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Abstract—Sensor networks have emerged as a fundamen-
tally new tool for monitoring spatial phenomena. This paper
describes a theory and methodology for estimating inhomoge-
neous, two-dimensional fields using wireless sensor networks.
Inhomogeneous fields are composed of two or more homogeneous
(smoothly varying) regions separated by boundaries. The bound-
aries, which correspond to abrupt spatial changes in the field, are
nonparametric one-dimensional curves. The sensors make noisy
measurements of the field, and the goal is to obtain an accurate
estimate of the field at some desired destination (typically remote
from the sensor network). The presence of boundaries makes
this problem especially challenging. There are two key questions:
1) Given n sensors, how accurately can the field be estimated?;
2) How much energy will be consumed by the communications
required to obtain an accurate estimate at the destination? The-
oretical upper and lower bounds on the estimation error and
energy consumption are given. A practical strategy for estimation
and communication is presented. The strategy, based on a hierar-
chical data-handling and communication architecture, provides a
near-optimal balance of accuracy and energy consumption.

Index Terms—Distributed estimation, multiresolution analysis,
sensor networks, wavelets.

1. INTRODUCTION

ENSOR networks have emerged as a fundamentally new
S tool for monitoring inaccessible environments such as non-
destructive evaluation of buildings and structures, contaminant
tracking in the environment, habitat monitoring in the jungle,
and surveillance in military zones. These ad hoc networks are
envisioned to be a collection of embedded sensors, actuators,
and processors. We shall assume that communication between
sensors is done in a wireless fashion. Sensor networks are dis-
tinguished from more classical networks due to strict limitations
on energy consumption, the density of nodes, the simplicity
of the processing power of nodes, and possibly high environ-
mental dynamics. An important problem in sensor networking
applications is the estimation of spatially varying processes or
fields. Consider a network sensing a field composed of two or
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Fig. 1. A wireless sensor network sampling a two-dimensional (2-D) field.
Dots indicate sensor locations and squares indicate the extent of each sensor’s
measurement.

more regions of distinct behavior (e.g., differing mean values
for the sensor measurements). An example of such a field is
depicted in Fig. 1. In this application, the goal of the sensor
network is to sense the field, construct an estimate of the field,
and communicate the estimate to a desired (typically remote)
destination. In contrast to prior work, we drop the assumption
of homogeneity and instead consider inhomogeneous fields
that are composed of two or more homogeneous (smoothly
varying) regions separated by smooth boundaries. While the
proposed method exhibits near-optimal theoretical properties
and is practical for both homogeneous and inhomogeneous
fields, we focus in this paper on inhomogeneous fields. This
is a particularly challenging problem in sensor networks be-
cause boundary detection requires significant system resources.
Furthermore, abrupt changes in the field are often of greatest
scientific interest and, therefore, we view the inhomogeneous
case as especially relevant to applications.

A. Wireless Sensing of Inhomogeneous Fields

There are two fundamental limitations in the estimation
problem. First, the accuracy of a field estimate is limited by the
spatial density of sensors in the network and by the amount of
noise associated with the measurement process. Second, energy
constraints may limit the complexity of the estimate that is
computed and ultimately communicated to a desired destina-
tion. The tradeoff between accuracy and energy consumption
can be characterized as follows.

Assume that n sensor nodes are arranged on an /n X y/n
square lattice (assuming a planar, square field). Suppose that
the field being sensed consists of two homogeneous regions
separated by a one-dimensional (1-D) boundary (like the case
depicted in Fig. 1). To be specific, let us assume that the field
consists of two smoothly varying regions separated by a smooth
boundary. Under these assumptions, most of the nodes will be
in smooth regions away from the boundary, and only O(y/n)
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nodes lie next to the boundary. Each sensor node makes a (noisy)
measurement of the field. Specifically, each sensor makes a
measurement of the field at its location which is contaminated
with a zero-mean Gaussian distributed error. Assume that the
noises are independent and identically distributed at each sensor.
It is known that, under the assumptions on the class of fields
above and the white noise model, the mean-square error (MSE)
cannot, in general, decay at a rate faster than cn”, for some
0 < v <1 and some ¢ > 0 independent of 7 that depends on
the smoothness of the regions and the boundary [1]-[3]. That
is, no estimator (based on centralized or distributed processing)
can exceed this convergence speed limit.

To quantify the total energy required to compute and transmit
a field estimate of this accuracy, we assume a 1/r energy decay
behavior, where 7 is the distance from the transmitter (in light
of the 2 — d nature of our formulation). Other measures are
possible (e.g., 1/r* for some a > 1); see [4] for examples.
Note that even simple calculations require communications
that consume at least O(y/n) bit-meters of energy. For ex-
ample, consider computing the average values between the
nearest neighboring nodes in the network. This requires the
transmission of O(n) bits (a certain number for each node in
the network) over a distance of O(1/+/n) meters (the distance
between nearest neighbors). Such a trivial operation is neces-
sary for almost any imaginable field estimation process. Thus,
the total energy required to compute and transmit the field
estimate is at best O(y/n). Note that, here and throughout the
paper, we assume that local computations require a negligible
amount of energy in comparison to communications. Com-
bining this lower bound on the energy consumption with the
lower bound on the MSE decay rate above yields a “best-case”
tradeoff between accuracy (MSE) and energy (&) of the form
MSE oc 1/€2¥. It is important to note that this relation should
not be interpreted to mean that a fixed number of sensor nodes
using more energy can provide more accuracy. Rather, both
the MSE and the energy consumption are functions of the
number of sensor nodes, and the above relation indicates how
the accuracy and energy consumption behave as the density of
nodes increases. Moreover, note that the MSE cannot decay at
a rate faster than n 1, the parametric rate. Therefore, the very
best tradeoff between MSE and energy is MSE o 1/£2, and
this is generally unachievable except under very restrictive and
unrealistic assumptions on the nature of the field.

This paper explores these basic tradeoffs between MSE and
energy consumption as functions of node density. We propose
and develop field estimation algorithms based on multiscale
partitioning methods. The algorithms are quite practical and
map nicely onto a sensor network architecture. Moreover, we
demonstrate theoretically that our methods nearly achieve the
best-case MSE/energy tradeoffs discussed above. The theory
hinges on an application of our extension [5] of the Li—Barron
bound for complexity regularized model selection [6] to bound
the MSE and to bound the expected energy consumption. Since
our methods (nearly) achieve the optimal tradeoffs, no other
schemes can be devised that will (asymptotically) perform
significantly better under the stated assumptions. Simulation
experiments verify the predicted theoretical performance of our
methods. The algorithms and theoretical analysis in this paper
expand upon our previous work [7], which considered only
piecewise constant fields.
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B. Related Work

Due to the recent emergence of sensor network research,
there is limited literature concerning field estimation via wire-
less networks. We are aware of several lines of investigation.
First, several authors [8]-[11] have considered the problem of
estimating a field via wireless sensor networks. In those works,
rate-distortion analysis is employed to study essentially the
same tradeoff between accuracy and communication costs as
discussed above. However, the class of fields considered by
those authors differs strikingly from our investigation. Rather
than consider inhomogeneous fields as we do here, they con-
sidered classes of homogeneous processes without boundaries
(e.g., stationary Gaussian fields). While possibly adequate for
some applications, we feel that boundaries corresponding to
abrupt spatial changes in the field may occur quite frequently
in many envisioned application domains. Moreover, abrupt
changes in the field are likely be the features most critical to
the user. The theory and methods in [8]-[10] do not address
such situations. Second, to address the important problem of
boundary detection, several proposals have be made to employ
classical image processing tools in sensor network algorithms.
In particular, the work of [12] has led to simple and com-
munication-efficient strategies for detecting field boundaries
using wireless sensor networks. Similar “image-processing”
influenced schemes are considered in [13]. However, like
most classical image edge detection methods, it is difficult to
quantify the accuracy of these strategies.

We also mention the close connection between the hierar-
chical estimation and communication architecture employed in
our methods and the data collection algorithm proposed in [14],
which also exploits a hierarchy to reduce communication costs.
That algorithm is based on hierarchical compression scheme
where clusterheads aggregate measurements from child nodes
to pass to the next layer of hierarchy. Very similar strategies un-
derly our methods and are critical for achieving near-optimal
tradeoffs between accuracy and communication. Thus, we view
our work as theoretically supporting the use of such hierarchies
in sensor network architectures.

C. Organization

This paper is organized as follows. In Section II, we define
the problem and develop the basic algorithmic and communica-
tion structure of our field estimators. In Section III, we study
the theoretical properties of the estimators. In particular, we
develop bounds on the mean-squared estimation error and on
the communication costs of the proposed methods. Simulation
results are provided in Section I'V. Section V draws final conclu-
sions and discusses ongoing research. The Appendix contains
key derivations and proofs.

II. PROBLEM FORMULATION AND APPROACH

Assume a2-D field, denoted by f, is being sensed and that it is
composed of smooth regions of Holder-« regularity in R%, o €
(0, 2], with smooth contours or boundaries that are Holder-3
regular in R, 3 € (0,2]. As special cases, if o and 3 are in-
teger valued, then these cases include fields in which smooth
regions are C'“ (o continuous derivatives in R?) and the bound-
aries are C'? (curves that behave locally like C# 1-D functions).
The domain of the field is assumed to be the unit square [0, 1]2.
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Furthermore, the range of the field is assumed to be within
[ R, R], for some constant R > 0. Extensions of our theory and
methods to three-dimensional fields are straightforward, and we
will focus on 2-D fields and sensor networks to illustrate the
salient ideas.

The sensor network is a collection of n wireless nodes ar-
ranged on a uniform, square lattice in [0, 1]2. Each node mea-
sures the field at its position. Denote the sensor measurements
by # = {x;;}, where the indexes range 1 < i,j < \/n. The
indices indicate the location of the corresponding node which is
at the center of the square S; ; = [( — 1)/\/n,i/\/n] X [(j —

1)/v/n,j/v/n]. Let fij = ”Js f, the average value of the
field over the square S; ;. The array {fi j} can be viewed as a

“pixelized” version of the original field. Assume that the mea-
surement at each node has the form

fz] +n’LJ (1)

where n; ; is an observation noise that could encompasses
ambient noise in the environment, electronic transducer noise
sources, and possibly quantization errors. The noises {n; ;}
are assumed to be independently and identically Gaussian
distributed with mean zero and variance o2. Thus, we have
z; ;j ~ N(fi;, o), arealization of a Gaussian random variable
with mean f; ; and variance 0. The goal of the sensor network
is to compute an estimate of the field f given the noisy mea-
surements x and to transmit this estimate to a desired location
(assumed to be remote from the sensor network). The basic
problem is illustrated in Fig. 1.

In our hierarchical approach to estimation and communica-
tion, the sensor measurements can be viewed as sampling the
field over a partition of n subsquares of sidelength 1/+/n, as
shown in Fig. 1. In principle, this initial partition can be gener-
ated by a recursive dyadic partition (RDP) as follows. First, di-
vide the domain into four subsquares of equal size. Repeat this
process again on each subsquare. Repeat this 1/2logyn = J
times. This gives rise to a complete RDP of resolution 1/y/n
(the rectangular partition of the sensing domain shown in Fig. 1).
The RDP process can represented with a quadtree structure. The
quadtree can be pruned back to produce an RDP with nonuni-
form resolution.

Let P, denote the set of all RDPs, including the initial
complete RDP and all possible prunings. For each RDP
P € P,, there is an associated quadtree structure (generally of
nonuniform depth corresponding to the nonuniform resolution
of most RDPs). The leafs of each quadtree represent dyadic
(sidelength equal to a negative power of two square regions of
the associated partition. For a given RDP and quadtree, each
sensor node belongs to a certain dyadic square. We consider
these squares “clusters” and assume that one of the nodes in
each square serves as a “clusterhead,” which will assimilate
information from the other nodes in the square. Notice that if
one considers all RDPs in P,,, then each sensor node actually
belongs to a nested hierarchy of 1/2log, n dyadic squares of
sidelengths 1/v/n,2/\/n,4/\/n, ..., 1, respectively. Thus, we
have a hierarchy of clusters and clusterheads.

Consider a certain RDP P € P,,. Define the estimator of
the field as follows. On each square of the partition, we con-
sider two possible estimators of the field in that region. One
estimator is simply the least squares fitting of a constant on
the corresponding square, in other words the mean of the mea-

Tij =
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surements in the square. A discrete collection of such models
is generated by quantizing the dynamic range [—R, R] of the
field to n'/4 levels (in other words using 1/4logn bits to rep-
resent the mean value). This choice for the quantization is due
to the fact that ultimately the MSE of the estimator is O(n~'/2)
(as shown in the next section) and this choice puts the squared
quantization error at that level. The second estimator is a least
squares fitting of a piecewise linear model known as a platelet
[15]. A platelet is formed by splitting a dyadic square into two
wedge-shape regions (defined by a line connecting two points
on the boundary of the square) and fitting a planar surface to
the field on each wedge. Each platelet consists of six parame-
ters, which describe the two surfaces, and a pair of points on the
boundary of the square, which describe the wedge. A discrete
collection of platelets are generated by discretizing the surface
parameters to 1/3logn bits each and selecting the boundary
points from a finite collection of points spaced evenly § =
n~2/3 units apart along the boundary of the square. Again, these
choices of quantization are made so that the squared quanti-
zation error matches the overall MSE, which is shown to be
O(n=2/3) in the next section. The platelet estimator is deter-
mined by selecting the element of this collection that minimizes
the sum of squared errors between it and the data. In summary,
the two types of estimators employed at each leaf of the RDP
(denoted by P) are the following.

» Estimator 1, denoted by f h(P): least squares fit of a con-
stant to the data in each square.
* Estimator 2, denoted by fP(P): least squares fit of a
platelet to the data in each square.
Estimator 1 is very similar to a Haar wavelet estimator and,
therefore, we will call it the “Haar estimator.” Estimator 2 will
be called the “platelet estimator.” The remaining issue is the
selection of the pruned RDP. The complete (unpruned) RDP
will, of course, provide a perfect fit to the data (i.e., f h(p) =
fP(P) = z). This choice of partition is undesirable for two rea-
sons. First, the data are noisy and fitting constants or platelets
over larger squares will affect an averaging that reduces the
noise. Second, the unprocessed data = will require the maximum
amount of energy to transmit to the destination. It turns out that
properly penalizing partitions based on the number of squares
(or leafs in the corresponding tree) provides both a more accu-
rate estimate of the field and a compressed representation of the
data more suitable for transmission to the destination.

The complexity penalized estimator is defined as follows. Let
f™(P) denote a model of the field (based either on constant
(m = h) or platelet (rn = p) models on each square of P). The
empirical measure of performance is the sum-of-squared errors
between ™ (P) and the data z = {x; ;}.

Jn
S (P) - i) )
ij=1
For a fixed partition, P, the choice of f™(P) that minimizes
R(f™(P),x) is simply given by the least squares fits on each
square, as discussed above. For m = h or m = p, define the
complexity penalized estimator
fo' = arg min R(f"(P),
PEPn
where | P| denotes the number of (square or wedge-shaped) re-
gions in the partition P, and g™ (n) is a certain monotonically

R(f™(P),x) =

z)+20°g" ()P (3)
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increasing function of n that discourages unnecessarily high-
resolution partitions (appropriate choices of g™ (n) will be dis-
cussed in Section III). It is well known that the optimization
in (3) can be solved using a bottom-up tree pruning algorithm
[2], [15], [16]. This is possible because both the sum-of-squared
errors and the penalty are additive functions and, therefore, the
squared error plus penalty cost can be separated into terms as-
sociated with each individual square of the candidate partition.

The hierarchy of clusterheads facilitates this process in the
sensor network. First consider the case for the Haar estimator
f h_ At each level of the hierarchy, the clusterhead receives the
means from the four clusterheads below it, and compares the total
cost of these estimates (sum-of-squared errors plus penalties)
with the total cost of the mean estimate on the larger square
associated with the clusterhead. Implementation of platelet
approximations is more challenging in a decentralized sensor
network structure. This is due to the fact that the optimization
involved requires that all data be passed from the bottom up to
the root of the tree structure [15]. More specifically, all the data
in each square are needed to select the best wedge split. This
may require a prohibitive amount of communication in large
networks. Therefore, we advocate the following approximate
strategy. Rather than passing all data from finer scales to coarser
scales, we will instead pass only the optimized platelet fits
from below. For example, each parent node will receive the
best platelet fits from its four children nodes, and select an
optimal platelet fit for itself based on these, rather than on the
complete data from the four children. In the simulation section,
it is demonstrated that this approximate strategy works about as
well as the optimal one. The key advantage of the approximate
strategy is that now only a handful of summary statistics need
to be passed up the tree structure, and the communication
requirements for fp are on the same order as those for fh

The energy required for the above process is the sum of two
terms: 1) the in-network communication required to obtain the
estimate at the final clusterhead and 2) the out-of-network cost
of transmitting the estimate to the destination. Note that the
in-network communication only requires the transmission of
data and/or sufficient statistics over short distances within the
sensor network, while out-of-network communication is typi-
cally over a much greater distance and may dominate the overall
cost of communication. The energy requirements will be dis-
cussed in detail in Section III.

III. THEORETICAL PERFORMANCE

In Section I, we described a fundamental tradeoff between
accuracy (MSE) and energy (&) of the form MSE oc 1/€%”. In
this section, we demonstrate that the hierarchical methods pro-
posed above nearly achieve this optimal tradeoff for the cases of
v =1/2and v = 2/3, which correspond to two different levels
of assumed smoothness in the field and boundaries. The theory
hinges on an application of our extension [5] of the Li—-Barron
bound for complexity regularized model selection [6] to upper
bound the MSE of the estimators and to bound the expected en-
ergy consumed by communications to compute the estimates.
Since our methods (nearly) achieve the optimal tradeoffs, no
other schemes can be devised that will (asymptotically) perform
significantly better.
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Assume that the 2-D field denoted by f is composed of
smooth regions of Holder-« regularity in R?, o € (0, 2], with
smooth boundaries that are Holder-£3 regular in R*, 3 € (0, 2].
We will focus on two classes.

e C1: Holder-1 regular smooth regions separated by
Holder-1 regular boundaries.
* (C2: Holder-2 regular smooth regions separated by
Holder-2 regular boundaries.

The class C2 is a subset of C'1 and places stronger assump-
tions on the smoothness than class C'1 and, therefore, one
expects better performance (in terms of MSE and energy con-
sumption) is possible in class C2, which turns out to be true.
Stronger smoothness assumptions are, of course, possible; say
Holder-«, @ > 2. However, the algorithms we proposed above
are not capable of taking advantage of such additional assump-
tions; polynomial approximations to the surfaces and boundaries
would be necessary for smoother functions, and we do not
pursue such possibilities in this paper. We will show that our
algorithms are nearly optimal for classes C'l and C2, achieving
the tradeoffs mentioned in the paragraph above. If one were to
consider even smoother conditions, then the best tradeoff for
which one could aim is MSE  1/£? since the MSE cannot
decay at a rate faster than n~!, the parametric rate and the
communication energy must be at best O(y/n) bit-meters, as
discussed in Section I.

A. MSE Performance

The performance of the proposed estimators can be studied
in terms of (minimax) lower bounds and upper bounds on the
MSEs. The minimax error is the error incurred by the best pos-
sible (Haar or platelet) estimator on the hardest possible field in
class C1 or C'2. The MSE is defined as
1 &
> E[(f"6,5) - £6,0)). @)

4,5=1

MSE(f™) =

3|

First, consider the C1 class. Taking g"(n) ~ (1/4)logn,
let f denote any estimator based on the data z. Then, for n
sufficiently large

Vo

™2 <inf sup %zzj Bl 3) - £/G.3)))
1L .
< 3 B 0d) - £0.)P)

INES

_ <0gn ) )

for some ¢; > 0 independent of . Similarly, for class C2 take

g?(n) = (4/3)logn. Then
) <int sup L 3" B9~ 6.9
can < 131 f§gg2 ) 6] i J
1 - A

1
2/3
0 (107gln> ) ©)
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for some ¢y > 0 independent of n. The minimax lower bounds
follow from fairly standard “hypercubical” type arguments that
recast the field estimation problem into a simpler series of in-
dependent hypothesis tests, for which the error rates are easy to
determine [1], [2].

The upper bounds are based on a combination of approxima-
tion theory (from the field of wavelets and harmonic analysis)
coupled with upper bounds on the variance of estimators based
on such approximations. We begin by recalling a fundamental
upper bound on expected error of complexity penalized estima-
tors. This particular bound was originally developed for mixture
density modeling [6], and we later extended it to more general
settings [5]. Here, we state a specialized version of the bound,
tailored to the estimator proposed in (3).

Let F)* denote the set of all possible models of the field. This
set contains either Haar approximations (m = h) or platelet
approximations (m = p), as described in Section II. Recall
that the parameters of the models are quantized, so the set 7"
consists of a finite number of models. Let f denote a generic
element of 7", and recall that the true field is denoted by f and
our estimators are denoted by f™. Assume that ¢" (n) satisfies
the summability condition (Kraft inequality)

Z e 9" MIPI <1 7

f(pyery

where |P| denotes the number of (square- or wedge-shaped)
leaves in the partition associated with f(P). It is shown in the
Appendix that g"(n) ~ 1/4logn and g?(n) ~ 4/3logn sat-
isfy (7). Then, we can apply apply Theorem 7 in [5] to upper
bound the MSE of the estimator f;" as follows:

MSE(f™)

9

2 _
< min - E f'~—f‘_~2+
JpyeFm | n i.,j:l( g = i)

2 m
ST 1y b s)
n

The upper bound involves two terms. The first term,
ZZ/JRZI(f” — fij)% is a bound on the bias or approxi-
mation error. The second term, 852¢™ (n)|P|, is a bound on
the variance or estimation error. The bias term, which measures
the squared error between the best possible model in F,"* and
the true field, can be easily bounded. Under the assumption that
the underlying field belongs to class C'1 or C2, well-known
results from approximation theory [2]-[15] can be applied.
In particular, if |P| = M (corresponding to a partition with
M squares or wedges), then for class C1, using either the
Haar or platelet estimator, the bias term is O(M~1) and for
class C2, using the platelet estimator, it is O(M ~?2). Then,
by equating the bias and variance terms and solving for M in
terms of n leads to the MSE upper bounds stated above. Also,
note that the Haar estimator has the same MSE bound for both
classes C'1 and C?2 because it cannot exploit the additional field
smoothness in C'2. Further details are given in the Appendix.

B. Expected Communication Requirements

Hierarchical networks of sensors, such as those described ear-
lier, allow field estimates to be calculated and transmitted with
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a significant reduction in energy. In this section, we will ana-
lyze the energy consumption associated with the field estimation
methods described earliler. We assume that a certain received
energy level F is required for reliable communication, and that
the transmitted energy decays like 1/r, where r is the distance
from the transmitter. Therefore, the energy required to reliably
send 1 bit over r meters grows linearly in . Other models for en-
ergy decay can be considered and incorporated into our frame-
work [4], but we will not pursue this further here.

Without the hierarchical structure of the Haar and platelet
estimation methods, one might naively transmit each
sensor’s measurements to a remote processor at a cost of
&€ = kn bit-meters, assuming that a constant number of bits &
is transmitted per measurement. On the other hand, we argued
in Section I that £ is as best > O(y/n). Here, we show that the
Haar and platelet estimators can be constructed and communi-
cated with O(y/n) bit-meters of expected communication.

The communication requirements can be split into two
components. The “in-network™ cost of computing the optimal
estimator, and the “out-of-network™ cost of transmitting the
estimate to a remote destination. The out-of-network cost is
proportional to the number of leafs in the partition associated
with the optimal estimator. The size of the partition associated
with the optimal estimator can be deduced from the MSE
bound as follows. Suppose the optimal partition consists of
M (square- or wedge-shaped) regions. Then, the variance is at
least O(M /n) since we have O(M ) free parameters to estimate
(O(1) parameters per region). Recall that the MSE is less than
or equal to O((logn/n)"),v = 1/2 for the Haar estimator, and
v = 2/3 for the platelet estimator. Since the variance must be
less than the MSE, it follows that E[M] = O(n'="log"” n).
That is, for the Haar estimator E[M] = O((nlogn)'/?) and
for the platelet estimator E[M] = O((nlog?n)'/3).

In the case of the Haar estimator f kit turns out that the ex-
pected in-network communication costs are also proportional
to the size of the partition associated with the optimal estimator.
This is easy to see as follows. At the first stage of the hierarchy,
O(n) values must be transmitted over a distance of O(n~1/?)
meters [each group of four nodes send their measurements to the
nearest cluster head, O(n~'/?) meters away], requiring O(,/n)
bit-meters of energy. At each subsequent stage in the hierarchy,
we expect O((nlogn)'/?) squares will remain. Therefore, ig-
noring the log factor, O(y/n) values must be transmitted to clus-
terheads which are O(27/\/n),j = 1,...,1/2logn meters
away. Thus, in total, the energy required for computing f his
O(y/n) bit-meters.

The expected in-network costs for the platelet estimator, f”,
are higher. As pointed out in Section II, the optimization in-
volved requires that all data be passed from the bottom up to
the root of the tree structure [15]. This leads to an in-network
energy requirement of O(n) bit-meters. However, the approxi-
mate strategy, based on passing only the optimized platelet fits
up through the hierarchy, has the same energy requirements as
the Haar estimator. In this case, the first stage requires O (n'/?)
bit-meters and subsequent stages involve passing O(y/n) pa-
rameter values to clusterheads.

In conclusion, the expected in-network energy cost of
O(n'/?) and out-of-network energy cost of less than O(n'/?)
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Fig. 2. Effect of sensor network density (resolution) on field estimation with
the Haar estimator. Column 1 is the noisy set of measurements, column 2 is
the estimated field, and column 3 is the associated partition. In Row 1, 65536
sensors are used for form a partition with 889 regions, resulting in an MSE of
9.85e—2. In row 2, 1024 sensors are used to form a partition with 127 regions,
resulting in an MSE of 4.86e—1. In row 3, 256 sensors are used to form a
partition with 64 regions, resulting in an MSE of 7.26e—1.

bit-meters combined with the upper and lower bounds on the
MSEs produce the stated tradeoffs at the beginning of this
section.

IV. SIMULATION EXPERIMENTS

The theoretical properties of the proposed multiscale estima-
tors are supported in simulation experiments. We first simulated
observations of a sample field for n = 162, 322, and 2562, and
compared the performance of the Haar and platelet estimators.
The noise variance is 02 = 1, the intensity of the field has values
ranging from zero to ten, and all estimates were computed using
the theoretical penalties developed in Section I. These results
were compared with the approximate platelet estimator, which
as discussed above has a communication cost comparable to the
Haar estimator. Fig. 2 displays the Haar estimates for the three
different network sizes. The partitions displayed in the third
column show that the size of the partition scales with the square
root of the number of sensors, as predicted. The estimates in
Fig. 3 show that the platelet method results in smoother esti-
mates with more sharply defined edges on significantly small
partitions. Again, the partition sizes grow with the cube root of
the size of the network, as predicted by the theory above. The
partition images also demonstrate the impact of the wedge fits
on accurate boundary estimation. Compare these partitions with
those generated by the Haar analysis. Because of the fine parti-
tion near the boundaries in the Haar estimate, estimates of the
values of the field in those regions will have a large variance.
The wedge-shaped blocks, in contrast, are generally larger, and
so estimates of those regions are made using more sensors, thus
lowering the estimator variance. Fig. 4 shows that approximate
platelet estimator, calculated using only the estimates from the
next finer scale instead of all the observations, vary only slightly
from the optimal platelet estimator in Fig. 3. Thus, the platelet
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Fig. 3. Effect of sensor network density (resolution) on field estimation with
platelets. Column 1 is the noisy set of measurements, column 2 is the estimated
boundary, and column 3 is the associated partition. In row 1, 65 536 sensors are
used for form a partition with 105 regions, resulting in an MSE of 3.64e—2.In
row 2, 1024 sensors are used to form a partition with 25 regions, resulting in an
MSE of 3.33e—1. In row 3, 256 sensors are used to form a partition with 16
regions, resulting in an MSE of 3.19e—1.
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Fig. 4. Effect of sensor network density (resolution) on field estimation with
platelets without passing all the data from fine to coarse levels. Column 1 is the
noisy set of measurements, column 2 is the estimated boundary, and column 3
is the associated partition. In row 1, 65 536 sensors are used for form a partition
with 107 regions, resulting in an MSE of 7.84¢—2. In row 2, 1024 sensors are
used to form a partition with 23 regions, resulting in an MSE of 4.70e—1. In

row 3, 256 sensors are used to form a partition with 15 regions, resulting in an
MSE of 3.71e—1.

approximations should be an effective tool even when in-net-
work communication costs prohibit extensive data passing.

Finally, Fig. 5 shows Haar, platelet, and approximate platelet
estimates for a network with n = 64 sensors. The estimates in
column 1 were calculated from data with a noise variance of 1,
while the estimates in column 2 were calculated from data with
anoise variance of 10. As predicted, weighting the penalization
by the variance of the noise produces good estimates at different
SNRs.
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Fig. 5. Effectof noise variance on Haar and platelet estimates. Estimates in the
first column were made using noisy data with variance 1. Estimates in the second
column were made using noisy data with variance 10. In row 1, Haar estimates
with 4096 sensors resulted in MSEs of 2.78¢—1 (for 2 = 1) and 1.03e + 0
(for 2 = 10). In row 2, platelet estimates with 4096 sensors resulted in MSEs
of 1.73e—1 (for 2 = 1) and 5.18e¢—1 (for 2 = 10). In row 3, approximate
platelet estimates with 4096 sensors resulted in MSEs of 2.34e—1 (foro2 = 1)
and 9.75e¢—1 (for 02 = 10).

V. CONCLUSION

In this paper, we have proposed a method for boundary esti-
mation in sensor networks. The boundary estimate is determined
via complexity regularization of a hierarchical tree-based esti-
mation method. We demonstrated theoretically that our method
nearly achieves the optimal tradeoff MSE oc 1/£2¥, which
shows that no other scheme can be devised that will (asymptoti-
cally) perform significantly better under the stated assumptions.
Simulation experiments agreed very well with the theoretical
predictions.

APPENDIX 1
ESTIMATOR PENALIZATION

We penalize the platelet estimates according to the length of
a prefix code which can uniquely describe each possible platelet
estimate (i.e., codes which satisfy the Kraft inequality). These
codelengths are proportional to the size the partition associated
with each model and, thus, penalization leads to estimates that
favor smaller partitions. In particular

gP(n) =2/3log, 2+ 4/3log, n. ©)

To see how this is derived, consider constructing a unique
code for every f € FE.If f has k leafs, then k can be decom-
posed into 3m + 1 square-shaped leafs plus some number of
wedge-shaped leafs, where m is the number of dyadic splits in
the partition and the number of wedge-shaped leafs is bounded
above by 3m + 1. The total number of k leafs, then, is bounded
above by 2(3m + 1). The quadtree representing the RDP of the
data can be encoded by representing each of the dm+1 < 2k/3
nodes with a O for an internal node and a 1 for a leaf node. This
can easily be verified with an inductive argument. Each of these
dyadic squares can then be split into two wedge-shaped blocks.
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We can allow as few as n%/3 possible wedgelet splits per dyadic
block without affecting the error decay rate. The splits can then
be encoded if we allot 1/3log, n bits to each wedge-shaped
block. Finally, the three coefficients of a planar fit on one of the
wedge-shaped blocks can be uniformly quantized to one of n!/3
levels without changing the error decay rate, and so all three co-
efficients can be encoded with a total of log, n bits. Thus, the
necessary codelength for an estimate with & leafs in the parti-
tion requires k(2/3 + 4/3log, n) bits.

From the Kraft inequality, we know that the existence of this
uniquely decodable scheme guarantees that

Z 2—1(:(2/3-1-4/310g2 n) <1.
Jerr
Therefore, if g?(n) = k(2/3log, 2 + 4/3log, n), then
Z o' (n) Z o 108, (2)k(2/3+4/3 log, n)

ferz ferr
_ Z 2—k(2/3+4/310g2n)
ferk
<1
as desired.

By a similar argument, Haar estimates should be penalized as

g"(n) = 4/3log, 2+ 1/4log,n. (10)
The analysis follows as in the platelet case, except that: 1) the
wedgelet locations do not need to be encoded; 2) only one Haar
coefficient in needed in place of the three platelet coefficients;
and 3) n'/* quantization levels are required to guarantee
near-optimal error decay rates. This means that the neces-
sary codelength for an estimate with & leafs in the partition
requires k(4/3 + 1/4log, n) bits, which results in the above
penalization.

APPENDIX II
RATE OF MSE DECAY

First, consider the case for the Haar estimator f h_Consider a
complete RDP with M? squares of sidelength 1/M. It is known
that if the boundary is a Lipschitz function, or more generally
has a box counting dimension of 1 (the case for both classes
C1 and C2), then the boundary passes through ¢/ < CM of
the squares, for some constant C' > 0 [2], [15]. Furthermore,
there exists a pruned RDP with at most C’ M leafs, where C’ =
8(C + 2), that includes the above £ squares of sidelength 1/M
that contain the boundary [2], [15].

Now, consider the upper bound (8), which as stated earlier
follows as from an application of Theorem 7 in [5]

Jn
%132;1E [( Alhj - f”)1

NG
1 r ~
< min — < 2 fi,'_fi,‘2+802ghn 7
JeFrm i_jZ=1( J i) (n)| f|

. 11
< min 2/ (f = )2 +802- 2B cryy
ferl Joap ion
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where the discretized squared error is bounded by the corre-
sponding continuous counterpart. The squared error f[0,1]2 (f—
[)? < (Ki/M) + (Ky//n), where the first term is due to the
error between the 1/M resolution partition along the boundary,
and the 1//n term is due to the quantization error overall. Thus,
the MSE behaves like

MSE = O(1/M) + O(1/\/n) + O (Mloi"> .

Taking M = \/n/(logn) produces the desired result: MSE =

O(y/logn/n).
The platelet case is handled in an analogous manner. The only
significant change is that the squared error f[o 1]2( f—1?<

(K1/M?) 4 (K3 /n??), where the first term is due to the error
between the plate approximation in the smooth regions and the
wedge approximation to the boundary, and the n =2/ term is
due to the quantization error overall. Taking M = {/n/(logn)
produces the desired result: MSE = O((logn/n)?/3).
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