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Asymptotically Optimal Cooperative Wireless
Networks with Reduced Signaling Complexity

Petros Elia, Frédérique Oggier, and P. Vijay Kumar

Abstract— This paper considers an orthogonal amplify-and-
forward (OAF) protocol for cooperative relay communication
over Rayleigh-fading channels in which the intermediate relays
are permitted to linearly transform the received signal and where
the source and relays transmit for equal time durations. The
diversity-multiplexing gain (D-MG) tradeoff of the equivalent
space-time channel associated to this protocol is determined and
a cyclic-division-algebra-based D-MG optimal code constructed.
The transmission or signaling alphabet of this code is the union
of the QAM constellation and a rotated version of QAM. The
size of this signaling alphabet is small in comparison with prior
D-MG optimal constructions in the literature and is independent
of the number of participating nodes in the network.

Index Terms— cooperative diversity, distributed space-time
code, orthogonal amplify and forward, diversity-multiplexing
gain tradeoff, space-time codes, cyclic division algebra codes.

I. INTRODUCTION

IN WIRELESS communications networks with fading,
cooperative diversity protocols seek to provide MIMO-

diversity benefits without requiring multiple transmit or re-
ceive antennas at any of the nodes in the network.

A. Existing Cooperative Diversity Schemes

Several cooperative diversity protocols were recently pre-
sented (for example in [4]-[9]). These can be separated into
two main categories: the amplify-and-forward category, where
the assisting nodes perform a linear operation on the sig-
nal vector they receive from the information source, before
forwarding it, and the decode-and-forward category, where
the assisting nodes try to decode the received signal, and
eventually re-encode it before sending it again. While the error
performance analysis in [7] focused on the diversity of the
protocols, and the analysis in [9] focused on the capacity of
the network, the works in [4], [5], [6] applied the diversity-
multiplexing gain (D-MG) tradeoff as a means of evaluating
the fundamental limitations in the error performance of the
different cooperation protocols, in a similar manner that the
same tradeoff was used by Zheng and Tse for the point
to point MIMO case [13]. D-MG analysis also led to the
introduction of the orthogonal selection-decode-and-forward
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(O-SDAF, [5]) protocol, which asks the users to adapt to the
channel’s outage behavior. D-MG analysis also highlighted
the benefits of the non-orthogonal amplify-and-forward (NAF)
scheme proposed in [8] and generalized in [6], where the
protocol’s D-MG performance was established to be better
than that of the O-SDAF and of the orthogonal amplify-and-
forward (OAF) protocols, mainly due to the fact that it had
the source transmitting continuously. As a consequence, the
NAF protocol allowed for a non-zero diversity gain, even for
the highest multiplexing gain regions.

The optimal D-MG performance of the protocols was estab-
lished in the early papers through random coding arguments
and the D-MG optimal implementation of the above O-
SDAF and NAF protocols was thought to require infinite time
duration and infinite decoding complexity.

Recently however, in ([10], [11]), D-MG optimal imple-
mentations of the OAF and NAF cooperation protocols were
explicitly constructed to meet the corresponding protocol’s
high-SNR outage region, for any network size, in finite time
duration with finite sphere-decoding complexity.

In the distributed space-time codes designed for cooperative
relay communication, the signals transmitted by the source
and intermediate relays are typically drawn from a common
alphabet S apart from scale factors that adjust for transmission
power. We will refer to S as the signaling alphabet of the
distributed space-time code (DSTC).

Definition 1: A DSTC operating at R bits per channel use
(bpcu) is said to have signaling set complexity Cs, if the
cardinality of its signaling set S is:

|S| = κs(2R)Cs (1)

where κs is a constant independent of the rate R.
In this work we present a reduced signaling complexity, D-

MG optimal implementation of an OAF protocol (see [7], [10])
in which both source and relays transmit for equal durations
of time. This implementation maintains a signaling complexity
Cs = 2 that is independent of the number of users in the net-
work, thereby avoiding the exponential increase in signaling
alphabet incurred by other D-MG optimal constructions found
in the literature, for example those found in [11] and [10]. This
is discussed in greater detail in Section II-B.

Our code construction, like other prior constructions [11]
and [10], is based cyclic division algebras (CDA). A key
difference in our construction is that we make use of the
matrix representation of a subset F of elements in the CDA
which commute under multiplication. It turns out that the
corresponding matrix representations can be simultaneously
diagonalized.

Section II presents the network model we consider as
well as the equivalent channel seen by the DSTC. An upper
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Fig. 1. Snapshot of a wireless network, where source terminal S utilizes its
peers (R2, · · · , Rn) for communicating with destination D.

bound on the D-MG tradeoff of the cooperative relay network
operating under the OAF protocol described here is then
presented. Section III shows that the upper bound on D-MG
tradeoff derived in II-C is tight by presenting the construction
of a CDA-based DSTC whose probability of error performance
achieves the upper bound. Most proofs are found in the
Appendix.

II. NETWORK AND CHANNEL MODELS

A. Network Model

As in [4], the network consists of a set

R = {R1, R2, · · · , Rn, Rn+1}
of n + 1 different cooperating terminals/relays (see Figure 1),
each with the ability to communicate over n + 1 different
orthogonal frequencies F = {ν1, ν2, · · · , νn, νn+1}. A certain
relay Ri, wishing to communicate with relay d(Ri), broad-
casts its information over frequency νi. Depending on the
availability of each intermediate relay, the set

D(Ri) ⊂ {R \ {Ri ∪ d(Ri)}} (2)

is then the set of all intermediate relays that cooperate with
Ri. Consequently, each relay Rj ∈ D(Ri) transmits a possibly
modified version of the received signal over frequency νi.
By the end of the transmission, d(Ri) has received the
information from Ri over frequency νi, essentially in a form
of a superposition of faded versions of signals originating from
Ri and from D(Ri).

We consider the case where communication takes place in
the presence of additive receiver noise, and in the presence
of spatially independent quasi-static fading. Furthermore, we
will assume complete knowledge of the fading channel at the
receiver of the final destination, and no knowledge of the
fading at the receivers of the assisting relays.

a) Assumptions: The overall rate of information trans-
mission is R bpcu, which specifically means that for some
time duration of T channel uses, from the beginning to the end
of the communication between the source and the destination,
the total number of information bits received by the destination
(correctly or incorrectly), is RT .

It is assumed that each node has a single receive-transmit
antenna operating under the half-duplex constraint, being able
to either transmit or receive but not both simultaneously.
This is due to practical considerations such as the large ratio
between the transmission and reception powers at the relay
antennas ([4], [5], [6]). Furthermore, no feedback is permitted
to any of the transmitters.

All channels are assumed to be Rayleigh fading and all
fade coefficients are assumed to be i.i.d., circularly-symmetric,
complex Gaussian CN (0, 1) random variables, i.e., they are
i.i.d. with common density function

p(u) =
1
π

e−|u|2 .

It is also assumed that all fading coefficients remain fixed
for the duration of communication, i.e., that encoding over
multiple channel realizations is not permitted.

The noise vector at the receivers is assumed to be comprised
of i.i.d., circularly-symmetric, complex Gaussian CN (0, 1)
random variables as well.

b) Notation: The notation =̇ and ≤̇, ≥̇ corresponds to
the exponential equality and inequalities describing the equiv-
alence of y =̇ ρx to lim

ρ→∞
log(y)
log(ρ) = x. Matrices, vectors, and

scalars are respectively denoted by capital letters, underlined
small letters, and small letters. x∗ represents the complex
conjugate of a scalar x, and X† represents the conjugate
transpose of some matrix X . ‖X‖2

F represents the Frobenius
norm of X , |x|2 the square of the magnitude of some vector x,
and |x|2 denotes the square of the magnitude of some scalar
x. For Y a set, |Y| is its cardinality. Furthermore, if Y is
a set of scalars, vectors or matrices with entries from the
complex numbers, ∆Y denotes the set of all differences of
such elements, where the difference is taken in a component-
wise manner. The symbol Z represents the sets of integers, Q

represents the rationals, and ı :=
√−1.

c) Performance Measure: Performance of the DSTC
constructed here will be given in the form of the diversity-
multiplexing gain (D-MG) tradeoff. In a network where each
user operates at rate R bpcu and at SNR ρ, performance is
described in terms of the diversity gain

d(r) := − lim
ρ→∞ log(Pr(e))/ log(ρ)

which is a function of the multiplexing gain

r := R/ log(ρ).

B. Channel Model Under the OAF protocol

Under this OAF protocol, communication takes place in two
phases. In the broadcast phase, Phase I, lasting for n channel
uses, the source broadcasts to the relays and destination. In
the cooperation phase, Phase II, the relays broadcast to the
destination, again for a duration of n channel uses. The source
is assumed to remain silent in Phase II.

Let g1 denote the fading coefficient from source S to
destination D, gi, i = 2, 3, . . . , n denote the fading coefficient
between S and ith intermediate relay Ri and hi the fading
coefficient from Ri to D. As mentioned above, the hi, gi are
assumed to be independent and have a CN (0, 1) distribution.
These fading coefficients remain constant throughout the trans-
mission, and change in an i.i.d. manner for every new message
vector.

The random vectors w1 and vi, i = 2 · · · , n, represent
the zero-mean, additive white Gaussian noise seen at the
destination and the relays Ri in Phase I respectively. The
noise vector at the destination in Phase II is denoted w2. The
components w1j , vij , w2j , j = 1, 2, . . . , n are also assumed
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to be i.i.d. CN (0, 1). Under this OAF protocol, the source
sequentially transmits during time t = 1, 2, · · · , n, the n-
length vector

sT = θfT = θ[f1 f2 · · · fn] (3)

which contains the information to be communicated to the
destination. The fi are drawn from some alphabet A and the
scalar θ normalizes for energy.

The destination receives the n-length vector

rT
1 = θg1f

T + wT
1 . (4)

Each intermediate relay Ri, i = 2, 3, · · · , n receives the n-
length vector

rT
i = θgif

T + vT
i , (5)

and then transmits
rT

i Ai, (6)

where the Ai, 2 ≤ i ≤ n are chosen to be n × n matrices
satisfying the Frobenius-norm constraint:

||Aj ||2F ≤ α2 .= ρ0, (7)

for some α > 0.
Consequently, the receiver up to time t = 2n has received

[y′]T = θzT X ′ + [w′]T (8)

where

zT =
[

g1 g2h2 · · · gnhn

]
1×n

(9)

[w′]T =
[

wT
1

∑n
j=2 hjv

T
j Aj + wT

2

]
1×2n

, (10)

X ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fT

n︷ ︸︸ ︷
0 · · · 0

0 · · · 0 fT A2

...
0 · · · 0︸ ︷︷ ︸

n

fT An

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×2n

. (11)

Taking the transpose of both sides of equation (8) leads to

[
r1

y
1

]
︸ ︷︷ ︸

y′

=
[

g1In∑n
j=2 gjhjAj

]
︸ ︷︷ ︸

H

s +
[

w1∑n
j=2 hjAjvj + w2

]
︸ ︷︷ ︸

w′

.

(12)
d) Signaling Complexity: One means of constructing a

D-MG optimal DSTC in the setting of (12) is to employ
a cyclic-division-algebra-based approximately-universal (see
[14], [15]) space-time code X whose elements are (n × n)
matrices X . If

X =
[

x1 x2 · · · xn

]
,

then one applies the OAF protocol to the column vectors
xi, i = 1, 2, · · · , n in succession by setting s = x1 followed
by s = x2 etc. Thus this communication would then take place
over a total time duration of n × (2n) = 2n2 channel uses.
It turns out the symbols of the matrix X would in such case,
be drawn from an alphabet of size (2R)2n where R is the
desired rate of communication in bits per channel use. Thus
the resultant signaling alphabet is of size exponential in the

number n of relays. From the definition of signaling complex-
ity given in (1), it follows that the signaling complexity Cs

for this coding scheme is equal to 2n. The coding schemes
presented in [10] and [11] (for the NAF protocol) similarly
share signaling alphabets of size exponential in the number of
relays.

In contrast, the coding scheme presented in the present
paper has signaling complexity Cs = 2 independent of the
number of cooperating relays, thus permitting the transmitted
signal alphabet to be independent of the number of cooperating
network nodes.

C. Upper Bound on the D-MG Tradeoff of the OAF Protocol

Lemma 2.1: The D-MG tradeoff of the above OAF protocol
satisfies the upper bound:

d(r) ≤ n(1 − 2r). (13)
Proof: See Appendix I.

In the next section, we will identify a DSTC whose code-
word error probability when employed over the OAF channel
described by (8), satisfies

Pe(r) ≤̇ ρ−n(1−2r)

thereby proving that the right hand side in equation (13) is
indeed the D-MG tradeoff of the described OAF protocol.

III. A D-MG OPTIMAL CODE FOR THE OAF PROTOCOL

Our code construction is based on cyclic division algebras.
Some background on these algebraic objects can be found in
Appendix II and we will assume in the present section, that the
reader is familiar with the terminology and notation introduced
there.

A. Code Construction

For M even, let AQAM denote the M2-QAM constellation
given by

AQAM = {a + ıb | |a|, |b| ≤ M − 1, a, b odd} . (14)

Let X be the collection of matrices

X = {X(l) | li ∈ AQAM} , (15)

where

X(l) =

⎡
⎢⎢⎢⎢⎢⎢⎣

l0 γln−1 . . . γl1
l1 l0 . . . γl2
... l1 . . . . . .
...

...
... γln−1

ln−1 ln−2 · · · l0

⎤
⎥⎥⎥⎥⎥⎥⎦

where X(l) is the matrix representation of an element l0 +
zl1 + · · · + zn−1ln−1 belonging to a CDA and where γ is
a non-norm element of unit magnitude |γ| = 1 belonging to
Q(ı), both as described in Appendix II. Often for the sake of
convenience, we will abbreviate and write X in place of X(l).
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The matrix X(l) can be expressed in the form

X(l) =

⎡
⎢⎢⎢⎣

lT B1

lT B2

...
lT Bn

⎤
⎥⎥⎥⎦ (16)

where
l = [l0 l1 · · · ln−1]T ,

and where each matrix Bi has just one nonzero entry , either
1 or γ, in each row and column. Since |γ| = 1, it follows that
each matrix Bi is unitary. Next, set

fT = lT B1 (17)

Aj = B†
1Bj , 2 ≤ j ≤ n. (18)

Then each matrix Ai is also unitary and we can write

X(l) =

⎡
⎢⎢⎢⎣

fT

fT A2

...
fT An

⎤
⎥⎥⎥⎦ . (19)

Since the elements li belong to the subset AQAM of Z[ı],
the matrices in X are the regular representations of elements
in the center F = Q(ı) of the CDA and hence commute
under multiplication, thus meeting a condition needed for
simultaneous diagonalizability. As shown in Appendix IV,
X is indeed a collection of normal matrices that can be
simultaneously diagonalized by a unitary transformation S,
i.e., every matrix X ∈ X can be expressed in the form

X = S†XdS

⇔ Xd = SXS†

for a suitable diagonal matrix Xd.

e) Usage of the code X in the OAF protocol: The DSTC
to be employed in the OAF protocol is built upon the matrices
in X . Let l, l ∈ AQAM, represent the message vector. As we
shall see below, in effect, the signals transmitted by the various
relays correspond to different rows of the corresponding code
matrix

X(l) =

⎡
⎢⎢⎢⎢⎢⎢⎣

l0 γln−1 . . . γl1
l1 l0 . . . γl2
... l1 . . . . . .
...

...
... γln−1

ln−1 ln−2 · · · l0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The source maps l onto fT = lT B1 and transmits fT . The
jth relay, j = 2, 3, . . . , n then applies the linear transformation
represented by the unitary matrix Aj to the received vector rj .

The received signal at the destination is then given by:

[
rT
1 yT

1

]
= θzT

⎡
⎢⎢⎢⎢⎢⎢⎣

fT 0T

0T fT A2

0T fT A3

...
...

0T fT An

⎤
⎥⎥⎥⎥⎥⎥⎦

+
[

wT
1 wT

2 +
∑n

j=2 hjv
T
j Aj

]
(20)

where zT is as defined in (9).

B. Proof of D-MG Optimality

Theorem 3.1 (Main Theorem): The D-MG tradeoff of the
OAF protocol described here is given by

d(r) = n(1 − 2r) (21)

and the CDA-based DSTC described in (15) and used as
suggested by equations (19) and (20) is D-MG optimal with
respect to this tradeoff.

Proof: Let Pe(r) denote the probability of error of
the CDA-based code when used over the OAF channel in
accordance with (19) and (20). Our aim is to show that

Pe(r) ≤̇ ρ−n(1−2r). (22)

By Lemma 2.1, this will not only establish D-MG optimality
of the code, it will also establish that the D-MG tradeoff of
this OAF channel is precisely given by the right hand side of
(13), thereby proving the theorem.

We begin by outlining a decoding procedure to be followed
at the destination and showing that this decoding procedure
has probability of codeword error upper bounded by (22).

Given received vector
[

rT
1 yT

1

]
as in (20), we instruct

the receiver to add the two halves of the vector leading to

[
rT
1 + yT

1

]
= θzT

⎡
⎢⎢⎢⎢⎢⎢⎣

fT In

fT A2

fT A3

...
fT An

⎤
⎥⎥⎥⎥⎥⎥⎦

+
[

wT
1 + wT

2 +
∑n

j=2 hjv
T
j Aj

]
(23)

which with

X =

⎡
⎢⎢⎢⎣

fT

fT A2

...
fT An

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

lT B1

lT B2

...
lT Bn

⎤
⎥⎥⎥⎦ (24)

can be rewritten in the form[
rT
1 + yT

1

]
= θzT X

+wT
1 + wT

2 +
n∑

j=2

hjv
T
j Aj . (25)

Let us denote the noise vector appearing above by

n′ := w1 + w2 +
n∑

j=2

hjA
T
j vj .
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The covariance of this noise vector is then given by

E

{
[n

′
][n

′
]†

}
=

⎡
⎣2 +

n∑
j=2

|hj |2
⎤
⎦ In := βIn (say) .

Let n
′′

denote the normalized noise vector

n
′′

=
1√
β

n
′
.

Then n
′′

is white, distributed according to CN (0, 1). Scaling
both sides of (23) by

√
β we obtain:

1√
β

[
rT
1 + yT

1

]
=

θ√
β

zT X + [n
′′
]T . (26)

Making use of the fact that the collection of code matrices
{X ∈ X} is a family of commuting normal matrices that can
be simultaneously diagonalized as X = S†XdS, we have:

1√
β

[
rT
1 + yT

1

]
=

θ√
β

zT S†XdS + [n
′′
]T .

Post-multiplying by S† yields

1√
β

[
rT
1 + yT

1

]
S† =

θ√
β

zT S†Xd + [n
′′
]T S†.

Since this is a unitary transformation, the transformed noise
vector [n]T = [n

′′
]T S† remains white:

yT =
θ√
β

qT Xd + nT (27)

where we have set

yT =
1√
β

[
rT
1 + yT

1

]
S†, and

qT := [q1, · · · , qn] = zT S†.

Equation (27) can now be expressed in the form of an equation
for a parallel channel [14]:

y =
θ√
β

⎡
⎢⎢⎢⎣

q1

q2

. . .
qn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Xd,1

Xd,2

...
Xd,n

⎤
⎥⎥⎥⎦ + n,(28)

where Xd,i are the diagonal elements of Xd.

The probability of outage of this parallel channel is given
by

Pq,out(r) = Pr

⎧⎨
⎩

n∏
j=1

(1 + ρ|qj |2)
2 +

∑n
i=2 |hi|2 < ρ2rn

⎫⎬
⎭

= Pr

⎧⎨
⎩

n∏
j=1

(1 + ρ|qj |2) < ρ2rn(2 +
n∑

i=2

|hi|2)n

⎫⎬
⎭ .

Since the probability that

|hi|2 .= ρε, ε > 0

vanishes exponentially fast with ρ, it can be shown that

Pq,out(r)
.= Pr

⎧⎨
⎩

n∏
j=1

(1 + ρ|qj |2) < ρ2rn

⎫⎬
⎭ .

In Appendix III it is shown that

Pq, out(r) ≤̇ ρ−n(1−2r). (29)

A space-time code is said to be approximately universal [14]
if it is D-MG optimal for every statistical characterization of
the matrix of channel fading coefficients. We will make use of
the following sufficient criterion for approximate universality
over the parallel channel:

Theorem 3.2: [14] Consider a parallel channel given by

y =

⎡
⎢⎢⎢⎣

q1

q2

. . .
qn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ + n, (30)

where qi represent the fading coefficients and where the
components of n are i.i.d. and CN (0, 1) distributed. Then a
space-time code X with code matrices X

X =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
n

⎤
⎥⎥⎥⎦

for this parallel channel is approximately universal iff the
product of the row-norms of every code-difference matrix
satisfies

n∏
j=1

||xT
j ||2 ≥̇ ρn−rp

where ρ is the SNR and rp log2(ρ) is the rate of the code over
the parallel channel in bpcu.

The columnar version of the diagonal code

Xd =
{
Xd = SXS† | X ∈ X}

turns out to satisfy this criterion of approximate universality.
We regard the matrix

1√
β

⎡
⎢⎢⎢⎣

q1

q2

. . .
qn

⎤
⎥⎥⎥⎦

as representing the channel matrix of the parallel channel.
Each code matrix consists of a single column θX̃d whose
entries are the diagonal elements of the matrices θXd. Let
∆Xd, ∆X̃d denote the difference matrix in the diagonal
and columnar versions respectively. Then the product of the
squares of the row norms of θ∆X̃d is given by

n∏
i=1

| [θ∆Xd]ii |2 = θ2n | det∆X |2 . (31)

The code X must be of size ρ2rn to deliver a rate of r log2(ρ)
bpcu over 2n uses of the MISO channel given by (20). Since
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each code matrix represents the information content of n QAM
symbols (l1, · · · , ln), it follows that the size M2 of the QAM
constellation must satisfy:

[M2]n = ρ2rn

i.e., M2 = ρ2r. Indeed this is the reason why the signaling
complexity of the code constructed here equals 2. To ensure
that the average energy per symbol equals ρ we must have

θ2M2 .= ρ ⇒ θ2 .= ρ1−2r.

Since each code matrix X is drawn from a CDA-based code,
its determinant is bounded below from (34) by

| det(X)| = | det(Xd)| =
n∏

i=1

|[Xd]ii| ≥ 1
|b|

.= ρ0.

The same lower bound also applies to the magnitude of the
determinant of the difference of two code matrices. It follows
that we can lower bound the product of the row norms by

n∏
i=1

| [θ∆Xd]ii |2 = θ2n | det∆X |2

≥̇ ρn(1−2r) = ρn−2rn.

From Theorem 3.2 with rp = 2rn, it follows that the
diagonal code when transmitting at rate 2rn is approximately
universal for the parallel channel and therefore has probability
of error equal to the probability of outage which from (29) is
given by

Pe(r)
.= Pout(r) ≤̇ ρ−n(1−2r).

However, the outage probability of the equivalent space-time
channel formed by the cooperating relay network in con-
junction with our DSTC is lower bounded from Lemma 2.1,
by ρ−n(1−2r). This not only proves optimality of the DSTC
constructed here, it also establishes that the outage probability
bound derived in Lemma 2.1 is in fact the true value of outage
probability.

APPENDIX I
PROOF OF UPPER BOUND ON D-MG TRADEOFF

(LEMMA 2.1)

Our starting point is (12). We write the covariance matrices
appearing in (12) as:

Σw′ = E(w′w′†) =
[

In 0
0 In +

∑n
j=2 |hj |2AjA

†
j

]
,

Σs = E(ss†) with Tr(Σs) = nρ

and we note that the mutual information

I(y′; s) = log |I2n + HΣsH
†Σ−1

w′ |
is bounded as [13]

log |I2n + ρHH†Σ−1
w′ | ≤ sup

Tr(Σs)≤nρ

I(y′; s)

≤ log |I2n + nρHH†Σ−1
w′ |.

In the high-SNR scale of interest, the two bounds are essen-
tially the same and hence we assume below that

I(y′; s) = log |I2n + ρHH†Σ−1
w′ |

where

HH† =
[

g1In

B

] [
g∗1In B† ]

=
[ |g1|2In g1B

†

g∗1B BB†

]

and where B :=
∑n

j=2 gjhjAj . We have

HH†Σ−1
w′ =

[ |g1|2In g1B
†

g∗1B BB†

] [
In 0
0 C−1

]

where C = In +
∑n

j=2 |hj |2AjA
†
j . Furthermore

I2n + ρHH†Σ−1
w′ =

[
In(1 + ργ1) ρg1B

†C−1

ρg∗1B In + ρBB†C−1

]

⇒
[

In(1 + ργ1) ρg1B
†C−1

0 In + ρ
1+ργ1

BB†C−1

]

upon row reduction (by multiplying the first row by ρg∗
1

1+ργ1
B

and subtracting from the second row). Here we have set
|g1|2 = γ1 and γj = |gjhj |2, 2 ≤ j ≤ n.

Let
I = |I2n + ρHH†Σ−1

w′ |.
Then

I = |In(1 + ργ1)| · |In +
ρ

1 + ργ1
BB†C−1|

= (1 + ργ1)n|C−1| · |C +
ρ

1 + ργ1
BB†|

≤ (1 + ργ1)n · |In +
∑n

j=2
|hj |2AjA

†
j |−1·

· |In +
∑n

j=2
(|hj |2 +

ρ

1 + ργ1
|gjhj |2)AjA

†
j |

where we have used the fact that by the Cauchy-Schwarz
inequality, ∑

j,k
cjc

∗
kAjA

†
k ≤̇

∑
j
|cj |2AjA

†
j

as non-negative definite (n.n.d.) matrices and

B ≥ A ⇒ log |I + B| ≥ log |I + A|
when A, B are n.n.d. matrices.

By the Frobenius-norm constraint, have∑
j
|cj |2AjA

†
j ≤ (

∑
j
|cj |2)α2In.

Putting these inequalities together gives us

I ≤̇ (1 + ργ1 + ρ
∑n

j=2
γj)n.

We here note that the outage region is defined by the set of
all channel realizations under which

log I < 2rn log(ρ).

We define {uj, vj} by

γ1 =̇ ρ−p1 , γj=̇ρ−(uj+vj), 2 ≤ j ≤ n, pj = uj + vj .
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We thus have the equivalent formulation of the outage region

O =
{{pj} : n

{
max

1≤j≤n
(1 − pj)+

}
< 2rn

}
.

This means that for dout(r) := − lim
ρ→∞ log(Pr(log I))/ log(ρ)

then
dout(r) = inf

∑n

j=1
pj

where the infimum is taken over the outage region, i.e., in the
region over which

n min{pj}n
j=1 > n − 2nr.

Consequently, dout(r) = n(1 − r2n
n ) and since we have an

upper bound on the mutual information, it is the case that we
have an upper bound on the optimal diversity gain. This bound
is given by

dout(r) ≤ n(1 − 2r).

APPENDIX II
BACKGROUND ON CYCLIC DIVISION ALGEBRAS

A. The General CDA

Division algebras are rings with identity in which every
nonzero element has a multiplicative inverse. The center F

of any division algebra D, i.e., the subset comprising of all
elements in D that commute with every element of D, is a
field. The division algebra is a vector space over the center
F of dimension n2 for some integer n. A field L such that
F ⊂ L ⊂ D and such that no subfield of D contains L is
called a maximal subfield of D. Every division algebra is also
a vector space over a maximal subfield and the dimension of
this vector space is the same for all maximal subfields and
equal to n. This common dimension n is known as the index
of the division algebra.

Division algebras in which the center F and a maximum
subfield L are such that L/F is a (finite) cyclic (Galois)
extension are called Cyclic Division Algebras (CDA). CDAs
have a simple characterization that aids in their construction,
see [20], Proposition 11 of [21], or Theorem 1 of [19].

Let F, L be number fields, with L a finite, cyclic Galois
extension of F of degree n. Let σ denote the generator of the
Galois group Gal(L/F). Let z be an indeterminate satisfying

�z = zσ(�) ∀ � ∈ L and zn = γ,

for some non-norm element γ ∈ F∗, by which we mean some
element γ having the property that the smallest positive integer
t for which γt is the relative norm NL/F(u) of some element
u in L∗, is n. Then a CDA D(L/F, σ, γ) with index n, center
F and maximal subfield L is the set of all elements of the
form

n−1∑
i=0

zi�i, �i ∈ L. (32)

Moreover it is known that every CDA has this structure. It can
be verified that D is a right vector space (i.e., scalars multiply
vectors from the right) over the maximal subfield L.

The matrix corresponding to an element d ∈ D corresponds
to the left multiplication by the element d in the division
algebra. Let λd denote this operation, λd : D → D, defined

by
λd(e) = de, ∀ e ∈ D.

It can be verified that λd is a L-linear transformation of D.
From (32), a natural choice of basis for the right-vector space
D over L is {1, z, z2, . . . , zn−1}. A typical element in the
division algebra D is d = �0 + z�1 + · · · + zn−1�n−1, where
the �i ∈ L. By considering the effect of multiplying d×1, d×z,
. . . , d × zn−1, one can show that the L-linear transformation
λd under this basis has the matrix representation⎡

⎢⎢⎢⎣
�0 γσ(�n−1) γσ2(�n−2) . . . γσn−1(�1)
�1 σ(�0) γσ2(�n−1) . . . γσn−1(�2)
...

...
...

. . .
...

�n−1 σ(�n−2) σ2(�n−3) . . . σn−1(�0)

⎤
⎥⎥⎥⎦ ,

(33)
known as the left regular representation of d. It is known that
despite the fact that the entries of the left-regular representa-
tion belong to L, the determinant of every such matrix lies in
the subfield F.

B. CDA Specific to the DSTC Construction

In the CDA relevant to the construction of the DSTC
described in Section III, we choose

F = Q(ı).

The field L can be taken to be any number field that is a cyclic
Galois extension of Q(ı) of degree n. A general construction,
valid for any integer n, for such cyclic extensions can be found
in [15]. The elements li are chosen to belong to AQAM ⊆ Z[ı].
A non-norm element γ ∈ Q(ı) having unit magnitude, i.e.,
|γ| = 1, is chosen. Such a γ can always be found, see [17].
Under these conditions, it can be shown that the determinant
D(l(z)) of the left-regular representation of an element

l(z) =
n−1∑
i=0

zili, li ∈ AQAM

is of the form

D( l(z) ) =
a(l(z))

b
, a(l(z)), b ∈ Z[ı]

where b is fixed and independent of the specific choice of
elements {li}. This determinant is moreover, nonzero if any
of the li is nonzero. As a result, we obtain the lower bound

|D( l(z) )| ≥ 1
|b| , (34)

on the magnitude of the determinant, that applies to all l(z))
provided at least one li 
= 0.

We observe that the above remarks on the determinant also
apply to the matrix that is the difference of the left-regular-
representation of two distinct elements of the CDA, since
the difference matrix is the left-regular representation of the
difference element.
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APPENDIX III
OUTAGE PROBABILITY OF THE PRODUCT-FADING,

PARALLEL CHANNEL

Our goal is to prove that the probability of outage of the
parallel channel given by (28) satisfies

Pq,out(r) = Pr

⎧⎨
⎩

n∏
j=1

(1 + ρ|qj |2)
2 +

∑n
i=2 |hi|2 < ρ2rn

⎫⎬
⎭

≤̇ ρ−n(1−2r). (35)

We begin with some preliminaries:

a) Density function of the product of two complex-
Gaussian random variables: Let z1 = h1 and zj = gjhj, j =
2, · · · , n where gi, hi are the fading coefficients introduced in
Section II-B.

We will focus on the joint distribution of the real and
imaginary parts of zj , and for short, will write z, h, g in place
of zj , hj , gj . We have h = hR + ıhI , g = gR + ıgI , z =
zR + ızI , with zR = hRgR − hIgI , zI = hRgI + hIgR.

The characteristic function φz(u) is given by:

φzR,zI (uR, uI) = Eg,h{eı[uRzR+uIzI ]}
= Eg,h{eıhR[uRgR+uIgI ]+ıhI [−uRgI+uIgR]}
= Eg{e− 1

4 [(uRgR+uIgI )2+(−uRgI+uIgR)2]}
= Eg{e− 1

4 [|u|2(g2
R+g2

I )]} = (1 + |u|2/4)−1

since∫
e−ν2/(2σ2)e−αν2

(
√

2πσ2)−1dν

=

√
2π/[2(α +

1
2σ2

)]/(
√

2πσ2) = 1/
√

1 + 2ασ2.

The characteristic function is directly related to the Fourier
transform:

φzR,zI (uR, uI) = Ez{eı[uRzR+uIzI ]}
=

∫ ∫
pzR,zI (zR, zI)eı[uRzR+uIzI ]dzRdzI

⇒ φzR,zI (2πuR, 2πuI) = F(uR,uI){pzR,zI (zR, zI)}.
The density function can thus be obtained by taking the

Fourier inverse:

pzR,zI (zR, zI)

=
∫∫

φzR,zI (2πuR, 2πuI)e−ı[2πuRzR+2πuIzI ]duRduI

=
∫∫

[1 + (2π)2|u|2/4]−1e−ı[2πuRzR+2πuIzI ]duRduI

= 2π

∫
1

1 + (2π)2|u|2/4
J0(2π|z||u|)|u|d|u|

= 2π

∫
4

4 + (2π)2|u|2 J0(2π|z||u|)|u|d|u|

=
(4)

(2π)2
2π

∫
1

4 + s2
J0(2π

|z|
2π

s)sds

=
4

(2π)2
2πK0(2π

|z|
2π

2) =
4
2π

K0(2|z|)

where J0(·) is the Bessel function of the first kind and K0(·) is
the modified Bessel function of the second kind, both of order
0 [26]. We have used information about the Hankel transform
taken from [24]. By independence of fading coefficients, we
have that

pZR,ZI (zR, zI) =
1
π

e−|z1|2
n∏

j=2

4
2π

K0(2|zj |).

b) Change of Variables: Given a complex-valued vector
µ, we define

µ̂ =
[

µ
R

µ
I

]
.

Similarly given a complex-valued matrix S, we define

Ŝ =
[

SR −SI

SI SR

]
.

Since
qT = zT S† ⇒ z = ST q

and S is unitary, it follows that

ẑ = ŜT q̂

with Ŝ orthogonal and thus

pQ(q
R
, q

I
) = pZ([ST q]R, [ST q]I)

=
1
π

e−|sT
1 q|2

n∏
j=2

4
2π

K0(2|sT
j q|),

where si denotes the ith column vector of S.

Next, switching to polar coordinates, we get:

(qjR, qjI) = (rj cos(θj), rj sin(θj)), 1 ≤ j ≤ n

qj := rje
ıθj ,

pR,Θ(r, θ) = r1
1
π

e−|sT
1 q|2

n∏
j=2

4
2π

rjK0(2|sT
j q|).

A final change of variables (rj , θj) → (ρ−αj/2, θj) (i.e.,
|qj |2 = ρ−αj , gives us

pα,Θ(α, θ) = (log ρ)nρ−α1
1
2π

e−|sT
1 q|2

n∏
j=2

2
2π

ρ−αj K0(2|sT
j q|).

(36)

c) Outage probability: The parallel channel character-
ized by

y =

⎡
⎢⎢⎢⎣

q1

q2

. . .
qn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ + w

has outage region given by

O = {(α, θ) :
n∏

j=1

(1 + ρ1−αj ) < ρrp}, (37)

where rp log(ρ) is the desired rate in bits per channel use over
the parallel channel and a corresponding probability of outage
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given by

Pout,q(rp) =
∫
O

pα,Θ(α, θ) dα dθ : =̇ρ−dout,q(rp) (38)

where pα,Θ(α, θ) is as in (36).
We first show that in the above integral, it is sufficient to

consider the region where αj ≥ 0, ∀j. Recall that |zi|2 =
ρ−pi . Let min{pi} = p0, min{αi} = α0 and assume α0 < 0.
Since

n∑
i=1

|qi|2 =
n∑

i=1

|zi|2

it follows that for large ρ, p0 = α0. Consider the term
K0(2|sT

i0q|) = K0(2|zi0 |) where zi0 = ρ−p0 , p0 > 0.
For large values of the argument |zi0 | := x, we have the
bound |√xexK0(x) − P (1/x)| < ε where ε is a constant
much smaller than 1, and P () is a polynomial of degree
greater than 2 (see [25, Section 6.6]). This implies that
|K0(x) − x−1/2e−xP (1/x)| < εx−1/2e−x. It follows from
the presence of the exponential term e−x and an application
of Varadhan’s Lemma, that for the purposes of determining
dout,q(r) it suffices to restrict attention to the region αi ≥ 0.

Accordingly, we define the effective outage region

O′ = O
⋂

{(α, θ) : αi ≥ 0, ∀i}. (39)

For any (α, θ), we have e−|sT
1 q|2 ≤ 1=̇ ρ0. We will now

proceed to establish that

K0(2|sT
j q|) ≤̇ ρ0 all (α, θ) ∈ O′. (40)

We list below two properties of K0(·) that will prove useful:

1)

lim
x→0

K0(x)
ln(2/x)

= 1.

2) K0(x) is monotonically decreasing with increasing x,
x ≥ 0.

Let ε > 0 and define

O′′ = O′ ⋂{(α, θ) : 2|sT
j q| ≤ Smaxρ

−ε}
where Smax = max{|Sij | | 1 ≤ i, j ≤ n}. Then for (α, θ) ∈
O′′, we can make the approximation

K0(2|sT
j q|) .= ln(

2
2|sT

j q| )
.= ρ0.

For (α, θ) ∈ O′ \ O′′, we have that

2|sT
j q| > Smaxρ

−ε

and it follows from the monotonically decreasing property of
K0(x) that K0(2|sT

j q|) ≤̇ ln( 2
Smaxρ−ε ) .= ρ0. Substituting

(36), (37) and (40) into (38), we conclude that for the parallel
channel defined by diagonal matrix diag(q1, q2, . . . , qn),

Pout,q(rp)
.= ρ−dout(rp)

where

dout(rp) ≥ infPn
i=1(1−αi)+<rp

n∑
i=1

αi

= (n − rp)

so that

Pout,q(rp) ≤̇ ρ−(n−rp).

Equation (35) now follows by inspecting (35) and (37) and
consequently setting rp = 2rn.

APPENDIX IV
PROOF OF SIMULTANEOUS DIAGONALIZABILITY

Our goal here is to show that the matrices X belonging
to the CDA-based code X (see (15)) are simultaneously
diagonalizable, i.e., can be diagonalized by a single unitary
matrix S. We will do so by explicitly constructing this matrix.

Let ζn be the complex, primitive nth root of unity given
by ζn = e2iπ/n . Let the complex number φ be given by
φ = ζnγ1/n. Then φ is a nth root of γ, that is φn = γ. In
the field of complex numbers, the equation xn = γ has the
n solutions ζi

nγ1/n, i = 1, . . . , n. For i = 1, 2, . . . , n, let σi

denote the mapping given by:

σi(φ) = ζi
nγ1/n,

σi(φk) = ζki
n γk/n, k = 2, 3, . . . , n.

Note that σi(φk) = [σi(φ)]k and recall that a matrix X in
the code X is of the form

X =

⎡
⎢⎢⎢⎣

l0 γln−1 . . . γl1
l1 l0 γl2
...

...
...

ln−1 ln−2 l0

⎤
⎥⎥⎥⎦ , li ∈ AQAM.

Proposition 1: The n vectors

[1, σi(φ), σi(φ2), . . . , σi(φn−1)], i = 1, . . . , n

are eigenvectors of each matrix X ∈ X . .
Proof: Let x = l0 + l1φ + l2φ

2 + . . . + ln−1φ
n−1. First

notice that since φn = γ,

[1, φ, φ2, . . . , φn−1]X = x[1, φ, φ2, . . . , φn−1],

so that [1, φ, φ2, . . . , φn−1] is an eigenvector of F associated
to the eigenvalue x. Similarly, since [σi(φ)]n = γ, we have

[1, σi(φ), σi(φ2), . . . , σi(φn−1)]X
= σi(x)[1, σi(φ), σi(φ2), . . . , σi(φn−1)],

where σi(x) = l0 + l1σi(φ)+ l2σi(φ2)+ . . .+ ln−1σi(φn−1),
i = 1, . . . , n.

Let S be the matrix whose rows are scaled versions of these
n eigenvectors as shown below:

S =
1√
n

⎡
⎢⎢⎢⎣

1 σ1(φ) σ1(φ2) . . . σ1(φn−1)
1 σ2(φ) σ2(φ2) . . . σ2(φn−1)
...

...
1 σn(φ) σn(φ2) . . . σn(φn−1)

⎤
⎥⎥⎥⎦ .

It follows that SX = XdS where Xd is the diagonal matrix
Xd = diag(x, σ1(x), . . . , σn−1(x)). We now show that S is a
unitary matrix, from which it follows that we can write

X = S†XdS (41)



ELIA et al.: ASYMPTOTICALLY OPTIMAL COOPERATIVE WIRELESS NETWORKS 267

and S is then the common unitary diagonalizing matrix for
the matrices in X we are looking for.

Lemma 4.1: The matrix S is unitary, that is S†S = SS† =
In.

Proof: The element in the ith row and j column of S,
1 ≤ i, j ≤ n, is given by

σi(φj−1) = σi(ζj−1
n γ(j−1)/n) = ζi(j−1)

n γ(j−1)/n.

As a result it follows that we can decompose S according to

S =
1√
n

⎡
⎢⎢⎢⎢⎢⎣

1 ζn · · · ζn−1
n

1 ζ2
n · · · (ζ2

n)n−1

...
...

...
...

1 ζn−1
n · · · (ζ(n−1)

n )n−1

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ (42)

×

⎡
⎢⎢⎢⎣

1 · · ·
γ1/n

...
...

...
...

γ(n−1)/n

⎤
⎥⎥⎥⎦ . (43)

The first matrix on the right is a row-permuted version of the
familiar unitary Fourier-transform matrix and the second is
also unitary since |γ| = 1. It follows that their product S is
unitary as well.
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