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Abstract

We consider a multicast game with selfish non-cooperatiaggus. There is a special source node and each
player is interested in connecting to the source by makinguirrg decision that minimizes its payment. The
mutual influence of the players is determined by a cost sfariechanism, which in our case evenly splits the
cost of an edge among the players using it. We consider twiereift models: anntegral model, where each
player connects to the source by choosing a single path, &regtttonal model, where a player is allowed to split
the flow it receives from the source between several pathboth models we explore the overhead incurred in
network cost due to the selfish behavior of the users, as wetha computational complexity of finding a Nash
equilibrium.

The existence of a Nash equilibrium for the integral modek wpaeviously established by the means of a
potential function. We prove that finding a Nash equilibrighat minimizes the potential function is NP-hard.
We focus on the price of anarchy of a Nash equilibrium resglfirom thebest-response dynamicg a game
course, where the players join the game sequentially. F@naegwithn players, we establish an upper bound of
O(y/nlog®n) on the price of anarchy, and a lower boundXftog n/ log log n). For the fractional model, we prove
the existence of a Nash equilibrium via a potential functiond give a polynomial time algorithm for computing
an equilibrium that minimizes the potential function. Hipawe consider a weighted extension of the multicast
game, and prove that in the fractional model, the game allwagsa Nash equilibrium.
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I. INTRODUCTION

In many networking scenarios, including the Internet, mekwsers are free to act according to their
individual interests, without taking into account overadtwork performance. Users thus may make selfish
decisions (strategy choices) based on the state of the netwhich depends (among other factors) on the
behavior of other users, resulting in a non-cooperativeggaaturally, these scenarios call for a game-
theoretic approach for studying both the behavior of suam-cuwoperative users, as well as their impact
on the network performance. More specifically, we are irstexe in the properties of Nash equilibrium
solutions which are the stable outcomes of a non-coopergtivne. We note that there is a considerable
amount of research dealing with non-cooperative games tinanks [16], [19], [26], [29], [30], [32].

A scenario frequently encountered is the situation whermh eedge has a load-dependent latency
function, and each user aims to minimize the total latenoynfrits source to its destination. In this
framework, both simple and general network topologies vetueied, as well as various types of latency
functions and different constraints on the strategies efubers [16], [26], [29], [30], [32].

While unicast is the traditional form of routing, it resultea waste of resources (e.g., bandwidth) when
a source transmits the same data to multiple destinationstiddst routing schemes provide adequate
solutions for such transmissions, and are an importantgingearea. An essential question that has been
studied extensively in this context is how to distribute tiest of the transmission among the various
receivers [1], [5], [9], [12], [15]. However, these works dot consider non-cooperative game scenarios.

We consider a multicast game with selfish non-cooperatiaggrs. There is a special source node and
each player is interested in connecting to the source by mgadirouting decision that minimizes its
payment. Thus, the strategies of the players in the gamesmnd to the different paths by which the
players can connect to the source. Each player indepegddmibses a strategy minimizing its payment.
The mutual influence of the players is determined by a costrghenechanism that stipulates how the cost
of each edge in the network is shared among its users. Whileatymodels for non-cooperative games
in networks have focused on congestion effects, where airesautility deteriorates with the number of
users that share it, an important class of resource sharotggms occurs when a fixed cost needs to be
shared between a set of users. This game was recently ingddy Ansheleviclet al. [4]. In this paper
we study a natural cost sharing mechanism that falls intabwe framework, where the cost of an edge
is split evenly among all the players using it. More pregisél & players use edge of costc,, then each
player paysc./k for this edge. This cost sharing formula has an intuitiveesgb@nd it was investigated
in several studies [9], [12]; it is also the outcome of the [Béa value [31].

Further motivation for the multicast game we consider isvigled by the facility location problem,
which is of fundamental interest in operations researcla facility location game, we are given a set of
facilities, with an opening cost associated with each ifgciAdditionally, we have a set of clients, and
for each client-facility pair, we are given a cost that theerd must pay for connecting to the facility.
Each client needs to connect to one facility. A natural cdstrinsg mechanism for facility location is
splitting the opening cost of each facility between thentbeserved by it. Additionally, each client pays
for connecting to the facility serving it. Naturally, theiarits seek to minimize their total payment, thus
defining a non-cooperative game. This game constitutes @adpmse of the directed multicast game:
given an instance of the facility location game, we add a@®uronnect each facility to the source with
an edge of cost equal to the opening cost of the facility, &ed tonnect each client to each facility with
a directededge of cost equal to the corresponding connection cost.

We consider two different models: antegral model, where each user connects to the source through
a single path, and &actional model, where each user is allowed to split (fractionallg) dbnnection
to the source into several paths, i.e., one unit of flow is $eationally by the source to the user. The
fractional model, in addition to being a relaxation of théegral model, is interesting in its own right, as
it is a splittable multicast model which can be implementednetwork coding [2], [3], [18]. The games
resulting from these models are referred to asititegral multicast gamend thefractional multicast
game respectively.



A crucial property of our multicast game is that the per-us®st share on an edgensn-increasingn
the number of users of the edge. Although, in this respeetgéme differs from a classic congestion game,
the integral multicast game does belong to the well knowssctdcongestion gameshat was first defined
by Rosenthal [28] and has been widely investigated [13],,[Z8], [31], [33]. Rosenthal showed that a
potential function can be defined for each congestion gartte twe property that the potential decreases
if a player makes a move that improves its selfish cost. Thesvshhat every congestion game has a Nash
equilibrium. Moreover, there is a one-to-one corresponddretween Nash equilibrium solutions and the
solutions defining a local minimum of Rosenthal’s potentiaidtion. Since the integral multicast game
belongs to the class of congestion games, it has a Nash legquiti and a potential function. We note
that, for the integral model, the cost sharing mechanisngguiees that a Nash equilibrium induces a tree.
The Nash equilibrium of the multicast game raises severairabquestions. We focus in this paper on
the inefficiency resulting from the selfish behavior of thaygrs, and on the computational complexity
of finding a Nash equilibrium.

We quantify the inefficiency resulting from a non-coopemtyame through the ratio between the cost
of a Nash equilibrium multicast tree and the cost of an ogtiBiginer tree spanning the players. In
keeping with common terminology [20], [27], this ratio islled the price of anarchyand it quantifies
the “penalty” incurred by lack of cooperation (or coordina) between the players in a non-cooperative
game.

n

Fig. 1. Cost of a Nash equilibrium tree can bdimes the cost of an optimum Steiner tree.

Consider the graph in Figure 1 consisting of a souresd a node with two parallel paths connecting
them. The cost of one path s, while the cost of the other path is There aren players att who
want to connect to the sourge A solution where all players use the expensive path, eagingane
unit, is a Nash equilibrium with a cost of. A different and much cheaper Nash equilibrium is the
one in which the players use the path of cbstNote that this second equilibrium is also the minimum
cost Steiner tree connecting the players to the source., Thasprice of anarchy for this game can be
very large. Notice however that the expensive solution oaime reached if the players join an initially
empty game one-by-one, each of them choosing the cheapbsiopeonnect to the source. In this paper,
we investigate the price of anarchy of the integral multicGgeme for such scenarios. Motivated by the
existence of large-cost Nash equilibria, the notiorpote of stabilitywas introduced in [4]: it is defined
as the ratio between the cost of a Nash equilibrium of mininoast and the cost of an optimal Steiner
tree. In the above example, the price of stabilityl is1 contrast to the price of anarchy whichsis For
directed graphs, it was shown in [4] that the price of stabi ©(logn); for undirected graphs, an upper
bound ofO(logn) on the price of stability is known [4], however, no non-tallower bounds are known.
The price of stability of the multicast game in undirectedgr was recently investigated by [10]. It is
shown in [10] that for the special case where every vertexssoaated with a selfish player, the price of
stability is O(loglogn).

Even if the price of stability in undirected graphs is smalk still have two important questions
to answer. Can a Nash equilibrium achieving (or approxingatithe price of stability be computed
in polynomial time? Second, can a good equilibrium be addess a consequence bést-response
dynamic® That is, a course of the game where each player, in its tuakesna routing decision that
minimizes its cost. The price of anarchy of such a solutioangfly depends on the initial configuration
from which the players start. For example, if the startinmion is a Nash equilibrium with a large price



of anarchy, as in the example in Figure 1, then best-respdyisamics would not alter the solution. It
is shown in [4] that even in directed graphs, if the initiahtiguration is a Steiner tree of coé&t, then

the best-response dynamics would lead to a Nash equiliboiuoost at mostO(C'logn). This is shown
using Rosenthal’s potential function, which can only deseeaith each best-response move. This is also
a constructive proof that the price of stability@logn). In [4], the above argument is used to suggest a
mechanism in which a central authority starts the procesBrétycomputing a near-optimal Steiner tree
on the receivers, and then allows the users to follow thest-besponse dynamics.

In this paper we take an approach that does not rely on a tentsted authority starting the game
in a specific starting configuration. There are several sdoga in which having such an authority is
expensive or infeasible. Further, not all players might walable at the same time. In an online setting,
players might arrive one by one to join a multicast serviaemirthe source. Motivated by these issues,
we explore in this paper the following two-round setting.the first round, players join the game one
by one starting from an “empty” configuration. Upon arrivaBch player picks a path selfishly. Once
reaching the solution constructed by the players joining by one, the natural game course induced
by best-response dynamics continues in the second rouiidaudash equilibrium is reached. We stress
that in the second round, unlike the first one, a player may plany times. We assume that the arrival
of the players in the first round, as well as the order in whioh players play in the second round, is
adversarial. Our model is inspired by trind model considered by Mirrokhni and Vetta [24] to analyze
convergence issues in competitive games.

Our Results: We focus on undirected graphs. For the integral multicastegave establish an upper
bound of O(y/nlog®n) on the price of anarchy of the best-response dynamics indtimg where the
players join the game sequentially starting from an “emptghfiguration. We then present a lower
bound on(lol"l%) on the price of anarchy of this game. It is an interesting opgeestion whether a
polylogarithmic upper bound can be shown in this setting.alge prove that the problem of computing a
Nash equilibrium minimizing Rosenthal’s [28] potential @tion is NP-hard. It remains an open question
whether a Nash equilibrium of the integral multicast game ls@a computed in polynomial time. We note
that Fabrikantet al. [8] investigated the complexity of computing a pure Nashildgiium for the class
of congestion games, where the cost of a facility is a nomedesing function of the number of its users,
and showed that it is PLS-complete for general network cetnige games. However, their proof heavily
depends on the non-decreasing property of the cost shamafpanism, and therefore does not seem to
hold in our model.

For the fractional multicast game, we prove the existen@Nésh equilibrium by extending Rosenthal’s
potential function. Our main result for this model is that asN equilibrium minimizing Rosenthal’'s
potential function can be computed in polynomial time uslimgar programming. This result should
be contrasted with our proof that it is NP-hard to compute raegral Nash equilibrium minimizing
Rosenthal’s potential function. We observe that the fraetioNash equilibrium minimizing the potential
function has a price of anarchy 6f(logn).

The results obtained for the fractional model hold also forengeneral settings, where the cost sharing
mechanisms areross monotonewhich intuitively means that the share of a player on an edgeot
increase when additional players use it. Furthermore, ¢Balts also hold in the setting where there are
multiple sources and each player needs to connect to atdeassource. We note that the fact that our
cost sharing mechanism is non-increasing in the numberayfepé using an edge allows us to define a
fractional extension. This does not seem possible with ademmeasing cost sharing mechanism.

Finally, we consider a weighted extension of the multicasnhg, where each player hasvaight and
the cost sharing mechanism splits the cost of an edge amsmputnstream receivers proportionally to
their weights. That is, the cost share of a player for an edgrle the ratio between the player’s weight
and the total weight of all the players using this edge. F& ¢lame we prove that a Nash equilibrium
exists in the fractional model. This result should be cataa with the result of Chen and Roughgarden [6]
who showed that a Nash equilibrium does not necessarily gxihe integral weighted multicast game.



[I. THE MODEL

We model our network by an undirected gragh= (V, E). Letc: E — R* be a non-negative edge-
cost function, and we denote lay the cost of edge € E. There is a special vertexc V called root (or
source) and a multi-set of verticesN = {t,1.,...,t,} representing multicastsers(also calledplayers
or terminalg.

In the integral model, the goal of each user is to choose despagh P connecting it to the root, while
minimizing its payment, which consists of the sum of the pagta for the edges along. A course of
action chosen by playerat any time is called itstrategyand is denoted by’. In the integral model,

a strategy of playei is a path connecting; to the root. The strategy space of playe(i.e., the set of
all its possible strategies) is denoted 5Y, and in our integral game, it is the set of all the possible
paths between; and the root. The space of all the possible strategy proflefenoted byS, and it is
the Cartesian product of the strategy spaces of all the gager S* x S? x --- x S™. At any given
moment, a strategy profile (or a configuration) of the game S is the vector of all the strategies of
the playerss = (s!,...,s"). We uses™ to denote vectos without its ith coordinate, ands™, 5%) to
denote the strategy profile identical #pexcept that théth coordinate is replaced by. Given a strategy
profile s, ¢'(s) = c(s') denotes the payment of player(the cost of its paths’), andn.(s) denotes the
number of players using edge Payment of user for edgee is denoted by (s) and is determined by
the cost sharing mechanism. We consider a natural cosngha@chanism, where the cost of every edge
is split evenly between the players sharing it. Thus, themgayt of player: for edgee is c'(s) = nf(:).
We denote by(s) the sum of the costs of the edges participating ifwe say that edge participates

in a strategy profiles, if and only if at least one player chooses a path contaigirig connect to the
source). LetH (k) denote the Harmonic numb@;‘fz1 %

A strategy profiles € S is at Nash equilibriumif no player has an incentive to change its routing
strategy, assuming that the strategies of the other playrerséixed. We assume that a player changes its
routing choice if and only if it reduces its payment. A chamgestrategy by any player is calledNash
defectionand the corresponding player is callBésh defectorWe assume that at each step the acting
player chooses a strategy that minimizes the cost of its, gathn the strategies of the other players. We
therefore say that at each step the strategy of the curragempls abest responséo the other players’
strategies. Thus, at Nash equilibrium, the strategy of qaakier is the best response to the strategy
choices of the other players.

[11. THE INTEGRAL MULTICAST GAME

The integral multicast game is a special case afoagestion gameformulated by Rosenthal [28],
who defined a potential function to show that every congasgiame possesses a Nash equilibrium. A
congestion modeis denoted by’ = (N, M, (5)ien, (0)jenm), Where N denotes the set of players
{1,2,...,n}, and M denotes set of facilitieg1,2,...,m}. For each usei € N, S’ is the set of its
possible strategies, where eache S is a subset of facilities fromi/. For each facility; € M, o; € R®
denotes the payoffs vector gf whereo;(k) is the payoff of each player for using facility in case
exactly k& players usej. Finally, z;(s) denotes the number of players using faciljtyaccording to their
strategies defined by the strategy profile S. Given a strategy profile and a facility j, we say that
J € siff z;(s) > 0.

Rosenthal [28] showed that every congestion game possedsashaequilibrium by constructing an
appropriate potential function. Later, Monderer and Séaf25] characterized the class of finfgetential
games showing that they coincide with the class of congestion @@mvhere each step performed by a
player improving its payoff also decreases (or increades)value of a global potential functioh on
the strategy space. Consequentlypiadmits a minimal (maximal) value i, then the respective game
possesses a (pure-strategy) equilibrium.

The potential functionb(s) defined by Rosenthal for the congestion model is the following



zj(s)
26 = 3 (L)),
jEs k=1
For completeness, we sketch the proof of the following teegrpresented in [28].
Theorem 1 Rosenthal [28]): Every congestion game has a pure Nash lequih.
Proof: The function® is an exact potential for any congestion game. That is, feryeve N, and
every pair of strategy profile&s ™, s%) and (s, s), if ¢'(s™%,s%) < ¢'(s7*, sb), then

Ci(siasé) - Ci(siia Szl) = CI)(Siia SZZ) - q)<37i7 Sll)

In other words, the decrease in the value of the potentiaitiom following a Nash defection is equal to
the decrease in the payoff of the respective Nash defector. [ |
For our multicast game, given a strategy profileéhe potential functionb of [28] is

ne(s)
@®=Z(Z%)
e k=1

It is easy to see that for every instance of our game, a Nasitiegun solution is a tree rooted at
spanningN.

We now analyze the price of anarchy of a multicast game in airected graph. We are interested in a
Nash equilibrium that is a consequencebekt-response dynamjoshere each Nash defector, in its turn,
chooses a path to the source minimizing its payment. Finsliodp a path can be done in polynomial time
by using a standard shortest path algorithm. Initially, pkeeyers join the game one by one starting from
an “empty” configuration and picking a path to the root thahimizes their payment. Once all players
are connected to the root, they continue playing until resciNash equilibrium. Note that we assume
that the order by which the players play is adversarial. IotiSe IlI-A we establish an upper bound
of O(y/nlog®n) on the price of anarchy for this game course, and in SectibB We prove a lower
bound on(loloi”n) on the price of anarchy. We also prove that finding a Nash ibguiin minimizing
Rosenthal’s [58? potential function is NP-hard in SectioRGl

A. Upper Bound

In this section we establish an upper bound@f,/nlog”n) on the price of anarchy of a Nash
equilibrium obtained from best-response dynamics. Oulyaigis performed in two steps. We first
analyze (in Section 1lI-A.1) thdirst round of the game in which the players connect one-by-one to the
root via a cheapest path. The first round finishes when alleptagre connected to the root. However,
the configuration reached by the players after the first raambt necessarily a Nash equilibrium. In the
second round, we start from the solution obtained in the foghd and follow the natural game course
until a Nash equilibrium is reached. In order to bound theemf anarchy of the strategy profilE
obtained from the first round, we define the notion déwel treethat serves as a basis of reference for
proving the upper bound.

A greedy online Steiner tred4] is defined as follows. It is the tree obtained when teafsrarrive
online one by one. Upon arrival, each terminal connects waeapest path to the root, where the path
cost only consist of the costs of the edges that do not clyrbetong to the tree. Thus, th#h terminal
connects by a cheapest path to the tree induced by the chaficesminalsl,...,i — 1. The total cost
of the greedy online Steiner tree is known to be at most a ffauft@ (logn) away from the cost of an
optimal Steiner tree [14]. We consider the greedy onlinenStetree obtained from the same sequence of
arrivals as in the first round of the game. Our goal is to prdna the cost of the solution obtained by
the selfish moves of the players is related to the cost of teeSteiner tree. We are, however, unable
to show this directly. We overcome this difficulty by first iisforming the online Steiner tree to a level



tree with reduced height using a procedure due to Zelikoy8Kky. The height reduction increases the
cost, but maintains ancestor relationships that are afifar the analysis. We prove that the cost of the
solution obtained from the first round is at m@st,/n logn) times the cost of an optimal Steiner tree.

We complete our analysis in Section IlI-A.2. Starting frohe tsolution obtained from the first round,
we follow the natural game course until a Nash equilibriumesched. The Nash defections performed in
the second round can only decrease the potential functilue vand thus we lose at most another factor
of O(logn) with respect to the cost of the solution obtained from the fipsind.

We paraphrase below the height reduction lemma of Zelikptisat we need. A bound claimed in [34]
proved to be incorrect and a weaker correct bound is edteolign [11].

Lemma 3.1:Let T'= (V, A) be an in-tree rooted atc V" and letc : A — R* be a non-negative cost
function onA. Let G = (V, A;) be the transitive closure @ and letc’ : A — R* be such that/(u, v)
is the shortest-path fromu to v in 7. Then, given integeh > 1, there exists an in-tree tréé = (V, A’)
in G, where A’ C Ag, of height at most such thaty",_, ¢(a) < h-|[V|VEY _, c(a).

1) The First Round:We begin by analyzing the first round of the game in which playerive one by
one and pick a path selfishly. Let the sequence of arrivalhefterminals be,t,,...,t, (renumber
if necessary), and lef’ be the resulting solution. We assume that the players stamh fan empty
configuration. Note thal” need not be a tree.

Definition 1: A level treeT” on the vertex sefr(=ty), t1, s, . .., t, }, with a cost functiond : £ — R,
is defined to be a tree having the following properties fohe@eminalt;. (i) For 1 < i < n, the ancestor
of terminalt; in 7" belong toty, t1,1s,...,t;_1, i.€., terminals that have arrived befare (ii) Let ¢t and
t; be two terminals iril”, such thatt is the parent ot;. Then the cost of the edge;,t) in 7", denoted
by d(i), is no less than the cost of the cheapest path betweandt in G.

Definec(T”) = > ", d(i). Let T'(i) denote the state df after the arrival oft,,....t;. Let P, denote
the path chosen by; to the rootr in 7. We denote byB (i) the set of new edges that are added/to
whent; joins T'(i — 1). Let b(i) = >_ g ce. Clearly,c(T) = 37, b(i). Let c(i) be the cost paid by
t; when it joinsT. Clearly, c(i) > b(i). Note that in the single round case the cost paid by a player ca
only decrease during the round.

Given an edge:, let n.(i) denote the number of paths (terminals) usingh 7'(i). We usec.(i) to
denote the cost aof as seen by a selfish playerti), i.e.,c./n.(i). We usec/ (i) to denoter. /(n.(i)+1)
which is the cost per player for using edgef an additional player were to usein 7'(i). We define

c™(i) to be ) . p i (i). The following is immediate.

Fact 3.1: ¢ (i) < (c(i) — b(i)) + (i) /2 = e(i) — b(i)/2.

The edge set of is partitioned by the set8(i), 1 < i < n. We now show how we charge the cost

of edges inB(i) to d(1),...,d(i). Assume that we are given a level tréérooted atr having height2.
Lett;,,...,t;,, be the first level terminals, i.e., the childrenioin 7”. The second level terminals are the
children oft; ,...,t;,, i.e., leaves off”. Denote byA(t;,) the children of first level terminai;, .

We first analyze the cost of the edges added’tby the first level terminals.
Lemma 3.2:For the first level terminals,

Proof: By Definition 1, for each first Ievel termlnalj, 1 < j <m, there is a path to the roetof
cost at most(i;) (without taking into account cost sharing). Therefdrg,) < c(i;) < d(i;). n
We now analyze the cost of the edges added toy the second level terminals.

Lemma 3.3:Let ¢; be a first-level terminal with childrety,,¢;,,...,¢;, in 7. Then

k

> b(Gi) < 2¢t +42d9z

i=1



Proof: Assume w.l.o.g. that the arrival order ig,t,,,...,t,;,. Consider what happens when
arrives: it can connect to;, and then connect to the root via the path connectjnp the root. Hence,
c(j1) < d(j1)+ct(j). Now consider terminal;, for ; > 1. It can connect t@;, , (paying at most/(j;_1)+
d(j:)), and then followP;, , to the root. Hence the cost of this path is at mégt_1) +d(j;) + ¢ (ji—1),
which by Fact 3.1 is at most(j;_1) + d(j;) + c¢(ji—1) — b(ji—1)/2. Thus, we have fot < i < k,

c(ji) < d(ji—1) +d(Ji) + c(Jim1) — b(Ji—1)/2.

Adding up the above inequalities, we obtain:

)+ 5 (b0 +b(7) + -+ b)) <
c™(7) +d(je) + 2(d(jr) + d(j2) + - d(jr-1))-
Sinceb(jx)/2 < b(Jjx) < c(jr), we obtain the desired inequality:

k

> b(Gi) < 2¢t +4Zd~7@

i=1

u
We conclude with the next theorem.
Theorem 2:¢(T) < 4¢(T").
Proof: We combine Lemmas 3.2 and 3.3 and get:
Zb = > o+ D b
j=1 tZGA(tz )
< Y ob(i)+ > (2t + D 4d()
j=1 j=1 te€A(ti;)
< ) di)+ > |2+ Y 4d()
j=1 j=1 t€A(ti))
< 4) d(i) < 4(T).
=1
u

An interesting question is whether the use of level treesiwhiave depth greater than two can lead to
better bounds on the price of anarchy. The difficulty withsthpproach is that for trees with more than
two levels, a recursive use of Lemma 3.3 is necessary. Hawthes recursion introduces extra charges,
and it is not clear how to bound them.

2) Completing the AnalysisWe first generate the level tré€. Note that the greedy online Steiner
tree obtained from the sequence of arrivals of the first roonthe game has all the properties required
by a level tree. The difficulty is that the height of the greedyine Steiner tree can §&(n). We generate
a new level treel” from the greedy online Steiner tree by applying Lemma 3.1le THansformation
preserves ancestral relationship and tiiigemains a level tree, while allowing us to restrict the heigh
of the tree to bé at the expense of increasing its cost by a factoh of'/*. By choosingh = 2, we get
a two level treel” and cost at mos?./n times the cost of the greedy online Steiner tree. As the dost o
a greedy online Steiner tree is within a factor@flogn) away from the cost of an optimal Steiner tree,
we get thate(7") = O(y/nlogn) - ¢(T*), whereT* is an optimal Steiner tree. Therefore, by Theorem 2,

o(T) = O(y/nlogn) - c(T%).



Finally, after reaching the solutiof’ constructed by the terminals in the first round, the natuesi b
response dynamics are followed in the second round untilshguilibrium is reached. It is easy to see
that the value of the potential function of any configuratisrat mostlog n times the total cost of the
edges used in this configuration. Therefore, the potentiattion value off” is within at most a factor of
O(logn) away fromc(7T'). The potential function value can only decrease throughimeitsecond round.
As the value of the potential function of a solution is always upper bound on the cost of the edges
participating in the solution, we get that the price of ahgrof our game isO(/nlog?n).

(a) (b)

Fig. 2. (a) Price of anarchy df — e. (b) Price of anarchy of)(—&m_),

loglogn

B. Lower Bound

In this section we present an undirected instance in whidt-tesponse dynamics converges to a
Nash equilibrium with price of anarchy dﬁ(lolgoﬁ)gn). We start with a simple example whose price of
anarchy is at leas2 — e. After that we show how to extend the ideas used in this exartplshow an
Q(logn/loglogn) lower bound on the price of anarchy.

Let ¢ be a large integer. Our first example is constructed as fslidie start from a root vertex and
additional vertexu; connected to the root by a unit-length edge. We now add anaihiélength path
from the root to a new vertex,. The edges and the vertices of this path are as follows. Apamt
and u,, there arelog g verticesuvy, ..., v, that are placed betweenandu, in this order, with vertex
v, adjacent tor. The distance between andr is % and for everyi; > 1, the distance between and
v;—1 is 27°, thus the distance between,, andu, is less thani. Finally, there is an edge of Iengtén
betweenu; andus.

The idea is as follows. The firgt players joining the game are placed on vertgx They connect
to r via the unit-length edgér, u,) and pay% each. In the next step we plageplayers on vertex;.
Naturally, they prefer to connect tovia edge(v;,r) whose cost i%, instead of connecting via, and
u;. Now the cost of the edgév, ) becomeszl—q. When we place the next players on vertexs, they
connect via(vy, v1,7), as the cost of this path is less than- 5. while connecting viau; andw; costs
more than% + 5 We continue in the same way, placipgisers on verticess, . . ., v,g4, Where the users
placed on vertex; all connect via pattiv;, v;_1, ..., vy, 7). Finally, we place; players on vertex,, who
also prefer to connect via path.,, ), as its cost is less thaéf\ It is easy to see that this configuration is

a Nash equilibrium. The cost of this solutiondswhile the cost of the optimal solution is+ é which
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is achieved by connecting all the players on péath ) via this path and connecting all the players on
vertexu, via uy. See Figure 1lI-A.2(a) for the resulting instance.

We now show how to generalize the above construction to oltes bound oﬂ(lolg‘)l%) on the price
of anarchy. The basic gadget we use in our constructionlig-aivision of an edge.

Definition 2: Suppose we have an edge b) of lengthc. A log-division of this edge is performed by
converting this edge into a pathuvy, v, . .., vi,e4, b Of the same length. The length of the edgev, ) is
5, and for each > 1, the length of edge;, v;_; is ;. Thus, the length of edg@og 4, b) IS less than;—".

A building block of our construction is a paih defined below. We usé = Q(lo{g"%) copies ofp.
The construction of path is as follows. We start from an edde, «) of length 1. Vertex v is called a
level-1 vertex. We now perforn? iterations. In each iteration, we performl@-division of every edge
e = (w,w’) on path(v, u). When doing this division, the endpoint efthat is closer ta on the path (say,
w) serves as and the other endpointu() serves a$. For each iteration, we call the vertices added
to the path in this iteration “level vertices”. In our construction, we ugecopies of pathp, denoted
by pi1,p2,...,p. The endpoint of these paths are merged together and form the rodthe other
endpoints of the paths are denotedyus, ..., u,. Finally, for eachi, 1 < ¢ < ¢, we connect each of
the leveld,2, ... i vertices on patlp; to the corresponding vertex on pathby an edge of Iengt@.

The players are added to the game as follows. First wegapldyers on vertex:.;. They connect via
pathp, to the root. Then, we add players on paths. .., p, in this order. Fori > 1, we add players on
all the vertices of leveld,2,...,i belonging to pathp;, as well as on vertex;, in the order by which
the vertices appear on the path starting from the root. Sger€-illl-A.2(b) for the resulting instance.

Claim 1: For eachi : 1 <1 </, for each player. on pathp;, o connects to the root via the subpath
(x,r) of pathp;, wherex is the vertex on whichv lies.

Proof: The proof is by induction on the order in which the playersla@eg added. Letr be some
player lying on vertex: of pathp;.

If = is the first vertex on path;, then it is a level- vertex. Letz be its closest level-— 1 vertex.
Playera has two options to connect to the root. One is via the path sagfm, r), and the other is via
the path segmeritr, z), and then use the edge connectintp p, whose cost i2/q (all other options are
clearly more expensive). However, since the costérof) and(z, z) are the same, the cheaper option is
the path(zx,r).

Assume now that is not the first vertex on path,. Let y be the vertex lying next ta on the sub-path
of p; connectingr to r. Assume first that is a level: vertex. By the induction hypothesis, all the players
that were already added to path chose to connect to via this path. Hence the cost of the segment
(y,r) is currently at mosti/q. Thus, connecting te via the path(x — y — r) costs at most /¢ plus
the cost of(x,y). The other possibility is to connect to(the closest vertex of levels,...,i — 1 lying
on pathp; but not on the segmertt, ) of this path), and then use ti2g¢¢-cost edge connectingto p;.
Since the cost ofz, z) is the same as the cost ¢f, y), this is more expensive than connecting via the
(x,r) segment ofp;.

Finally, assume that is a vertex ofp; that belongs to one of the levels...,i — 1. Again, using the
induction hypothesis, all the players already added to paittonnect via the pathp; to the root. Since
the distance fronx to the next level- vertex on the patliz, r) is less thanl/q, it means that the cost of
connectingz to r via the sub-pathiz, r) of p; is less thar2/q. The other option would be connecting to
pathp, using a cosk/q edge, which is clearly more expensive. [ |

Thus, a Nash equilibrium consists of all pafhsps, . . ., p,, and its cost equals In the optimal solution,
all players are connected via pgth In order to connect some player belonging to pathi = ¢, we

use the edge of Iengtgl connecting this player to pathy. Note that the total number of playerd is
bounded by2qk, wherek is the number of vertices on path. Clearly, k < (log ). Fixing { = lolg()i)(éq’
we getk < ¢. The total cost of the optimal solution is less than- %’“ < 3 and the price of anarchy is
thereforeQ)(¢) = Q(z%L). As M < 2k < 2¢°, the price of anarchy i8)(() = Q(520).

We have thus proved the following theorem.
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Theorem 3:The cost of anarchy in the best-response dynamics of thgraitenulticast game is at
least(logn/loglogn).

C. Intractability of Optimizing the Potential Function

In this section we prove that finding a Nash equilibrium thatimizes the potential function is NP-hard.
As a building block we use a variation of the Lund-Yannakagkigof [22] of hardness of approximation
for the set cover problem.

The input to the set cover problem is a ground set of eleménasd a collectionS of subsets ofU.
The goal is to choose a minimum cardinality collection ofsatS covering all elements. The reduction
of [22] is performed from theSAT problem.

We use a straightforward and standard variation of the ococtsdn of [22] to obtain the following
theorem (see, for instance Section 2 in [7], which contadesdomplete description of the construction
and its analysis).

Theorem 4:Given a3SAT formula ¢, an instance of the set cover problem can be constructed in
polynomial time, such that:

« All sets have equal size (denoted by

. If  is satisfiable (yes-instance), then there is a solution ¢ostit cover instance that us&ssets,

and each element is covered by exactly one set in this solutio

« If  is not satisfiable (no-instance), then the size of any swiuib the set cover instance is at least

aX, wherea > 1 is some constant.

In the rest of this section we prove the following theorem:

Theorem 5:The problem of finding a Nash equilibrium of the integral naast game that minimizes
the potential function is NP-hard.

Proof: Given a3SAT formulay, we first construct a set cover instance as in Theorem 4, am th
create an integral multicast game based on this instancillaws. There is a vertex for each set and
each element in the set cover problem, and additionally we laaspecial vertex. The players are the
vertices that represent the elements. Each vertex repiregen set is connected to with a unit-length
edge. Each vertex representing some elemaatconnected to a vertex representing Seif and only
if ¢ €S. The length of the edge is a large integewhich will ensure that each user (element) chooses
a path that contains only one such edge (i.e., connects v # svhich it belongs). LefV denote the
total number of users (elements) in the above example. lhasigh to choosg > N.

Supposey is a yes-instance. Then there is a soluti®hof size X to the set cover instance. This
solution naturally induces a Nash equilibrium in our gambere each element connects to the set that
covers it inS’ and all the sets i®’ are connected to the root. Observe that there are exacters on
every edge that connects some setSinto the root. The value of the potential function in this smint
isgN + X - H(s).

Assume now thaty is a no-instance and suppose we are given some Nash equniibfiihis Nash
equilibrium defines a solution to the set cover instanceseseach element has to connect to one of the
sets to which it belongs. However, the number of sets uselbisnsblution is at least.X, and some of
the edges connecting these sets to the root are used by éess tisers. Thus, the value of the potential
function in this solution is strictly greater thagVv + X - H(s).

As determining whether a givesSAT formula is satisfiable is NP-hard, it is NP-hard to find ashla
equilibrium minimizing the value of the potential function [ |

IV. THE FRACTIONAL MULTICAST GAME

In this section we introduce a fractional model of the malsicgame, where each user is allowed to split
(fractionally) its connection to the source into severahpaThe fractional model represents a splittable
multicast model. While one unit of flow can be sent fraction&ly the source to each user, the data (i.e.,
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a flow fraction) is sent once on each edge of the multicastlogyp independently from the number of
its users. In the sequel we discuss how to efficiently implantieis via network coding.

The cost of each flow fraction on an edge is evenly split betwiee users. Thus, the total cost of
the flow on an edge is simply the cost of the flow fraction senthat edge. We present our results for
undirected graphs, yet they hold for directed graphs as. Wwelihe fractional model, each uséhas to
route one unit of flow from; to the source . Useri can split its unit of flow among any number of
paths connecting to ¢;. Denote the flow of user on edgee by f.; and the number of users on edge
by n.. Given a strategy profile, assume without loss of generality that; < foo, <--- < f.,,. < 1.
Define f., = 0. Edgee has capacity equal t¢. ,., and for convenience we think of the capacityecds
defining an “address space” in the rarigef. ,..|, where usey uses|0, f. ;]. The cost of each fraction of
the capacity ok is equally split between its users, as follovi: ;_i, f. ;| is shared byr. — j + 1 users,
where each user paygM Therefore, the total cost paid by useri for the use of edge is:

j+1
fe k fe k—1
C = Cer Z Ne —k+1"
As the total flow fraction sent on edgeis f. ., the total cost of the edge is simply - f. ...

We denote by1DZ the set of paths used by userThe cost of a patlp € P is the sum of its edge
costs, that iy, c.. The total cost’ of a useri is the sum of its path costs, thatJs .. > .., ci.
Each user aims to establlsh its flow from the soureeo ¢; so as to minimize its cost. Thus, a flofv
is at Nash equilibrium if no user has any incentive of chaggtas flow to the root. An instance of the
fractional model, consisting of a gragh a sourcer, a set of receiversV, and a cost vector is denoted

by frac(G,r, N,c). We introduce a potential functiob for the fractional multicast game which is based
on Rosenthal’s potential function [28], as follows:

ne(s) ne+1—j f
=3 (XX et
ees i=
The proof of the next theorem follows from the proof of Rosatithpotential function [28].
Theorem 6:The potential fuctiond® is an exact potential for the fractional multicast game. tTisa
for everyk € N, and every pair of strategy profilés—", s¥) and (s7*, s%), if c*(s7% s¥) < F(s7*, s5),
whereck denotes the total cost of usky then

ck(s_k, sg) — ck(s_k, slf) = @(s‘k, 372“) — <I>(s_k, s’f)

The proof of Theorem 6 appears in Appendix Al. As a fractidii@lk configuration defining a local
minimum of the potential function constitutes a Nash efuilim, we get:

Theorem 7:A Nash equilibrium exists for every instangeac(G,r, N, c).

We now explain how a fractional solution can be implementednetwork coding. A Nash equilibrium
configuration determines a directed flow network (note thaniedge is used in both directions, then it
should be replaced by two directed edges). We define the itamda cut separating from a terminal
t; € N as the sum of the capacities of the forward edges in the cigremhe capacity of edgeis f. . .

By allowing each usei to split its connection tor as described above, it follows that the capacity of any
cut separating from ¢; € N is at leastl. Koetter and Medard [18] (see also [3], [21]) showed that the
transmission rate of a fractional multicast transmiss®maounded by the capacity of the minimum cut
(taken over all) separating- from ¢; € N, and this bound is tight. This means that in our case, where
the capacity of the minimum cut is at leastthe transmission rate is the same as in a tree. Therefore, a
Nash equilibrium of the fractional game is a stable opegapoint, where the users share the cost of a
solution achieving the minimum cut property and no player gailaterally reduce its cost by changing

its strategy.
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A. Computing a Minimum Potential Nash Equilibrium

We proceed to describe how a Nash equilibrium of the fraeligame can be computed in polynomial
time using linear programming. Moreover, the computed Naghlibrium minimizes the potential function
®. Compare that with the hardness of finding an integral salutionimizing the potential function. In
addition, as shown later, the minimum potential Nash eguilim is within a factor ofO(logn) away
from the cost of an optimal fractional Steiner tree.

Given an instancgrac(G,r, N,c), we create a new grapi’ = (V, E’) by replacing each edge by
n copieses, ey, ..., e,. The cost of a unit flow on edge; is c./j. For a pathp from ¢, to r in G', we
denote byf; the amount of flow of commodity sent on it. Note that different paths can use an edge in
opposite directions.

We formulate a linear program with an objective functionttissequal to the potential of the fractional
multicast game. The variables of the linear program are thvesflof the users sent on the set of paths in
G' from the terminalgy, ..., t, to the rootr, and the capacities of the edgesih Denote a path from
t; tor by t; ~» r. The capacity of edge; is denoted byr.,, where0 < x., < 1. The linear program is
as follows.

... i J Ce * Te,;
minimize ZZ (Z i J) s.t.

ecFE j=1 i=1
For each commodity: > fi > 1 1)
piti~or
For each edge, copy j, commodityi: £ < o, 2)
piti~>rlej Ep
For each edge, copyj: > > fi = j-x (3)
=1 pit;~srle;€p
0 <, <1, f,>0 )

The total flow of uset, summed up over all paths frotto r, is at leastl (Constraint (1)). Constraint
(2), the non-aggregatingflow constraint, restricts the flow of each useon edgee; to be at most its
capacityxr.,. The total flow, taken over all commodities on edggis constrained to be precisefy z.;,
as restricted by Constraint (3), tlaggregatingflow constraint. This constraint is satisfied in the integral
case: ifj commodities are sent on edgethen edge; is “bought”, and the number of users on this edge
is 7. The sum of the costs of the commaodities @nis then exactlyc,.

Note that the above linear program uses an exponential nuoilvariables. However, it can be solved
in polynomial time via the dual program using the Ellipsoigaaithm. Alternatively, it can be formulated
with a polynomial number of variables by using the flows of tieers on the different edges @ as
variables.

1) Characterizing an Optimal SolutionVe say that a flowf on instances’ is canonicalif it has, for
every edgee € £, the following structure. Denote by. ; the sum of the flows of usei on all copies
of e (fej =D 14 Zp:tjwﬂekep fg). Suppose that without loss of generalify; < feo <--- < fe,. <1,
wheren, denotes the number of users with positive flow. Then, the flomaed one,,, ... ey, e, are
feas (fea = fea)s- ooy (fej — fej=1)s- -y (fen. — fem.—1), respectively, and the non-aggregating flow on
copiese; for i > n.+1 is zero. Notice that there is a one-to-one correspondengeeba canonical flows
in the instance&>’ and fractional multicast flows iG:. We now turn to prove that there exists a canonical
flow minimizing the potential function.

Let f be the output flow of the linear program. We first consider tbe ff., on each copy, of edge
e, and rearrange it to be a canonical flow. Then, we merge the=sdting canonical flows into a single
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canonical flow one. These two steps are performed for each edge E. We show that the resulting
potential of the new (canonical) flow is not larger than théeptal of the original flowf.

Lemma 4.1:Consider edge;, € E', 1 < k < n. There exists a canonical flow an with potential

value not greater than that of the original flow en
Proof: Without loss of generality, suppose that ; < f, 2 < --- < f, ¢ are the different amounts

of flow routed one; by the users, wher¢,, , = z.,. For ease of notation, we denote this ordering as
fi < fa <--- < fo, where f, = z.,. Assume that the number of users routing a flow vafug; is k;,
and thusk; >k, > --- > k. We rearrange the flow,, to be a canonical flow by sending each amount
of flow to its proper edge copy, i.e. by “buying” capacify on edgee,,, capacity(f, — f1) on edgees,,
etc.

The potential of the resulting canonical flow derived frgim is thus

5 ) IS TR

=1 j5=1
where f, = 0. On the other hand, the potential of the original flow qnis

k
Ce Z Tek — ¢, - H(k)xe, = c.- H(k) fo.

1
i=1
The total flow one, is constrained to bé - z., = k- f, (Constraint (3)), which is equal to the total
canonical flow derived frony,,, and thus

y4
ke fo= ki(fi = fi).
=1

i fi—fi— £ (fimfic1) o ;
Since0 < Y=t <7 and Y[, Yi=f=th = 1, by Jensen's inequality,

Z (k )f fi- 1<H(Zk —Ji- 1>:H(k:),

=1

and thusy"\_ H(k)(fi — fii1) < H(k) fo. m

Lemma 4.2:Consider edge € E and two canonical flowg, and f.. Then f. and f/ can be added up
yielding a canonical flow with potential value not greateartithe sum of the potentials ¢f and f/.

Proof: Consider two canonical flowg and f’, and assume that their respective flowsegrare z;,

andz. That is,z;, (resp.,z}) is the amount of flow routed by each player usigaccording tof (resp.,
f'). We denote byG, and G, the sets of players that usg according tof and f’ respectively, where
|G| = |G| = k. Assume, Wlthout loss of generality thaf > ;. By merging these two flows into a
single canonical flow, we “buy” capacity, on copy|Gy U G}| of edgee, capacity(z) — x;) on e, and
capacityx; on copy|Gk NG| of edgee. We thus get a new canonical flow with potential

On the other hand, the sum of potentlals of the original flows0is H(k)x) + H(k)x). As
2H (k) > H(|G, UGL]) + H(|Gr N GY)),

we get that the potential of the new canonical flow is not latgan the sum of potentials of the original
flows.

In caseG # G, the potential of the new canonical flow is strictly less thla@ sum of the potentials
of the original canonical flows. In this case, capacity habddought on other copies efexcept fore,,
and thus other merging steps should be performed for eathcaypy. As each such step strictly decreases
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the potential, the merging process is finite. |

Theorem 8:There exists an optimal solution to the linear program whsch canonical flow.

Proof: Let f be the output flow of the linear program. Asis a flow of minimum potential, it is
either canonical, or can be easily rearranged as such bgrpeng the two steps described by Lemmas
4.1 and 4.2 on all copies of each edge [ |

The linear program presented for computing the minimummg@eNash equilibrium of the fractional
model can be used for more general settings, not necessgaliarian, where the cost sharing mechanisms
are cross-monotonic, i.e. the cost functions are non-asitng in the number of users. Furthermore, it can
also be used for settings where the users are not restrictedve a common source. Recall that finding
an integral solution with minimum potential is NP-hard.

There are instances for which there is a gap between the mmipotential fractional Nash equilibrium
and the minimum potential integral Nash equilibrium. CoasidFigure 3, which depicts an instance
(G, r,{t1,ta,t3}, c), for which the minimum potential fractional Nash equilim is smaller than the
minimum potential integral Nash equilibrium. The edge sagt as follows: the cost of each edgev;)

(: = 1,2,3) is x, and the cost of each edge from to the terminals connected to it is>> z. The
fractional Nash equilibrium that minimizes the potentmlais follows: each termind) sendsl /2 unit of
flow through each of the two vertices (j = 1, 2, 3) connecting it tor. Therefore, the fractional potential
iS @ g = 32/2(1 + 1/2) + 6¢/2 = 92/4 + 3¢. On the other hand, the integral Nash equilibrium that
minimizes the potential is as follows: two out of the threertmals send their flow through the same
vertexv; to r, and the third terminal sends its flow through one out of tieotwo vertices); connecting

it to . Therefore, the integral potential #;,; = x(1 + 1/2) + x + 3¢ = 10z /4 + 3q.

Fig. 3. Instance in which the minimum potential fractional Nash equilibriunmialer than the minimum potential integral Nash equilibrium.

We define thegorice of anarchyof the fractional game as the ratio between the cost of a NausitilErium
solution and the cost of an optimal fractional solution te Bteiner tree problem.

We show that the price of anarchy of a minimum potential foaal Nash equilibrium solution is
O(logn). This follows since this solution has potential that is nigthler than the potential of an optimal
fractional Steiner tree, and the potential of a solution i at most a factor ofD(logn) away from
its cost. Also, note that the potential of a solution is anarpgpound on its cost.

More formally, for any fractional solutioff’, let &(7") denote the value of its potential function and let
C(T) denote the total cost of edges participating'inWe denote by \ashthe fractional Nash equilibrium
tree with minimum potential, and bY¥s;einerthe fractional optimal Steiner tree. We get that

C(TNash) < (I)(TNasI'D < CI)<TSteine9 <logn - C(TSteineQ-

The first and third inequalities follow from the propertidstloe potential function, where each fraction
of flow f.; on an edge: is multiplied by 1 < H(k) <logn, andk, 1 < k < n, is the number of users
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generating this flow fraction. The second inequality fokoirom the fact that the potential value Bfj55h
is minimal.

We observe that the)(- logn ) lower bound on the price of anarchy for the integral modetlhalso
for the fractional model. ‘Ighat is, the ratio of the cost of golash equilibrium (not necessarily the one

that minimizes the potential function) and the Steiner test can be as large as(logg)gn)

B. The Weighted Fractional Multicast Game

We consider a weighted extension of our multicast game, evbach usei is associated with a positive
weight w;. The payment of each player is proportional to its weightt B¢ = >/, w;. Given a flow
vector f, let f.; denote the flow of usei on e and letn. be the number of users with non-zero flow
on e. Assume that the users are numbered suchhatf., < fo1 < feo < ... < fe,.. Consider some
j < n.. Userj shares the capacity.,; with usersl to n., sharesf., — f.1 with users2 to n. and so
on. The payment for any share is in proportion to weights.déefor the capacity, ;, userj < n. pays
Ce * fe1 - w;/W,.. Thus the overall cost paid by< n. on edgee is

Sw; - Zfez fez 1

1

The overall payment of a user is the sum of its payments fofltive fractions it uses on all edges in all
its paths. Each useraims to establish its flow from the souredo ¢; so as to minimize its cost. Thus,
a flow f is at Nash equilibrium if no user has an incentive to changélaiv.

An instance of the weighted fractional model, consisting@raphG, a source, a set of receivery
with weight vectorw, and a cost vector is denoted byfrac(G,r, N, c,w). The proof of the following
theorem uses Kakutani’s fixed point theorem [17], and appea6ection A2 of the Appendix.

Theorem 9:A Nash equilibrium (in pure strategies) exists for everytanse frac(G,r, N, c, w).

This theorem should be contrasted with the result of Chen andyiRyarden [6] who showed that a
Nash equilibrium does not necessarily exist in the integrgighted multicast game.
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APPENDIX
Al. PROOF OFTHEOREMG

Theorem 6. The potential fuctiond is an exact potential for the fractional multicast game. Ttsa for
everyk € N, and every pair of strategy profilds—*, s¥) and (s %, s%), if *(s7F, s¥) < c*(s7*, s%), where
c* denotes the total cost of usér then

Ck(sika 3]2€) - Ck(sika Slf) = (I)(Sika SIQC) - q)(sika S]f)

Proof:

Consider a playek € N and strategies™ € S=%, and s*, (s")* € S* such thatc*(s7*, (s*)*) <
c*(s7*, s¥). We denote bys and s* the strategy profilegs—*, s*) and (s7*, (s*)*) respectively, and by
n. andn; the number of players using edgeaccording to the strategy profilesand s* respectively.
As before, we generate an orderifigy < foo < --- < f.,,. < 1 on the flow f. routed by then. users
on e according tos and an orderingf;, < fr, < fZ,. <1 on the flow f routed by then; users on
e according tos*. We assume thaf., = f7, = 0. We denote byf* and (f*)* the flow of userk on
edgee according to strategies® and (s*)* respectively. Assuming”* > 0, i¥ denotes the index of user
k's flow on edgee according to this ordering, otherwisé = 0. Similarly, (i*)* is the index of usek’s
flow on edgee assuming(f*)* > 0, and equals 0 otherwise. We now compare the total ¢osf userk
according tos and the corresponding cogt®)* according tos*:

(25)* *
K * E 7] 1
(C ) ( ¢ n* +1—3 ) (1)

ec(sk)x ~ j=1

i
< Z(Zce.—f:zf;{f—j}> _ &

ecsk © j=1
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fl—l fl fik—l fzk fikﬂ
f(*ik)*_l f(*lk)* f(*ik)*+1 f;z* :1*+1

Fig. 4. Flow on edge in casef’ > (f¥)* (for simplicity, subscripts ot are omitted).

fi’“—l fzk fik—i-l fm fm+1

Jiea flt f(*ik)*—l f(*ik)* f(*i’“)*—i-l

Fig. 5. Flow on edge: in casef® < (f¥)* (for simplicity, subscripts ot are omitted).

We can split each sum on both sides of the above inequalitweosums, one sum describing the flows

that are equal according 16", s*) and (s7*, (s*)*), and the other sum describing the flows that differ
according to these two strategy profiles. We thus remain thighdiffering flows:

* @ *
D Jog —Jeit 5 Sis— Jimn ey
C\mr+1-1r ni4+1—j
{elfb<(fF)*} J=lg+l
k:
fel e f f —1
< » e,j €,]—
> e (T P foo i)
{elfE>(fk)*} =let1

where, forf* > (f¥)*, I. is the index of the flow for Whicb"e,le = f;(,-l;)*ﬂ according to the ordering of

fe, while for f* < (f*)*, i* is the index of the flow for whicly; . = f 41 according to the ordering of

fr (see Figures 4 and 5).

Note that, for an edge Wherefk Jeir < I ik (i) = (f*), it holds that the number of users using each

segment in the rangg, ;, f* i] accordlng to the ordering of* is larger by one than the number of
is

users using each segment in this range according to theimgdsfr /., as uset: is the only user changing
its flow. We thus get:

. f: ik)* _fe,me
> ( > J;ij+ffjl+ o ) 3)

2 — 1
{elfE<(fF)*} j=ik+1 Ne + (me +1)
-k
f€7l5 - f*(k)* be f N f 1
< E Ce <# + E €] e >,
{elfé>(fE)} net1-le imtot1 e t1-]

where for f& < (f*)*, m,. is the index of the flow for whicly, ,,, = f;*(ik)*_l (see Figure 5).
We now compare the potentidi(s) with the potential®(s*).
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ny ni+l—j f* e .
e, e,j—
( § E Cem ) (4)

. ei — Jei— f:z * _fe,me
S oo S Jej = Jeimr | Jeqt) B
, Ne+2—7 Ne+2— (me+1)

Ne Me+1—j f '—f '
<Y (yy ot ) — a(s)

A2. PROOF OFTHEOREM9

Theorem 9. A Nash equilibrium exists for every instanféeac(G,r, N, ¢, w).

For each playei we define abest replycorrespondenc&® from S to S as follows. For any € S, let
Vi(s) = {s' € §'|c*(s, s") > c'(s™", 51 for everysi € Si}.

Each setS’ consists of player’s possible flow patterns from to d;. Thus, it is nonempty, compact
(finite and closed), and convex. It follows that the sets a compact and convex subset of Euclidian
space, since eac$! is such.

By definition, ¥’(s) is the set of strategies that minimizés cost given the strategies of the other
players prescribed by. According to the definition of our model, this set is noneynas it represents
useri’s minimum cost sets of paths, given the flow pattern of thesotisers.

We prove the existence of a Nash equilibrium for every instaof a fractional multicast game. In
order to establish the proof, we first consider several ptmseof ‘. We show that the correspondence
Ui is convex-valued and upper hemicontinuous.

Lemma 1.1:The correspondencé’ is convex-valued.

Proof: We prove that, given two strategig$, s, € U'(s), then(asi + (1 — a)sy) € V(s), where
0 < a < 1. Note that a strategy defined by’ consists of the flow pattern characterizedsbybut instead
of routing a flow of f on an edge, useri now routes a flow ofvf! one. As si, s, are best strategies
of i given s7¢, it follows thatc'(s™, st) = (s, s%) = ' .. (s7), wherec! , (s7*) denotes the cost of
the minimum cost flow pattern afgiven the flow patterns— of all other users. We thus have to prove
that this is also the cost of the strategy defined(®y, + (1 — a)s?).

We show that, given—, the cost of a flowf! of useri on edgee is a convex function. Denote by,
the number of users using and generate the orderinfg; < feo <--- < fej1 < fe; < -+ < fen, ON
the flow routed by the:. users ore as defined by ~*. Define f., = 0. Denote by, ._, . ) the total
weight of then, — j + 1 players using the flow fractiofy. ;_i, f.;]. Clearly, Wy , > Wy 5.y > - >
Wites—tes) Z - Z Wipene—fone—n) (in CaS€fejy = fo; we defineWy, ,—r ;= Wi, i—r, )
Now, assume that usérwants to use edge as well. The cost of each possible fraction:sfflow on e
is described by Figure 6, and its total cost for routingfavalue flow one is described by Figure 7.
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Ce—tf ———

Ce W

Wifene—fene—1)tw! ]

Ce W

Wife,j—fej—1)+wt — [ = T T T T T

Ce-w? i
W fe,2—fe,1)+w?
Ce-w'

er,1+wi ]

‘ ‘ [ ] ‘ ‘ ‘
fof i i e fo

\

Fig. 6. Cost of each possible fraction @6 flow on edgee.

LNV (fo—fe—p)w® |
Ce k=1 W(fex—fex—1)+w! A

|

|

|
i . I I Z
fi fi-1 [ fre=t fao 1 fe

Fig. 7. Total cost of a flow of valug! routed by: on edgee.

Clearly, the cost of usei’'s flow f! on edgee, denoted byci(f ¢, fi), is a convex function, as for
each flow fraction(f;., — f;) the slope of the function is bigger than its slope for the jnes fraction
(f; — fi—1). We denote by(f!), (f!), the respective flows of on edgee as defined by the strategies
st sb € W(s). Therefore, it holds that

ce(fehalfr+ (L= a)(f)2) < act(f", (f)1) + (1 = a)ee(f, (f0)2)-
Thus, the same holds also for the total cost @fith respect to strateggns; + (1 — a)sy), namely:

As7hast + (1 —a)sy) <ac(s™s))+ (1 —a)(s™ s

= C:‘nin(sii%
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which implies that(as? + (1 — a)sb) € ¥¥(s), completing the proof of lemma 1.1.
|

Lemma 1.2:The correspondencé’ is upper hemicontinuous.

Proof: We consider a sequeneg in S converging tos, and a sequencé. in S* converging tos’,
wheres' € U'(s,) for everyr. To show thatl? is upper hemicontinuous, we prove thate ¥'(s).

We taker to be sufficiently large, so that. differs froms,_; by a routing change of aavalue flow.
That is, s, is obtained froms,_; if user j reroutes are-value of its flow on patty] to another pathp?.
According to the way we defined the users’ costs on an edgeclttaege of;’s flow pattern can only
reduce the cost of asvalue of the flow on each edge i, and increase the cost of arvalue of the
flow on each edge ip, for all players using thig-value flow on the edges ip, andp] respectively.

Claim 2: An addition of ane-value flow to an edge can cause userto change the routing of
no more than am-value of its flow. Equivalently, the same holds for a dedutdf ane-value
flow from an edge-.

Proof: In case of the addition of aftvalue flow to edges, only the fractional cost of an
e-value of flow one is reduced for uset, and all other flow costs remain the same. Therefore,
any change in’s best reply involving aj-value ofi’s flow, whereé > ¢, implies that the cost
of a (§ — ¢)-value of user’s flow could have been reduced prior to the flow additioneon
Equivalently, the same holds in case of a deduction ot-aalue flow from edge:. In this
case, only the fractional cost of arvalue of flow one is increased. [ |

Following the change of’s flow pattern, the most significant change s compared tos’_, would be

if < was to reroute a value dfe of its flow to different paths: ar-value rerouted from a set of paths,
each containing an edge 4 (where its cost was increased); and eavalue rerouted to a set of paths,
each containing another edgejih (where its cost was reduced). Denoting the number of edgéshy
|E| = m, ¢ would therefore reroute no more thar(@n - ¢)-value of its flow.

We denote byi(z,y) the distance between two vectarsy in an Euclidian spac&”. In our context, a
flow vector is inS. Thus, for every > 0, there is an index? such that > R implies thatd(s, s') < ¢
andd(s,, s) < ¢, wheres’ € ¥'(s,). From the continuity property ob‘(s,) shown above, it follows that
st e Wi(s). u
We prove the existence of a Nash equilibrium using Kakusaiked Point Theorem [17]:

Theorem 10 (Kakutani)if 7" is a honempty, compact, and convex subset of an Euclidiaces@and
¥ is an upper hemicontinuous, nonempty, and convex-valueggmondence frorf” to 7', then¥ has a
fixed point, that is, there is an € T' such thatr € V(z).

We now finish the proof of Theorem 9.

Proof: We define a correspondendefrom S to S by

U(s) = Uh(s) x --- x U"(s).

As shown before, the sétis a compact and convex subset of the Euclidian space. Thespandence
VU is upper hemicontinuous, nonempty, and convex-valuedesso is eachl, as shown in lemmas 1.1
and 1.2. Thus, by Kakutani’s Fixed Point Theorem, there isedfipoints € ¥(s). It is easy to see that
such a fixed poink of ¥ is a Nash equilibrium of’, as for each playei, its strategy prescribed by
minimizes its cost given the strategies of the other plapeescribed bys. [ |



