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Abstract

The problem of joint data detection and frequency/phase estimation is considered in this work. The
traditional belief regarding exact generalized-likelihood-based joint detection and estimation is that its
complexity is exponential in the sequence length /N. This belief is justified due to the memory imposed
on the transmitted sequence by the lack of knowledge of the auxiliary channel parameters. In this paper,
we show that the exact solution can be performed with O(N*) worst-case complexity regardless of the
operating signal-to-noise ratio. The concepts used in the proof of the polynomial complexity result are

also utilized to evaluate tight performance bounds on the exact and a family of approximate algorithms.

I. INTRODUCTION

Coherent data communication requires perfect knowledge of the frequency and phase of
the carrier signal. In practical communication systems, however, the mobility of the transmit-
ter/receiver, in conjunction with the ambient and electronic noise at the receiver circuitry results
in a time-varying phase that is unknown to the receiver. The presence of this frequency/phase
jitter has multiple effects on the transmitted signal, the most severe of which is distortion of the

transmitted signal and generation of inter-symbol interference (ISI) which becomes significant
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as the frequency/phase dynamics increase. Nevertheless, even when the channel dynamics are
slow, the effect is a multiplicative phase distortion that can cause a significant performance loss,
if not accounted for at the receiver.

There are three basic techniques (see [1] for a tutorial review) for detecting data in the presence
of frequency/phase jitter: (i) a training sequence is transmitted periodically that aids at frequency
and phase estimation, followed by coherent data detection; (ii) the received signal is passed
through a memoryless nonlinearity (e.g., squaring binary phase shift keying (BPSK) signals,)
that eliminates the data dependence, thus allowing channel estimation, followed by coherent
data detection; and (iii) joint data detection and frequency/phase estimation. Clearly, the first
two schemes do not exploit all the channel information available at the received sequence. As
a result, the first two solutions are adequate for high signal-to-noise ratios (SNRs) and slow
channel dynamics, but they perform very poorly (in terms of bandwidth efficiency or bit-error-
rate (BER)) in more severe scenarios. Thus, when high-performance codes are employed over
fast channels, some sort of joint detection and estimation needs to be performed.

Motivated by the desire to exploit the information from the whole sequence while keeping a
low computational complexity, several joint detection/estimation algorithms have been proposed
in the literature. These can be classified into the following two categories. The first category
involves alternate maximization (or more formally, expectation maximization (EM)), where
the tasks of channel-conditioned data detection and data-conditioned channel estimation are
performed iteratively starting from an initial channel estimate, until convergence occurs [2]-[4].
The second category of algorithms is based on a suboptimal search over the set of all sequences
by appropriately pruning the sequence tree according to a tree-pruning algorithm, such as the
T-algorithm [5], the M-algorithm [6], or the per-survivor processing (PSP) algorithm [7]-[11].
It is noted that the above mentioned approaches are valid for any joint data detection and
channel estimation problem and not only for the particular problem of joint data detection and
frequency/phase estimation discussed in this paper. The impetus for the aforementioned research

on approximate algorithms was the belief that the exact solution of the joint data detection and
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parameter estimation problem has exponential complexity with respect to the sequence length.

Since future communication systems will operate close to their theoretical limits, joint data
detection and parameter estimation will become indispensable in achieving the highest possible
performance with the given resources, and thus, the following questions arise: (i) how accurate is
the conventional wisdom that exact joint data detection and frequency/phase estimation requires
exponential complexity with respect to the sequence length? (ii) what is the impact of a negative
answer to the above question on the design of approximate algorithms? (iii) how can the
complexity/performance tradeoff of these approximate algorithms be analyzed, and how can
it be improved?

In this paper we continue the work initiated in [12] in trying to provide answers to the
above questions. In particular, it is shown here that exact, generalized-likelihood-based, joint
detection and frequency/phase jitter estimation of uncoded sequences is a polynomial-complexity
problem in the sequence length. Furthermore, the proposed technique can be generalized to solve
the problem of symbol-by-symbol soft-decision generation implied by the min-sum algorithm,
which can be used when turbo-like coded sequences are utilized. In this paper, we concentrate
in the uncoded sequence detection problem, since the extension to symbol-by-symbol soft-
decision generation can be performed in a way similar to the one described in [12]. Furthermore,
based on the proposed exact solution, we develop a class of approximate algorithms. Finally, a
framework for analyzing the performance of both exact and approximate algorithms at arbitrary
SNR is proposed. In the case of performance analysis for the exact algorithms, it is shown
that analysis is possible exactly due to the novel polynomial-complexity structure. For the
approximate algorithms, it is shown that their performance can get close to that of the exact
algorithms with reasonable complexity.

The remaining of the paper is structured as follows. Section II develops the system and channel
model under consideration. The polynomial-complexity exact algorithm for joint data detection
and frequency/phase estimation is developed in Section III, after reviewing the corresponding

results from [12]. Section IV presents the performance analysis for the exact, as well as several
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approximate techniques. Numerical results are presented in Section V, while the conclusions
are summarized in Section VI. For the sake of clarity, most of the proofs are relegated to an

appendix at the end of the paper.

II. CHANNEL MODEL

Consider the transmission of a length-N sequence of symbols s, € A, where A is a set of
complex-valued numbers with unit magnitude. The equivalent lowpass transmitted signal is of

the form
N

s(t) =Y siv/Erp(t — kT) (1)

k=1
where p(t) is a pulse shape function satisfying the no-ISI Nyquist criterion [13, Section 9.2.1],
with unit energy, 7" is the symbol duration, and Ej, = E; or £, depending on whether s, is an
information symbol or pilot symbol, respectively. If this signal is transmitted over an additive
white Gaussian noise (AWGN) channel and is further rotated by a phase process ¢(¢) unknown

to both transmitter and receiver, then the received signal z(¢) can be modelled as'
2(t) = s(t)e’®® 4+ n(t) (2)

where n(t) is a zero mean complex white Gaussian process with one-sided power spectral
density level N,. For this observation model, optimal pre-processing depends on the phase
process ¢(t) and in the general case should include fractionally-spaced sampling. However, for
the purpose of illustrating the basic ideas, we will assume symbol-spaced sampling, since all
algorithms generalize easily to the fractionally-space model. We will further assume perfect epoch

synchronization. Then, if the phase rotation process ¢(t) is modelled by a constant unknown

'In this model, amplitude variations are ignored. This is done mainly in order to isolate the effects of phase rotation on
the system performance. This assumption may be justified for channels where the phase rotation is due to imperfect local
oscillators, and not due to user mobility. In the latter case, this model can be justified by the existence of an automatic gain

control mechanism that compensates for the amplitude variations.



phase 0 € [0,2m), i.e., if
o(t) =60 Vte|0,NT), 3)
then there will be no ISI and we have the following equivalent discrete-time model
z =Dse’’ +n 4)

where s £ [s1, 59, ...,sy]|T, D is a diagonal matrix with diagonal elements (v/E1, v/ Es, . .., VEy),
z = [21,%,...,2y|T is the vector of symbol-spaced observations, and n 2 [ny,n,,...,ny|"
is a vector of i.i.d. zero-mean circularly symmetric complex Gaussian random variables with
variance Ny/2 per real an imaginary component. On the other hand, if the phase rotation process

is modelled by
o(t) = 2n(fa/T)t + 9Vt € [0,NT), 5)

where f; € [0,1) is the normalized frequency jitter, and 6 € [0,27) is the phase shift, then as
shown in [1] under the assumption of no ISI and perfect gain control, the discrete-time model

becomes

2y = sp\/ Epe? @kt Loy wE =12, N. (6)

III. ALGORITHMS FOR EXACT GENERALIZED-LIKELIHOOD DETECTION

For this section and the rest of the paper, we will restrict our attention to the special case
where we use equally probable antipodal signaling, i.e., A = {41, —1} for simplicity. Moreover,
we will assume that the first one, and the first two symbols are pilot symbols for models (4),
and (6), respectively. With a little abuse of notation, it is understood that all following detection
algorithms are applied only to information symbols by setting beforehand the pilot symbols to +1.
However, we note that all the algorithms and results presented in this paper can be generalized
to arbitrary alphabet A, unequal a-priori probabilities, arbitrary pilot symbol positioning, and

energy assignments with a complexity increase by a factor O(|.A|?).



A. Background: The Constant Phase Model

In this subsection, we review the low complexity exact generalized-likelihood algorithm pro-
posed in [12], [14], [15] for completeness and for the purpose of showing the basic idea from
which we develop the exact algorithm for the more complicated model (6). The sequence
estimate based on the generalized-likelihood ratio test (GLRT) for model (4) can be written

in the following double maximization form

Scrrr Zargmax { max p(z[s,f) p = arg max { max ?R{ZHDéeﬂ;} (7a)
seAN | 6e[0,27) s€AN | 6el0,2n)
H ~
=a ax |z Ds|. 7b
rg max | | (7b)

It is well known that, under the assumption that the constant phase rotation # is uniformly
distributed in [0, 27), the GLRT solution coincides with the maximum likelihood sequence
detection (MLSD) solution. Furthermore, this optimal solution can be obtained exactly with
O(N log N) complexity as follows (for details on the correctness of the algorithm, refer to [12]).

1) Calculate the set of partitioning points (or thresholds) from the received signal z as follows
@é{@E[O,Qw):@ééziig, Vi=23,...,N} (8)
2) Sort @ so that & = {0 <t; <ty < ... <tyn_1) < 2m}. We use j(i) to denote the index

of the observation symbol z;(;) associated with ;.

3) Find the candidate sequence supported by the first partition, which contains phase 0,

s1 = 5(0) ©)
where
5(0) £ arg max %{ZHDéejé} (10)
SeAN

4) Sequentially evaluate the candidate sequence s;,; from s; by flipping the j(i)th bit of s;.
5) As explicitly proved in [12], Sgzrr must be one of the candidate sequences sy, sy, . . ., Sy(N—1)-

Hence we have

SGLRT = arg max R{z"Dse’’®} = arg max |z D3| (11)
se{s1,s2,..., Sz(N_1)} se{s1,s2,..., SQ(N_l)}



where

0(3) £ arg max R{z"Dse’’} = — /(2" D3) (12)

0€[0,27)

The actual algorithm in [12], [14], [15] further simplifies the metric evaluation in (11), so
that the overall complexity is determined by the sorting in step 2) which can be performed in
O(Nlog N) time. Note that the basic idea behind the algorithm is to partition the parameter
space [0,27) in such a way that performing coherent sequence detection with one hypothesized
parameter taken from each set of the partition provides a sufficient set of candidate sequences

for the GLRT problem.

B. The Linear Phase Model

Consider the model in (6). The GLRT solution is given by
SGLRT = arg m@x{ max p(z|3, fa, é)} (13)
s \(fud)eA
where A £ [0,1) x [0, 27) is the 2-dimensional parameter space over which maximization of the
unknown parameters f; and 6 is performed for each possible transmitted sequence. In the rest
of the section, we will aim at finding this exact GLRT solution with polynomial complexity.

Defining

fa(8) £ arg max {meaxp(Z!i fa 5)} = arg max
d

fa

(14a)

E Zzgk\/ Ek€]27rfdk
k

and

d k

0(5) £ arg max {m@x (23, fa, é)} =/ (Z z,’gék\/Ekeﬂ”fd(é)k) (14b)
6 f

to be the sequence-conditioned phase/frequency estimates, we have
SaLrr = arg max p(z[8, f4(8), 0(5)) (15)
seAN

Looking at (15) one can make the following observation. There are two sources of complexity in
finding the GLRT solution. The first one is combinatorial in nature and is related to the exponen-

tial growth of sequences (or metrics) that need to be maximized. The second source of complexity
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is computational in nature and is related to the evaluation of each metric p(z|8s, f4(8),0(s)) for
a given hypothesized sequence. This latter complexity is linear in N for the constant phase
model as evidenced in (7b). It should be clear however, that there is no hope in finding a
closed-form solution for the metric p(z|S, f4(5), 6(S)), since this is equivalent to finding a closed-
form solution to the sequence-conditioned frequency estimate fd(s) in (14a). But this, in turn,
involves maximization of the magnitude of the discrete-time Fourier transform (DTFT) of the
sequence {2;55v/Ey }_, over the continuous interval [0, 1) [1]. Therefore, frequency estimation
can only be performed within a pre-specified accuracy with finite complexity in all practical
algorithms. Since this complexity is unavoidable even when the data sequence is known, we
are only interested in the first source of complexity manifesting itself through the combinatorial
explosion of the data sequences. As can be seen in (15), even if we omit the frequency-estimation
complexity, the exact GLRT solution still appears to demand O(2") complexity; we will now
propose an exact algorithm, which performs this task with O(N*) complexity regardless of the
SNR.

Defining a parameter-conditioned sequence estimate

é(fd, )—argmaxp( IS, fd, ), (16)

the GLRT problem can be restated as

Sarr 2 max p(z/8(fa,0), f1,0). (17)
(fd»e)EA

Furthermore, collecting all candidate GLRT solutions in the sufficient set

T = {8(fa.0)|(fa,0) € A}, (18)
the GLRT problem becomes
SGLRT = arg Igle%?(p(zﬁa fd(g)a é(g)) (19)

It is now clear how one should proceed to prove the polynomial-complexity result: if the size
of 7 grows only polynomially with /N, and 7 can be constructed by a polynomial-complexity

algorithm, then using (19) one can solve the problem with polynomial combinatorial complexity.
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As shown in [12] for a general GLRT problem, constructing the sufficient set 7 is equivalent
to partitioning the parameter space A into subsets in such a way that all parameter pairs ( fd, 5)
in each subset result in the same sequence §( fa, é). It was further shown that this partitioning

can be accomplished by superimposing the boundaries defined by equations of the form

|25 — - /Ek(+1)€j(2wfdk+é)‘2 = |z — B, (_1)ej(2ﬂfdk+§)’2

&k +0 =Lz + g + 27m, (20)

forall k =1,2,..., N, and all integers m. An example of the resulting partitioned parameter
space is shown in Fig. 1.

By observing that there are 2k lines for each k, we conclude that there are O(N?) lines in
total implied by (20). Using a well-known result from computational geometry [16], one can
deduce that at most |7| = O(N*) polygons can be generated by superimposing O(N?) lines
and that there is an O(N?)-complexity algorithm that can construct these polygons, and thus
the sufficient set 7. We further improve this estimate by using the additional information that
every line with k£ = ¢ intersects at most one line with & = j,j # 4, and is parallel to all lines
with £ = 7. Indeed, due to the above observation, it is straightforward to show that there are at
most |7| = O(N?) partitions resulted from these lines since each line intersects at most N — 1
other lines. Moreover, to compute all intersection points of each additional line at £ = ¢ with
all previously drawn lines, the following algorithm can be used.

1) Find the entrance intersection point on the polygon adjacent to the left or upper boundary of
the parameter space A. It is sufficient to look only at the left and upper boundary, because
all lines have negative slopes. The complexity of this step is O(42) for all 2i lines.

2) Find the exit intersection point among all sides of this polygon. Note that the number of
sides per polygon is constant on the average, resulting in constant complexity for this step.

3) Identify the next polygon (constant complexity with proper indexing). If there is no next
polygon, i.e., the exit point hits the lower or right boundary, then quit. Otherwise, go to

step 2.
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Since there are O(N?) lines in total, and each line visits at most N polygons as shown above,
we have shown that the size of the partition and its construction complexity is O(N?).

After constructing all O(N?) polygons, we take one parameter pair (f4,0) from each polygon
and do coherent symbol by symbol detection hypothesizing (f;,0) as the CSI. The resulting
O(N?) sequences from all polygons then constitute the the sufficient set 7 . Finally, the frequency
estimate and the noncoherent metric is evaluated for each of these sequences and is maximized
to find the GLRT solution according to

N o F oy
SGLrr = a1g max ;zzék@eﬂ”fd@’“ . (21)
Since these two final steps require O(N) complexity for each polygon and since we have O(N?)
polygons, we have verified that the whole algorithm finds the exact GLRT solution with O(N*)

complexity. We summarize the above discussion in the following proposition.

Proposition 1 The proposed algorithm in this subsection finds the exact GLRT solution with
worst case complexity O(N*) when omitting the complexity of the frequency estimator, where

N is the sequence length.

Proof: Follows from the above discussion and the framework developed in [12]. [ |

IV. PERFORMANCE ANALYSIS OF EXACT AND APPROXIMATE ALGORITHMS

The purpose of this section is to demonstrate that the polynomial-complexity results developed
above, aside from their conceptual value, are also useful in at least two additional respects.
The first is that they enable accurate performance analysis of the corresponding exact GLRT
algorithms, which would otherwise be impossible or result in loose performance bounds. The
second is that they imply a family of approximate algorithms that can be easily implemented
and analyzed. In the following, the exact and two approximate algorithms are analyzed for the

constant phase model and one approximate algorithm is analyzed for the linear phase model.



A. Constant Phase Model: Exact GLRT Algorithm

In this subsection, we present a performance analysis for the polynomial-complexity exact
GLRT algorithm for the model in (4). The resulting performance upper bound turns out to be

extremely tight as can be seen in section V, and is now given by the following proposition.

Proposition 2 Under the assumptions of the model in (4), the sequence error probability for the

exact GLRT solution (which is the same as the optimal MLSD solution), can be upper bounded
by

N-2
& E.N, r|E, — 2wE, rvE
Pyrsp §2Z/ R(r, By, t2 ) ( £ | ; ! )dr
—Jo \/ZwEtES(Et — wE) Ny \/QwES(Et —wky) Ny
> E; N E,— (N —-1)E E
[ ReE o B I,
0 V2(N = 1)E,E,E,Ny /2(N — 1)E,E,N,
2Fs  n_
FL= (1= QM SN @20
0
where
E, £ E,+ (N -1)E, (22b)
denotes the total signalling energy,
o _r24s2 TS
R(r,s,0%) = —e” 2 Ip( =) (22¢)

is a Ricean density with 1y(-) being the Oth-order modified Bessel function of the first kind, and

Q1(+,-), Q(-) are the the Marcum’s Q function, and the Gaussian tail function, respectively.

Proof: See Appendix A. [ |

The main idea of the proof is to use union bound over a much smaller sufficient set of
sequences rather than all the 2%V sequences. This can be done only because the set of all possible
MLSD solutions had been tremendously reduced to have a size linear in N as was shown in the

previous section.



B. Constant Phase Model: Pilot-Only (PO) Algorithm

It is possibly the simplest approximate algorithm, which uses the channel information provided

by the pilot symbol only, and performs symbol-by-symbol detection as follows
5; :argm%i(p(zi‘gazl) i:27"'7N7 (23)
se

This pilot-only (PO) algorithm has complexity O(XNN), and its performance is given in the

following proposition.

Proposition 3 The probability of bit error of the PO algorithm is exactly

Py(PO)=1-— / / (y + =, )T(m E)dydx (24)
3 No

where

T(z,5) 2 Qie—s + \/g cos(z)e~ 550 @) (1 —Q(v2S Cos(x))) (25)

T
is the probability density function (pdf) of the phase component of the complex Gaussian random

variable with mean \/S and variance 1. Therefore, the corresponding probability of sequence

2T E N-1
Ppo=1— (/ / (y + x, )T(:L' F)dyda:) (26)
% 0

Proof: See Appendix B. [ |

error is

It is worth noting that even if we drop the magnitude information of z; and condition only on
Zz; in (23), we obtain the same performance in this uncoded sequence case. However, if we are
also interested in the soft decisions of the receiver as required in the coded sequence case, then
the magnitude information provided by the pilot symbol would help improve the performance

as shown in [17].



C. Constant Phase Model: Uniform Sampling (US) Algorithm

Motivated by the exact algorithm described in Section IV-A, we now consider a simple
approximate analogue of it and analyze its performance. The idea behind this algorithm is
that instead of optimally partitioning the parameter space [0, 27)—a process that has complexity
O(N log N)-one can partition the parameter space in a sensible, but somewhat arbitrary way,
in order to reduce complexity. The simplest such partitioning is the uniform partitioning (or
sampling), which results in the following algorithm.

1) Define L samples {a;}~ ;| as

a 21

(J,Z‘—T, Vz:l,Z,,L (27)

2) Obtain L candidate sequences §(a;) for all ¢ and select

A H A~
Sys = a a z " Ds(a; 28
vs =arg, max () (28)

This algorithm has complexity O(LN) and a characterization of its performance is given by

the following proposition.

Proposition 4 Under the assumption that L > 2, the probability of sequence error for the US

algorithm can be bounded by

Prrsp < Pys <Pyrsp + (N —1)(N —2)
2

o E/N, z T E, )
R(r, E T — — de| d 29
/0 (r7 ts ) /_W ( 2 Y Et(Et _ ES)NO r ) r ( a)
L
N? _&s
=Pyrsp + O(ﬁe o) (290)
Proof: See Appendix C. [ |

The main idea behind the proof can again be attributed to the parameter space partitioning
perspective. The event that we miss the MLSD solution is exactly the event that none of our
sampling points is in the same partition with the MLSD solution. It is the probability of this

event that is characterized and upper bounded in the proof.
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Equation (29a) can be numerically evaluated to provide a measure of how far the performance
of the US algorithm is from that of the MLSD algorithm. Also, the asymptotic expression
in (29b) reveals some interesting insight. First, for high SNR, the performance of this approximate
algorithm converges exponentially to that of the exact algorithm for any N and L > 2. Moreover,
for any fixed SNR, if L increases slightly faster than N (e.g., as N'*¢, for an arbitrarily small
positive ¢€), then the performance of this approximate algorithm approaches that of the MLSD
algorithm for large /N. As will be shown in Section V, this latter bound is indeed pessimistic:
a small L is enough to make the performance of the US algorithm close to that of the MLSD

algorithm for all SNR values of interest.

D. Linear phase Model: 2-Dimensional Uniform Sampling (US2D) Algorithm

Motivated by the good performance of the US algorithm for the constant phase case, we
propose a similar approximate algorithm for the more complicated linear phase case as follows.
1) Define QQ¢()y samples of frequency-phase pairs as

21 2mj
Qs Qo

2) Obtain () () candidate sequences §(a;, b;) and the corresponding frequency estimates f; j =

(ai, b)) & (=, =>),Vi=1,...,Qs,j=1,...,Qq (30)

fa(8(a;,b,)) for all 4, j , and select

Susep = arg max szsk a;, -)\/Ekeﬂ”f“jk (€2))
16{1 2 ..... Q }
Je{1,2,..., Qe}

This algorithm has complexity O(Q;Qy/N) and its performance is given by the following

proposition.

Proposition 5 Under the assumption that QQ; > 4N and Qy > 4 and for any f; and 0, the



probability of sequence error for the US2D algorithm can be bounded by

N N
Posi < Pysap <Posi + Porrr + {1 — 2 H(l —ql(k)) + H(1 —2ql(k))}
k=1

k=1
+{1-2(1 - qu)V + (1 — 2qu)™'} (32a)
N? _E. N _E
=Posr + Parrr + O(—=—¢ ™) +O(=-¢ M) (32b)
Qy Qo

where Posr and Pgrrr are the probability of error for the perfect channel state information

(CSI) and the exact GLRT algorithms, respectively, and

27k

) s
1(k) = T(x— =, ) +T(r+ =, —)dx (33a)
all) = [ T~ 5.2+ T+ 5. 32)
27
Qg E, E,
qu:/Qe T(x—i—)—i—T(x%—i—)dx. (33b)
0 2" Ny 2" Ny
Proof: See Appendix D. [ |

This result is very similar in spirit to Proposition 4. One difference is that because of the
additional frequency jitter, we may need to increase (); quadratically with /V in order to have a
performance close to that of the exact GLRT algorithm. Another difference is that in this case,

the upper and lower bounds do not agree even for large ) and Q).

V. NUMERICAL RESULTS

In this section numerical results are presented for the exact and approximate algorithms

developed earlier for both the constant and the linear phase models.

A. The Constant Phase Model

Fig. 2 compares the performance bounds for the three algorithms (where the expression for
the PO algorithm is exact) developed in Section IV for model (4) with optimally chosen pilot
energies versus the information bit SNR, Ey/Ny = (E,/Ny)/(N — 1)/ log, | A|. Also shown is
the Pog; performance curve, and a “naive” MLSD bound obtained by a union bound over all

2NV sequences. As can be seen in the figure, the upper bound of the US algorithm, which is
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obtained by substituting the MLSD bound into (29a), performs almost identically to the upper
bound of the exact MLSD algorithm, and is very close to the performance curve of the perfect
CSI receiver. With a moderate choice of L = 8 in the approximate algorithm, it performs equally
well for both N = 4 and N = 32 cases. As compared with the PO algorithm, we gain 2 dB
when N = 4 and about 0.5 dB when N = 32 by using the US algorithm. Note also that the
upper bound for the MLSD algorithm is actually very tight since the CSI performance is a lower
bound.

B. The Linear Phase Model

In this subsection we provide various simulation results regarding the implementation of the
US2D algorithm. For simplicity, we use £, = E instead of optimizing over E, throughout our
simulations.

One way to perform frequency estimation for a given sequence, is to zero-pad the sequence
with D zeros and perform an (N + D)-point FFT to find the frequency component with the
maximum magnitude. This entails O((/N + D) log(/N + D)) complexity per sequence, which can
be undesirable in the US2D algorithm. Since the US2D algorithm is aiming at low complexity, we
adopt the simplest version of the Luise and Reggiannini (L&R) estimator [18] for this algorithm,

which evaluates a frequency estimate as

N—
Z Zz+1$z+1 )*7 (34)

thus having linear complexity in N. Note that in general, the L&R estimator can use more
autocorrelation coefficients than just the first one as in this case. As can be seen in Fig. 3, the
considerably much faster L&R estimator suffers only about 1 dB performance loss (at BER=10"3)
compared to the higher accuracy FFT estimators. Therefore, in all the following simulations, we
will employ this L&R frequency estimator for the US2D algorithm.

To examine the effect of @)y in the US2D algorithm, we have nullified the effect of @Q); by

using a large (); such that no performance can be gained by further increasing this ();. Fig. 4
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shows the performances of the US2D algorithm for a large enough (), different values of g,
and different M-PSK alphabets. As can be seen in the figure, very little improvement can be
gained by selecting )y > M regardless of N (Similar simulations for N = 32 were performed,
resulting in the same conclusion). This suggests that Proposition 5, which shows that performance
behaves as O(%) provides a conservative estimate.

Due to the above observation, we fix () = M in the US2D algorithm and investigate how ()
affects performance. Fig. 5 clearly shows that to achieve the best performance, () should grow
approximately quadratically with NV as predicted in Proposition 5. This result for (); together
with the previous one for QQy suggests that it is possible to employ an O(N?) complexity US2D
algorithm to achieve a near-exact performance.

Fig. 6 shows that the US2D algorithm with a fast L&R frequency estimator can indeed achieve
a performance close to that of the exact GLRT algorithm, which employs a very accurate FFT-
based frequency estimator, by choosing a moderate (); and ()y. Notice that the number of
frequency samples was increased quadratically with N. Also shown is the performance of an
ad-hoc pilot-only algorithm, which first estimates f; and 6 using the first two pilots and then does
symbol-by-symbol detection assuming the estimated CSI. It is obvious that for this linear phase
model, it is much more desirable to extract the channel information from the whole received
sequence by performing joint detection/estimation schemes rather than restricting our attention
only to the channel information provided by pilots. Also shown in Fig. 6 are the upper bounds
derived in Proposition 5. However, the parameters used for obtaining these bounds were )y = 8
and )y = 8N which are different from those used to obtain the simulated performance. This was

due to the fact that the bound is valid for )9 > 4 and (); > 4N as mentioned in Proposition 5.

VI. CONCLUSION AND DISCUSSION

Several low complexity joint detection/estimation algorithms for noncoherent channels with
an unknown phase rotation are presented and analyzed in this paper. If the phase process is
modelled by a constant phase shift, then we showed that the low complexity US algorithm can

be applied, which yields a performance close to that of the ML decoder with perfect CSI. In the
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case that the phase process is modelled by both a frequency jitter and a phase shift, we showed
that the exact GLRT solution can be obtained with combinatorial complexity O(N*) or well
approximated by the proposed US2D algorithm with complexity O(Q QpV).

When powerful codes are utilized, symbol by symbol soft decisions will be desired by the
decoder for iterative decoding. The proposed algorithms can also be adapted to provide this
information. It is very similar to the one discussed in [12], and the additional manipulation will
only increase the whole complexity of the algorithms by a factor of V.

We conclude by noting that the basic idea behind the exact algorithms is to think of decision
regions in the parameter space rather than in the observation space as is the traditional approach.
This is helpful since in the discussed problems, the dimension of the observation space grows
with NV, while that of the parameter space remains fixed. It is thus expected that similar results
will hold every time the number of independent parameters that need to be estimated grows

slower than V.
APPENDIX

A. Proof of Proposition 2

Let sg, Scs7 be the transmitted sequence and the detected sequence for the hypothetical receiver

that has perfect CSI. We have
Prirsp = Pr(Smrsp # so) = Pr(8amrsp 7 So,Scsr = So) + Pr(Sarsp # So,Scsr 7 So)

<Pr({8mrsp # so} N{so =s; for some 1 < j <2(N —1)}) + Pr(Scsr # so)

2F,
No

<Pr U {l2"Dsol < [2"Dsif} | +1— (1 - Q(

1<i<2(N-1),
i7#]
where s;, Vi # 0 are the candidate sequences as defined in the exact GLRT algorithm. To further

evaluate the first term of (35), we define X = z/’Ds; and Y; £ z/Ds; for 1 <i < 2(N —1).

)N (35)

Since X and Y/s are jointly Gaussian, we have
Et — 2szSX 4U}ZES(E,5 — wiES)NO

P(YIX) = CN (Y, S5, 5 )

(36)



19
where CN (-, m, 0?) is the pdf of a complex Gaussian random variable with mean m and variance

o2, and w; is the number of places where sy and s; differ. Therefore, we have

Pr (|z"Ds| < ‘zHDsi}) = /Pr(|Yi| > |z||X = 2) fx(v)dz (37)
C
— 2w, E 2w; Ey(E; — w; E) N,
// S fa], = oAB — wel) =) fx (x)drda
x| Ey E;
:/ R(r, E, EtNO)Q ("B = 2w rvE Ydr  (38)
0 2 V2w EE(E; —w;E)Ny /2w E(E; — w; E;) Ny

where C is the set of all complex numbers and fx is the pdf of X. Hence by taking the union
bound in (35) and use the fact that candidate sequences corresponding to neighboring partitions
of [0, 27) differ in only one symbol, which follows from the structure of the exact polynomial-

complexity algorithm, we obtain (22a).

B. Proof of Proposition 3

Letting z = /E;+n where n ~ CN(0, Ny), r = |z| and t = £z — £z, its bit error probability

can be evaluated as follows:

27 2%{2\/E7367j9} 2|21 |/Ep cos(£ 21 —0) 27 _23}{2\/?35*7'9} 2|21 |/Ep cos(£Lz1—6)
P,(PO) = / e M e No df < / e No e No do
0 0
2m 2ry/Eg cos(0—22) —27ry/Eg cos(0—2z) 2‘21|\/@C05(421_9)
=Pr / e No —e No e No dg <0
0
2m
o 2ry/Egcos(6 — ), 2zlyEpcos(£z1-6)
:Pr(/ sinn( 2T Escosll = 1)) smnmgmeasn (39)
0 No
2|z1\\/ﬁcos(éz170)
Since sinh(%ocosw)) and e No are both symmetric bell shaped functions of ¢ in
one period [—, 7], their circular convolution would still be a bell shaped function. Observing
5 COS(th) 2|zl\\/E7pcos(42179) . . o
further that f sinh( ST)e No df attains maximum at ¢ = 0, minimum at



t=mand 0 att==+7,

B(PO) =1 —p(t € [~

=1 - E,

=1—Fy

2
1 /
0 _
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we have

Tom
50350
rp2m T T
/ p(£Lz € [—5 + Lz, 5t Az1]|9)f(£z1|9)d4zl]
/o

i 27 %—i—x E E
T(y — 60, )dyT(x — 0, =2)dx
/0 /_ﬂ (y No)y( N0>

E
T(y+z,—

No

[ME]

E;

T(y+z, Fo> (40)

It then follows that Ppp = 1 — (1 — P,(PO))N !

C. Proof of Proposition 4

The lower bound follows easily by the optimality of the MLSD metric. The upper bound of

Py is derived as follows:

Pys ZPT(éUS 7& So)

<Pr(Sus # Smrsp = so) + Prvrsp

= Pr(Sys # So,Smrsp = so) + Pr(Sus # So,Smrsp # So)

(41)

where s is the transmitted sequence. The first term of this upper bound can be further bounded

Pr(8us # 8nwsp = so) < Pr({No sample point is in the same partition with 6(s,)})

as
L
=> Pr(|J {or. 01 €
=1 ELkA
L
oy

(@i, ais1)} N {O(so)

Z o |[Pri{on. @1 € ai, asa]} 1 {0(s0) € (01, 60)}16)

€ (o d1)})

(42)
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where the notation ¢, € [a,b] is used to denote the event that one of the threshold pairs

obtained from z; as in (8) is inside [a, b]. Define

1 éEpejG + \/fpnl

x; éES€j9+SO7ini VZ:2,3,,N

N
A
i=1

We have
(ﬁlzlzzig:SO’ZlZlig:l%zig Vi:2,3,...,
N
0(so) = — £(z'sy) = £ Z (sg.€" + soani) = £ZX
i=1
Hence

p({or, &1 € [as, aia]} N {é(so) is between ¢y, ¢;}|0)

(43)

(44)

(45)

(46)

(47)

= / / / f(zx, x, X10)dzdxpdX (48)
X:/X€lag,ais] Jap:Layt T €lai, £X] JapLn T €[£X i)

which is under the assumption that L > 2 so that the ith pair of thresholds can not lie in the

same sampling interval for all 7. Since z;’s are i.i.d. complex Gaussian random variables and X

is the sum of them, we have

E;

| X |  _Ix1efeX —Byed®2
X|0) = BN,
R
E E
X,0)=C 2 X,E,Ny(1 — =
FanlX,0) =CN (. X BN - )
E
X,0)=C & X - ENo(1 —
f('rk|xl7 ) ) N(Ik’Ep—F(N—Q)ES( xl)a 0(
Letting
e’
En_; = EPJF(N*Z)];J; for 4 integer
E,(1 Ep+(N—z)Es)

E,+ (N —2)E,

(49)

(50)

) oo

(52)
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to simplify notation, the above integral becomes

oo [t En_
2] [/ / T(0h — £(X — ), 22 XP)
0 a; xl:éxligE[éX,aiJrl] Okﬂ:ge[ai,éX] 0

llzy|e? <71 - o X |2
_ ¢ i/ X i6,2
|21 | X| _ux1edeX o myed?

- EsNo(I*%“tw d@kdxl e E¢No led|X| (53)
TENo(1 — ) mE:No

Now, observe that the integrand of (53) depends only on 6, which is uniformly distributed in
[0, 27). Since all sampling intervals have the same lengths, (53) should not depend on the choice
the sampling interval ¢. Also, note that (53) does not depend on k nor [. Hence, after combining

all the terms, we obtain

. A o'} 2% 1 ZX T EN—Q )
PT(SUS 7é SMLSD = SQ) S L(N - 1)(N - 2)/ / - |:/ T(91 - =, |X‘ )d@l
o Jo 2m|J-sx 2 Ny
T-X En- E:N,
L (0, = TN X 2yas, | R(X, B 220 ds X d|X,
—2ry /X 2" No

which reduces to (29a).

D. Proof of Proposition 5
The lower bound is obvious. The upper bound can be derived as follows.
Pysap =Pr(Susap # so)
=Pr(Susap # So,8cs1 = S0, SaLrr = S0) + Pr(Susa2p # So,8cs1 # S0, SGLRT = So)
+ Pr(Susap 7 So,SGLRT 7 S0)
<Pr(Svuszp # ScLrr = Scs1) + Post + PoLrr (54)
The first term of this upper bound can be further calculated as follows
Pr(Susap # SGLrT = Scs1)
< Pr({no sample pair is in the same partition with(fy,6)})

=Pr({3 partitioning lines between (f4, #) and the nearest four sample pairs}) (55)
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To evaluate this expression, we define A, B, C and D to be the events that no partitioning line lies

between (fq— Q%u 0) and (fa, 0), (fa,0)and (fa,0+27), (fa,0)and (fa+ Q%, 0), and (f4,0 - 27)
and (fy,0), respectively. Also, recall that all partitioning lines have negative slopes as in (20).

We have
Pr({3 partitioning lines between (f4, ¢) and the nearest four partitioning points})
<Pr((A°UB )N (B°UC)N(C°UD)N (DU A°)) < Pr(A°NC°) + Pr(B°N D). (56)
We define further the event

E(f1, 01, f2,0,) = {3 partitioning lines of the kth symbol that lie between (f1,0;) and (f2,65)}

(57)
and subsequently
al(k) 2 Pr(&y(fu - Qif, 0. f2.6)|f1.0) (582)
qu(k) = Pr(&(fa. 0, fa, 0 + %)W, 0) (58b)
or(k) £ PriEfud. fuct 5 0)lfu) (550)
qd(k) = Pr(&(fa, 0 — %, fa:0)1fa,0) (58d)

Since conditioning on f; and # the N sets of partitioning lines are linearly independent, we have
Pr(A°nNC*) + Pr(B°N D)

=[1—Pr(A)— Pr(C)+ Pr(AnC)|+[1 - Pr(B) — Pr(D) + Pr(BnND)]

:Efdﬂ
k=1 k=1 k=1

{1 - [ —ak) = [T = ar(k) + [T = ql(k) - qr(’f))} +

N

(1 —qu(k) — qd(k‘))}] : (59)

k=1 k=1

. {1 ST - quk) — TTO - adk)) +
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where we have used the fact that ()y > 4 and ()5 > 4N in the last equality. Now, since () > 4N,

ql(k) and qr(k) can be evaluated as follows

27k

1 E, E,
allk) =Pr(g - (£z —0£ ) € a =g fallda,0) = T(e— 5. 52) + Tl + 5. 37 )de
=qr(k) = O(Qife_%) (60)

Similarly, since (Qy > 4, we can evaluate qu(k;) and qd(k) as follows

‘ E, E,
qu(k) =Pr((£z, — 2nk fq + g) €16,0 + Hfd, 0) = /g;r T(x— g FO) +T(z+ § ﬁo)d:r
1 _Bs
=qd(k) = O(@e 0) (61)

Note that ¢l(k), qr(k), qu(k) and qd(k) actually do not depend on f; and 6, and qu(k) and qd(k)

do not depend on k. Consequently, we have
Pr(suszp # ScLrRT = Scs1)

<{1—2JJ = qi(k) + [T = 201(k)} + {1 = 200 = qu)™ + (1 = 2qu)™},  (62)
_ k=1

which reduces to the expression in (32a).
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Fig. 2. Analytical results of exact and approximate algorithms for the constant phase model. Above is for NV = 4 and below

is for N = 32.
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Fig. 5. Effect of Q¢ on the simulated US2D algorithm with BPSK signals and fg4, 6 uniformly random. In all simulations,

Qo = 2. The different SNR values are chosen to make all performance curves saturate in approximately the same bit error rate.
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