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Abstract

We consider a multicast game with selfish non-cooperative players. There is a special source node and each
player is interested in connecting to the source by making a routing decision that minimizes its payment. The
mutual influence of the players is determined by a cost sharing mechanism, which in our case evenly splits the
cost of an edge among the players using it. We consider two different models: anintegral model, where each
player connects to the source by choosing a single path, and afractional model, where a player is allowed to split
the flow it receives from the source between several paths. Inboth models we explore the overhead incurred in
network cost due to the selfish behavior of the users, as well as the computational complexity of finding a Nash
equilibrium.

The existence of a Nash equilibrium for the integral model was previously established by the means of a
potential function. We prove that finding a Nash equilibriumthat minimizes the potential function is NP-hard.
We focus on the price of anarchy of a Nash equilibrium resulting from thebest-response dynamicsof a game
course, where the players join the game sequentially. For a game withn players, we establish an upper bound of
O(

√
n log2 n) on the price of anarchy, and a lower bound ofΩ(log n/ log log n). For the fractional model, we prove

the existence of a Nash equilibrium via a potential functionand give a polynomial time algorithm for computing
an equilibrium that minimizes the potential function. Finally, we consider a weighted extension of the multicast
game, and prove that in the fractional model, the game alwayshas a Nash equilibrium.
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I. I NTRODUCTION

In many networking scenarios, including the Internet, network users are free to act according to their
individual interests, without taking into account overallnetwork performance. Users thus may make selfish
decisions (strategy choices) based on the state of the network, which depends (among other factors) on the
behavior of other users, resulting in a non-cooperative game. Naturally, these scenarios call for a game-
theoretic approach for studying both the behavior of such non-cooperative users, as well as their impact
on the network performance. More specifically, we are interested in the properties of Nash equilibrium
solutions which are the stable outcomes of a non-cooperative game. We note that there is a considerable
amount of research dealing with non-cooperative games in networks [16], [19], [26], [29], [30], [32].

A scenario frequently encountered is the situation where each edge has a load-dependent latency
function, and each user aims to minimize the total latency from its source to its destination. In this
framework, both simple and general network topologies werestudied, as well as various types of latency
functions and different constraints on the strategies of the users [16], [26], [29], [30], [32].

While unicast is the traditional form of routing, it results in a waste of resources (e.g., bandwidth) when
a source transmits the same data to multiple destinations. Multicast routing schemes provide adequate
solutions for such transmissions, and are an important emerging area. An essential question that has been
studied extensively in this context is how to distribute thecost of the transmission among the various
receivers [1], [5], [9], [12], [15]. However, these works donot consider non-cooperative game scenarios.

We consider a multicast game with selfish non-cooperative players. There is a special source node and
each player is interested in connecting to the source by making a routing decision that minimizes its
payment. Thus, the strategies of the players in the game correspond to the different paths by which the
players can connect to the source. Each player independently chooses a strategy minimizing its payment.
The mutual influence of the players is determined by a cost sharing mechanism that stipulates how the cost
of each edge in the network is shared among its users. While typical models for non-cooperative games
in networks have focused on congestion effects, where a resource utility deteriorates with the number of
users that share it, an important class of resource sharing problems occurs when a fixed cost needs to be
shared between a set of users. This game was recently introduced by Anshelevichet al. [4]. In this paper
we study a natural cost sharing mechanism that falls into theabove framework, where the cost of an edge
is split evenly among all the players using it. More precisely, if k players use edgee of costce, then each
player paysce/k for this edge. This cost sharing formula has an intuitive appeal and it was investigated
in several studies [9], [12]; it is also the outcome of the Shapley value [31].

Further motivation for the multicast game we consider is provided by the facility location problem,
which is of fundamental interest in operations research. Ina facility location game, we are given a set of
facilities, with an opening cost associated with each facility. Additionally, we have a set of clients, and
for each client-facility pair, we are given a cost that the client must pay for connecting to the facility.
Each client needs to connect to one facility. A natural cost sharing mechanism for facility location is
splitting the opening cost of each facility between the clients served by it. Additionally, each client pays
for connecting to the facility serving it. Naturally, the clients seek to minimize their total payment, thus
defining a non-cooperative game. This game constitutes a special case of the directed multicast game:
given an instance of the facility location game, we add a source, connect each facility to the source with
an edge of cost equal to the opening cost of the facility, and then connect each client to each facility with
a directededge of cost equal to the corresponding connection cost.

We consider two different models: anintegral model, where each user connects to the source through
a single path, and afractional model, where each user is allowed to split (fractionally) its connection
to the source into several paths, i.e., one unit of flow is sentfractionally by the source to the user. The
fractional model, in addition to being a relaxation of the integral model, is interesting in its own right, as
it is a splittable multicast model which can be implemented via network coding [2], [3], [18]. The games
resulting from these models are referred to as theintegral multicast gameand thefractional multicast
game, respectively.
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A crucial property of our multicast game is that the per-usercost share on an edge isnon-increasingin
the number of users of the edge. Although, in this respect, the game differs from a classic congestion game,
the integral multicast game does belong to the well known class ofcongestion games, that was first defined
by Rosenthal [28] and has been widely investigated [13], [23], [25], [31], [33]. Rosenthal showed that a
potential function can be defined for each congestion game with the property that the potential decreases
if a player makes a move that improves its selfish cost. This shows that every congestion game has a Nash
equilibrium. Moreover, there is a one-to-one correspondence between Nash equilibrium solutions and the
solutions defining a local minimum of Rosenthal’s potential function. Since the integral multicast game
belongs to the class of congestion games, it has a Nash equilibrium and a potential function. We note
that, for the integral model, the cost sharing mechanism guarantees that a Nash equilibrium induces a tree.
The Nash equilibrium of the multicast game raises several natural questions. We focus in this paper on
the inefficiency resulting from the selfish behavior of the players, and on the computational complexity
of finding a Nash equilibrium.

We quantify the inefficiency resulting from a non-cooperative game through the ratio between the cost
of a Nash equilibrium multicast tree and the cost of an optimal Steiner tree spanning the players. In
keeping with common terminology [20], [27], this ratio is called the price of anarchyand it quantifies
the “penalty” incurred by lack of cooperation (or coordination) between the players in a non-cooperative
game.
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Fig. 1. Cost of a Nash equilibrium tree can ben times the cost of an optimum Steiner tree.

Consider the graph in Figure 1 consisting of a sourcer and a nodet with two parallel paths connecting
them. The cost of one path isn, while the cost of the other path is1. There aren players att who
want to connect to the sourcer. A solution where all players use the expensive path, each paying one
unit, is a Nash equilibrium with a cost ofn. A different and much cheaper Nash equilibrium is the
one in which the players use the path of cost1. Note that this second equilibrium is also the minimum
cost Steiner tree connecting the players to the source. Thus, the price of anarchy for this game can be
very large. Notice however that the expensive solution cannot be reached if the players join an initially
empty game one-by-one, each of them choosing the cheapest path to connect to the source. In this paper,
we investigate the price of anarchy of the integral multicast game for such scenarios. Motivated by the
existence of large-cost Nash equilibria, the notion ofprice of stabilitywas introduced in [4]: it is defined
as the ratio between the cost of a Nash equilibrium of minimumcost and the cost of an optimal Steiner
tree. In the above example, the price of stability is1 in contrast to the price of anarchy which isn. For
directed graphs, it was shown in [4] that the price of stability is Θ(log n); for undirected graphs, an upper
bound ofO(log n) on the price of stability is known [4], however, no non-trivial lower bounds are known.
The price of stability of the multicast game in undirected graph was recently investigated by [10]. It is
shown in [10] that for the special case where every vertex is associated with a selfish player, the price of
stability is O(log log n).

Even if the price of stability in undirected graphs is small,we still have two important questions
to answer. Can a Nash equilibrium achieving (or approximating) the price of stability be computed
in polynomial time? Second, can a good equilibrium be achieved as a consequence ofbest-response
dynamics? That is, a course of the game where each player, in its turn, makes a routing decision that
minimizes its cost. The price of anarchy of such a solution strongly depends on the initial configuration
from which the players start. For example, if the starting solution is a Nash equilibrium with a large price
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of anarchy, as in the example in Figure 1, then best-responsedynamics would not alter the solution. It
is shown in [4] that even in directed graphs, if the initial configuration is a Steiner tree of costC, then
the best-response dynamics would lead to a Nash equilibriumof cost at mostO(C log n). This is shown
using Rosenthal’s potential function, which can only decrease with each best-response move. This is also
a constructive proof that the price of stability isO(log n). In [4], the above argument is used to suggest a
mechanism in which a central authority starts the process byfirst computing a near-optimal Steiner tree
on the receivers, and then allows the users to follow their best-response dynamics.

In this paper we take an approach that does not rely on a central trusted authority starting the game
in a specific starting configuration. There are several situations in which having such an authority is
expensive or infeasible. Further, not all players might be available at the same time. In an online setting,
players might arrive one by one to join a multicast service from the source. Motivated by these issues,
we explore in this paper the following two-round setting. Inthe first round, players join the game one
by one starting from an “empty” configuration. Upon arrival,each player picks a path selfishly. Once
reaching the solution constructed by the players joining one by one, the natural game course induced
by best-response dynamics continues in the second round until a Nash equilibrium is reached. We stress
that in the second round, unlike the first one, a player may play many times. We assume that the arrival
of the players in the first round, as well as the order in which the players play in the second round, is
adversarial. Our model is inspired by theround model considered by Mirrokhni and Vetta [24] to analyze
convergence issues in competitive games.

Our Results: We focus on undirected graphs. For the integral multicast game, we establish an upper
bound ofO(

√
n log2 n) on the price of anarchy of the best-response dynamics in the setting where the

players join the game sequentially starting from an “empty”configuration. We then present a lower
bound ofΩ( log n

log log n
) on the price of anarchy of this game. It is an interesting openquestion whether a

polylogarithmic upper bound can be shown in this setting. Wealso prove that the problem of computing a
Nash equilibrium minimizing Rosenthal’s [28] potential function is NP-hard. It remains an open question
whether a Nash equilibrium of the integral multicast game can be computed in polynomial time. We note
that Fabrikantet al. [8] investigated the complexity of computing a pure Nash equilibrium for the class
of congestion games, where the cost of a facility is a non-decreasing function of the number of its users,
and showed that it is PLS-complete for general network congestion games. However, their proof heavily
depends on the non-decreasing property of the cost sharing mechanism, and therefore does not seem to
hold in our model.

For the fractional multicast game, we prove the existence ofa Nash equilibrium by extending Rosenthal’s
potential function. Our main result for this model is that a Nash equilibrium minimizing Rosenthal’s
potential function can be computed in polynomial time usinglinear programming. This result should
be contrasted with our proof that it is NP-hard to compute an integral Nash equilibrium minimizing
Rosenthal’s potential function. We observe that the fractional Nash equilibrium minimizing the potential
function has a price of anarchy ofO(log n).

The results obtained for the fractional model hold also for more general settings, where the cost sharing
mechanisms arecross monotone, which intuitively means that the share of a player on an edgecannot
increase when additional players use it. Furthermore, the results also hold in the setting where there are
multiple sources and each player needs to connect to at leastone source. We note that the fact that our
cost sharing mechanism is non-increasing in the number of players using an edge allows us to define a
fractional extension. This does not seem possible with a non-decreasing cost sharing mechanism.

Finally, we consider a weighted extension of the multicast game, where each player has aweight, and
the cost sharing mechanism splits the cost of an edge among its downstream receivers proportionally to
their weights. That is, the cost share of a player for an edge equals the ratio between the player’s weight
and the total weight of all the players using this edge. For this game we prove that a Nash equilibrium
exists in the fractional model. This result should be contrasted with the result of Chen and Roughgarden [6]
who showed that a Nash equilibrium does not necessarily exist in the integral weighted multicast game.
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II. T HE MODEL

We model our network by an undirected graphG = (V,E). Let c : E → R+ be a non-negative edge-
cost function, and we denote byce the cost of edgee ∈ E. There is a special vertexr ∈ V called root (or
source) and a multi-set ofn verticesN = {t1, t2, . . . , tn} representing multicastusers(also calledplayers
or terminals).

In the integral model, the goal of each user is to choose a single pathP connecting it to the root, while
minimizing its payment, which consists of the sum of the payments for the edges alongP . A course of
action chosen by playeri at any time is called itsstrategyand is denoted bysi. In the integral model,
a strategy of playeri is a path connectingti to the root. The strategy space of playeri (i.e., the set of
all its possible strategies) is denoted bySi, and in our integral game, it is the set of all the possible
paths betweenti and the root. The space of all the possible strategy profiles is denoted byS, and it is
the Cartesian product of the strategy spaces of all the players, S = S1 × S2 × · · · × Sn. At any given
moment, a strategy profile (or a configuration) of the games ∈ S is the vector of all the strategies of
the players,s = (s1, . . . , sn). We uses−i to denote vectors without its ith coordinate, and(s−i, s̃i) to
denote the strategy profile identical tos, except that theith coordinate is replaced bỹsi. Given a strategy
profile s, ci(s) ≡ c(si) denotes the payment of playeri (the cost of its pathsi), andne(s) denotes the
number of players using edgee. Payment of useri for edgee is denoted byci

e(s) and is determined by
the cost sharing mechanism. We consider a natural cost sharing mechanism, where the cost of every edge
is split evenly between the players sharing it. Thus, the payment of playeri for edgee is ci

e(s) = ce

ne(s)
.

We denote byc(s) the sum of the costs of the edges participating ins (we say that edgee participates
in a strategy profiles, if and only if at least one player chooses a path containings to connect to the
source). LetH(k) denote the Harmonic number

∑k
j=1

1
j
.

A strategy profiles ∈ S is at Nash equilibriumif no player has an incentive to change its routing
strategy, assuming that the strategies of the other playersare fixed. We assume that a player changes its
routing choice if and only if it reduces its payment. A changeof strategy by any player is called aNash
defectionand the corresponding player is calledNash defector. We assume that at each step the acting
player chooses a strategy that minimizes the cost of its path, given the strategies of the other players. We
therefore say that at each step the strategy of the current player is abest responseto the other players’
strategies. Thus, at Nash equilibrium, the strategy of eachplayer is the best response to the strategy
choices of the other players.

III. T HE INTEGRAL MULTICAST GAME

The integral multicast game is a special case of acongestion game, formulated by Rosenthal [28],
who defined a potential function to show that every congestion game possesses a Nash equilibrium. A
congestion modelis denoted byΓ = (N,M, (Si)i∈N , (σj)j∈M), whereN denotes the set ofn players
{1, 2, . . . , n}, and M denotes set of facilities{1, 2, . . . ,m}. For each useri ∈ N , Si is the set of its
possible strategies, where eachsi ∈ Si is a subset of facilities fromM . For each facilityj ∈ M , σj ∈ R

n

denotes the payoffs vector ofj, whereσj(k) is the payoff of each player for using facilityj in case
exactly k players usej. Finally, xj(s) denotes the number of players using facilityj according to their
strategies defined by the strategy profiles ∈ S. Given a strategy profiles and a facilityj, we say that
j ∈ s iff xj(s) > 0.

Rosenthal [28] showed that every congestion game possesses aNash equilibrium by constructing an
appropriate potential function. Later, Monderer and Shapley [25] characterized the class of finitepotential
games, showing that they coincide with the class of congestion games, where each step performed by a
player improving its payoff also decreases (or increases) the value of a global potential functionΦ on
the strategy space. Consequently, ifΦ admits a minimal (maximal) value inS, then the respective game
possesses a (pure-strategy) equilibrium.

The potential functionΦ(s) defined by Rosenthal for the congestion model is the following:
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Φ(s) =
∑

j∈s

( xj(s)∑

k=1

σj(k)

)
.

For completeness, we sketch the proof of the following theorem, presented in [28].
Theorem 1 (Rosenthal [28]): Every congestion game has a pure Nash equilibrium.

Proof: The functionΦ is an exact potential for any congestion game. That is, for every i ∈ N , and
every pair of strategy profiles(s−i, si

1) and (s−i, si
2), if ci(s−i, si

1) < ci(s−i, si
2), then

ci(s−i, si
2) − ci(s−i, si

1) = Φ(s−i, si
2) − Φ(s−i, si

1).

In other words, the decrease in the value of the potential function following a Nash defection is equal to
the decrease in the payoff of the respective Nash defector.

For our multicast game, given a strategy profiles, the potential functionΦ of [28] is

Φ(s) =
∑

e

( ne(s)∑

k=1

ce

k

)
.

It is easy to see that for every instance of our game, a Nash equilibrium solution is a tree rooted atr
spanningN .

We now analyze the price of anarchy of a multicast game in an undirected graph. We are interested in a
Nash equilibrium that is a consequence ofbest-response dynamics, where each Nash defector, in its turn,
chooses a path to the source minimizing its payment. Findingsuch a path can be done in polynomial time
by using a standard shortest path algorithm. Initially, theplayers join the game one by one starting from
an “empty” configuration and picking a path to the root that minimizes their payment. Once all players
are connected to the root, they continue playing until reaching Nash equilibrium. Note that we assume
that the order by which the players play is adversarial. In Section III-A we establish an upper bound
of O(

√
n log2 n) on the price of anarchy for this game course, and in Section III-B we prove a lower

bound ofΩ( log n
log log n

) on the price of anarchy. We also prove that finding a Nash equilibrium minimizing
Rosenthal’s [28] potential function is NP-hard in Section III-C.

A. Upper Bound

In this section we establish an upper bound ofO(
√

n log2 n) on the price of anarchy of a Nash
equilibrium obtained from best-response dynamics. Our analysis is performed in two steps. We first
analyze (in Section III-A.1) thefirst round of the game in which the players connect one-by-one to the
root via a cheapest path. The first round finishes when all players are connected to the root. However,
the configuration reached by the players after the first roundis not necessarily a Nash equilibrium. In the
second round, we start from the solution obtained in the firstround and follow the natural game course
until a Nash equilibrium is reached. In order to bound the price of anarchy of the strategy profileT
obtained from the first round, we define the notion of alevel treethat serves as a basis of reference for
proving the upper bound.

A greedy online Steiner tree[14] is defined as follows. It is the tree obtained when terminals arrive
online one by one. Upon arrival, each terminal connects via acheapest path to the root, where the path
cost only consist of the costs of the edges that do not currently belong to the tree. Thus, theith terminal
connects by a cheapest path to the tree induced by the choicesof terminals1, . . . , i − 1. The total cost
of the greedy online Steiner tree is known to be at most a factor of O(log n) away from the cost of an
optimal Steiner tree [14]. We consider the greedy online Steiner tree obtained from the same sequence of
arrivals as in the first round of the game. Our goal is to prove that the cost of the solution obtained by
the selfish moves of the players is related to the cost of the online Steiner tree. We are, however, unable
to show this directly. We overcome this difficulty by first transforming the online Steiner tree to a level
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tree with reduced height using a procedure due to Zelikovsky[34]. The height reduction increases the
cost, but maintains ancestor relationships that are critical for the analysis. We prove that the cost of the
solution obtained from the first round is at mostO(

√
n log n) times the cost of an optimal Steiner tree.

We complete our analysis in Section III-A.2. Starting from the solution obtained from the first round,
we follow the natural game course until a Nash equilibrium isreached. The Nash defections performed in
the second round can only decrease the potential function value, and thus we lose at most another factor
of O(log n) with respect to the cost of the solution obtained from the first round.

We paraphrase below the height reduction lemma of Zelikovsky that we need. A bound claimed in [34]
proved to be incorrect and a weaker correct bound is established in [11].

Lemma 3.1:Let T = (V,A) be an in-tree rooted atr ∈ V and letc : A → R+ be a non-negative cost
function onA. Let G = (V,AG) be the transitive closure ofT and letc′ : AG → R+ be such thatc′(u, v)
is the shortestc-path fromu to v in T . Then, given integerh > 1, there exists an in-tree treeT ′ = (V,A′)
in G, whereA′ ⊆ AG, of height at mosth such that

∑
a∈A′ c′(a) ≤ h · |V |1/h

∑
a∈A c(a).

1) The First Round:We begin by analyzing the first round of the game in which players arrive one by
one and pick a path selfishly. Let the sequence of arrivals of the terminals bet1, t2, . . . , tn (renumber
if necessary), and letT be the resulting solution. We assume that the players start from an empty
configuration. Note thatT need not be a tree.

Definition 1: A level treeT ′ on the vertex set{r(= t0), t1, t2, . . . , tn}, with a cost functiond : E → R,
is defined to be a tree having the following properties for each terminalti. (i) For 1 ≤ i ≤ n, the ancestor
of terminal ti in T ′ belong tot0, t1, t2, . . . , ti−1, i.e., terminals that have arrived beforeti. (ii) Let t and
ti be two terminals inT ′, such thatt is the parent ofti. Then the cost of the edge(ti, t) in T ′, denoted
by d(i), is no less than the cost of the cheapest path betweenti and t in G.

Define c(T ′) =
∑n

i=1 d(i). Let T (i) denote the state ofT after the arrival oft1, . . . , ti. Let Pi denote
the path chosen byti to the rootr in T . We denote byB(i) the set of new edges that are added toT
when ti joins T (i − 1). Let b(i) =

∑
e∈B(i) ce. Clearly, c(T ) =

∑n
i=1 b(i). Let c(i) be the cost paid by

ti when it joinsT . Clearly, c(i) ≥ b(i). Note that in the single round case the cost paid by a player can
only decrease during the round.

Given an edgee, let ne(i) denote the number of paths (terminals) usinge in T (i). We usece(i) to
denote the cost ofe as seen by a selfish player inT (i), i.e.,ce/ne(i). We usec+

e (i) to denotece/(ne(i)+1)
which is the cost per player for using edgee if an additional player were to usee in T (i). We define
c+(i) to be

∑
e∈Pi

c+
e (i). The following is immediate.

Fact 3.1: c+(i) ≤ (c(i) − b(i)) + b(i)/2 = c(i) − b(i)/2.
The edge set ofT is partitioned by the setsB(i), 1 ≤ i ≤ n. We now show how we charge the cost

of edges inB(i) to d(1), . . . , d(i). Assume that we are given a level treeT ′ rooted atr having height2.
Let ti1 , . . . , tim be the first level terminals, i.e., the children ofr in T ′. The second level terminals are the
children of ti1 , . . . , tim, i.e., leaves ofT ′. Denote byA(tij) the children of first level terminaltij .

We first analyze the cost of the edges added toT by the first level terminals.

Lemma 3.2:For the first level terminals,
m∑

j=1

b(ij) ≤
m∑

j=1

c(ij) ≤
m∑

j=1

d(ij).

Proof: By Definition 1, for each first level terminaltij , 1 ≤ j ≤ m, there is a path to the rootr of
cost at mostd(ij) (without taking into account cost sharing). Therefore,b(ij) ≤ c(ij) ≤ d(ij).

We now analyze the cost of the edges added toT by the second level terminals.

Lemma 3.3:Let tj be a first-level terminal with childrentj1 , tj2 , . . . , tjk
in T ′. Then

k∑

i=1

b(ji) ≤ 2c+(j) + 4
k∑

i=1

d(ji).
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Proof: Assume w.l.o.g. that the arrival order istj1 , tj2 , . . . , tjk
. Consider what happens whentj1

arrives: it can connect totj, and then connect to the root via the path connectingtj to the root. Hence,
c(j1) ≤ d(j1)+c+(j). Now consider terminaltji

for i > 1. It can connect totji−1
(paying at mostd(ji−1)+

d(ji)), and then followPji−1
to the root. Hence, the cost of this path is at mostd(ji−1)+d(ji)+ c+(ji−1),

which by Fact 3.1 is at mostd(ji−1) + d(ji) + c(ji−1) − b(ji−1)/2. Thus, we have for1 < i ≤ k,

c(ji) ≤ d(ji−1) + d(ji) + c(ji−1) − b(ji−1)/2.

Adding up the above inequalities, we obtain:

c(jk) +
1

2
(b(j1) + b(j2) + . . . + b(jk−1)) ≤

c+(j) + d(jk) + 2(d(j1) + d(j2) + . . . d(jk−1)).

Sinceb(jk)/2 ≤ b(jk) ≤ c(jk), we obtain the desired inequality:

k∑

i=1

b(ji) ≤ 2c+(j) + 4
k∑

i=1

d(ji).

We conclude with the next theorem.
Theorem 2:c(T ) ≤ 4c(T ′).

Proof: We combine Lemmas 3.2 and 3.3 and get:

c(T ) =
n∑

i=1

b(i) =
m∑

j=1


b(ij) +

∑

tℓ∈A(tij )

b(ℓ)




≤
m∑

j=1

b(ij) +
m∑

j=1


2c+(ij) +

∑

tℓ∈A(tij )

4d(ℓ)




≤
m∑

j=1

d(ij) +
m∑

j=1


2d(ij) +

∑

tℓ∈A(tij )

4d(ℓ)




≤ 4
n∑

i=1

d(i) ≤ 4c(T ′).

An interesting question is whether the use of level trees which have depth greater than two can lead to
better bounds on the price of anarchy. The difficulty with this approach is that for trees with more than
two levels, a recursive use of Lemma 3.3 is necessary. However, the recursion introduces extra charges,
and it is not clear how to bound them.

2) Completing the Analysis:We first generate the level treeT ′. Note that the greedy online Steiner
tree obtained from the sequence of arrivals of the first roundof the game has all the properties required
by a level tree. The difficulty is that the height of the greedyonline Steiner tree can beΩ(n). We generate
a new level treeT ′ from the greedy online Steiner tree by applying Lemma 3.1. The transformation
preserves ancestral relationship and thusT ′ remains a level tree, while allowing us to restrict the height
of the tree to beh at the expense of increasing its cost by a factor ofh ·n1/h. By choosingh = 2, we get
a two level treeT ′ and cost at most2

√
n times the cost of the greedy online Steiner tree. As the cost of

a greedy online Steiner tree is within a factor ofO(log n) away from the cost of an optimal Steiner tree,
we get thatc(T ′) = O(

√
n log n) · c(T ∗), whereT ∗ is an optimal Steiner tree. Therefore, by Theorem 2,

c(T ) = O(
√

n log n) · c(T ∗).
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Finally, after reaching the solutionT constructed by the terminals in the first round, the natural best
response dynamics are followed in the second round until a Nash equilibrium is reached. It is easy to see
that the value of the potential function of any configurationis at mostlog n times the total cost of the
edges used in this configuration. Therefore, the potential function value ofT is within at most a factor of
O(log n) away fromc(T ). The potential function value can only decrease throughoutthe second round.
As the value of the potential function of a solution is alwaysan upper bound on the cost of the edges
participating in the solution, we get that the price of anarchy of our game isO(

√
n log2 n).
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Fig. 2. (a) Price of anarchy of2 − ǫ. (b) Price of anarchy ofΩ( log n

log log n
).

B. Lower Bound

In this section we present an undirected instance in which best-response dynamics converges to a
Nash equilibrium with price of anarchy ofΩ( log n

log log n
). We start with a simple example whose price of

anarchy is at least2 − ǫ. After that we show how to extend the ideas used in this example to show an
Ω(log n/ log log n) lower bound on the price of anarchy.

Let q be a large integer. Our first example is constructed as follows. We start from a root vertexr and
additional vertexu1 connected to the root by a unit-length edge. We now add another unit-length path
from the root to a new vertexu2. The edges and the vertices of this path are as follows. Apartfrom r
and u2, there arelog q verticesv1, . . . , vlog q that are placed betweenr and u2 in this order, with vertex
v1 adjacent tor. The distance betweenv1 and r is 1

2
, and for everyi > 1, the distance betweenvi and

vi−1 is 2−i, thus the distance betweenvlog q and u2 is less than1
q
. Finally, there is an edge of length1

q
betweenu1 andu2.

The idea is as follows. The firstq players joining the game are placed on vertexu1. They connect
to r via the unit-length edge(r, u1) and pay1

q
each. In the next step we placeq players on vertexv1.

Naturally, they prefer to connect tor via edge(v1, r) whose cost is1
2
, instead of connecting viau2 and

u1. Now the cost of the edge(v1, r) becomes1
2q

. When we place the nextq players on vertexv2, they
connect via(v2, v1, r), as the cost of this path is less than1

4
+ 1

2q
while connecting viau2 andu1 costs

more than1
4
+ 1

q
. We continue in the same way, placingq users on verticesv3, . . . , vlog q, where the users

placed on vertexvi all connect via path(vi, vi−1, . . . , v1, r). Finally, we placeq players on vertexu2, who
also prefer to connect via path(u2, r), as its cost is less than1

q
. It is easy to see that this configuration is

a Nash equilibrium. The cost of this solution is2, while the cost of the optimal solution is1 + 1
q
, which
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is achieved by connecting all the players on path(u2, r) via this path and connecting all the players on
vertexu1 via u2. See Figure III-A.2(a) for the resulting instance.

We now show how to generalize the above construction to obtain the bound ofΩ( log n
log log n

) on the price
of anarchy. The basic gadget we use in our construction is alog-division of an edge.

Definition 2: Suppose we have an edge(a, b) of lengthc. A log-division of this edge is performed by
converting this edge into a patha, v1, v2, . . . , vlog q, b of the same length. The length of the edge(a, v1) is
c
2
, and for eachi > 1, the length of edgevi, vi−1 is c

2i . Thus, the length of edge(vlog q, b) is less thanc
q
.

A building block of our construction is a pathp defined below. We useℓ = Ω( log q
log log q

) copies ofp.
The construction of pathp is as follows. We start from an edge(v, u) of length 1. Vertex u is called a
level-1 vertex. We now performℓ iterations. In each iteration, we perform alog-division of every edge
e = (w,w′) on path(v, u). When doing this division, the endpoint ofe that is closer tov on the path (say,
w) serves asa and the other endpoint (w′) serves asb. For each iterationi, we call the vertices added
to the path in this iteration “leveli vertices”. In our construction, we useℓ copies of pathp, denoted
by p1, p2, . . . , pℓ. The endpointsv of these paths are merged together and form the rootr. The other
endpoints of the paths are denoted byu1, u2, . . . , uℓ. Finally, for eachi, 1 ≤ i < ℓ, we connect each of
the level-1, 2, . . . , i vertices on pathpi to the corresponding vertex on pathpℓ by an edge of length2

q
.

The players are added to the game as follows. First we addq players on vertexu1. They connect via
pathp1 to the root. Then, we add players on pathsp2, . . . , pℓ in this order. Fori > 1, we add players on
all the vertices of levels1, 2, . . . , i belonging to pathpi, as well as on vertexui, in the order by which
the vertices appear on the path starting from the root. See Figure III-A.2(b) for the resulting instance.

Claim 1: For eachi : 1 ≤ i ≤ ℓ, for each playerα on pathpi, α connects to the rootr via the subpath
(x, r) of pathpi, wherex is the vertex on whichα lies.

Proof: The proof is by induction on the order in which the players arebeing added. Letα be some
player lying on vertexx of pathpi.

If x is the first vertex on pathpi, then it is a level-i vertex. Letz be its closest level-i − 1 vertex.
Playerα has two options to connect to the root. One is via the path segment (x, r), and the other is via
the path segment(x, z), and then use the edge connectingz to pℓ whose cost is2/q (all other options are
clearly more expensive). However, since the costs of(x, r) and(x, z) are the same, the cheaper option is
the path(x, r).

Assume now thatx is not the first vertex on pathpi. Let y be the vertex lying next tox on the sub-path
of pi connectingx to r. Assume first thatx is a level-i vertex. By the induction hypothesis, all the players
that were already added to pathpi chose to connect tor via this path. Hence the cost of the segment
(y, r) is currently at most1/q. Thus, connecting tor via the path(x → y → r) costs at most1/q plus
the cost of(x, y). The other possibility is to connect toz (the closest vertex of levels1, . . . , i − 1 lying
on pathpi but not on the segment(x, r) of this path), and then use the2/q-cost edge connectingz to pl.
Since the cost of(x, z) is the same as the cost of(x, y), this is more expensive than connecting via the
(x, r) segment ofpi.

Finally, assume thatx is a vertex ofpi that belongs to one of the levels1, . . . , i − 1. Again, using the
induction hypothesis, all the players already added to pathpi connect via the pathpi to the root. Since
the distance fromx to the next level-i vertex on the path(x, r) is less than1/q, it means that the cost of
connectingx to r via the sub-path(x, r) of pi is less than2/q. The other option would be connecting to
pathpℓ using a cost2/q edge, which is clearly more expensive.

Thus, a Nash equilibrium consists of all pathsp1, p2, . . . , pℓ, and its cost equalsℓ. In the optimal solution,
all players are connected via pathpℓ. In order to connect some player belonging to pathpi, i 6= ℓ, we
use the edge of length2

q
connecting this player to pathpℓ. Note that the total number of playersM is

bounded by2qk, wherek is the number of vertices on pathpℓ. Clearly,k ≤ (log q)ℓ. Fixing ℓ = log q
log log q

,
we getk ≤ q. The total cost of the optimal solution is less than1 + 2k

q
≤ 3 and the price of anarchy is

thereforeΩ(ℓ) = Ω( log q
log log q

). As M ≤ 2qk ≤ 2q2, the price of anarchy isΩ(ℓ) = Ω( log M
log log M

).
We have thus proved the following theorem.
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Theorem 3:The cost of anarchy in the best-response dynamics of the integral multicast game is at
leastΩ(log n/ log log n).

C. Intractability of Optimizing the Potential Function

In this section we prove that finding a Nash equilibrium that minimizes the potential function is NP-hard.
As a building block we use a variation of the Lund-Yannakakisproof [22] of hardness of approximation
for the set cover problem.

The input to the set cover problem is a ground set of elementsU and a collectionS of subsets ofU .
The goal is to choose a minimum cardinality collection of sets in S covering all elements. The reduction
of [22] is performed from the3SAT problem.

We use a straightforward and standard variation of the construction of [22] to obtain the following
theorem (see, for instance Section 2 in [7], which contains the complete description of the construction
and its analysis).

Theorem 4:Given a 3SAT formula ϕ, an instance of the set cover problem can be constructed in
polynomial time, such that:

• All sets have equal size (denoted bys).
• If ϕ is satisfiable (yes-instance), then there is a solution to the set cover instance that usesX sets,

and each element is covered by exactly one set in this solution.
• If ϕ is not satisfiable (no-instance), then the size of any solution to the set cover instance is at least

αX, whereα > 1 is some constant.
In the rest of this section we prove the following theorem:
Theorem 5:The problem of finding a Nash equilibrium of the integral multicast game that minimizes

the potential function is NP-hard.
Proof: Given a3SAT formulaϕ, we first construct a set cover instance as in Theorem 4, and then

create an integral multicast game based on this instance, asfollows. There is a vertex for each set and
each element in the set cover problem, and additionally we have a special vertexr. The players are the
vertices that represent the elements. Each vertex representing a set is connected tor with a unit-length
edge. Each vertex representing some elementi is connected to a vertex representing setS if and only
if i ∈S. The length of the edge is a large integerq, which will ensure that each user (element) chooses
a path that contains only one such edge (i.e., connects via a set to which it belongs). LetN denote the
total number of users (elements) in the above example. It is enough to chooseq ≥ N .

Supposeϕ is a yes-instance. Then there is a solutionS ′ of size X to the set cover instance. This
solution naturally induces a Nash equilibrium in our game, where each element connects to the set that
covers it inS ′ and all the sets inS ′ are connected to the root. Observe that there are exactlys users on
every edge that connects some set inS ′ to the root. The value of the potential function in this solution
is qN + X · H(s).

Assume now thatϕ is a no-instance and suppose we are given some Nash equilibrium. This Nash
equilibrium defines a solution to the set cover instance, since each element has to connect to one of the
sets to which it belongs. However, the number of sets used in this solution is at leastαX, and some of
the edges connecting these sets to the root are used by less than s users. Thus, the value of the potential
function in this solution is strictly greater thanqN + X · H(s).

As determining whether a given3SAT formula is satisfiable is NP-hard, it is NP-hard to find a Nash
equilibrium minimizing the value of the potential function.

IV. T HE FRACTIONAL MULTICAST GAME

In this section we introduce a fractional model of the multicast game, where each user is allowed to split
(fractionally) its connection to the source into several paths. The fractional model represents a splittable
multicast model. While one unit of flow can be sent fractionally by the source to each user, the data (i.e.,
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a flow fraction) is sent once on each edge of the multicast topology, independently from the number of
its users. In the sequel we discuss how to efficiently implement this via network coding.

The cost of each flow fraction on an edge is evenly split between its users. Thus, the total cost of
the flow on an edge is simply the cost of the flow fraction sent onthat edge. We present our results for
undirected graphs, yet they hold for directed graphs as well. In the fractional model, each useri has to
route one unit of flow fromti to the sourcer. User i can split its unit of flow among any number of
paths connectingr to ti. Denote the flow of useri on edgee by fe,i and the number of users on edgee
by ne. Given a strategy profiles, assume without loss of generality thatfe,1 ≤ fe,2 ≤ · · · ≤ fe,ne

≤ 1.
Definefe,0 = 0. Edgee has capacity equal tofe,ne

, and for convenience we think of the capacity ofe as
defining an “address space” in the range[0, fe,ne

], where userj uses[0, fe,j]. The cost of each fraction of
the capacity ofe is equally split between its users, as follows:[fe,j−1, fe,j] is shared byne − j + 1 users,
where each user paysce

fe,j−fe,j−1

ne−j+1
. Therefore, the total costci

e paid by useri for the use of edgee is:

ci
e = ce ·

i∑

k=1

fe,k − fe,k−1

ne − k + 1
.

As the total flow fraction sent on edgee is fe,ne
, the total cost of the edge is simplyce · fe,ne

.
We denote byP i the set of paths used by useri. The cost of a pathp ∈ P i is the sum of its edge

costs, that is
∑

e∈p ci
e. The total costci of a useri is the sum of its path costs, that is

∑
p∈P i

∑
e∈p ci

e.
Each useri aims to establish its flow from the sourcer to ti so as to minimize its cost. Thus, a flowf
is at Nash equilibrium if no user has any incentive of changing its flow to the root. An instance of the
fractional model, consisting of a graphG, a sourcer, a set of receiversN , and a cost vectorc is denoted
by frac(G, r,N, c). We introduce a potential functionΦ for the fractional multicast game which is based
on Rosenthal’s potential function [28], as follows:

Φ =
∑

e∈s

( ne(s)∑

j=1

ne+1−j∑

i=1

ce
fe,j − fe,j−1

i

)
.

The proof of the next theorem follows from the proof of Rosenthal’s potential function [28].
Theorem 6:The potential fuctionΦ is an exact potential for the fractional multicast game. That is,

for everyk ∈ N , and every pair of strategy profiles(s−k, sk
1) and (s−k, sk

2), if ck(s−k, sk
1) < ck(s−k, sk

2),
whereck denotes the total cost of userk, then

ck(s−k, sk
2) − ck(s−k, sk

1) = Φ(s−k, sk
2) − Φ(s−k, sk

1).

The proof of Theorem 6 appears in Appendix A1. As a fractionalflow configuration defining a local
minimum of the potential function constitutes a Nash equilibrium, we get:

Theorem 7:A Nash equilibrium exists for every instancefrac(G, r,N, c).

We now explain how a fractional solution can be implemented via network coding. A Nash equilibrium
configuration determines a directed flow network (note that if an edge is used in both directions, then it
should be replaced by two directed edges). We define the capacity of a cut separatingr from a terminal
ti ∈ N as the sum of the capacities of the forward edges in the cut, where the capacity of edgee is fe,ne

.
By allowing each useri to split its connection tor as described above, it follows that the capacity of any
cut separatingr from ti ∈ N is at least1. Koetter and Medard [18] (see also [3], [21]) showed that the
transmission rate of a fractional multicast transmission is bounded by the capacity of the minimum cut
(taken over alli) separatingr from ti ∈ N , and this bound is tight. This means that in our case, where
the capacity of the minimum cut is at least1, the transmission rate is the same as in a tree. Therefore, a
Nash equilibrium of the fractional game is a stable operating point, where the users share the cost of a
solution achieving the minimum cut property and no player can unilaterally reduce its cost by changing
its strategy.
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A. Computing a Minimum Potential Nash Equilibrium

We proceed to describe how a Nash equilibrium of the fractional game can be computed in polynomial
time using linear programming. Moreover, the computed Nashequilibrium minimizes the potential function
Φ. Compare that with the hardness of finding an integral solution minimizing the potential function. In
addition, as shown later, the minimum potential Nash equilibrium is within a factor ofO(log n) away
from the cost of an optimal fractional Steiner tree.

Given an instancefrac(G, r,N, c), we create a new graphG′ = (V,E ′) by replacing each edgee by
n copiese1, e2, . . . , en. The cost of a unit flow on edgeej is ce/j. For a pathp from ti to r in G′, we
denote byf i

p the amount of flow of commodityi sent on it. Note that different paths can use an edge in
opposite directions.

We formulate a linear program with an objective function that is equal to the potential of the fractional
multicast game. The variables of the linear program are the flows of the users sent on the set of paths in
G′ from the terminalst1, . . . , tn to the rootr, and the capacities of the edges inE ′. Denote a path from
ti to r by ti  r. The capacity of edgeej is denoted byxej

, where0 ≤ xej
≤ 1. The linear program is

as follows.

minimize
∑

e∈E

n∑

j=1

( j∑

i=1

ce · xej

i

)
s.t.

For each commodityi:
∑

p:ti r

f i
p ≥ 1 (1)

For each edgee, copy j, commodityi:
∑

p:ti r|ej∈p

f i
p ≤ xej

(2)

For each edgee, copy j:
n∑

i=1

∑

p:ti r|ej∈p

f i
p = j · xej

(3)

0 ≤ xej
≤ 1, f i

p ≥ 0 (4)

The total flow of useri, summed up over all paths fromti to r, is at least1 (Constraint (1)). Constraint
(2), the non-aggregatingflow constraint, restricts the flow of each useri on edgeej to be at most its
capacityxej

. The total flow, taken over all commodities on edgeej, is constrained to be preciselyj · xej
,

as restricted by Constraint (3), theaggregatingflow constraint. This constraint is satisfied in the integral
case: ifj commodities are sent on edgee, then edgeej is “bought”, and the number of users on this edge
is j. The sum of the costs of the commodities onej is then exactlyce.

Note that the above linear program uses an exponential number of variables. However, it can be solved
in polynomial time via the dual program using the Ellipsoid algorithm. Alternatively, it can be formulated
with a polynomial number of variables by using the flows of theusers on the different edges inG′ as
variables.

1) Characterizing an Optimal Solution:We say that a flowf on instanceG′ is canonicalif it has, for
every edgee ∈ E, the following structure. Denote byfe,j the sum of the flows of userj on all copies
of e (fe,j =

∑n
k=1

∑
p:tj r|ek∈p f j

p ). Suppose that without loss of generalityfe,1 ≤ fe,2 ≤ · · · ≤ fe,ne
≤ 1,

wherene denotes the number of users with positive flow. Then, the flowsrouted onene
, . . . , e2, e1 are

fe,1, (fe,2 − fe,1), . . . , (fe,j − fe,j−1), . . . , (fe,ne
− fe,ne−1), respectively, and the non-aggregating flow on

copiesei for i ≥ ne +1 is zero. Notice that there is a one-to-one correspondence between canonical flows
in the instanceG′ and fractional multicast flows inG. We now turn to prove that there exists a canonical
flow minimizing the potential function.

Let f be the output flow of the linear program. We first consider the flow fek
on each copyek of edge

e, and rearrange it to be a canonical flow. Then, we merge these resulting canonical flows into a single
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canonical flow one. These two steps are performed for each edgee ∈ E. We show that the resulting
potential of the new (canonical) flow is not larger than the potential of the original flowf .

Lemma 4.1:Consider edgeek ∈ E ′, 1 ≤ k ≤ n. There exists a canonical flow onek with potential
value not greater than that of the original flow onek.

Proof: Without loss of generality, suppose thatfek,1 < fek,2 < · · · < fek,ℓ are the different amounts
of flow routed onek by the users, wherefek,ℓ = xek

. For ease of notation, we denote this ordering as
f1 < f2 < · · · < fℓ, wherefℓ = xek

. Assume that the number of users routing a flow value≤ fi is ki,
and thusk1 > k2 > · · · > kℓ. We rearrange the flowfek

to be a canonical flow by sending each amount
of flow to its proper edge copy, i.e. by “buying” capacityf1 on edgeek1 , capacity(f2 − f1) on edgeek2,
etc.

The potential of the resulting canonical flow derived fromfek
is thus

ce

ℓ∑

i=1

ki∑

j=1

fi − fi−1

j
= ce

ℓ∑

i=1

(fi − fi−1)H(ki),

wheref0 = 0. On the other hand, the potential of the original flow onek is

ce

k∑

i=1

xek

i
= ce · H(k)xek

= ce · H(k)fℓ.

The total flow onek is constrained to bek · xek
= k · fℓ (Constraint (3)), which is equal to the total

canonical flow derived fromfek
, and thus

k · fℓ =
ℓ∑

i=1

ki(fi − fi−1).

Since0 ≤ (fi−fi−1)
fℓ

≤ 1 and
∑ℓ

i=1
(fi−fi−1)

fℓ
= 1, by Jensen’s inequality,

ℓ∑

i=1

H(ki)
fi − fi−1

fℓ

≤ H

( ℓ∑

i=1

ki ·
fi − fi−1

fℓ

)
= H(k),

and thus
∑ℓ

i=1 H(ki)(fi − fi−1) ≤ H(k)fℓ.
Lemma 4.2:Consider edgee ∈ E and two canonical flowsfe andf ′

e. Thenfe andf ′
e can be added up

yielding a canonical flow with potential value not greater than the sum of the potentials offe andf ′
e.

Proof: Consider two canonical flowsf andf ′, and assume that their respective flows onek arexk

andx′
k. That is,xk (resp.,x′

k) is the amount of flow routed by each player usingek according tof (resp.,
f ′). We denote byGk and G′

k the sets of players that useek according tof and f ′ respectively, where
|Gk| = |G′

k| = k. Assume, without loss of generality thatx′
k ≥ xk. By merging these two flows into a

single canonical flow, we “buy” capacityxk on copy|Gk ∪G′
k| of edgee, capacity(x′

k − xk) on ek, and
capacityxk on copy|Gk ∩ G′

k| of edgee. We thus get a new canonical flow with potential

H(|Gk ∪ G′
k|)xk + H(k)(x′

k − xk) + H(|Gk ∩ G′
k|)xk.

On the other hand, the sum of potentials of the original flows on ek is H(k)xk + H(k)x′
k. As

2H(k) ≥ H(|Gk ∪ G′
k|) + H(|Gk ∩ G′

k|),
we get that the potential of the new canonical flow is not larger than the sum of potentials of the original
flows.

In caseGk 6= G′
k, the potential of the new canonical flow is strictly less thanthe sum of the potentials

of the original canonical flows. In this case, capacity has tobe bought on other copies ofe except forek,
and thus other merging steps should be performed for each such copy. As each such step strictly decreases
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the potential, the merging process is finite.
Theorem 8:There exists an optimal solution to the linear program whichis a canonical flow.

Proof: Let f be the output flow of the linear program. Asf is a flow of minimum potential, it is
either canonical, or can be easily rearranged as such by performing the two steps described by Lemmas
4.1 and 4.2 on all copies of each edgee.

The linear program presented for computing the minimum potential Nash equilibrium of the fractional
model can be used for more general settings, not necessarilyegalitarian, where the cost sharing mechanisms
are cross-monotonic, i.e. the cost functions are non-increasing in the number of users. Furthermore, it can
also be used for settings where the users are not restricted to have a common source. Recall that finding
an integral solution with minimum potential is NP-hard.

There are instances for which there is a gap between the minimum potential fractional Nash equilibrium
and the minimum potential integral Nash equilibrium. Consider Figure 3, which depicts an instance
(G, r, {t1, t2, t3}, c), for which the minimum potential fractional Nash equilibrium is smaller than the
minimum potential integral Nash equilibrium. The edge costs are as follows: the cost of each edge(r, vi)
(i = 1, 2, 3) is x, and the cost of each edge fromvi to the terminals connected to it isq ≫ x. The
fractional Nash equilibrium that minimizes the potential is as follows: each terminalti sends1/2 unit of
flow through each of the two verticesvj (j = 1, 2, 3) connecting it tor. Therefore, the fractional potential
is Φfrac = 3x/2(1 + 1/2) + 6q/2 = 9x/4 + 3q. On the other hand, the integral Nash equilibrium that
minimizes the potential is as follows: two out of the three terminals send their flow through the same
vertexvi to r, and the third terminal sends its flow through one out of the other two verticesvj connecting
it to r. Therefore, the integral potential isΦint = x(1 + 1/2) + x + 3q = 10x/4 + 3q.
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Fig. 3. Instance in which the minimum potential fractional Nash equilibrium is smaller than the minimum potential integral Nash equilibrium.

We define theprice of anarchyof the fractional game as the ratio between the cost of a Nash equilibrium
solution and the cost of an optimal fractional solution to the Steiner tree problem.

We show that the price of anarchy of a minimum potential fractional Nash equilibrium solution is
O(log n). This follows since this solution has potential that is not higher than the potential of an optimal
fractional Steiner tree, and the potential of a solution is within at most a factor ofO(log n) away from
its cost. Also, note that the potential of a solution is an upper bound on its cost.

More formally, for any fractional solutionT , let Φ(T ) denote the value of its potential function and let
C(T ) denote the total cost of edges participating inT . We denote byTNashthe fractional Nash equilibrium
tree with minimum potential, and byTSteiner the fractional optimal Steiner tree. We get that

C(TNash) ≤ Φ(TNash) ≤ Φ(TSteiner) ≤ log n · C(TSteiner).

The first and third inequalities follow from the properties of the potential function, where each fraction
of flow fe,j on an edgee is multiplied by1 ≤ H(k) ≤ log n, andk, 1 ≤ k ≤ n, is the number of users
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generating this flow fraction. The second inequality follows from the fact that the potential value ofTNash
is minimal.

We observe that theΩ( log n
log log n

) lower bound on the price of anarchy for the integral model holds also
for the fractional model. That is, the ratio of the cost of some Nash equilibrium (not necessarily the one
that minimizes the potential function) and the Steiner treecost can be as large asΩ( log n

log log n
).

B. The Weighted Fractional Multicast Game

We consider a weighted extension of our multicast game, where each useri is associated with a positive
weight wi. The payment of each player is proportional to its weight. Let Wj =

∑j
i=1 wi. Given a flow

vector f , let fe,i denote the flow of useri on e and letne be the number of users with non-zero flow
on e. Assume that the users are numbered such that0 = fe,0 < fe,1 ≤ fe,2 ≤ . . . ≤ fe,ne

. Consider some
j ≤ ne. User j shares the capacityfe,1 with users1 to ne, sharesfe,2 − fe,1 with users2 to ne and so
on. The payment for any share is in proportion to weights. Hence, for the capacityfe,1, userj ≤ ne pays
ce · fe,1 · wj/Wne

. Thus the overall cost paid byj ≤ ne on edgee is

ce · wj ·
j∑

i=1

fe,i − fe,i−1

Wne
− Wi−1

.

The overall payment of a user is the sum of its payments for theflow fractions it uses on all edges in all
its paths. Each userj aims to establish its flow from the sourcer to tj so as to minimize its cost. Thus,
a flow f is at Nash equilibrium if no user has an incentive to change its flow.

An instance of the weighted fractional model, consisting ofa graphG, a sourcer, a set of receiversN
with weight vectorw, and a cost vectorc is denoted byfrac(G, r,N, c, w). The proof of the following
theorem uses Kakutani’s fixed point theorem [17], and appears in Section A2 of the Appendix.

Theorem 9:A Nash equilibrium (in pure strategies) exists for every instancefrac(G, r,N, c, w).
This theorem should be contrasted with the result of Chen and Roughgarden [6] who showed that a

Nash equilibrium does not necessarily exist in the integralweighted multicast game.
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APPENDIX

A1. PROOF OFTHEOREM 6

Theorem 6. The potential fuctionΦ is an exact potential for the fractional multicast game. That is, for
everyk ∈ N , and every pair of strategy profiles(s−k, sk

1) and(s−k, sk
2), if ck(s−k, sk

1) < ck(s−k, sk
2), where

ck denotes the total cost of userk, then

ck(s−k, sk
2) − ck(s−k, sk

1) = Φ(s−k, sk
2) − Φ(s−k, sk

1).

Proof:
Consider a playerk ∈ N and strategiess−k ∈ S−k, and sk, (sk)∗ ∈ Sk such thatck(s−k, (sk)∗) <

ck(s−k, sk). We denote bys and s∗ the strategy profiles(s−k, sk) and (s−k, (sk)∗) respectively, and by
ne and n∗

e the number of players using edgee according to the strategy profiless and s∗ respectively.
As before, we generate an orderingfe,1 ≤ fe,2 ≤ · · · ≤ fe,ne

≤ 1 on the flowfe routed by thene users
on e according tos and an orderingf ∗

e,1 ≤ f ∗
e,2 ≤ f ∗

e,n∗

e
≤ 1 on the flowf ∗

e routed by then∗
e users on

e according tos∗. We assume thatfe,0 = f ∗
e,0 = 0. We denote byfk

e and (fk
e )∗ the flow of userk on

edgee according to strategiessk and (sk)∗ respectively. Assumingfk
e > 0, ike denotes the index of user

k’s flow on edgee according to this ordering, otherwiseike = 0. Similarly, (ike)
∗ is the index of userk’s

flow on edgee assuming(fk
e )∗ > 0, and equals 0 otherwise. We now compare the total costck of userk

according tos and the corresponding cost(ck)∗ according tos∗:

(ck)∗ =
∑

e∈(sk)∗

( (ike )∗∑

j=1

ce ·
f ∗

e,j − f ∗
e,j−1

n∗
e + 1 − j

)
(1)

<
∑

e∈sk

( ike∑

j=1

ce ·
fe,j − fe,j−1

ne + 1 − j

)
= ck.
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...
 ...

fl−1 fl fik−1 fik fik+1

f ∗
(ik)∗−1

f ∗
(ik)∗ f ∗

(ik)∗+1 f ∗
m∗ f ∗

m∗+1

Fig. 4. Flow on edgee in casefk
e > (fk

e )∗ (for simplicity, subscripts ofe are omitted).

...
 ...

fik−1 fik fik+1 fm fm+1

f ∗
l∗−1 f ∗

l∗
f ∗

(ik)∗−1
f ∗

(ik)∗ f ∗
(ik)∗+1

Fig. 5. Flow on edgee in casefk
e < (fk

e )∗ (for simplicity, subscripts ofe are omitted).

We can split each sum on both sides of the above inequality to two sums, one sum describing the flows
that are equal according to(s−k, sk) and (s−k, (sk)∗), and the other sum describing the flows that differ
according to these two strategy profiles. We thus remain withthe differing flows:

∑

{e|fk
e <(fk

e )∗}

ce ·
(

f ∗
e,l∗e

− fe,ike

n∗
e + 1 − l∗e

+

(ike )∗∑

j=l∗e+1

f ∗
e,j − f ∗

e,j−1

n∗
e + 1 − j

)
(2)

<
∑

{e|fk
e >(fk

e )∗}

ce ·
(

fe,le − f ∗
e,(ike )∗

ne + 1 − le
+

ike∑

j=le+1

fe,j − fe,j−1

ne + 1 − j

)

where, forfk
e > (fk

e )∗, le is the index of the flow for whichfe,le = f ∗
e,(ike )∗+1

according to the ordering of
fe, while for fk

e < (fk
e )∗, l∗e is the index of the flow for whichf ∗

e,l∗e
= fe,ike+1 according to the ordering of

f ∗
e (see Figures 4 and 5).

Note that, for an edgee wherefk
e = fe,ike

< f∗
e,(ike )∗

= (fk
e )∗, it holds that the number of users using each

segment in the range[fe,ike
, f ∗

e,(ike )∗
] according to the ordering off ∗

e is larger by one than the number of
users using each segment in this range according to the ordering of fe, as userk is the only user changing
its flow. We thus get:

∑

{e|fk
e <(fk

e )∗}

ce ·
( me∑

j=ike+1

fe,j − fe,j−1

ne + 2 − j
+

f ∗
e,(ike )∗

− fe,me

ne + 2 − (me + 1)

)
(3)

<
∑

{e|fk
e >(fk

e )∗}

ce ·
(

fe,le − f ∗
e,(ike )∗

ne + 1 − le
+

ike∑

j=le+1

fe,j − fe,j−1

ne + 1 − j

)
,

where forfk
e < (fk

e )∗, me is the index of the flow for whichfe,me
= f ∗

e,(ike )∗−1
(see Figure 5).

We now compare the potentialΦ(s) with the potentialΦ(s∗).
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Φ(s∗) =
∑

e∈s∗

( n∗

e∑

j=1

n∗

e+1−j∑

i=1

ce

f ∗
e,j − f ∗

e,j−1

i

)
(4)

=
∑

e∈s

( ne∑

j=1

ne+1−j∑

i=1

ce
fe,i − fe,i−1

i

)
+

∑

{e|fk
e <(fk

e )∗}

ce ·
( me∑

j=ike+1

fe,j − fe,j−1

ne + 2 − j
+

f ∗
e,(ike )∗

− fe,me

ne + 2 − (me + 1)

)
−

∑

{e|fk
e >(fk

e )∗}

ce ·
(

fe,le − f ∗
e,(ike )∗

ne + 1 − le
+

ike∑

j=le+1

fe,j − fe,j−1

ne + 1 − j

)

<
∑

e∈s

( ne∑

j=1

ne+1−j∑

i=1

ce
fe,j − fe,j−1

i

)
= Φ(s)

Therefore, it follows thatck − (ck)∗ = Φ(s) − Φ(s∗).

A2. PROOF OFTHEOREM 9

Theorem 9. A Nash equilibrium exists for every instancefrac(G, r,N, c, w).

For each playeri we define abest replycorrespondenceΨi from S to Si as follows. For anys ∈ S, let

Ψi(s) = {si ∈ Si|ci(s−i, si) ≥ ci(s−i, s̃i) for every s̃i ∈ Si}.
Each setSj consists of playerj’s possible flow patterns fromr to dj. Thus, it is nonempty, compact
(finite and closed), and convex. It follows that the setS is a compact and convex subset of Euclidian
space, since eachSj is such.

By definition, Ψi(s) is the set of strategies that minimizesi’s cost given the strategies of the other
players prescribed bys. According to the definition of our model, this set is nonempty as it represents
useri’s minimum cost sets of paths, given the flow pattern of the other users.

We prove the existence of a Nash equilibrium for every instance of a fractional multicast game. In
order to establish the proof, we first consider several properties of Ψi. We show that the correspondence
Ψi is convex-valued and upper hemicontinuous.

Lemma 1.1:The correspondenceΨi is convex-valued.
Proof: We prove that, given two strategiessi

1, s
i
2 ∈ Ψi(s), then (αsi

1 + (1 − α)si
2) ∈ Ψi(s), where

0 ≤ α ≤ 1. Note that a strategy defined byαsi consists of the flow pattern characterized bysi, but instead
of routing a flow off i

e on an edgee, useri now routes a flow ofαf i
e on e. As si

1, s
i
2 are best strategies

of i given s−i, it follows that ci(s−i, si
1) = ci(s−i, si

2) = ci
min(s

−i), whereci
min(s

−i) denotes the cost of
the minimum cost flow pattern ofi given the flow patternss−i of all other users. We thus have to prove
that this is also the cost of the strategy defined by(αsi

1 + (1 − α)si
2).

We show that, givens−i, the cost of a flowf i
e of useri on edgee is a convex function. Denote byne

the number of users usinge, and generate the orderingfe,1 ≤ fe,2 ≤ · · · ≤ fe,j−1 ≤ fe,j ≤ · · · ≤ fe,ne
on

the flow routed by thene users one as defined bys−i. Definefe,0 = 0. Denote byW(fe,j−fe,j−1) the total
weight of thene − j + 1 players using the flow fraction[fe,j−1, fe,j]. Clearly,Wfe,1 ≥ W(fe,2−fe,1) ≥ · · · ≥
W(fe,j−fe,j−1) ≥ · · · ≥ W(fe,ne−fe,ne−1) (in casefe,j−1 = fe,j we defineW(fe,j−fe,j−1) = W(fe,j−1−fe,j−2)).
Now, assume that useri wants to use edgee as well. The cost of each possible fraction ofi’s flow on e
is described by Figure 6, and its total cost for routing anf i

e-value flow one is described by Figure 7.
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...
 ...
 ...


ce·wi

Wfe,1
+wi

ce·wi

W(fe,2−fe,1)+wi

ce·wi

W(fe,j−fe,j−1)+wi

ce·wi

W(fe,ne−fe,ne−1)+wi

ce

f1 f2 fj−1 fj fne−1 fne 1

Fig. 6. Cost of each possible fraction ofi’s flow on edgee.

...
 ...


...


...

ce ·

∑j
k=1

(fk−fk−1)·wi

W(fe,k−fe,k−1)+wi

ci
e

f1 f2 fj−1 fj fne−1 fne 1 f i
e

Fig. 7. Total cost of a flow of valuef i
e routed byi on edgee.

Clearly, the cost of useri’s flow f i
e on edgee, denoted byci

e(f
−i
e , f i

e), is a convex function, as for
each flow fraction(fj+1 − fj) the slope of the function is bigger than its slope for the previous fraction
(fj − fj−1). We denote by(f i

e)1, (f
i
e)2 the respective flows ofi on edgee as defined by the strategies

si
1, s

i
2 ∈ Ψi(s). Therefore, it holds that

ci
e(f

−i
e , α(f i

e)1 + (1 − α)(f i
e)2) ≤ αci

e(f
−i
e , (f i

e)1) + (1 − α)ci
e(f

−i
e , (f i

e)2).

Thus, the same holds also for the total cost ofi with respect to strategy(αsi
1 + (1 − α)si

2), namely:

ci(s−i, αsi
1 + (1 − α)si

2) ≤ αci(s−i, si
1) + (1 − α)ci(s−i, si

2)
= ci

min(s
−i),
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which implies that(αsi
1 + (1 − α)si

2) ∈ Ψi(s), completing the proof of lemma 1.1.

Lemma 1.2:The correspondenceΨi is upper hemicontinuous.
Proof: We consider a sequencesr in S converging tos, and a sequencesi

r in Si converging tosi,
wheresi

r ∈ Ψi(sr) for everyr. To show thatΨi is upper hemicontinuous, we prove thatsi ∈ Ψi(s).
We taker to be sufficiently large, so thatsr differs from sr−1 by a routing change of anǫ-value flow.

That is,sr is obtained fromsr−1 if user j reroutes anǫ-value of its flow on pathpj
1 to another pathpj

2.
According to the way we defined the users’ costs on an edge, thechange ofj’s flow pattern can only
reduce the cost of anǫ-value of the flow on each edge inpj

2, and increase the cost of anǫ-value of the
flow on each edge inpj

1, for all players using thisǫ-value flow on the edges inpj
2 andpj

1 respectively.

Claim 2: An addition of anǫ-value flow to an edgee can cause useri to change the routing of
no more than anǫ-value of its flow. Equivalently, the same holds for a deduction of anǫ-value
flow from an edgee.

Proof: In case of the addition of anǫ-value flow to edgee, only the fractional cost of an
ǫ-value of flow one is reduced for useri, and all other flow costs remain the same. Therefore,
any change ini’s best reply involving aδ-value of i’s flow, whereδ > ǫ, implies that the cost
of a (δ − ǫ)-value of useri’s flow could have been reduced prior to the flow addition one.
Equivalently, the same holds in case of a deduction of anǫ-value flow from edgee. In this
case, only the fractional cost of anǫ-value of flow one is increased.

Following the change ofj’s flow pattern, the most significant change insi
r compared tosi

r−1 would be
if i was to reroute a value of2ǫ of its flow to different paths: anǫ-value rerouted from a set of paths,
each containing an edge inpj

2 (where its cost was increased); and anǫ-value rerouted to a set of paths,
each containing another edge inpj

2 (where its cost was reduced). Denoting the number of edges inG by
|E| = m, i would therefore reroute no more than a(2m · ǫ)-value of its flow.

We denote byd(x, y) the distance between two vectorsx, y in an Euclidian spaceRk. In our context, a
flow vector is inS. Thus, for everyǫ > 0, there is an indexR such thatr ≥ R implies thatd(si

r, s
i) < ǫ

andd(sr, s) < ǫ, wheresi
r ∈ Ψi(sr). From the continuity property ofΨi(sr) shown above, it follows that

si ∈ Ψi(s).
We prove the existence of a Nash equilibrium using Kakutani’s Fixed Point Theorem [17]:

Theorem 10 (Kakutani):If T is a nonempty, compact, and convex subset of an Euclidian space, and
Ψ is an upper hemicontinuous, nonempty, and convex-valued correspondence fromT to T , thenΨ has a
fixed point, that is, there is anx ∈ T such thatx ∈ Ψ(x).

We now finish the proof of Theorem 9.
Proof: We define a correspondenceΨ from S to S by

Ψ(s) = Ψ1(s) × · · · × Ψn(s).

As shown before, the setS is a compact and convex subset of the Euclidian space. The correspondence
Ψ is upper hemicontinuous, nonempty, and convex-valued, since so is eachΨi, as shown in lemmas 1.1
and 1.2. Thus, by Kakutani’s Fixed Point Theorem, there is a fixed points ∈ Ψ(s). It is easy to see that
such a fixed points of Ψ is a Nash equilibrium ofΓ, as for each playeri, its strategy prescribed bys
minimizes its cost given the strategies of the other playersprescribed bys.


