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Abstract—Distributed signal processing techniques for clas-
sification of objects are studied assuming knowledge of sensor
measurement statistics. The spatio-temporal signal field generated
by an object is modeled as a bandlimited stationary ergodic
Gaussian field. The model suggests a simple abstraction of corre-
lation between node measurements: it partitions the network into
disjoint spatial coherence regions over which the signal remains
strongly correlated, whereas the signal in distinct coherence re-
gions is approximately uncorrelated. The size of coherence regions
is determined by spatial signal bandwidths. It is shown that this
partitioning imposes a structure on optimal distributed classifi-
cation algorithms that is naturally suited to the communication
constraints of the network: local high-bandwidth exchange of
feature vectors within each coherence region to improve the mea-
surement signal-to-noise ratio (SNR), and global low-bandwidth
exchange of local decisions across coherence regions to stabilize
the inherent variability in the signal. Classifier performance is
analyzed for both soft and hard decision fusion across coherence
regions assuming noise-free, as well as noisy communication links
between nodes. Under mild conditions, the probability of error of
all classification schemes (soft, hard, noisy) decays exponentially
to zero with the number of independent node measurements—the
error exponent depends on both the measurement and commu-
nication SNRs and decreases from soft to hard to noisy fusion.
Numerical results based on real data illustrate the remarkable
advantage of multiple sensor measurements in distributed decision
making.

Index Terms—Chernoff bounds, distributed classification, error
exponents, sensor networks, signal modeling.

I. INTRODUCTION

WIRELESS sensor networks are an emerging technology
for monitoring the physical world with a densely dis-

tributed network of wireless nodes (see, e.g., [1]). Each node has
limited communication and computation ability and can sense
the environment in a variety of modalities, such as acoustic,
seismic, and infrared [1]–[3]. A wide variety of applications are
being envisioned for sensor networks, including disaster relief,
border monitoring, condition-based machine monitoring, and
surveillance in battlefield scenarios. Detection and classification
of objects moving through the sensor field is an important task in
many applications. Fusion of sensor information from different
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nodes in the vicinity of the object is necessary for reliable execu-
tion of such tasks due to a variety of reasons, including limited
(local) information gathered by each node, variability in oper-
ating conditions, and node failure. This requires the develop-
ment of theory and methods for collaborative signal processing
(CSP) of the data collected by different nodes.

Some form of region-based processing is attractive in sensor
networks in order to facilitate CSP between nodes and also for
efficient routing of information [3]. Typically, the nodes in the
network are partitioned into a number of regions and a manager
node is designated within each region to facilitate CSP between
the nodes in the region and for communication of information
from one region to another. The CSP algorithms have to be de-
veloped under the constraints imposed by the limited communi-
cation and computational abilities of the nodes, as well as their
finite battery life. To this end, a key goal of CSP algorithms is
to exchange the least amount of data between nodes to attain a
desired level of performance. In this paper, with the above goal
in mind, we investigate CSP techniques for combining the data
collected by different nodes for single-target classification.

There are two main forms of information fusion across
nodes dictated by the statistics of measured signals. If two
nodes yield correlated measurements, data fusion is needed for
optimal performance—exchange of (low-dimensional) feature
vectors that yield sufficient information for the desired task.
For example, estimates of signal energy at different frequencies
(Fourier/spectral feature vectors) may be used for classification.
On the other hand, if two nodes yield statistically independent
measurements, decision fusion is sufficient—exchange of soft
or hard decisions computed at the two nodes. In general, the
measurements at different nodes exhibit a mixture of correlated
and independent components and require a combination of data
and decision fusion between nodes. Decision fusion is clearly
the more attractive choice in terms of the communication
burden on the network.

The statistics of node measurements are determined by the
spatio-temporal signal field generated by the underlying object
of interest. In the next section, we present a basic model for the
signal field that yields a natural approximate characterization
of space–time signal statistics. In particular, the model imposes
a natural structure on CSP algorithms for decision making in
which costly1 data fusion is confined to local spatial coherence
regions (SCRs) in which the signal is strongly correlated, and
only cheaper decision fusion is needed across different SCRs in
which the signal is nearly independent. This model forms the
basis of the distributed classification schemes studied.

1In terms of bandwidth and power expenditure.
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In any network query involving an object (such as a vehicle),
the first task is typically to detect the presence of the object in
a region of interest. Classification of the object follows object
detection. Section I discusses optimal CSP algorithms for clas-
sification that assume noise-free communication links from dif-
ferent SCRs to the manager node. Both soft and hard decision
fusion is discussed. In Section IV, we discuss the more prac-
tical hard decision fusion over noisy communication links. We
show that under mild conditions, all fusion schemes (soft, hard,
noisy) exhibit exponentially vanishing probability of misclas-
sification with the number of independent measurements from
different SCRs—the error exponent decreases from soft to hard
to noisy fusion. In Section V, we present numerical results based
on real measurement data to illustrate the performance of the
three classification schemes. In particular, our results demon-
strate a remarkable practical advantage of multiple independent
node measurements: a relatively moderate number of fairly un-
reliable local decisions can be fused over noisy communication
links to produce acceptably reliable final decisions. Section VI
presents a discussion of the results, as well as pointers for future
work.

II. SIGNAL MODEL FOR SENSOR MEASUREMENTS

A. Underlying Assumptions on Signal Statistics

Each signal source corresponds to a space–time signal
as a function of the spatial coordinates

and time . The network nodes sample in
space and time. Consider a spatial region of interest,

as-
sociated with a network query regarding classification of a
single source. We assume that the space–time signal is a
zero-mean complex circular Gaussian stationary field in the
spatial and temporal dimensions.2 While practical sources
may exhibit non-Gaussianity and nonstationarity, this is a
reasonable assumption for initial investigations to gain insight.
Specifically, is represented as

(1)

where denotes the underlying spectral representa-
tion3 which satisfies

(2)

for some that represents the power spectral
density (PSD) of the process. The signal correlation function is
related to the PSD via a three-dimensional Fourier transform

2We assume a complex signal field for generality; e.g., it would be applicable
for complex baseband modeling of bandpass signals generated by transducers.

3Strictly speaking, (1) needs to be a Stieltjes integral with respect to a random
measure , where is an orthogonal increment process,
but we use the above functional definition for simplicity.

Fig. 1. Schematic illustrating the notion of SCRs. The overall region of size
is partitioned into SCRs of size , where

and denote the coherence distances in and dimensions.
The spatial signal field is strongly correlated within each SCR, whereas it is
approximately uncorrelated across SCRs (except near the boundaries).

(3)

and both characterize the statistics of .

B. Approximate Signal Modeling Via Spatial Coherence
Regions

To enable efficient CSP, we propose an approximate signal
model, based on SCRs illustrated in Fig. 1, that captures the
scales of signal variation in the spatial dimensions. To a first
approximation, the spatial scales of variation in are
determined by the spatial bandwidths and —the larger the
bandwidths, the faster the signal variation in the corresponding
dimension. The spatial bandwidth induces a coherence
distance over which the signal remains strongly
correlated in the spatial dimension. Similarly,
denotes the coherence distance in the dimension. Thus, as
illustrated in Fig. 1, we can partition the query region into
disjoint SCRs, , of size over which the
signal remains strongly correlated (approximately constant). On
the other hand, it can be shown that the signal is approximately
uncorrelated in distinct SCRs (except near the boundary of
the SCRs) [4]. The uniform size of SCRs follows from the
stationarity assumption.

Specifically, we use a piece-wise constant (PWC) approxima-
tion of the stationary signal commensurate with the SCRs

(4)

where denotes the indicator function of
, and

. The PWC signal is the projection of
onto the -dimensional spatial subspace spanned by
the orthogonal spatial basis functions

. The temporal processes
constitute the spatial signal average in the corresponding SCRs

(5)
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Example: Temporal Point Sources: In general, the spatial
and temporal signal characteristics can be arbitrary. However,
for this important class of sources they are intimately related.
Such sources are characterized by a underlying temporal signal

with bandwidth —the space–time signal is determined
by via physical signal propagation in space. For example,
acoustic signals emitted by vehicles may be modeled in this
fashion. For isotropic spatial propagation

, where and is the speed of prop-
agation. Thus, the signal is stationary along radial lines and the
bandwidth in the radial dimension is . The true SCRs
are concentric bands around the source and the radial coherence
distance is given by . For example, for
an acoustic source with Hz, m, whereas
for Hz, m. Choosing for
rectangular SCRs in Fig. 1 is a natural choice.

Spatial Degrees-of-Freedom (DoF): It can be shown that
preserves the most important statistical informa-

tion about : spatial degrees-of-freedom over . A
simple intuitive way to see this is as follows. The sampling
theorem states that all spatial information about
in contained in the samples .
The number of samples in the query region equals

, which
is precisely equal to the number of coefficients in in (4).
In fact, at any time corresponds to the signal sample
at the center of the th SCR, whereas the PWC model
coefficient in (5) corresponds to the signal average in the
SCR. It can be shown that the temporal processes ’s corre-
sponding to different SCRs are approximately uncorrelated [4].
Thus, there are approximately independent spatial
DoF in over which are preserved by .
We note that similar approximations are widely used in the
analysis of randomly time-varying communication channels in
the guise of block fading models (see, e.g., [5]).4

Assumptions on Sensor Measurements: Based on the above
discussion, we make two assumptions about the spatial signal
variation to facilitate insight and analysis.

1) is perfectly correlated in each SCR. That is,
for any , the signal in the th SCR is constant as
a function of .

2) The temporal processes in different SCRs are
statistically independent.

In the region , there are
independent SCRs. From now on, we will label the SCRs by
a single index: . We assume that node
measurements are collected in each SCR, resulting in a total of

measurements. We model the temporal signal at the
th node as

(6)

where denotes a zero-mean complex circular white
Gaussian noise process. We assume that the at different
nodes are independent identically distributed (i.i.d.). The signal
at each node is sampled at a sufficiently high rate in disjoint

4Note that and are the distance-bandwidth prod-
ucts of the spatial signal in the and dimensions, analogous to the time-band-
width product of temporal signals, and quantify the independent dimensions
(degree of freedom) in the spatial signal field.

blocks of samples. Let denote the
-dimensional measurement vectors at the nodes.
We note that the above approximation of statistically inde-

pendent SCRs is equivalent to modeling the spatial signal field
as a band-limited white noise field, with the same spatial band-
widths. Thus, we are ignoring the fine spatial correlation struc-
ture in the signal (the shape of spatial PSDs) since accounting
for it comes at the cost of coordination/communication across
different nodes. Detailed signal characteristics are exploited via
temporal processing (in-node processing) to facilitate classifi-
cation, and only the independent DoF are exploited in space.

At the sensing level, there are two sources of error in decision
making: 1) the measurement noise and 2) the statistical vari-
ability in the source signal. The notion of SCRs illustrated in
Fig. 1 imposes a structure on optimal classifiers that is naturally
suited to network communication constraints and also enables
mitigation of both sources of error.

• First, measurements in each SCR are averaged to
increase the effective measurement signal-to-noise-ratio
(SNR) by a factor of . This high-bandwidth data fusion
is limited to within SCRs.

• Second, local independent decisions from different SCRs
are appropriately combined to reduce the statistical vari-
ability in the final decision. Thus, low-bandwidth decision
fusion is sufficient across SCRs.

For the remainder of this paper, we assume that the
measurements in each SCR are averaged to yield a single

-dimensional vector for each SCR

(7)

If the original noise variance is , the variance of the aver-
aged noise becomes . Note that the signal component of
node measurements in two adjacent SCRs will exhibit higher
correlation near the common boundary. Thus, in practice, the
above averaging of node measurements to improve the SNR
should be done for nodes near the center of the SCR to mini-
mize the correlation across SCRs. Let denote
a complex circular Gaussian vector with mean and
covariance matrix , where denotes Hermi-
tian transpose. Then, are i.i.d. for some and

, where denotes the identity matrix.
Feature Selection: An important issue in classification is:

what kind of measurements should be collected? This is
the called feature selection [6]. Essentially, the raw time series
data collected at each node is processed to extract a relevant fea-
ture vector that best facilitates discrimination between classes.
Feature selection is an important research topic in its own right
but we will not discuss it here; we refer the reader to [6] for
a discussion. In numerical results, we will assume a particular
type of feature vectors —spectral feature vectors—that can
be obtained by computing a Fourier transform of the raw data.
This is a natural consequence of the stationary signal model.
The covariance matrix of the temporal signal is Toeplitz and
it is well known that the discrete Fourier transform (DFT) ma-
trix diagonalizes Toeplitz matrices in the limit of large dimen-
sion [7]; that is, , where is the DFT matrix
and is the diagonal matrix of eigen-
values; the eigenvalues are proportional to the temporal PSD of
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the signal at different frequencies. Thus, in numerical results we
will explicitly substitute .

III. DECISION FUSION WITH NOISE-FREE

COMMUNICATION LINKS

Suppose that we are interested in classifying a single
target/object in a region . In a practical scenario, a query
for target classification will usually be preceded by a query
for target detection. Target detection can be accomplished
reliably with distributed energy detectors (see, e.g., [3]). We
assume that a target has already been detected. Furthermore,
we assume that the target belongs to one of possible classes.
Mathematically, the classification problem can be stated as an

-ary hypothesis testing problem

(8)

where are i.i.d. under and
. All information about the targets is contained in the

covariance matrices . In practice, have to be esti-
mated from available training data. We assume that are
known a priori and that (signal energy)5 is the same for
all . Based on the measurement vectors from the SCRs,
the manager node has to decide which one of the classes
does the target belong to. In this section, we discuss CSP algo-
rithms for classification based on fusion of both soft and hard
decisions, assuming a noise-free communication link from each
SCR to the manager node. The noise-free decision fusion archi-
tecture is illustrated in Fig. 2(a).

A. Soft Decision Fusion

For simplicity, we assume that different classes are equally
likely. The optimal (centralized) classifier chooses the class with
the largest likelihood [5], [6], [8]

(9)

where is the probability density function (pdf)
of the measurements under . Since are i.i.d.
under

(10)

where denotes the determinant
of . It is convenient to work with the negative log-likelihood
functions

(11)

(12)

5 denotes the trace of a matrix.

Fig. 2. (a) Noise-free decision fusion. For soft decisions
, whereas for hard decisions

. (b) Noisy hard decision fusion.

Ignoring constants that do not depend on the class, the negative
log-likelihood function for takes the form

(13)

Note that with noise-free communication links, the optimal
(centralized) classifier can be implemented in a distributed
fashion by communicating the the local log-likehood functions
computed in each SCR, , to the
manager node. The manager node then computes in (13) for

and computes the final decision as in (11).
1) Performance of Soft Decision Fusion: We quantify clas-

sifier performance in terms of the average probability of error

for some (14)

where is the conditional error probability under .
It is instructive to first study the asymptotic behavior
of ’s. Let denote the expectation under . Note from
(12) that by the law of large numbers, under , we have

(15)
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where is the Kullback–Leibler (K–L) distance be-
tween the pdf’s and and is the differential entropy
of under [9]

(16)

(17)

An important property of the K–L distance is that
with equality if and only if , in which case there is

no way to distinguish between the two classes. Thus, from (15),
we conclude that under will always give the smallest
value and, thus, lead to the correct decision as as long
as for all . Thus, we expect to go
to zero as if all pairwise K–L distances are strictly
positive.

The exact computation of is complicated but we can obtain
tight upper bounds. We first use the union bound for

(18)

Each pairwise error probability (PEP) on the right-hand side of
(18) depends on a decision statistic that is a weighted sum of

random variables [8]. The distribution function of the
statistic can be computed in closed-form but takes on tedious
expressions [5]. We can obtain tight upperbounds on via
Chernoff bounds for the pairwise hypothesis tests. Define the
symmetric PEP, , for the binary test between and

with measurements, as

(19)

Then, (14) can be written as

(20)

We state some well-known results (see, e.g., [10]) in the context
of our setup.

Proposition 1 (Chernoff Bounds): For , define

(21)

Then, for any and for all

(22)

The tightest error exponent (Chernoff exponent) is given by

(23)

and a simpler nontrivial exponent is the Bhattacharya exponent
. Thus, for all

(24)

In the case of noise-free soft decision fusion, it is relatively
straightforward to compute (we omit the details here)

(25)

where the above expression holds for all for which
is positive definite. The minimum in (23) occurs

at , which is the solution to (see the Appendix),
and can be easily computed numerically using (25). It is also
shown in the Appendix that both the Chernoff and Bhattacharya
exponents are positive if and only if the corresponding pairwise
K–L distances are positive.

Substituting bounds from (24) into (20), we get
two corresponding bounds for

(26)

Thus, all ’s decay exponentially to zero with , and so
does , if and only if all the pairwise K–L distances are
positive. The bound in (26) optimizes only the exponent. As
shown in the Appendix, the following tighter asymptotic ap-
proximation (not a bound) for can be obtained by estimating
the slowing varying function of that multiplies the exponen-
tial in each

large (27)

where is the minimizing value of in (23). The asymptotic
decay of will be dominated by the smallest (worst) error
exponent. We summarize the results in the following.

Proposition 2: The probability of error, , decays ex-
ponentially to zero with if and only if all the pairwise K–L
distances are positive

(28)

A strict bound for , applicable for all , is given by
(26) and a tighter approximation for large is given by (27).
The asymptotic rate of exponential decay in is dominated
by the smallest pairwise Chernoff exponent

(29)

where .
We note that all pairwise Chernoff exponents would be posi-

tive (and bounded) in general except in pathological cases. The
size of the exponents increases with the measurement SNR.

B. Hard Decision Fusion

In soft decision fusion, the th SCR sends log-likelihood
values , computed from its local
measurement , to the manager node. While exchange of real-
valued likelihoods puts much less communication burden on
the network as compared with data fusion in which the feature
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vectors are communicated to the manager node, it is at-
tractive to reduce the communication burden even further. One
way is to quantize the likelihood values from each SCR. The
number of bits required for accurate communication can be es-
timated from the differential entropy of the log-likelihoods [9],
[8]. Another natural quantization strategy is to compute local
hard decisions in each SCR based on the local measurement .
In this section, we discuss this hard decision fusion approach,
assuming noise-free communication links from the SCRs to the
manager node.

The locally optimal (based on the local measurement ) hard
decision in the th SCR is given by

(30)

Since the are i.i.d., so are . Let
denote the values of the pmf of the hard deci-

sion variable under . The pmf is characterized by the
following probabilities

(31)

The hard decisions from all SCRs are communicated via
noise-free links to the manager node which makes the final op-
timal (given ) decision as

(32)

(33)

1) Performance of Hard Decision Fusion: Despite the fact
that the local hard decisions can be quite unreliable, the final
fused decision becomes arbitrary reliable as . From
(33), we note that under

(34)

where is the K–L distance between the pmf’s and
and is the entropy of the hard decision under [9]

(35)

(36)

Thus, we see from (34) that in the limit of large we will attain
perfect classification performance as long as
for all .

We can bound the probability of error of hard decision fusion,
, via PEPs, as in soft decision fusion. In this case,

is given by

(37)

which can be used to numerically compute the pair-
wise Chernoff and Bhattacharya exponents:

, where is
the solution to (see the Appendix) and

. Furthermore, using the ap-
proach in the Appendix, a tighter asymptotic approximation
to the PEPs can be obtained. We summarize the results in the
following Proposition.

Proposition 3: The probability of error, , decays
exponentially to zero with if and only if all the pairwise K–L
distances defined in (35) are strictly positive. A strict bound
for , applicable for all , is given by (26)
by using and . A tighter approximation
to for large is given by (27) by using and

. The asymptotic rate of exponential decay in
is dominated by the smallest pairwise Chernoff

exponent

(38)

where .
Note that for a given measurement SNR, the error exponent

for hard decision fusion will be smaller compared with soft deci-
sion fusion, since the pairwise K–L distances between the pmf’s
in hard decision fusion will be smaller than those between the
pdf’s in soft decision fusion. In fact, the pmf’s of hard decision
in (31) are based on decision statistics that are weighted sums of

random variables, compared with in soft decision
fusion, thereby resulting in less reliable hard decisions [8].

IV. DECISION FUSION WITH NOISY COMMUNICATION LINKS

In this section, we discuss decision fusion from different
SCRs using noisy communication links, as illustrated in
Fig. 2(b). Given the competitive performance of noise-free hard
decision fusion compared with soft decision fusion, we focus
on noisy fusion of hard decisions.

We assume that each SCR has a dedicated communication
link to the manager node.6 Each SCR sends an amplified version
of its hard decision in (30) over a noisy link

(39)

where denotes the received signal at the manager node from
the th SCR and are i.i.d (real Gaussian noise).
Note that since are i.i.d, so are . Without loss of gen-
erality, assume that is odd and define .

6Note that this requires large bandwidth or large latency at the manager node
in the limit of large .
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We assume that each SCR sends a symmetrized version of its
hard decision to use minimum power: .7

Given this simple communication scheme, the optimal classi-
fier at the manager node takes the form

(40)

(41)

(42)

The exact calculation of is most complicated in this
case; however, it can be bounded via Bhattacharya or Chernoff
bounds for the PEPs as discussed in previous sections. In this
case, is given by

(43)

which can be computed numerically. Most importantly, we
again expect exponentially vanishing since from (42)
we have under

(44)

where denotes the differential en-
tropy of the received signal at the manager node from each SCR.
Thus, parallel to the previous two cases, we immediately have
the following result.

Proposition 4: decays exponentially to zero
with if and only if all the pairwise K–L distances between
noisy pdf’s in (42) are strictly positive. A strict bound for

, applicable for all , is given by (26) by
using and . A tighter approximation
to for large is given by (27) by using and

. The asymptotic rate of exponential decay in
is dominated by the smallest pairwise Chernoff

exponent

(45)

where .
The K–L distances and the exponents in this case will be

smaller than those for noise-free hard decision fusion. In par-
ticular, they depend on both the measurement and the commu-
nication SNRs.

V. NUMERICAL RESULTS BASED ON REAL DATA

In this section, we present numerical results to illustrate the
performance of the three classifiers and as a

7Note that this is not necessarily the optimal symbol assignment from the
viewpoint of final decision.

Fig. 3. Covariance matrix eigenvalues (PSD estimates) based on acoustic
measurements for three vehicles: AAV, DW, and HMMWV.

function of for different measurement and communication
SNRs which are defined (in decibels) as

(46)

where and recall that we as-
sume that (signal energy) is the same for all classes. Our
results are based on real acoustic measurements collected during
the DARPA SensIT program and correspond to classifying a ve-
hicle from classes [3]. The three vehicle classes are:
Amphibious Assault Vehicle (AAV), Dragon Wagon (DW) and
Humvee (HMMWV). Fig. 3 plots the PSD values at fre-
quencies (within a 2-kHz bandwidth) that were estimated from
data collected at multiple nodes. The PSD values define the di-
agonal covariance matrices (in the Fourier domain) .
Under , the -dimensional averaged measurement vector
in the th SCR was simulated as

(47)

where are i.i.d and are i.i.d. .
and were estimated via Monte Carlo simulation using

7000 independent sets of measurements for each hypothesis.
The pmf’s for hard decisions were also estimated via
this Monte Carlo simulation. The measurements for noisy hard
decision fusion were simulated using (39) and the pmf’s for
hard decisions. was estimated using 10 000 independent
sets of measurement realizations. The simulations were done for
four values for dB and three values for

dB.
Table I shows the values of all pairwise K–L distances for

soft, hard, and noisy hard decision fusion for all values of
and . Note that the K–L distances get

larger with , as expected. For a given , the
K–L distances decrease from soft to hard to noisy hard fusion
depending on .
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TABLE I
PAIRWISE K–L DISTANCES FOR THE THREE VEHICLES CLASSES FOR SOFT, HARD, AND NOISY HARD DECISION FUSION AT FOUR DIFFERENT . THE FIRST

ENTRY IN EACH CELL IS FOR SOFT DECISIONS, THE SECOND FOR HARD DECISIONS, AND THE REMAINING THREE FOR NOISY HARD DECISIONS AT
dB, RESPECTIVELY. (a) dB. (b) dB. (c) dB. (d) dB

Fig. 5 plots the simulated , and for the four
values of . The three plots for correspond to
the different values of . As expected, ideal soft de-
cision fusion is better than ideal hard decision fusion, which
is in turn better than noisy hard decision fusion. The gap be-
tween ideal soft and hard decision fusion can be significant. The
gap between ideal hard and noisy hard decision fusion decreases
with and is fairly small at dB. Note
that even at dB, 10 for soft decision fu-
sion is attained with only independent measurements.
Furthermore, the same performance can be attained with the
much simpler hard decision fusion (both ideal and noisy) around

. Note that the ’s are around 0.2 for all three classifiers
for a single node measurement . At dB,
which could be attained by averaging over mea-
surements at dB within each SCR, only

independent measurements are needed to attain
10 with noisy hard decision fusion ( for

). This demonstrates an important practical advantage of mul-
tiple independent measurements in sensor networks: we can at-
tain reliable classification performance 10 by com-
bining a moderate number (10–40) of fairly unreliable

– independent node decisions, and this can be achieved

with simple communication schemes, as the one in noisy hard
decision fusion.

Finally, in Fig. 4, we compare simulated and for
noise-free soft and hard decision fusion with analytical bounds
[see (26)] based on the Chernoff PEP bounds. As evident, the
bounds perfectly match the slope (exponent) of the simulated

curves but exhibit an offset since they do not optimize the
constants multiplying the exponentials. The tighter asymptotic
approximations (27), which optimize the constants, are also
plotted and are remarkably accurate even for the moderate
values of shown. We note both the bounds and approxima-
tions are tighter for soft decision fusion and at higher .

VI. DISCUSSION AND CONCLUSION

All applications of sensor networks are built on two primary
operations: 1) distributed processing of data collected by the
nodes and 2) communication of processed data from one part
of the network to another. Furthermore, the two operation are
intimately tied: information flow in a sensor network directly
depends on the data collected by the nodes, and the nature of
information exchange between nodes is limited by network
communication constraints. In this paper, we have investigated
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Fig. 4. Comparison of simulated with analytical (Chernoff) bounds
(26), as well as the tighter asymptotic approximation (27) for noiseless hard
and soft decision fusion. (a) dB. (b) dB.

distributed decision making in a simple context—classification
of a single object—to study the basic principles that govern the
interplay between information sensing, processing, and com-
munication, and how it impacts the performance of distributed
classification algorithms. Our approach is based on modeling
the object signal as a band-limited ergodic Gaussian field in
space and time. The model suggests a natural partitioning of
the network (see Fig. 1) into disjoint SCRs whose size is
inversely proportional to the spatial signal bandwidths—the
spatial signal is strongly correlated with each SCR and ap-
proximately independent across SCRs.

From a communication perspective, this network parti-
tioning into independent SCRs leads to a structure on informa-
tion exchange that is naturally suited to network constraints:
high-bandwidth feature-level data-fusion is limited to spa-
tially local nodes within each SCR, whereas global fusion of

low-bandwidth local decisions at each SCR is sufficient across
different SCRs.

From the viewpoint of classification performance, both local
data fusion (of measurements within each SCR) and global
decision fusion (of independent decisions from different
SCRs) improve . Specifically, decision fusion in all cases
(ideal hard/soft, or noisy hard) leads to exponential decay in

with , whereas data fusion determines the rate of decay
in (the pairwise error exponents). For given signal statis-
tics, the error exponents increase with (improvement in

), as well as the dimension of the feature vector
. In essence, local data fusion improves the reliability of local

SCR decisions, whereas global decision fusion improves the
reliability of the final decision. Decision fusion over noisy com-
munication links incurs a loss in error exponents, which can be
reduced by using coded communication. Thus, for given class
signal statistics, and , the parameters ,
and can be appropriately chosen to attain a desired level
of performance. In particular, our numerical results underscore
the remarkable impact of decision fusion: a moderate (10–50)
number of fairly unreliable – local decisions can
be combined to yield acceptably reliable 10 final
decisions. A related observation is that rapidly varying spatial
signals (with larger bandwidths) require cooperation between
nodes in a smaller region (size of SCRs is small) to yield a
sufficient number of independent measurements. Furthermore,
multiple independent measurements could also be collected at
each node over time to further improve performance at the cost
of latency.

From the viewpoint of sensing, we believe that the simple
SCR-based stationary modeling reveals fundamental insights
that are applicable to more general settings. Essentially, any
spatial field possesses certain number of independent DoF

. However, these DoF would in general be nonidentical
in nonstationary spatial fields: different SNRs and coherence
scales (SCRs) associated with each DoF. Furthermore, the
DoFs may exhibit non-Gaussian statistics (as in boundaries).
Network nodes sample the spatial field and reflects the
over-sampling per DoF, which should in general be adapted
to the coherence scale and SNR associated with each DoF.
Adaptive sampling techniques (see, e.g., [11]) may be used in
such contexts to determine the DoFs and the associated co-
herence scales (partitioning of the network into nonuniform
regions). Qualitatively, we expect to be the dominant factor
in driving the down to zero, whereas the number of nodes in
each region would impact the rate of decay of . We note that
this notion of coherent averaging in homogeneous regions also
plays a key role in driving the mean-squared-error down in the
context of signal field estimation [4], [11].

Finally, note that we assumed independent channels from dif-
ferent SCRs to the manager node. For large number of SCRs,
this requires a large bandwidth at the manager node, or imposes
a large latency in decision making. On the other hand, if the
decisions from different SCRs were communicated on a single
narrowband multiple-access channel, then reliable noisy deci-
sion fusion would require a higher transmission power at each
node. A combination of dedicated and multiple-access channels
would likely be needed based on power, bandwidth, and latency
constraints.
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Fig. 5. as a function of for the three classifiers for different values of . Three plots are shown for noisy hard decision fusion at
dB. (a) dB. (b) dB. (c) dB. (d) dB.

APPENDIX

We determine the conditions for each PEP error exponent
to be positive and also provide a tighter asymptotic approxi-
mation for the PEP based on an accurate estimate of the con-
stant multiplying the exponential in the PEP. Let and be
the two hypotheses in the PEP and let denote the

i.i.d. measurements. represents the -dimensional vector
in soft decision fusion, in noise-free hard decision fu-

sion, and in noisy hard decision fusion. From Proposition 1,
where

(48)

Our calculations involve and its three derivatives given by

(49)

(50)

(51)

where the th derivative of is given by
. First note that

. It is well known that is convex
and, thus, for . The Chernoff expo-
nent is , where is
the solution to . It readily follows from (49) that

and . Since
the two K–L distances are positive if and only if , it
follows that and if and only if
the K–L distances are positive.

The Chernoff bound in Proposition 1
only optimizes the exponent. A tighter asymptotic approxi-
mation for the PEP, of the form , can be
obtained by accurately estimating . Using the bounding
techniques in [12, eq. 5.4.23 and Appendix 5-A], it can be
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shown that . Specifically, the PEP for large
can be approximated as

(52)

provided that in a neighborhood of and
is finite, which is true in our Gaussian formulation

barring the pathological cases in which some pairwise K–L
distances are zero or unbounded.
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