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Abstract—In this paper, we consider a many-to-one sensor net-
work where a large number of sensors are deployed to monitor a
physical environment. We explore sensor activity management to
maximize the network lifetime, while meeting the quality-of-ser-
vice (QoS) requirement. Specifically, in each round the sink esti-
mates the number of active sensors and the control information is
fed back to the sensors for activity control. We start with a basic
case where the total number of sensors is known, and the esti-
mator of the number of active sensors ^ is accurate. We devise a
sensor activity control scheme under which the number of active
sensors would converge to the minimum that can meet the QoS re-
quirement. Next, we generalize the study to the following two more
complicated cases: (1) The case with known and inaccurate ^ :
For this case, we propose a stochastic approximation algorithm
to minimize the average number of active sensors while meeting
the QoS requirement. (2) The case with unknown and accurate
^ : For this case, we cast the problem as the adaptive control of a
Markov chain with unknown parameters and propose a composite
optimization-oriented approach for the corresponding sensor ac-
tivity control. We show that using this composite optimization-ori-
ented approach the number of active sensors would converge to the
minimum that can meet the QoS requirement.

Index Terms—Composite optimization, Markov chain, sensor
network management, stochasticapproximation.

I. INTRODUCTION

CONSIDER a many-to-one sensor network, in which a large
number of sensors are distributed over an area to mon-

itor a physical environment or to detect chemical and biological
warfare agents. The data from the sensors are collected at the
sink and used to reconstruct the original physical phenomenon
[1]–[3]. The quality-of-service (QoS) of such a network is often
defined as the requirement on the distortion between the orig-
inal physical phenomenon and the reconstructed version, and
is intimately related to the network resolution [4]. Clearly, the
more active sensors used to monitor the environment, the better
the QoS would potentially be. However, since the energy re-
serve at individual sensors is limited, using more active sensors
would lead to a shortened network lifetime. Therefore, it is crit-
ical to have the right number of active sensors to achieve a good
balance between the QoS and the network lifetime. Thus moti-
vated, we devise sensor activity management schemes to control
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the number of active sensors and analyze their performance in
sensor networks accordingly.

We consider a sensor network where there are a central sink
and sensors distributed over a surveillance area. Each sensor
has two states, namely, ON and OFF. A sensor is switched to
ON to monitor the environment, make measurements, and send
data to the sink. A sensor can be switched to OFF to save energy
when there are more than enough sensors working in the net-
work. We assume that there is a separate broadcast channel from
the sink to the sensors, from which each sensor receives feed-
back information to decide its activity in the next round. Note
that it is assumed that sensors in the OFF (receiving) state can
listen to the broadcast channel, and the power consumption in
the receiving state is considerably smaller than in the ON state.
The broadcast channel is assumed to be error-free, which is rea-
sonable since the sink often has a large power supply (this is a
common assumption in the literature).

As in [4], the QoS is defined as the distortion between the
original physical phenomenon and the reconstructed version. In
this study, we focus on homogeneous networks, which model
the scenarios where the phenomenon being studiedis spatially
homogeneous and the sensors are uniformly distributed. The in-
sights obtained here will serve as a basis for studying heteroge-
neous networks. Under the homogeneous assumption, the av-
erage distortion is a function of the number of active sensors,
and therefore, the number of active sensors becomes critical in
meeting the QoS requirement. In order to minimize the network
energy consumption while satisfying the QoS requirement, a
target number of active sensors can be characterized as the min-
imum one satisfying the QoS requirement. Then, the number of
active sensors can be engineered to approach the target number
through the broadcast channel by the sink. For convenience, let

denote the number of active sensors in round , and let
denote the corresponding average distortion. Throughout, we
assume that the sink has the knowledge of and can com-
pute the target number of active sensors accordingly. In a nut-
shell, the QoS requirement is given as

(1)

In each round, the sink estimates the number of active sensors,
denoted as . Then, the control information is broadcast to
all sensors, and sensor activity management is carried out dis-
tributedly to meet the requirement in (1), while minimizing the
number of active sensors.

We start with a basic case where is known and the estimator
is accurate. The basic idea of dynamic sensor activity control

here can be outlined as follows. Let be the target number of
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active sensors for a given QoS requirement. At the beginning
of each round, the number of active sensors in the network is
estimated, denoted as . If , the sink computes a
probability with and broadcasts it.
A dormant sensor would then switch to ON with probability
in the next round. In contrast, if , the sink computes
with , and an active sensor would switch to
OFF accordingly. We show that when the above activity control
scheme is applied for a given , the sequence converges
to with probability one. As a result, it is desirable to set
to be , where is the minimum satisfying .

Clearly, the knowledge of and the accuracy of is critical
to the design and the performance of sensor activity control.
Thus motivated, we generalize our study to the following two
settings in terms of the knowledge of and .

1) The case with known and inaccurate estimator . Ob-
taining an accurate estimator may incur high complexity
and may not be possible in some scenarios although algo-
rithms effective asymptotically exist [5], [6].
It is therefore reasonable to assume inaccurate (but reason-
ably good) estimation of for some practical scenarios. In
this case, when the above sensor activity control scheme is
applied, the number of active sensors would not converge
to due to the inaccuracy in . Alternatively, we devise
an algorithm based on a stochastic approximation approach
to adjust adaptively so that the average number of ac-
tive sensors is minimized, while is satisfied.

2) The case with unknown and accurate estimator . In
some systems, possible sensor deaths or replenishment
may result in unexpected change in , and thus make it
unknown. In this case, the sensor activity control scheme
proposed above would not work well. We observe that
sensor activity control in this case involves the adaptive
control of a constrained Markov chain in the presence of
unknown parameters, to which the direct solution does
not exist in many cases. In light of this difficulty, we
“incorporate” the constraint into the cost function and
recast the problem in the form of the adaptive control of
a Markov chain that can be solved by a composite opti-
mization-oriented approach in [7]. We show that in this
case, by defining the cost as the “indication function based
distance” of from , can be made to converge to

with probability one, thus solving our problem.
A natural question to ask next is how to carry out sensor

activity control when is unknown and is inaccurate. In
this case, the sensor activity control schemes proposed above
may not work well. Alternatively, sensor activity control here
can be cast either as a partially observable Markov decision
process (POMDP) problem or as a hidden Markov model
(HMM) problem under constraints. Future work is needed to
investigate this problem.

The rest of this paper is organized as follows. In Section II,
we review some related work on sensor networks. In Section III,
we consider the case where is known and is accurate,
and propose a scheme for sensor activity control under which

would converge to with probability one. In Section IV,
we investigate the case where is known and is inaccu-
rate. In this case, we use a stochastic approximation method for

the adaptation of so that the average number of active sen-
sors is minimized in steady-state, while the QoS requirement
is met. In Section V, we study the case where is unknown
and is accurate. In this case, we model the problem as the
adaptive control of a Markov chain, and propose an algorithm
using a composite optimization-oriented approach under which
the number of active sensors would converge to with proba-
bility one. Section VI contains the conclusion and future work.

II. RELATED WORK

Recent advances have made it possible to integrate moni-
toring and wireless communication capabilities into sensor de-
vices. In what follows, we give a brief review for related work
on many-to-one sensor networks.

Most relevant to our work is perhaps [4], in which QoS in a
sensor network is investigated. Defining the QoS as the number
of sensors monitoring the environment, [4] presents a sensor ac-
tivity control scheme via using the Gur Game, under which the
number of working sensors converges to the optimal one given
in the QoS requirement. The approach in [4], however, requires
that the sink successfully receives the transmissions from all
the active sensors. Moreover, each sensor, regardless active or
dormant, is required to keep running an algorithm to record its
status and decide its activity. As a result, the complexity is rela-
tively high. Another related work is [8], in which a price-based
rate control mechanism for random access networks is devised
and analyzed. Channel feedback information is used to control
the aggregate packet arrival rate. It is shown that the system is
stable under the control mechanism and can be stabilized at a
desired operating point by choosing the parameters of the rate
control scheme a priori.

The QoS provided by a sensor network is limited by the ca-
pacity of the network to make measurements of the physical en-
vironment and to transport the observed data. There has been
much work along this direction. In [1], the problem of reach-
back communication in wireless sensor networks is considered
based on network information theory, and some information
theoretic bounds on the performance are presented. In [9], the
communication from a cooperative sensor network to a mobile
access point is considered. Three system configurations are dis-
cussed based on whether a polling channel is implemented and
whether an energy limit is imposed on individual sensors. The
capacity of these system configurations is derived. The work in
[10] characterizes the amount of data required to sample, quan-
tize, and encode a field densely deployed with wireless sensors,
and the transport capacity of a many-to-one wireless sensor net-
work is also given. In [11], the authors investigate the bounds
for the number of sensors required to achieve a desired level of
sensing accuracy. Using a random coding argument, they prove
a lower bound on the “sensing capacity” of a sensor network,
which characterizes the ability of a sensor network to distin-
guish among all states of nature.

Energy efficiency is another key factor in determining the
sensor network performance. Much work has been done to
enhance the energy efficiency in sensor networks. In [12],
the energy consumption in many-to-one data-gathering sensor
networks is analyzed, and both flat and clustering network
structures are considered. In [13], the authors present a
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fluid-flow-based computational framework to study the ex-
pected lifetime and the network information capacity of a
data-gathering wireless sensor network. A QoS specific infor-
mation retrieval protocol is proposed in [14] to optimize the
network performance under the metric of information rate per
Joule. The proposed protocol enhances energy efficiency by
eliminating redundant transmissions and fully exploiting the
channel reception capability in a fading environment. In [15],
the authors consider the problem of correlated data gathering
by a network with a sink node and a tree-based communication
structure, where the goal is to minimize the total transmission
cost (e.g., the energy consumption). After showing the problem
to be NP-hard, the authors proposed approximation algorithms
for the transmission structure which yield solutions close to the
optimal.

III. THE CASE WITH KNOWN AND

ACCURATE ESTIMATOR

In this section, we assume that is known and that is ac-
curate. Note that this basic case is relevant to some practical sce-
narios. For example, in [4], it is assumed that the sink success-
fully receives transmissions from all the active sensors, thereby
the number of active sensors is known. We note that in this case,
once is estimated at the sink for a given , the probabilities

and are computed as

(2)

The sensors switch to ON/OFF accordingly, as noted before.
The above feedback control scheme is locally optimal in each
round in the sense that in computing and , it maximizes the
probability of transmitting to the desired state in the
next round.

With the above procedures carried out repeatedly at each
round, would evolve as a Markov chain with states

, that is,

(3)

where and are Binomial random variables, and

(4)

Note that implies that for some .
That is to say, is the absorbing state of the Markov
chain, and all the other states are transient states. As a result,

would converge in steady state to with probability one.
Therefore, if we choose , where

the sequence would converge to with probability one,
so that the system would maintain the minimum number of ac-
tive sensors, while satisfying the distortion constraint.

Fig. 1. Convergence of fn g for different n .

Next, we characterize the absorption time, defined as the ex-
pected time it takes the system to arrive at the absorbing state. To
this end, observe that the transition matrix of the Markov chain
is

where the th element and the
index of the states are arranged such that is the last

one. Define , where stands for the number
of times the system is expected to visit state before absorption
[16]. As a result, the absorption time starting with state , , is
the sum of all the entries in the th row of .

We illustrate by numerical examples the convergence of
under the above feedback control scheme. In the simulation, we
set , and let take on different values. As shown in
Fig. 1, it takes only a few iterations for to converge to
for all cases.

IV. THE CASE WITH KNOWN AND

INACCURATE ESTIMATOR

A. Problem Formulation

As shown in the previous section, when the estimation is
accurate, the number of active sensors would converge to .
However, obtaining an accurate estimator may incur high
complexity and may not be possible in some systems. Alterna-
tively, good estimation of can be achieved with low com-
plexity estimation methods (see, e.g., [5] and [6]). In this sec-
tion, we study how to carry out dynamic activity management
when an inaccurate estimator is used. Note that an ideal es-
timator should be dependent only on the current number of ac-
tive sensors and independent of the number of active sensors
at any previous time instant. This is satisfied by many estima-
tion methods available. We assume this nature on the estimator
throughout this paper.

For a given , if the scheme proposed for the first case is
applied but with an inaccurate estimator dependent only on
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, still evolves as a Markov chain. However, since
, , and would not be zero even if . That is to

say, evolves as an irreducible Markov chain and would no
longer converge to . As a result, simply letting as
in the first case would no longer ensure the satisfaction of the
QoS requirement. It is then desirable to determine a new
to ensure that the QoS requirement is satisfied in steady-state,
while the average number of active sensors is minimized. Let

denote the average distortion in steady-state and
denote the average number of active sensors in steady-state, the
problem can be put as follows:

(5)

B. A Stochastic Approximation Approach

Given , the distortion function depends on the
stationary distribution of , and hence the state-dependent
transition matrices, which are difficult to characterize in gen-
eral. Therefore, the exact form of is not available and
(5) cannot be solved directly.

In what follows, we take a stochastic approximation approach
to explore (5). For a given , let denote the distor-

tion computed from , i.e., , where
. We impose the following assumption.

Condition 1: We assume that .
For a given , Condition 1 requires that the expectation of

the distortion computed from the estimator be greater than or
equal to the actual distortion. Note that this holds in many cases
of practical interest, such as when is a convex function
and the estimator is unbiased. Indeed, for a Gaussian sensor
network, it is shown in [17] that the distortion as a function
of the number of active sensors can be written as

. In this case, if the estimator is unbiased, we have
that

since is a convex function. It can be seen that
Condition 1 holds in this case.

For convenience, for a given , let denote
the stationary distribution of and denote the
distortion computed from the estimator in steady-state, i.e.,

, where .
Let denote the expectation of with respect
to . It follows that under Condition 1:

Note that . Thus, a suf-
ficient condition to meet the constraint in (5) is that

. A “suboptimal” solution to (5) can be obtained by solving
the following problem:

(6)

For convenience, let denote the solution to (6). Since
is monotonic decreasing and in steady-state is

a monotonic increasing function of , would be the root
of the equation . Observe that , whose
expectation equals , can always be directly computed
from . Therefore, a standard stochastic approximation ap-
proach can be used to determine . Accordingly, we develop
a stochastic approximation algorithm (see in Algorithm I) in
what follows.

The basic idea of Algorithm I is as follows: Start with set
to . For each , apply the control scheme defined in (2) with

to the system for consecutive rounds. Use
the estimator in the last round to compute the distortion .
Compare with and use the difference to update . The
objective of the algorithm is to obtain a sequence that will
converge to , and therefore solve (6).

Algorithm I

1) Initialization: set and ; choose assuming
accurate estimation.

2) If , let and go to Step 5; if ,
let and go to Step 5. Set . Estimate the
number of active sensors in the current round .

3) If , go to Step 4. If , the sink computes or
, with and , and broadcasts it to the

sensors. The sensors switch to ON/OFF accordingly. Go
back to Step 2.

4) Compute the distortion from the estimator as
. Update as

(7)

where is a prespecified positive decreasing sequence.
5) Set and . Go back to Step 2.

Note that for each , if the control scheme is applied for
times, and the average of the estimators obtained in the last

rounds is used to compute , the convergence rate of
might change. Also, the choice of can affect the convergence
rate. In the next section, we use numerical examples to show
that generally converges faster when and .

Next, we prove that the sequence as obtained
in Algorithm I converges to in probability. Given

, assuming that the system has arrived at
steady-state in the rounds before is computed, we
have that and .
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For convenience, define

We now have the following lemma.
Lemma 4.1: There exist constants such that:

1) , ;
2) , , .
The proof of Lemma 4.1 has been relegated to the appendix.
Now, we prove that the sequence converges to in

probability using Lemma 4.1.
Theorem 4.1: There exists a sequence for Algorithm I

such that when the sequence are used, would con-
verge to in probability.

Proof: Let , with . From Lemma
4.1, we have that

(8)

(9)

where is the smallest integer greater than .
Plugging and into (7) yields that

Letting , we have that

(10)

For convenience, define

(11)

We begin with characterizing the mean value and the variance
of . Observe that

Therefore .

Furthermore

Therefore, we conclude that .
Next, we characterize the mean value and the variance of

Since , , we have that .
To characterize the variance of , observe that

Since and are independent for and for any
, we have that

Combining Lemma 4.1 with (8) and (9) yields that
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It follows that:

Since each term in contains , we have that is indepen-
dent of . Therefore

It follows that:

From Chebyshev’s inequality, we conclude that

i.e., converges to in probability.

C. Numerical Examples

In this section, we illustrate by numerical examples the con-
vergence of Algorithm I, and study the effects of different and

on the rate of convergence. Throughout the simulations, we set
, and , where .

To verify the convergence of the sequence , we fix
and , and choose different pairs of and

. For each pair of and , we let take on different
values in , and in-
vestigate the convergence behavior of . As shown in
Fig. 2, converges when takes on the values in

Fig. 2. Convergence performance for different a .

Fig. 3. Convergence performance for different i .

, but may not converge when
equals or . This corroborates the fact that it is
necessary to have , as pointed out in the proof of
Theorem 4.1.

Next, we investigate the impact of and on the conver-
gence rate of . Intuitively, increasing and would make
the time the system stays at longer, but it is also likely to
decrease the number of rounds necessary for convergence. To
get a more concrete sense, we investigate the convergence rate
under several numeric values of and . We set and let

take on different values in {2, 4, 8, 10, 20, 30}. To compare
the convergence rates on the same time scale, is used
for the horizontal axis instead of . It can be seen from Fig. 3
that the fastest convergence rate is achieved when equals 2.
This indicates that the increment in the time length of every
round outweighs the decrement in the number of rounds nec-
essary for convergence when is increased. Finally, in Fig. 4,
we set and investigate the impact of on the convergence
rate. The value of is chosen from {1, 2, 4, 8, 10, 20}. It can be
seen that the fastest convergence rate occurs when .
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Fig. 4. Convergence performance for different l.

V. THE CASE WITH UNKNOWN AND

ACCURATE ESTIMATOR

A. Problem Formulation

In the previous two sections, is assumed to be known at the
sink. In some practical scenarios, however, the total number of
sensors may change due to sensor deaths or replenishment, or
simply because some sensors are in the sleep mode and cannot
listen. As a result, would be unknown. Next, we study how
to carry out sensor activity control in these scenarios. Note that
the estimation of can be based on the observations from the
active sensors, whereas the estimation of is more challenging
due to the fact that there are always some dormant sensors. In
what follows, we assume that is accurate for tractability.

Since is unknown, the sensor activity control scheme used
in the previous cases may not work well here, and a new scheme
is needed to address the needs of parameter estimation and ac-
tivity control simultaneously. To this end, define a stationary
policy as a mapping , where is the range of

and is the action space defined as
. Under a given policy, evolves as in

(3). Let denote the set of all stationary policies. The problem
boils down to finding the optimal policy in under which the
number of active sensors would be minimized, while the distor-
tion constraint is satisfied, with unknown. Observe that this
problem points to the adaptive control of a constrained Markov
chain in the presence of unknown parameters, the direct solution
to which does not exist in many cases. In light of this difficulty,
we “incorporate” the constraint into the cost function and recast
the problem in the form of the adaptive control of a Markov
chain that can be solved by a composite optimization-oriented
approach in [7]. Roughly speaking, this composite optimiza-
tion-oriented approach generates a sequence of actions that min-
imize the cost functional of the Markov chain control problem.
To make it applicable to our problem, it is critical to properly
define the cost functional. To this end, we choose a certain form
for the cost functional and prove that in this case, the solution to
the Markov chain control problem solves our problem, i.e., the
average number of active sensors is minimized, while the dis-
tortion constraint is satisfied.

B. Composite Optimization-Oriented Approach

Algorithm II

Choose a function such that , and
as .

For , follow Steps 1–3.
1) Find the set

2) Compute

3) Estimate . Apply and observe the transition
. Update for all

. Let and go back to Step 1.

For the Markov chain of , let denote the cost
incurred at time when action is applied, and .
We assume that , where denotes
an upper bound on . For any , let denote
the long run average cost
when policy is applied to the system and . The
adaptive control of a Markov chain with unknown parameters
can be formulated as follows:

(12)

where is unknown.
To solve (12), a common procedure calls for an on-line esti-

mation of the unknown parameter and the minimization of the
cost functional using the estimate in lieu of the true parameter.
It is well known that this “certainty equivalence” (CE) solution
may fail to achieve the optimal performance, even asymptoti-
cally [7]. Thus motivated, we use a composite optimization-ori-
ented approach developed in [7]. Simply put, this approach de-
fines a new cost functional that addresses the estimation and
control aspects simultaneously. The new cost functional can
yield an algorithm that generates a sequence of actions that min-
imizes the original cost functional almost surely.

Let denote the action history, i.e., ,
and , define

where denotes the state transition probability from
to assuming that action is taken and .
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A general algorithm based on has been developed
in [7] to characterize the solution to (12) (see Algorithm II).

Note that the change of occurs on a much larger time
scale than that of . Therefore, we assume that does not
change in the duration of Algorithm II. Under mild conditions
on , the convergence of Algorithm II is established
[7]. For convenience, we restate the result here.

Lemma 5.1: Let be a control sequence generated by
the proposed adaptive algorithm and be the policy that
minimizes . It follows that:

(13)

Based on Lemma 5.1, Algorithm II generates a se-
quence of actions that minimizes the cost functional al-
most surely. To make the algorithm applicable to our
problem here, it is critical to properly define the cost func-
tional. To this end, we let and

when policy
is applied and the total number of sensors equals .

Note that in the problem under consideration, for any ,
, , with , we have that

Hence, can be set equal to 0, leading to the achievement of
the maximum possible convergence rate [7]. Given that

, Steps 1 and 2 in Algorithm II boil down to

(14)

(15)

Recall from Section II that under the control scheme defined
in (2) with , converges to with probability
one; for convenience, let denote the scheme for a given

. It follows that for any . Since
is nonnegative, we conclude that achieves

the minimum value of , thereby giving a solution to
Step 2 in Algorithm II.

Algorithm III

For , apply Steps 1 and 2.
1) Compute ; estimate ;

compute or using (2) with and
and broadcast it to all the sensors.

2) The sensors switch to ON/OFF using or . After the
transition , estimate . Stop if .
Update for all . Let

and go back to Step 1.

Finally, with the above definition of and
, can be updated as follows:

In summary, a simplified algorithm can be used for sensor
activity control in the presence of the unknown (see
Algorithm III).

Next, we prove that under Algorithm III, converges to
with probability one. As a result, the average number of

active sensors is minimized, while ensuring the satisfaction of
the distortion constraint. This is established by the following
theorem.

Theorem 5.1: When Algorithm III is applied to the system,
we have that

Proof: We prove Theorem 5.1 in two steps.
Step 1) We claim that there exists a stationary policy

such that when is applied to the system, the
following equality is satisfied:

(16)

We prove this claim by construction. For any
, define as follows:

Clearly, for any .
Moreover, when equals , the policy
boils down to the same control scheme as used in
Section II. As a result, we have that

and when is
applied to the system.

Step 2) We claim that with probability one there exists some
round such that whenever
when Algorithm III is applied to the system.

First, we show that with probability one there exists some
round for which when Algorithm III is applied
to the system. This follows directly from (13) and (16), because
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Fig. 5. Convergence of fn g for different n .

It follows that and at time from Step 2
in Algorithm III. Therefore, . By induction,
for any , equals with probability one. This finishes
step 2.

We conclude that there exists some such that
whenever when Algorithm III is applied to the system,
thereby completing the proof.

C. Numerical Examples

In this section, we illustrate by numerical examples the con-
vergence of under Algorithm III. In the simulation,
is fixed but unknown to the sink. Algorithm III is applied for
different values of . In Fig. 5, the sequence is plotted
for each given . It is clear that converges to and
Algorithm III works well for all cases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study sensor activity control under QoS con-
straints in many-to-one homogeneous sensor networks. Specif-
ically, feedback control schemes are devised to minimize the
number of active sensors, while ensuring certain QoS constraint.
We start with a simple case where is known and is accu-
rate. In this case, a sensor activity control scheme is devised
under which the number of active sensors would converge to
the minimum one that can meet the QoS requirement. We then
extend the study to the following two cases.

Case 1) The case with known and inaccurate estimator :
In this case, a stochastic approximation method is
proposed to minimize the average number of active
sensors, while meeting the QoS requirement.

Case 2) The case with unknown and accurate estimator:
In this case, we model the problem as the adap-
tive control of a Markov chain with unknown
parameters.

A composite optimization-oriented approach is proposed for the
problem under which the number of active sensors would con-
verge to the minimum one that can meet the QoS requirement.

A more challenging case that may arise is when is un-
known and is inaccurate. The sensor activity control scheme

used in the first two cases may not work well for this case. Alter-
natively, by defining a stationary policy as a one-to-one mapping
from the estimator to the action consisting of the two probabil-
ities that are fed back to the sensors, the problem may be cast
as the search of the optimal policy under which the number of
active sensors is minimized, while the QoS requirement is satis-
fied. Depending on the modeling for the estimation inaccuracy,
sensor activity control therein can be cast either as a POMDP
problem or as a HMM problem under constraints. However,
both techniques are quite involved, and none has been found yet
that is ready to be applied to the problem here. We are currently
working on this more challenging problem.

APPENDIX I
PROOF OF LEMMA 4.1

1) Since , it follows that:

(17)

Since is differentiable and strictly decreasing
on , it has a negative first derivative over the in-
terval. Since is compact, the derivative over this
interval has both a maximum and a minimum value.
Define and

. By the Mean
Value Theorem, when , we have that

.
2) By the definition of , we have for any .

Let , then by the definition of , we
have for any .
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