i.e., g = 4 and the
traffic demand is for r = 2 low-rate circuits. In this case, each
node generates 16 OC-12s or four wavelengths of traffic. With
the single-hub solution, each node can send all four wavelengths
of traffic to be groomed at the hub at, say, node 1. Thus, with
a single hub, each node would use four ADMs, and the hub
would need 8 x 4 = 32 ADM:s for a total of 64 ADMs. In a
two-hub architecture, each node would send two wavelengths
worth of traffic to each hub (for example, at nodes 1 and 5); an
additional wavelength would be used for traffic between the two
hubs, resulting in 58 ADMs. Finally, a four-hub architecture can
be used, where each node sends one wavelength to each of four
hubs and some additional ADMs are used to handle the interhub
traffic. Using one of the grooming algorithms that is developed
in Section III-B, a four-hub architecture can be found for this
ring that requires only 52 ADMs. In the next section, we give a
lower bound on the number of ADMs required assuming unlim-
ited switching capability; for this example, that bound would be
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48 ADMs. Thus, with four hubs the bound is nearly met, and
any further increase in the amount of switching could at best
result in only a moderate additional savings of ADMs.! Notice
that in this case the number of hubs is equal to the number of
wavelengths generated by a node. It can also be shown that using
the four-hub architecture reduces the required number of wave-
lengths from 32 to 26. Thus, the four-hub architecture is more
efficient both in the use of wavelengths, as well as ADMs.

A. Bounds on the Required Number of ADMs

In the following, we develop a lower bound on the required
number of ADMs for a K-hub architecture. We consider the
case where there is a uniform traffic demand of » < g circuits
between each pair of nodes in the ring.2 In this case, a lower
bound on the number of ADMs needed in a unidirectional ring,
assuming unlimited switching ability, is given in the following
proposition, first derived in [5].

Proposition 1 ([5]): The number of ADMs A needed to sup-
port uniform traffic in a unidirectional SONET ring with param-
eters (IV, r, g) is bounded by

2N(N - 1)r

A>
g+r

6]

A lightpath in a ring refers to a single wavelength connection
between two nodes, which is not dropped at any intermediate
nodes. Thus, when a circuit is carried over n lightpaths, it is
either dropped and continued or switched n — 1 times; in this
case, each lightpath is said to carry 1/nth of the “full” circuit.
The lower bound in Proposition 1 is obtained by recognizing
that each lightpath in the network must be terminated with ex-
actly two ports. Thus, a lower bound on the number of lightpaths
L needed to support all of the traffic in the network can be trans-
lated into a lower bound on the number of ADMs, A. Since the
direct traffic between two nodes is equal to  low-rate circuits,
each lightpath can at most carry r “full” circuits entirely from
their source to their destination. The remaining capacity of that
lightpath (g — 7) can only be used to carry circuits that are also
carried on at least one other lightpath. Hence, each lightpath can
carry at most Q = r + (g — r)/2 “full” circuits. Since the total
traffic demand under the uniform traffic assumption is equal to
L = N(N — 1)r circuits, the number of lightpaths required is
lower-bounded by L/(Q). Each lightpath is terminated at a port;
therefore, the number of ports needed is at least 2L/Q). How-
ever, a SONET ADM can be used both as a receiving and trans-
mitting port, hence, A > L/Q and the bound follows.3

The bound in Proposition 1 is not tight in general, but it can
be achieved in several cases. It is insightful to consider some
characteristics of these cases. From the above, it can be seen
that for (1) to be tight, each lightpath must be efficiently packed
so that it contains () “full” circuits. This in turn requires the
following three conditions to be met:

!Indeed, a four-hub architecture requiring only 49 ADMs can be found; thus
the possible savings with more switching capability is at most one ADM.

2If there is more than a full wavelength of traffic between a pair of nodes, then
assigning each full wavelength to a direct lightpath is clearly optimal. Therefore,
this traffic can be ignored for our purposes.

3The bound can clearly be made tighter by including a ceiling; for large g/r
the bound can also be tightened by taking the maximum of L/ and N, since
each node must have at least one ADM.
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a) each lightpath must be fully utilized;

b) no circuit can travel over more than 2 lightpaths;

c¢) each lightpath must carry r full circuits (directly from the

source to the destination).

To see that these conditions can indeed be satisfied, consider
the case where (N — 1)r = g, i.e., each node generates a full
wavelength worth of traffic. Suppose a single cross-connect hub
is chosen and all traffic is sent to the hub, where it is switched
and sent back to its destination. In this case, the above conditions
are met, and the bound in (1) is tight. However, in general it
is not possible to achieve the bound by using this single-hub
architecture. This is because each node only has r circuits whose
final destination is the hub. Thus, when a node generates more
than one wavelength worth of traffic, each wavelength sent to
the hub cannot contain 7 full circuits, as required by condition
¢) above. When all of the traffic is routed through a single hub,
only 2(N — 1)r circuits can be carried on a single lightpath
and the remaining (N — 1)(N — 2)r circuits must traverse two
lightpaths. Since each lightpath can carry at most g circuits, the
total number of lightpaths L (and hence, A) is bounded by

L=A>2(N-1)+2(N—1)(N —2)) (2)
_2N -1 @
g '

Notice that the difference between the right-hand side of the
bound in (2) and the bound in (1) is

2(N - 1)r
9(g+7)

This is strictly positive unless (N — 1)r = g, i.e., each node
generates a single wavelength of traffic.

The above considerations lead us to consider a multiple-hub
architecture. We define a K-hub architecture to be a ring
with K -hub nodes, with the restriction that all traffic between
nonhub nodes must be routed to one of K hubs. We do not
allow traffic between nonhub nodes to be sent directly (without
going through a hub). Our main reason for this restriction is to
focus on architectures that are simple to design, implement and
analyze. Also, as will be seen in the following, relaxing this
restriction cannot result in significant improvements. Assume
each of the K hubs has a cross-connect capable of switching
any circuit from any input wavelength to any output wave-
length. Again, consider a unidirectional ring with N nodes,
a traffic granularity of ¢ and uniform traffic with r circuits
between each pair. With K hubs (and N — K nonhub nodes), a
total of 2(IN — K) Kr circuits can be routed between the hubs
and the nonhubs in one hop. The remaining traffic between the
nonhub nodes, of which there are (N — K)(N — K — 1)r
circuits, will traverse two lightpaths. Therefore, all traffic that
is either to or from a nonhub node requires at least

2N — K)Kr +2(N — K)(N = K — 1)r
g

(N =1)r—g).

(N -—K)(N—1)r
B g

lightpaths. Additionally, we have to account for the traffic be-
tween hub nodes. By the same reasoning as used in deriving

(€)
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(1), this traffic requires at least 2K (K — 1)r /(g +r) lightpaths.
Hence

4> AN - K)N - Dr | 2K(K - 1)r

N g g+r @

Since the bound in (1) does not depend on the number of hubs,
(4) can be tightened by combining it with (1). This yields the
following bound on the number of ADMs.

Proposition 2: For a K-hub architecture, the number of
ADMs A satisfies

A > max
{2(N —K)(N =1r | 2K(K = 1)r 2N(N - 1)r}
g g+r 7 g+ '

(&)

Some insight can be gained from examining the behavior of
(5) as K, the number of hubs, varies. Notice that only the first
quantity inside the maximization in (5) varies with K, we denote
this quantity by A(K). When K = (N — 1)r/g, A(K) =
2N(N —1)r/(g+r),i.e., the two quantities in the maximization
in (5) are equal. Hence, when (N — 1)r/g is an integer, this
number of hubs minimizes the bound in (5). To address the case
where (N — 1)r /g is not an integer, we note that for

K <05 [(N—l) (1+§)+1} ©6)

A(K) can be shown to be decreasing in K, otherwise, it is in-
creasing. Furthermore, for r < g

{(N— 1)2} <05 [(N— 1) <1+ g) +1] )

Thus, we have that for » < g, the number of hubs, K*, that
results in the smallest bound on the number of ADMs is given
by K* = [(N — 1)r/g]; i.e., K* is equal to the number of
wavelengths of traffic generated by each node. Notice that when
using K* hubs, the lower bound in (5) is equal to the lower
bound in (1), which did not have the restriction that traffic had
to be routed through a hub. The above example, where (N —
1)r = g, provides one case where this bound is tight using
K* = 1 hub. As another example, consider the case where
r = g, i.e., there is a full wavelength traffic demand between
each pair of nodes. Setting up one lightpath between every pair
of nodes is clearly the optimal way to route this traffic. This
requires N (N — 1) ADMs, which meets the bound in (5) with
K* = N hubs, i.e., each node is essentially a hub. We note in
this case, however, that no switching is required at the hubs.

At this point we have bounded the number of ADMs in a
K -hub architecture, and we have shown that the number of hubs
that optimizes this bound is given by K*. This does not tell us
how to groom traffic or, in general, how tight this bound will
be. In the next section, we develop some simple grooming algo-
rithms for a K -hub architecture, where each nonhub node sends
its traffic to one or more of the hubs. For these algorithms, we
will see that, indeed, K™ is (approximately) the optimal number
of hubs and that the bound in (5) can be approached closely in
many cases.
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B. K-Hub Grooming Algorithms

‘We consider several simple grooming algorithms for a K -hub
architecture in a ring with NV > K nodes. For the purpose of
describing these algorithms, the exact location of the hubs is
irrelevant.

1) Group Algorithms: The first type of multihub architec-
tures we discuss involves grouping the N nodes in the ring into
K distinct groups, each of approximate equal size N/K. Of
course, when K does not divide N, group sizes may differ by
one. Each hub node is associated with exactly one group. Given
such a division of the nodes, several possible grooming/routing
algorithms are possible. One natural approach would be for
all nonhub nodes within a group to send and receive all of
their traffic from the hub node associated with the group. The
hub nodes would then exchange all traffic between groups.*
This requires [(N — 1)r/g] ADMs at each nonhub node; a
corresponding number of ADMs is also required at each hub
node for the traffic to and from the nonhub nodes. The inter-
group traffic can be handled by making one hub a “super-hub”
which switches and distributes all intergroup traffic. With this
approach, the total ADMs requirement for this architecture can
be upper-bounded by

- {(N— %)) [%w o a1 [0,

N g

®)
Notice that with this architecture, traffic between nonhub nodes
in different groups needs to be switched at the hub for each
group. Such traffic would then be carried over three lightpaths.
As discussed in Section III, this precludes such architecture
from ever attaining the bound in (1). We consider a variation of
this architecture where all traffic travels over at most two light-
paths. Specifically, assume that every node, including the hub
nodes, now sends all traffic destined to any node in a group to
the respective hub node.> The hub nodes once again distribute
the traffic to the nonhub nodes in their group. Exact computa-
tion of the ADM requirement for this architecture is cumber-
some because of the fact that K does not always divide N.
Instead, we proceed with the following approximate, yet in-
sightful, analysis. Assume each node sends 1/K of its total
traffic to each hub (this assumption would be exact if all groups
were of equal size). Hence, each node sends [(N — 1)r/Kg]
wavelengths of traffic to each of the K hubs. In addition, each
hub node must send the groomed traffic to its subsidiary nodes.
Each subsidiary node must receive a total of (N — 1)r cir-
cuits using [(N — 1)r/g]| wavelengths. Hence, each nonhub
node generates K [(N — 1)r/K g] wavelengths worth of traffic
and receives [(N — 1)r/g| wavelengths. This can be accom-
plished using no more than K [(N — 1)r/K g| ADMs at each
nonhub node. Now, each hub node receives [(N — 1)r/Kg]
wavelengths of traffic from each of (N — 1) nodes and each hub
nodes sends (K — 1) [(N — 1)r/Kg] to the other hub nodes.
Also, each hub node must send [(N — 1)r/g] wavelengths of

4The “hierarchical ring” proposed in [4] is similar to this type of architecture.

5An analogous architecture can be considered, where all nodes in a group
send their traffic to the hub node for the group, and the hub node then forwards
the traffic to the destination.
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traffic to each of its subsidiary nodes. Hence, the number of
wavelengths sourced and terminated at each hub node is ap-
proximately the same and equal to (N — 1) [(N — 1)r/Kg].
Summing over all of the nodes, the total number of ADMs re-
quired is equal to

v [0 -y [0

Ky Ky
=K2N-K-1) {%W .9

With this algorithm each circuit travels over at most two light-
paths. However, notice that each nonhub node receives all its
traffic from the corresponding hub. Thus, when every node gen-
erates more than one wavelength worth of traffic, each lightpath
terminated at a nonhub node cannot contain r direct circuits,
which is another requirement for the bound in (1) to be met. In
the next section, we consider an algorithm, where each nonhub
node sends and receives traffic from all of the hub nodes. This
approach allows traffic to more closely emulate the characteris-
tics for achieving the bound in (1).

2) Symmetric Algorithm: In this algorithm, each nonhub
node divides its traffic so that it sends approximately an equal
amount to each of the K hubs. The traffic sent from a given
nonhub node to a given hub will include traffic whose final
destination is that hub, as well as traffic for other nonhub
nodes. The traffic for other nonhub nodes will be switched at
the hub and forwarded to its destination. Suppose that each
nonhub node can divide its traffic to satisfy the following two
conditions.

i) No more than H = [(N — 1)r/Kg] wavelengths of
traffic are sent to each hub from each nonhub node.

i) No more than H wavelengths of traffic are received at
any nonhub node from any hub.

If the traffic can be divided in this way, each nonhub node will
require at most K H ADMs and each hub node will require at
most (N — K') H ADMs for sending traffic to nonhub nodes.
Thus, all traffic either to or from the nonhub nodes can be sup-
ported using at most 2K (N — K)H ADMs. Next, we give one
construction which shows that the traffic can indeed be divided
to satisfy the above two conditions.

Let the nonhub nodes be numbered 1,2,..., N — K and the
hub nodes be numbered 1, . . ., K . Recall that the traffic demand

’ ’

between each pair of nodes is r circuits. For[ = 1,... r, route

the [th circuit between nonhub nodes ¢ and j, through hub £,
where

o= {e=pr £ mad 51,
[(i—j—1)r+1) modK],

ifj >
ify<ae’ (10
This assignment ensures that the hub nodes are evenly loaded
and can be thought of as follows: the circuits from any nonhub
node to all other nonhub nodes are listed and uniquely labeled
with one of (N — K — 1)r consecutive integers. Each circuit is
then sent to the hub that corresponds to its label mod K. This
results in at most [(N — K — 1)r/ K] circuits of nonhub node
to nonhub node traffic being sent to each hub from any nonhub
node. Each nonhub node will also send the traffic for a given hub
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node directly to that hub node; including this traffic we have at
most [(N — K — 1)r/K + r circuits being sent to each hub
from each nonhub node. This requires at most

{RN—K—D%PHW:{RN—D%W

g g

=

1 =H (11)

wavelengths, where the last equality follows since g is an in-
teger. This shows that condition i) is satisfied by this traffic as-
signment. Essentially, the same arguments can be used to show
that condition ii) is also satisfied by this assignment.

So far, we have only addressed traffic to or from the nonhub
nodes. In addition, interhub traffic must also be accommo-
dated. The simplest way to accomplish this is by making one
of the K -hub nodes a “super-hub,” to which all hub nodes send
their interhub traffic. The super-hub then distributes the in-
terhub traffic to the respective hubs. This requires an additional
2(K —1) [(K — 1)r/g] ADMs for the interhub traffic. Thus, the
total number of ADMs required for the above algorithm is given
by

A =2K(N-K) {MW +2(K—1) {@W . (12)

Kg

While this simple algorithm is generally effective, it should
be immediately obvious that when the number of hub nodes
is large the algorithm becomes inefficient. This is because the
interhub traffic is handled using a single-hub architecture. We
know, from our earlier discussion, that when the traffic among
nodes exceeds a single wavelength, a single-hub architecture
is inefficient. A further improvement can be obtained by using
a hierarchical architecture with multiple “super-hubs” that are
used for routing the interhub traffic.

The required number of ADMs in such a hierarchical archi-
tecture can be calculated recursively. Specifically, let A(V, K)
denote the minimum number of ADMs needed for an architec-
ture with N nodes and K hubs, where traffic that originates at
the nonhub nodes is routed as above, and interhub traffic is han-
dled using a hierarchical architecture. Let

AT(N) = min {A(N, K)}
denote the minimum number of ADMs needed when the op-
timum number of hubs is used. Then assuming that the optimum
number of “super-hubs” is used in the above architecture, we
have

A(N, K) = 2K(N — K) {%W +AMK). (13)

Using (13), the number of ADMs needed for a hierarchical
K-hub architecture can be recursively calculated.

The results from using the symmetric algorithm are shown
in Table I. The five columns on the right show the number of
ADMs required when using K = 1 to five hubs, respectively.
For example, in the case of a 17-node ring, the minimum ADM
solution is achieved with four hubs. Highlighted in the table is
the solution that achieves the minimum number of ADMs. This
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TABLE 1
NUMBER OF ADMSs NEEDED WITH MULTIPLE HUBS

Symmetric Algorithm

N K* | Bound| K=1| K=2| K=3| K=4| K=5
5 1 8 8 14 16 14 8

6 2 12 20 18 22 22 18
7 2 17 24 22 28 30 28
8 2 22 28 26 34 38 38
9 2 29 32 30 40 46 48
10 3 36 54 66 46 54 58
11 3 44 60 74 52 62 68
12 3 53 66 82 58 70 78
13 3 62 72 90 64 78 88
14 4 73 104 | 98 136 | 86 98
15 4 84 112 | 106 | 148 | 94 108
16 4 96 120 | 114 | 160 | 102 | 118
17 | 4 109 128 | 122 | 172 | 110 | 128

corresponds exactly to the number of hubs K* that optimizes
the lower bound from Section II-A, which is equal to the number
of wavelengths of traffic generated at each node. The value of
K™ is given in column 2 and the lower bound when using the
optimal number of hubs K* is given in column 3.

III. DISTRIBUTED HUB ARCHITECTURES

In this section, we relax the assumption that each node is either
a hub or a nonhub node, and we allow only a subset of the wave-
lengths dropped at a node to be switched. In this case, instead of
a few hub nodes with complete switching capability, each node
may have some partial switching capability, provided by a small
cross-connect. Such an architecture has several advantages. The
first advantage is that the size of a cross-connect is a significant
component of its cost. Using several smaller cross-connects may
lead to lower costs. Distributing the switching requirements over
allnodesinaringalsoallows formore uniformnoderequirements.
Finally, with such an architecture, the ring may be more robust to
node failures. The cost of such an approach may be an increase in
the complexity of control and management.

To quantify the amount of switching used in different archi-
tectures, we assign a switching cost of (ng)? to a DXC that
can cross-connect low-rate traffic between n wavelengths. As-
suming that the DXC is a crossbar switch, this cost is equal to the
number of cross-points in the switch. This is a common metric
used in studying switch designs. If multistage switch architec-
tures are used, then this cost could be modified to reflect this.
However the above metric will suffice to illustrate our points.
The total switching cost for a ring architecture is then the sum
of the switching costs of all DXCs in the ring.

A. Example

Consider a unidirectional ring with N = 9 nodes, a traffic
granularity of ¢ = 2 and uniform traffic demand of » = 1 circuit
between each pair of nodes. In this case, from Proposition 1, we
have a lower bound of 48 ADMs. First, we consider supporting
this traffic using the symmetric architecture from Section II-B.
Each node generates four wavelengths worth of traffic. Thus,
from (13), this traffic can be supported with four hub nodes
and 50 ADMs. Each hub node receives one wavelength from
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Fig. 2. Architecture for supporting traffic between the first group of nodes (1,
2, 3) in the example from Section III-A. The two horizontal lines correspond
to two wavelengths. The traffic sent on each lightpath is also indicated in the
figure. The cross-connect, indicated by the vertical line is at node 2.

each of the five nonhub nodes and must be able to switch cir-
cuits between these wavelengths. This requires a 5g x 59 DXC.
Therefore, the switching cost of this architecture is greater than®
4(100) = 400.

Next, we describe a distributed switching architecture for
supporting the same traffic. Consider dividing the nodes into
the following groups of three:

(1,2,3) (4,5,6) (7,8,9) (1,4,7)
(1,5,8) (1,6,9) (2,5,7) (2,6,8)
(2,4,9) (3,6,7) (3,5,9) (3,4,8).

Notice that each pair of nodes is in exactly one of these groups.
The traffic between all three nodes in each group can be supported
by having two of the nodes send all of their traffic to the third node,
as depicted in Fig. 2. A 2g x 29 DXC at the third node can be
used to switch the incoming traffic, which can then be forwarded
toits destination. This requires four ADMs and a switching cost of
(29)? = 16.Since there are 12 groups, supporting all of the traffic
requires 48 ADMs and a total switching cost of 192. Notice that
in this case we are using the minimum number of ADMs given by
the bound in Proposition 1 and the switching costis over 50% less
than the costfor the symmetric multihub architecture. Also, notice
that any node within each group could serve as the “hub” for that
group. For example, the switching capability could be spread out
among all the nodes in the ring or concentrated at only four nodes.

B. Perfect Architectures

The distributed architecture in the above example meets
the lower bound on the required number of ADMs from
Proposition 1. As discussed in Section II-A, for any archi-
tecture that meets the bound in Proposition 1 with equality,
each lightpath must contain r direct circuits and g — r circuits
that travel over two lightpaths. Assuming that all the indirect
circuits must be switched, then at least a 2g x 29 DXC is
required for each pair of indirect circuits; this is exactly what
is used in the above example. In this section, we consider a
generalization of the above example to other rings, i.e., other
values of IV, g, and r. We call such an architecture a perfect
architecture. Specifically, in a perfect architecture the nodes in
the ring are divided into groups of g/r + 1 nodes such that each
pair of nodes is in at most one group. One node in each group
serves as a hub node for the group. All other nodes send their
traffic to this hub node, where it is switched and forwarded to
its destination. For a given set of parameters (IV, r, g), it may

The actual switching requirements will be larger than this because we have
not accounted for the switching required for interhub traffic.
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not be possible to divide the traffic in the above manner; i.e., a
perfect architecture may not exist (e.g., if g/r is not an integer).
However, when it does exist it uses the minimum number of
ADMs for any architecture.

Proposition 3: If a perfect architecture exists for a unidi-
rectional ring with parameters (N, r, g), then it uses the min-
imum number of ADMs of any architecture that can support this
traffic.

Proof: Each group of g/r + 1 nodes requires 2(g/r)
ADMs and supports (g/r + 1)(g/r)r/2 circuits. Since there
are N(N — 1)r/2 total circuits, the total number of groups is

N(N-1)(5)  N(N-—1)? (14)
(F+1) () () (9+r)g
Hence, the total number of ADMs is
(N(N— 1)r2> (2g> 2N(N - 1)r
_— == — (15)
(9+7)g r g+r

This exactly meets the lower bound in Proposition 1 and,
therefore, is the minimum number of ADMs needed for any
architecture. ]

Let M = g/r + 1 and assume that this is an integer. The
problem of finding groups of M nodes for which a perfect ar-
chitecture exists can be described in graph theoretic terms. Con-
sider a fully connected graph with N nodes; denote this graph
by K . Assume each node in this graph represents a node in the
ring; a pair of nodes is represented by a link in this graph. Each
group in the above construction can be viewed as a fully con-
nected subgraph with M nodes. The above construction gives a
family of subgraphs that are edge disjoint and cover the graph,
K. Such a family is referred to as a decomposition of the
original graph. In this case, each subgraph in the decomposi-
tion is isomorphic to K, (a fully connected graph with M
nodes). This is referred to as a K j;-decomposition of K. In
these terms, a perfect architecture can be found if there exists a
K js-decomposition of K, where M = g/r + 1 is an integer.

The problem of graph decompositions has been well studied in
the graphtheory literature and is related to combinatoric problems
suchasfindingablockorthogonaldesignsor Steinertriple systems
of a given order [18]. The next proposition provides a necessary
condition for the existence of a K ;-decomposition of K .

Proposition 4 ([18]): 1f there exists a K jy-decomposition of
K, then the following hold:

M —1|N =1 and M(M — 1)|N(N — 1).

Here, we use the notation a|b to denote that a is a divisor of b. Fur-
thermore, the above conditions can be showntobe sufficient forall
but a finite number of values of M and N[18]. By combining the
above arguments, we have thatunless M — 1| N — 1and M (M —
1)|N(N —1),where M = g/r+ 1,aperfectarchitecture cannot
be found. Also, except for a finite number of values of M and N
the above conditions are sufficient. Notice that for the example in
Section III-A, the above conditions are met.

When a perfect architecture can be found, it will have N (N —
1)/K (K — 1) DXCs, and each DXC will have a switching cost
of (K — 1)g)?. Thus, the total switching cost is

N(N - 1) <1 - %) = N(N-1) (g-‘fT) .

(16)
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C. Grooming Algorithm

From the preceding section, for an arbitrary N, g, and r, a
perfect architecture may not exist. In this section, we give a
heuristic algorithm for routing and grooming traffic for an arbi-
trary ring that attempts to mimic a perfect architecture. The basic
idea of this algorithm is to first find subsets of the total traffic
requirement that are similar to the subsets used in a perfect ar-
chitecture. Each subset will then be supported using a single
small cross-connect at one hub node. In a perfect architecture,
these subsets of traffic correspond to all-to-all traffic among a
group of M nodes, where each node in the group generates a
full wavelength worth of traffic. In the general case, these sub-
sets will not necessarily correspond to all-to-all traffic between
the nodes in a group. In particular, a pair of nodes may appear
in multiple groups, but the traffic between the pair will only be
assigned to one of the groups. In addition, each node in a group
may not generate a full wavelength worth of traffic.

The algorithm sequentially forms groups of nodes and, for
each group, a corresponding subset of the offered traffic. Each
group is formed by adding nodes, in a greedy fashion, in an at-
tempt to form perfect subsets. The corresponding traffic subset
is simultaneously formed by adding all the remaining traffic be-
tween each node added to the group and the nodes already in
the group. By remaining traffic, we mean circuits that have not
yet been assigned to another group.

We give a more precise description of this algorithm next. To
simplify the discussion, we only describe the case where r = 1.
We maintain a list of the circuits C; originating at each node %
in the ring that have not yet been assigned to a subset. A list of
the nodes in each group and the corresponding traffic subsets
are also maintained. When we say a node 1 is added to a group,
this implies that all the remaining traffic between that node and
any other node in the group is assigned to the traffic subset. A
bidirectional circuit between two nodes ¢ and j includes both a
circuit from ¢ to j and a circuit from j to 4.

Grouping Algorithm

1) Set n=1.

2) Choose as the first node in group G,,
a node with the maximal remaining
circuits to be assigned.

3) Add a node to group G, that will
result in the largest increase in
the number of circuits in the
corresponding traffic subset.

4) If more than one node in group G, has
g bidirectional circuits in the
traffic subset, or there are no
circuits that are not yet assigned

to the nodes in group G, (i.e., C; is
empty for all ¢ in G,) continue to
step 5). Otherwise, go to 3.

5) If all circuits have been assigned,
stop. Otherwise, set n=n+1, go to 1.

In steps 2) and 3), any ties can be broken arbitrarily; for ex-
ample, by choosing the node with the smallest label. Step 4)



BERRY AND MODIANO: ROLE OF SWITCHING IN REDUCING THE NUMBER OF ELECTRONIC PORTS IN WDM NETWORKS

ensures that no nonhub node in the resulting architecture will
generate more than one wavelength worth of traffic.

As an example, consider applying the algorithm to the ring
from Section III-A, with N = 9, g = 2, and r = 1. Assume
that all ties are broken by choosing the node with the smallest
label. Initially, all nodes have all eight circuits to be assigned,
so any node can be chosen to start the group G';. Using our tie
breaking rule, we choose node 1. Next, adding any other node
to G; will result in adding one bidirectional circuit to the traffic
subset, so node 2 will be chosen. At this point, both nodes in
the group have 1 < g bidirectional circuits assigned, so we may
add another node. Again, the choice of node does not matter;
so node 3 is chosen. Now, G1 = {1, 2, 3}, and each node has g
bidirectional circuits in the traffic subset, thus we begin forming
G. Every node except 1, 2, or 3 have all eight circuits yet to be
assigned, and thus can be chosen to start G. Continuing in this
manner, it can be shown that the algorithm will form the groups
given in the example.

After forming groups using the above algorithm, the traffic
for each group can then be supported using a single DXC at
one “hub” node for the group. This “hub” node will be chosen
from the nodes that have the maximal number of circuits in the
traffic subset. Each “nonhub” node in the group will generate
no more than one wavelength worth of traffic and send all of the
traffic to the hub node. If there are K nodes in a group and each
nonhub node uses a different wavelength, the traffic can be sup-
ported using 2(K — 1) ADMs and a switching cost of (K g)2.
In cases where each node in the group does not generate a full
wavelength of traffic, the number of ADMs and the switching
cost can often be reduced by allowing nodes to share a wave-
length. If all traffic must go through the DXC, then assigning
traffic to wavelengths to minimize the needed number of ADMs
is equivalent to the egress grooming problem studied in [1]. This
problem can be reduced to the well-known bin packing problem
[1]; any heuristic for the bin packing problem can then be used
to assign the traffic to wavelengths.

As an example of this algorithm consider a ring with N = 6,
g = 4,andr = 1.Inthis case, g/r+1 = 5, and 4 is not a divisor
of 5, so a perfect architecture cannot be found. Using the above
algorithm results in the following subsets of traffic.

Subset 1: all-to-all traffic between {1,2,3,4,5}.

Subset 2: traffic between 6 and {1,2,3,4,5}.

The first subset of traffic requires eight ADMs and a switching
cost of (4g)? = 256. The second subset requires seven ADMs
and a switching cost of (2g)? = 64. Therefore, this architecture
requires 15 ADMs and a total switching cost of 320. For com-
parison, the best symmetric hub architecture from Section II-B
will require 18 ADMs and a switching cost of 512.

A more extensive comparison is shown in Figs. 3 and 4. In
Fig. 3, the required number of ADMs for a distributed hub ar-
chitecture based on the above algorithm is plotted for a ring
with ¢ = 16 and » = 1 as the number of nodes varies from
N = 6 to 20. The number of ADMs needed for the symmetric
hub architecture and the lower bound from Proposition 1 are also
shown. For comparison, we also give a lower bound from [1] on
the number of ADMs required without switching. In general,
this lower bound is overly optimistic, i.e., the actual number of
ADMs required without switching is typically greater than this
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Fig. 4. Switching cost with symmetric hub architecture and distributed hub
architecture for ring with 7 = 1 and g = 16.

bound. Note that both the symmetric hub architecture and the
distributed hub use nearly the same number of ADMs for the
range of values shown. Both approaches meet the lower bound
from Proposition 1, for specific values of N (e.g., N = 17).
Also, note that the curves for the symmetric and distributed hub
cases both sharply increase when N = 18. This is the value of
N, where the number of wavelengths generated by each node
increases from 1 to 2. The savings relative to the bound on a
network with no switching is greatest just before these jumps,
i.e., when each node is generating enough circuits to fill up an
integer number of lightpaths. The largest gain shown is for the
case when N = 17, where using switching reduces the number
of ADMs by more than 40%. For certain values of IV, the sym-
metric hub architecture uses more ADMs than the lower bound
from [1]. This is partly due to the fact the lower bound in [1] is
not always obtainable; also, for these cases, we can further re-
duce the needed number of ADMs in the symmetric hub archi-
tecture by multiplexing the traffic from several nonhub nodes
onto a single wavelength. Fig. 4 compares the switching cost
between the symmetric hub architecture and the distributed hub
architecture for the same ring. Though these two approaches re-
quired a similar number of ADMs, the distributed hub architec-
ture has a significantly smaller switching cost. As N increases,
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the difference in switching requirements increases; for N = 17
the distributed hub architecture has a switching cost that is more
than 97% less than the symmetric hub case. We have observed
similar trends for other parameter settings. In general, the bene-
fits of switching appear to be greater for larger values of g. For
example, when ¢ = 4 and r = 1, over the same range of [V,
switching reduces the needed number of ADMs by at most 20%
compared with the lower bound in [1].

IV. BOUND ON THE AVERAGE AMOUNT OF
SWITCHING NEEDED

So far, we have considered lower bounds on the number of
ADMs needed, and we have argued that if these bounds can be
achieved then it will require that all circuits be switched at most
once. Based on this, we developed algorithms that can signifi-
cantly reduce the required number of ADMs. However, in gen-
eral, there is no assurance that the bounds in Section II-A are
tight; in which case it might be possible to further reduce the
ADM requirement by allowing more switching in the network.
In this section, we provide some insight into this situation by
developing an upper bound on the amount of switching needed
in a network, in terms of the number of ports in the network.
Using this bound, we show that reducing the number of ports
inherently requires that traffic be only switched a small number
of times.

Again, we consider a WDM network with N nodes, where g
low-rate traffic streams are multiplexed onto each wavelength.
Let 7" be the total number of ports in the network, where each
lightpath is terminated by two ports (i.e., there are T'/2 ADMs).
Let C be the total number of low-rate (unidirectional) circuits
in the network. Now, f = T'/C is the average number of ports
per circuit. Note that by setting up a point-to-point lightpath for
each circuit, f can always be made equal to 2. Of course, more
efficient grooming algorithms would lead to f being less than 2.
Fori = 1,...,C, assume the ith circuit uses L; ports, i.e., this
circuit is sent over L; — 1 lightpaths. Define

1
KZGZL”‘

so that K denotes the average number of ports used by a cir-
cuit. Finally, let S be the average number of times that a cir-
cuit is switched. We want to show that in a network architec-
ture that minimizes the overall number of needed ports, T', each
circuit needs to be switched on average only a small number
of times. Note that for a given C, minimizing 7" is equivalent
to minimizing f. Also, note that the number of times a circuit
is switched is upper-bounded by L;/2 — 1. (This is an upper
bound, since the wavelength a circuit is on may be dropped at
an intermediate node only to add/drop another circuit sharing
that wavelength, but not switched.) Thus, S is upper bounded
by K/2 — 1. Since each port is shared by at most g circuits, we
have that CK /g < T, which implies that K < fg. Hence
19y,

2

S5 < a7)

Thus, for a given topology and traffic demand, any upper bound
on f (or equivalently 7') can be converted into an upper bound
on S. This suggests that a topology that is efficient in the use of
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hub grooming algorithm.

ports (small f) will not use much switching (small S). More-
over, the most port efficient topology will yield the tightest
bound on S in (17). We consider some specific examples of
this bound next.

For any topology and traffic demand, as noted earlier, f < 2,
substituting this into (17), we have

S<g-1. (18)

When g = 1, this implies that no switching is required, as one
would expect (since point-to-point circuits are most efficient).
For g > 1, the above bound is very loose because establishing
point-to-point circuits is inefficient in terms of the number of
ports. Next, consider a unidirectional ring with uniform traffic
of r circuits between all N nodes so that C = N(N — 1)r. The
number of ports needed with an arbitrary number of switches is
upper-bounded by the ports required in a single-hub architec-
ture. The total number of ports for a single-hub architecture is
givenby T'=4[(N —1)r/g] (N — 1). Thus, we have

af(v=nz] -1y
§< AN(N —1)r -1

:2{7(]\7;1)7;‘ %—1

<Ny 09
- N Nr )

We emphasize that while (19) was developed by considering
a single-hub architecture, the bound applies to an architecture
with an arbitrary number of hubs and general topology. Notice
that for any fixed g/r as N gets large, the upper bound on the
average amount of switching in (19) approaches 1. Also, notice
that when g/r < 1, then the right-hand side of (19) is less than
one for any N. In other words, when each node generates more
than a wavelength of traffic for each other node, the average
amount of switching per circuit in an architecture that efficiently
uses ports will be less than one. Of course, for the hub architec-
ture S is less than one by design. However, the above tells us
that any architecture that sought to further reduce the number of
ADMs would not require more switching than the bound on S
given in (19). Furthermore, instead of using a single-hub archi-
tecture to bound the number of ports needed, a better bound on
the number of ports can be found by using a more efficient ar-
chitecture. As an example, we consider the symmetric multihub

(19)
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architecture from Section II-B. In this case, the number of ports
can be found using (13). Fig. 5 shows the resulting bound on S
as a function of N, for a ring with g = 4, = 1. In finding this
bound, the optimal number of hubs were chosen for each N.
Notice that for all but three values of N this bound is less than
one, suggesting that each circuit needs to be switched at most
once.

V. CONCLUSION

We have shown that providing limited switching ability can
aid in reducing the number of ADMs needed ina SONET/WDM
ring network. We have considered providing this switching
ability in two types of architectures—multiple-hub architec-
tures and distributed hub architectures. In both cases, significant
savings in ADMs are possible. We introduced a notion of the
switching cost needed in a ring and showed that the distributed
hub architecture incurred a significantly smaller switching cost
than a multiple-hub architecture. We also presented an upper
bound on the amount of switching needed in a network; this
bound suggests that in a network that efficiently utilizes ADMs,
circuits need to be switched at most once, as they are in the
architectures presented here.

In addition to reducing the number of ADMs, other advan-
tages of switching include the ability to better support dynamic
traffic and to improve a network’s robustness to node failures.
In addressing such issues, the placement of switches within a
ring will likely be an important consideration.
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