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Abstract— In this contribution, the performance of a
multi-user system is analyzed in the context of frequency
selective fading channels. Using game theoretic tools, a
useful framework is provided in order to determine the
optimal power allocation when users know only their
own channel (while perfect channel state information is
assumed at the base station). We consider the realistic
case of frequency selective channels for uplink CDMA.
This scenario illustrates the case of decentralized schemes,
where limited information on the network is available at
the terminal. Various receivers are considered, namely the
Matched filter, the MMSE filter and the optimum filter.
The goal of this paper is to derive simple expressions for
the non-cooperative Nash equilibrium as the number of
mobiles becomes large and the spreading length increases.
To that end two asymptotic methodologies are combined.
The first is asymptotic random matrix theory which allows
us to obtain explicit expressions of the impact of all
other mobiles on any given tagged mobile. The second
is the theory of non-atomic games which computes good
approximations of the Nash equilibrium as the number of
mobiles grows.1

I. INTRODUCTION

Resource allocation is of major interest in the
context of multi-user systems. In the uplink multi-
user systems, it is important for users to transmit
with enough power to achieve their requested qual-
ity of service, but also to minimize the amount of
interference caused to other users. Thus, an efficient

1This work was supported by the BIONETS project
http://www.bionets.org/ and by the Research Council
of Norway through the OPTIMO project “Optimized Heterogeneous
Multi-user MIMO Networks”.

power allocation mechanism allows to prevent an
excessive consumption of the limited ressources of
the users.

The most straightforward way to design a power
allocation (PA) mechanism is as a centralized pro-
cedure, with the base station receiving training
sequences from the users and signaling back the op-
timal power allocation for each user. Power control
schemes in cellular systems were first introduced for
TDMA/FDMA [1], [2]; more recently an optimal
scheme was derived for Code Division Multiple
Access (CDMA) [3]. In order to achieve the optimal
capacity, the users may also be sorted according to
some rule of precedence [4]. However, this involves
a non negligible overhead and numerous non infor-
mational transmissions. In addition, the complexity
of centralized schemes increases drastically with the
number of users. As discussed in [5], centralized
algorithms generally do not have a practical use
for real systems, but provide useful bounds on
the performance that can be attained by distributed
algorithms.

A way to avoid the constraints of a centralized
procedure is to implement a decentralized one where
each user calculates its estimation of the optimal
transmission power according to its local knowledge
of the system. This is, for example, the case in
ad-hoc networks applications. Most of the time,
a distributed algorithm means an iterative version
of a centralized one. Mobiles update their power
allocation according to some rule based on the
limited information they retrieve from the system.

http://arXiv.org/abs/0707.0050v1
{nicolas.bonneau, eitan.altman}@sophia.inria.fr
merouane.debbah@eurecom.fr
arehj@unik.no
http://www.bionets.org/
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Supposing that an optimal power allocation exists,
a distributed iterative algorithm is derived from a
differential equation in [6] and its convergence is
proven analytically. A distributed version of the al-
gorithm of [2] is presented in [7]. Building on these
results, a general framework for power control in
cellular systems is given in [8]. A review of different
methods of centralized and distributed power control
in CDMA systems is given in [5].

In this context, a natural framework is game
theory, which studies competition (as well as co-
operation) between independent actors. Tools of
game theory have already been frequently used as
a central framework for modeling competition and
cooperation in networking, see for example [9] and
references therein. Building on the framework of
[8], a game theoretic approach was introduced in
[10], [11]. Numerous works on power allocation
games have followed since, a selection of which we
present in Sec. II.

Game theory can be used to treat the case of
any number of players. However, as the size of
the system increases, the number of parameters
increases drastically and it is difficult to gain insight
on the expressions obtained.

In order to obtain expressions depending only
on few parameters, we consider the system in an
asymptotic setting, letting both the number of users
and the spreading factor tend to infinity with a fixed
ratio. We use tools of random matrix theory [12] to
analyze the system in this limit. Random matrix the-
ory is a field of mathematical physics that has been
recently applied to wireless communications to an-
alyze various measures of interest such as capacity
or Signal to Interference plus Noise Ratio (SINR).
Interestingly, it enables to single out the main pa-
rameters of interest that determine the performance
in numerous models of communication systems with
more or less involved models of attenuation [13],
[14], [15], [16]. In addition, these asymptotic results
provide good approximations for the practical finite
size case, as shown by simulations.

In the asymptotic regime, the non-cooperative
game becomes a non-atomic one, in which the
impact (through interference) of any single mobile
on the performance of other mobiles is negligible.
In the networking game context, the related solu-
tion concept is often called Wardrop equilibrium
[17]; it is often much easier to compute than the
original Nash equilibrium [9], and yet, the former

equilibrium is a good approximation for the latter,
see details in [18]. In this paper, we derive the non-
atomic equilibrium, which generally corresponds to
a non-uniform PA for the users.

The non-atomic Nash equilibrium is studied in
this paper for several linear receivers, namely the
matched filter and the MMSE filter, as well as non-
linear filters, such as the successive interference
cancellation (SIC) [19] version of those filters.
However, in order to perform SIC, the users need
to know their decoding order, in order to adjust
their rates. In this paper, we introduce ways of
obtaining an ordering of the users in a distributed
manner. The ordering can be determined simply in
a distributed manner under weak hypotheses. This
gives rise to a different kind of power allocation,
that depend explicitly on the order in which the
users are decoded.

Moreover, we quantify the gain of the non-
uniform PA with respect to uniform PA, according
to the number of paths. The originality of the paper
lies in the fact that we show that as the number
of paths increases, the optimal PA becomes more
and more uniform due to the ergodic behavior of
all the CDMA channels. This is reminiscent of
an effect (“channel hardening”) already revealed in
MIMO [20]. The highest gain (in terms of utility) is
obtained in the case of flat fading (which also favors
dis-uniform power allocation between the users).

The layout of this paper is the following. First, a
detailed account of related works is made in Sec. II.
In order to be self-contained, we introduce useful
notations and concepts of random matrix theory in
Sec. III. The communication model that will be used
throughout the paper is detailed in Sec. IV. Asymp-
totic SINR and capacity expressions are given in
Sec. V. The particular game played between users
is introduced in Sec. VI, along with the existence
of a Nash equilibrium. Finally, theoretical results
for the power allocation are derived in Sec. VII
for unordered users and Sec. VIII when there is
an ordering of the users. Analytical results are
matched with simulations in Sec. IX. Conclusions
are provided in Sec.

II. RELATED WORK

This section is dedicated to present some of the
works that use game theory for power control.
We remind that a Nash equilibrium is a stable
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solution, where no player has an incentive to de-
viate unilaterally, while a Pareto equilibrium is a
cooperative dominating solution, where there is no
way to improve the performance of a player without
harming another one. Generally, both concepts do
not coincide. Following the general presentation of
power allocation games in [10], [11], an abundance
of works can be found on the subject.

In particular, the utility generally considered in
those articles is justified in [21] where the author
describes a widely applicable model “from first
principles”. Conditions under which the utility will
allow to obtain non-trivial Nash equilibria (i.e.,
users actually transmit at the equilibrium) are de-
rived. The utility consisting of throughput-to-power
ratio (detailed in Sec. VI) is shown to satisfy these
conditions. In addition, it possesses a propriety of
reliability in the sense that the transmission occurs
at non-negligible rates at the equilibrium. This kind
of utility function had been introduced in previous
works, with an economic leaning [22], [23].

Unfortunately, Nash equilibria often lead to in-
efficient allocations, in the sense that higher rates
(Pareto equilibria) could be obtained for all mo-
biles if they cooperated. To alleviate this problem,
in addition to the non-cooperative game setting,
[23] introduces a pricing strategy to force users
to transmit at a socially optimal rate. They obtain
communication at Pareto equilibrium.

In [24], defining the utility as advised in [21]
as the ratio of the throughput to the transmission
power, the authors obtain results of existence and
unicity of a Nash equilibrium for a CDMA system.
They extend this work to the case of multiple carri-
ers in [25]. In particular, it is shown that users will
select and only transmit over their best carrier. As
far as the attenuation is concerned, the consideration
is restricted to flat fading in [24] and in [25] (each
carrier being flat fading in the latter). However,
wireless transmissions generally suffer from the
effect of multiple paths, thus becoming frequency-
selective. The goal of this paper is to determine the
influence of the number of paths (or the selectivity
of the channel) on the performance of PA.

This work is an extension of [24] in the case
of frequency-selective fading, in the framework of
multi-user systems. We do not consider multiple
carriers, as in [25], and the results are very different
to those obtained in that work. The extension is
not trivial and involves advanced results on random

matrices with non-equal variances due to Girko
[26] whereas classical results rely on the work of
Silverstein [27]. A part of this work was previously
published as a conference paper [28].

Moreover, in addition to the linear filters studied
in [24], we study the enhancements provided by the
optimum and successive interference cancellation
filters.

III. RANDOM MATRIX THEORY NOTATIONS AND

CONCEPTS

The following definitions and theorem can be
found in [12] and will be used in the following
sections. In this section,N and K are positive
integers.

Definition 1: Let ν be a probability measure. The
Stieltjes transformmν associated toν is given by

mν(z) =

∫

1

t− z
ν(dt).

Definition 2: Let v = [v1, . . . , vN ] be a vector.
Its empirical distributionis the functionF v

N : R →
[0, 1] defined by:

F v

N (x) =
1

N
#{vi ≤ x | i = 1 . . .N}.

In other words,F v

N(x) is the fraction of elements
of v that are inferior or equal tox. In particular, if
v is the vector of eigenvalues of a matrixV, F v

N is
called theempirical eigenvalue distributionof V.

Definition 3: Let V be aN ×K random matrix
with independent columns and entriesvij . Denote by
⌊·⌋ the closest smaller integer.V is said tobehave
ergodically if, as N,K → ∞ with K/N → α, for
x ∈ [0, 1], the empirical distribution of

[

∣

∣v⌊xN⌋,1
∣

∣

2
, . . . ,

∣

∣v⌊xN⌋,K
∣

∣

2
]

converges almost surely to a non-random limit dis-
tribution denotedFV

x (·) and, for y ∈ [0, α], the
empirical distribution of

[

∣

∣v1,⌊yN⌋
∣

∣

2
, . . . ,

∣

∣vN,⌊yN⌋
∣

∣

2
]

converges almost surely to a non-random limit dis-
tribution denotedFV

y (·).
Definition 4: Let V be aN ×K random matrix

that behaves ergodically as in Def. 3, such asFV

x (·)
and FV

y (·) have all their moments bounded. The
two-dimensional channel profileof V is the function
ρV(x, y) : [0, 1] × [0, α] → R such that, if the
random variableX is uniformly distributed in[0, 1],
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then the distribution ofρV(X, y) equalsFV

y (·) and,
if the random variableY is uniformly distributed
in [0, α], then the distribution ofρV(x, Y ) equals
FV

x (·).
Theorem 1:Let Y = V⊙W be aN×K matrix,

where⊙ is the Hadamard (element-wise) product
and V and W are independentN × K random
matrices. Assume thatV behaves ergodically with
channel profileρV(x, y) as in Def. 4 and thatW
has i.i.d. entries with zero mean and variance1

N
.

Then, asN,K → ∞ with K/N → α, the empirical
eigenvalue distribution ofYYH converges almost
surely to a non-random limit distribution function
whose Stieltjes transform is given by:

mYYH

(z) = lim
N→∞

1

N
Trace

(

(

YYH − zI
)−1
)

=

∫ 1

0

u(x, z)dx

andu(x, z) satisfies the fixed point equation:

u(x, z) =
1

∫ α

0
ρV(x,y)dy

1+
R 1

0
ρV(x′,y)u(x′,z)dx′

− z
. (1)

The solution to equation (1) exists and is unique
in the class of functionsu(x, z) ≥ 0, analytic for
Im(z) > 0, and continuous onx ∈ [0, 1].

IV. M ODEL

We consider a single uplink multi-user sys-
tem cell, i.e., inter-cell interference free case. The
spreading length is denotedN . The number of users
in the cell isK. The load isα = K/N . The general
case of wide-band CDMA is considered where the
signal transmitted by userk has complex envelope

xk(t) =
∑

n

sknvk(t− nT ).

vk(t) is a weighted sum of elementary modulation
pulses which satisfy the Nyquist criterion with re-
spect to the chip intervalTc (T = NTc):

vk(t) =

N
∑

ℓ=1

vℓkψ(t− (ℓ− 1)Tc).

The signal is transmitted over a frequency selective
channel with impulse responseck(τ). Under the
assumption of slowly-varying fading, the continuous

time received signaly(t) at the base station has the
form:

y(t) =
∑

n

K
∑

k=1

skn

∫

ck(τ)vk(t− nT − τ)dτ + n(t)

wheren(t) is zero-mean complex white Gaussian
noise with varianceσ2. The signal (after pulse
matched filtering byψ∗(−t)) is sampled at the chip
rate to get a discrete-time signal that has the form:

y =

K
∑

k=1

Ckvk

√

Pksk + n (2)

whereCk areN×N Toeplitz matrices representing
the frequency selective fading for thek-th user,vk is
a N × 1 vector representing the spreading code of
the k-th user, andn is anN × 1 Additive White
Gaussian Noise (AWGN) vector with covariance
matrix σ2IN .

We consider the case of a multipath channel.
Under the assumption that the number of paths from
userk to the base station is given byLk, the model
of the channel is given by

ck(τ) =

Lk−1
∑

ℓ=0

ηk(ℓ)ψ(τ − τk(ℓ)). (3)

where we assume that the channel is invariant during
the time considered. In order to compare channels
at the same signal to noise ratio, we constrain the
distribution of the i.i.d. fading coefficientsηk(ℓ)
such as:

E [ηk(ℓ)] = 0 andE
[

|ηk(ℓ)|2
]

=
̺

Lk

. (4)

Usually, fading coefficientsηk(ℓ) are supposed
to be independent with decreasing variance as the
delay increases. In all cases,̺ is the average
power of the channel, such asE

[

|ck(τ)|2
]

=
∑Lk−1

ℓ=0 E
[

|ηk(ℓ)|2
]

= ̺, for all channels consid-
ered. For each userk, let hik be the Discrete
Fourier Transform of the fading processck(τ). The
frequency response of the channel at the receiver is
given by:

hk(f) =

Lk−1
∑

ℓ=0

ηk(ℓ)e
−j2πfτk(ℓ) |Ψ(f)|2 . (5)

where we assume that the transmit filterΨ(f) and
the receive filterΨ∗(−f) are such that, given the
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bandwidthW ,

Ψ(f) =

{

1 if − W
2
≤ f ≤ W

2

0 otherwise.
(6)

Sampling at the various frequenciesf1 = −W
2

,
f2 = −W

2
+ 1

N
W , . . . , fN = −W

2
+ N−1

N
W , we

obtain the coefficientshik, 1 ≤ i ≤ N , as

hik = hk(fi) =

Lk−1
∑

ℓ=0

ηk(ℓ)e
−j2π i

N
Wτk(ℓ)ejπWτk(ℓ).

(7)
Note thatE

[

|hik|2
]

= ̺.
Since the users are supposed to be synchronized

with the base station and for sake of simplicity, we
will consider in all the following that users add a
cyclic prefix of length equal to the channel impulse
response length to their code sequence.2 This case
is similar to uplink MC-CDMA [30], [31]. As a
consequence, matrices{Ck} are circulant [32] and
can all be diagonalized in the Fourier basisF [29].
Model (2) simplifies therefore to:

y =
K
∑

k=1

FHkF
Hvk

√

Pksk + n (8)

whereHk is a diagonal matrix with diagonal ele-
ments{hik}i=1...N . For each userk, the coefficients
hik are the discrete Fourier transform of the channel
impulse response.

We make the hypothesis that the users employ
Gaussian i.i.d. codes with zero mean and variance
1/N [33]. This hypothesis enables us to state simply
our results, however almost all of the results are
valid for any distribution of the codes as long
as it has mean zero and variance1/N [16]. In
particular, since every unitary tranformation of a
Gaussian i.i.d. vector is a Gaussian i.i.d. vector (so
that wi = FHvi has the same distribution asvi for
any i), we multiply y in (8) with FH and obtain
without any change in the statistics:

y =
K
∑

k=1

Hkwk

√

Pksk + n

=
(

H
√

P ⊙W
)

s + n (9)

where⊙ is the Hadamard (element-wise) product.

2Note that in the asymptotic case (whenN → ∞), the result holds
without the need of a cyclic prefix as long as the channel is absolutely
summable [29].

In (9), H is the frequency selective fading matrix,
of sizeN ×K:

H =





h11 h12 . . . h1K

...
...

...
hN1 hN2 . . . hNK



 .

√
P is the root square of the diagonal power

control matrix, of sizeK ×K.
W is anN ×K random spreading matrix:

W =
[

w1|w2| · · · |wK

]

wherewk =





w1k

...
wNk



 .

Note that asymptotically (asN → ∞), for a
given multipath channel of lengthL, model (9)
is also valid for the case of uplink DS-CDMA
since all Toeplitz matrices can be asymptotically
diagonalized in a Fourier Basis [29], [34].

In the following, we will assume that the fre-
quency selective fading matrixH behaves er-
godically, as in Def. 3. The two-dimensional
channel profile ofH

√
P is denotedρ(f, x) =

P (x) |h(f, x)|2 , f ∈ [0, 1], x ∈ [0, α]. f is the
frequency index andx is the user index. This
enables us to use Th. 1 in order to obtain expressions
for the SINR.

It is also assumed that the power of all users is
upper bounded byPmax and the square norm of the
fading, on all paths, for all users, is upper bounded
by hmax.

V. ASYMPTOTIC SINR EXPRESSIONS

Let hk be thek-th column ofH, andH(−k) be
H with hk removed. Similarly, letwk be thek-th
column ofW, andW(−k) beW with wk removed.
Let

√
P(−k) be

√
P with the k-th column and line

removed. Finally, letG(−k) = H(−k)

√
P(−k) ⊙

W(−k).

A. Matched Filter

Supposing perfect CSI at the receiver, the
matched filter for thek-th user is given bygk =√
Pk (hk ⊙ wk). This leads to the following expres-

sion for the SINR of userk

SINRk =

∣

∣gH
k gk

∣

∣

2

σ2gH
k gk + gH

k

(

G(−k)G
H
(−k)

)

gk

.
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Proposition 1: [16] As N,K → ∞ with
K/N → α, the SINR of userk at the output of
the matched filter is given by

SINRk = βMF

(

k

N

)

whereβMF : [0, α] → R is given by

βMF(x) = P (x)·
(H(x))2

σ2H(x) +
∫ α

0

∫ 1

0
P (y) |h(f, y)|2 |h(f, x)|2 dfdy

(10)

andH(x) =
∫ 1

0
|h(f, x)|2 df .

Denoting SINRk = βMF
k , Prop. 1 enables us to

extract an approximation of the value of the SINR
of userk in the finite size case

βMF
k =

Pk

(

1
N

∑N
n=1 |hnk|2

)2

σ2

N

∑N

n=1 |hnk|2 + 1
N2

∑

j 6=k

∑N

n=1 Pj |hnj|2 |hnk|2
.

(11)

We observe thatPk
∂βMF

k

∂Pk
= βMF

k .

B. MMSE Filter

Supposing perfect CSI at the receiver,
the MMSE filter for the k-th user is
given by gMMSE

k = R−1gk, where R =
(

(

H
√

P ⊙ W
)(

H
√

P ⊙ W
)H

+ σ2IN

)

. This

leads to the following expression for the SINR of
userk [14]

SINRk = gH
k

(

G(−k)G
H
(−k) + σ2IN

)−1
gk. (12)

Proposition 2: [16] As N,K → ∞ with
K/N → α, the SINR of userk at the output of
the MMSE receiver is given by:

SINRk = βMMSE

(

k

N

)

whereβMMSE : [0, α] → R is a function defined by
the implicit equation

βMMSE(x) = P (x)

∫ 1

0

|h(f, x)|2 df
σ2 +

∫ α

0
P (y)|h(f,y)|2dy

1+βMMSE(y)

. (13)

DenotingSINRk = βMMSE
k , Prop. 2 enables us to

extract an approximation of the value of the SINR
of userk in the finite size case

βMMSE
k = Pk

1

N

N
∑

n=1

|hnk|2
1

σ2 + 1
N

∑

j 6=k

Pj |hnj |2
1+βMMSE

j

.

(14)
From (12), we observe thatPk

∂βMMSE
k

∂Pk
= βMMSE

k .
From Prop. 2, we have the capacity of userk

CMMSE
k =

1

N
log2

(

1 + βMMSE
k

)

.

The global capacity of the system is

CMMSE =

∫ α

0

log2

(

1 + βMMSE(x)
)

dx. (15)

C. Optimal Filter

The term optimal filter designates a filter capa-
ble of decoding the received signal at the bound
given by Shannon’s capacity. Hence it is difficult
to define an SINR associated to it. However, results
of random matrix theory can still be applied. Let
Y =

(

H
√

P⊙ W
)

. The definition of Shannon’s
capacity per dimension for our system is

COPT
(N) =

1

N
log2 det

(

IN +
1

σ2
YYH

)

. (16)

As N,K → ∞ with K/N → α,

COPT
(N) →

∫

log2

(

1 +
1

σ2
t

)

ν(dt) (17)

where ν is the empirical eigenvalue distribution
of YYH, as in Def. 2. If we differentiate the
asymptotic valueCOPT of (17) with respect toσ2,
we obtain
∂COPT

∂σ2
= log2(e)

∫ − 1
σ4 t

1 + 1
σ2 t

ν(dt)

= log2(e)

∫

σ2
(

− 1
σ4 t− 1

σ2 + 1
σ2

)

σ2
(

1 + 1
σ2 t
) ν(dt)

= log2(e)

(
∫

1

t+ σ2
ν(dt) − 1

σ2

∫

ν(dt)

)

= log2(e)

(

mν(−σ2) − 1

σ2

)

(18)

wheremν(·) is the Stieltjes transform of the empir-
ical eigenvalue distribution ofYYH . From Th. 1,
mν(·) is given by

mν(z) =

∫ 1

0

u(f, z)df
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where u(f, z) is given by (1) withρH
√

P(f, x) =
ρ(f, x) = P (x) |h(f, x)|2. Given that ifσ2 = +∞,
COPT = 0, it is immediate to obtainCOPT from (18)
as

COPT = log2(e)

∫ +∞

σ2

mν(−z) − 1

z
dz. (19)

Proposition 3:COPT and CMMSE are related
through the following equality

COPT = CMMSE − log2(e)

∫ α

0

βMMSE(x)

1 + βMMSE(x)
dx

+

∫ 1

0

log2

(

1 +
1

σ2

∫ α

0

ρ(f, x)

1 + βMMSE(x)
dx

)

df.

(20)
Proof: See Appendix XI-A.

The additional term in the right-hand side of (20)
corresponds to the non-linear processing gain. It
quantifies the gain in terms of capacity that can be
achieved between pure linear MMSE and non-linear
filtering.

Assuming perfect cancellation of decoded users,
successive interference cancellation with MMSE
filter achieves the optimum capacity [35]. The fol-
lowing proposition ensues from this fact.

Proposition 4: [16] As N,K → ∞ with
K/N → α, the optimal capacity is given by:

COPT =

∫ α

0

log2

(

1 + βSIC(x)
)

dx

whereβSIC : [0, α] → R is a function defined by the
implicit equation

βSIC(x) = P (x)

∫ 1

0

|h(f, x)|2 df
σ2 +

∫ x

0
P (y)|h(f,y)|2dy

1+βSIC(y)

. (21)

Prop. 4 enables us to extract an expression that is
analog to the SINR for the optimal filter. Similarly
to the case ofβMMSE in Sec. V-B, the derivative of
this expression obeys the propertyPk

∂βSIC
k

∂Pk
= βSIC

k .

VI. GAMES AND EQUILIBRIA

From now on, we denoteSINRk = βk, whichever
filter is actually used.

A. Power Allocation Game

A game with a unique strategy set for all users is
defined by a triple{S,P, (uk)k∈S} whereS is the
set ofplayers, P is the set ofstrategies, and(uk)k∈S

is the set ofutility functions, uk : P|S| → R.

In our setting, the players are simply the users,
indexed by the setSK = {1, . . . , K}. The strategy
for a mobile is its power allocationPk, which we
will assume belongs to a compact intervalP =
[0, Pmax] ⊆ R. The utility measures the gain of a
user as a result of the strategy this user plays. In
[21], the author derives what he calls Throughput
to Power Ratio (TPR) under minimal requirements.
The utility of userk is expressed

uk =
γk

Pk

. (22)

We denoteγk = γ(βk), where γ(·) is the same
function for all users. In (22),γ is at leastC2 and
should satisfy conditions detailed in [21] in order to
obtain an “interesting” equilibrium.

For example, in the simulations, we consider
the goodput γ (βk), which is proportional to
(

1 − e−βk
)M

whereM is the number of bits trans-
mitted in a CDMA packet. Remark that the usual
definition of goodput would rather be considered
proportional toq(βk) = (1 − BERk)

M , where BER
is the bit error rate. However, this quantity is not
zero when the transmitted power is zero. Using this
function in the utility would lead to the unsatisfying
conclusion that mobiles should not transmit at all,
since the (improbable) event of a correct guess gives
them infinite utility [10]. Therefore, an adapted
version of the goodput is adopted, where a factor 2
is added before the BER. The performance measure
considered is hence proportional toq2(βk) = (1 −
2BERk)

M , leading to the expression above. This
function has the desirable propertyq2(0) = 0 and its
shape follows closely the shape of the original good-
put q(·). This is a relevant performance measure,
as each mobile wants to use its (limited) battery
power to transmit the maximum possible amount of
information.

This utility is expressed inbits per joule. In the
non-cooperative game setting, each user wants to
selfishly maximize its utility. A Nash equilibrium is
obtained when no user can benefit by unilaterally
deviating from its strategy.

To obtain the maximum utility achievable by user
k, we differentiateuk with respect to the powerPk

and equate to 0. We obtain

Pk

∂βk

∂Pk

γ′(βk) − γ(βk) = 0. (23)

For all filters under consideration, (10), (13) and
(21) imply Pk

∂βk

∂Pk
= βk, thus (23) reduces an
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equation onβk

βkγ
′(βk) − γ(βk) = 0. (24)

Eq. (24) is particularly interesting in the case
when there exists a unique solutionβ⋆.

The existence of a solution to (24) is guaranteed
as long as the functionγ(·) is a quasiconcave
function of the SINR, i.e., there exists a point below
which the function is non-decreasing, and above
which the function is non-increasing [23], [21]. In
addition, we assume that the functionγ(·) takes
value γ(0) = 0, so that users cannot achieve an
infinite utility by not transmitting. This occurs for
several functionsγ(·) of interest, in particular the
goodput [24], which we will use for simulations.
Unfortunately, the capacity can not be used as a
function γ(·), since it leads to the trivial result
β⋆ = 0 for this utility function. The uniqueness of
the solutionβ⋆ to (24) is due to fact that the SINR
of each user is a strictly increasing function of its
transmit power. Given the target SINRβ⋆, we obtain
the strategy of users in the next section.

VII. POWER ALLOCATION IN THE NASH

EQUILIBRIUM

A. Flat Fading

In this subsection, we show that the results of
[24] for Matched and MMSE filters are a special
case of our setting whenL = 1 (flat fading case).
In addition, we derive the power allocation for the
Optimum filter. When there is only one path, for
each userk, denoted by its indexk

N
= x ∈ [0, α],

h(f, x) does not depend onf . Given the target SINR
β⋆, we have explicit expressions of the power with
which userk transmits for the various receivers.

In Appendix XI-B, we show that the influence of
the strategy of a player on the payoffs of other play-
ers is (asymptotically) “small”. It justifies the fact
that we can obtain an equilibrium in the asymptotic
setting, without the need for players to possess all
the information on the system. Their local informa-
tion is sufficient. In the asymptotic limit, we obtain
results similar to Wardrop equilibrium: the strategy
used by each user does not influence the strategy of
other users.

1) Matched filter: From Prop. 1, the continuous
formulation is

P (x) =
β⋆
(

σ2 +
∫ α

0
P (y) |h(y)|2 dy

)

|h(x)|2

or equivalently in a discrete form

Pk =
β⋆
(

σ2 + 1
N

∑K

j=1,j 6=k Pj |hj |2
)

|hk|2
. (25)

Summing (25) overk = 1, . . . , K, we obtain a
closed form expression for the minimum power with
which userk transmits when using the matched filter

Pk =
1

|hk|2
σ2β⋆

1 − αβ⋆
for α <

1

β⋆
. (26)

2) MMSE filter: From Prop. 2, the continuous
formulation is

P (x) =
β⋆
(

σ2 + 1
1+β⋆

∫ α

0
P (y) |h(y)|2 dy

)

|h(x)|2
.

or equivalently in a discrete form

Pk =
β⋆
(

σ2 + 1
1+β⋆

1
N

∑K
j=1,j 6=k Pj |hj|2

)

|hk|2
. (27)

Summing (27) overk = 1, . . . , K, we obtain a
closed form expression for the minimum power with
which userk transmits when using the MMSE filter

Pk =
1

|hk|2
σ2β⋆

1 − α β⋆

1+β⋆

for α < 1 +
1

β⋆
. (28)

Both (26) and (28) are the same results as in [24].
3) Optimum filter: Each user maximizes its util-

ity for a SINR equal toβ⋆. However, in the case of
the optimum filter, the SINR is not defined directly.
It is nevertheless possible to extract an equivalent
quantity from the expression of the capacity, since
the value of the capacity of userk at the equilibrium
is given byC⋆ = 1

N
log2 (1 + β⋆).

Proposition 5: The power allocation is given by

Pk =
1

|hk|2
σ2β+

1 − α β+

1+β+

for α < 1 +
1

β+
(29)

whereβ+ is the solution to

α log2

(

1 + β+
)

− α log2(e)
β+

1 + β+

+log2

(

1 +
1

1 + β+

αβ+

1 − α β+

1+β+

)

= α log2 (1 + β⋆) .

(30)
Proof: See Appendix XI-C.
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B. Frequency Selective Fading

In the context of frequency selective fading, for
each userk, denoted by its indexk

N
= x ∈ [0, α],

there areL > 1 paths with respective attenua-
tions hℓ(x), ℓ = 1, . . . , L, which are i.i.d. ran-
dom variables with some known distribution. We
suppose thathℓ(x) has mean zero, and the dis-
tributions of the real part and imaginary part of
hℓ(x) are even functions, as for example the Gaus-
sian distribution, which we consider in the simu-
lations. h(f, x) depends onf through h(f, x) =
∑L

ℓ=1 hℓ(x)e
−2πif(ℓ−1). Given the target SINRβ⋆,

the Nash equilibrium power allocation is determined
by implicit equations for the various receivers.

1) Matched filter:The continuous formulation is

P (x) = β⋆·
σ2H(x) +

∫ 1

0

∫ α

0
P (y) |h(f, y)|2 |h(f, x)|2 dfdy

(H(x))2

or equivalently in a discrete form

Pk = β⋆·
σ2

N

∑N
n=1 |hnk|2 + 1

N

∑N
n=1 |hnk|2 1

N

∑K
j 6=k Pj |hnj|2

(

1
N

∑N
n=1 |hnk|2

)2 .

(31)

In (31), hnk = h
(

n−1
N
, k

N

)

.
In this expression, the power allocation of userk

seems to depend on the power allocation and fading
realization of all the other users. However, when the
number of users tends to infinity, the strategy of any
single user does not have any influence on the payoff
of user k, as shown in Appendix XI-B. Hence,
the appropriate framework is non-atomic games.
The expression1

N

∑K

j=1 Pj |hnj|2 is asymptotically
a constant (not depending onn), denotedΩ.

Ω =
αβ⋆σ2 1

K

∑K

j=1
|hnj |2

Ej

1 − αβ⋆ 1
K

∑K

j=1
|hnj |2

Ej

(32)

whereEj = 1
N

∑N

m=1 |hmj |2.
As K → ∞, we can apply the Central Limit

Theorem to the sum of random variables

1

K

K
∑

j=1

|hnj|2
Ej

. (33)

It tends to its expectation, which is equal to1 (see
Appendix XI-D).

It follows that asymptoticallyΩ = αβ⋆σ2

1−αβ⋆ (and
simulations in Sec. IX prove that this approximation
is valid for moderate finite values ofN). From (31),
we obtain a formula similar to (26)

Pk =
1

Ek

σ2β⋆

1 − αβ⋆
for α <

1

β⋆
. (34)

2) MMSE filter: The continuous formulation is

P (x) =
β⋆

∫ 1

0
|h(f,x)|2df

σ2+ 1

1+β⋆

R α

0
P (y)|h(f,y)|2dy

(35)

or equivalently in a discrete form

Pk =
β⋆

1
N

∑N
n=1

|hnk|2
σ2+ 1

1+β⋆
1

N

PK
j=1,j 6=k Pj |hnj |2

. (36)

In (36), hnk = h
(

n−1
N
, k

N

)

.
As previously, when the number of users tends

to infinity, 1
N

∑K

j=1 Pj |hnj |2 is asymptotically a
constant (not depending onn), denotedΩ.

Ω =
αβ⋆σ2 1

K

∑K
j=1

|hnj |2
Ej

1 − αβ⋆

1+β⋆
1
K

∑K
j=1

|hnj |2
Ej

(37)

whereEj = 1
N

∑N

m=1 |hmj |2.
It follows that asymptoticallyΩ = αβ⋆σ2

1−α
β⋆

1+β⋆

, we

obtain a formula similar to (28)

Pk =
1

Ek

σ2β⋆

1 − α β⋆

1+β⋆

for α < 1 +
1

β⋆
. (38)

3) Optimum filter: Each user maximizes its util-
ity for a SINR equal toβ⋆. However, in the case of
the optimum filter, the SINR is not defined directly.
It is nevertheless possible to extract an equivalent
quantity from the expression of the capacity, since
the value of the capacity of userk at the equilibrium
is given byC⋆ = 1

N
log2 (1 + β⋆).

Proposition 6: Asymptotically, asN,K → ∞,
the power allocation is given by

Pk =
1

Ek

σ2β+

1 − α β+

1+β+

for α < 1 +
1

β+
(39)

whereβ+ is the solution to

α log2

(

1 + β+
)

− α log2(e)
β+

1 + β+

+log2

(

1 +
1

1 + β+

αβ+

1 − α β+

1+β+

)

= α log2 (1 + β⋆) .

(40)
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Proof: The proof is similar to the proof of
Prop. 5.

We observe that for all filters considered, the
optimal PA is a constant times the inverse of the
total energy of the channelEj . Via Parseval’s The-
orem,Ej =

∑L

ℓ=1

∣

∣hℓ

(

j

N

)
∣

∣

2
. It is a sum of i.i.d.

random variables. As the number of paths increases,
the optimal PA tends to a uniform PA. This is
an effect similar to “channel hardening” [20]: as
the number of paths increases, the variance of the
distribution of the channel energy decreases and
the Nash equilibrium PA becomes more and more
uniform for all users.

VIII. SUCCESSIVE INTERFERENCE

CANCELLATION

The optimal filter gives a bound on the perfor-
mance that can be achieved through (non-linear)
filtering at the base station. In order to improve the
performance of the system, we introduce Successive
Interference Cancellation (SIC) [19] at the base
station. Under the assumption of perfect decoding,
SIC improves immensely the performance of lin-
ear filters (Matched Filter or MMSE Filter). The
MMSE SIC filter actually achieves the optimum fil-
ter bound, under the assumption of perfect decoding.
The principle of SIC receivers is quite simple: users
are ordered and are decoded successively. At each
step, supposing that the user has been encoded at the
appropriate decoding rate, the signal is decoded and
its contribution to the interference is then perfectly
subtracted. This removes some of the inter-user
interference and therefore increases theSINR of the
following decoded users.

The challenge is that the users must transmit
at the appropriate rate to avoid the catastrophic
occurrence of imperfect decoding. Usually, the or-
dering of users is done in a centralized way, at the
base station which then advertises it to the users.
However, for the protocol to remain distributed,
users should be able to decide, based on their local
information, at which rate to transmit.

At equilibrium, the rate is determined by the
SINR β⋆, and it is the transmission power of the
user that is determined according to its rank of
decoding. The equilibrium PA can be determined
in a simple manner when the number of multipaths
is finite (L < ∞) and the number of users is very
high (K → ∞). In Sec. VIII-A, we make use of

the fact that the whole law ofEj is realized in this
case, so that users automatically know their rank
of decoding. Another manner to give a (random)
ordering of decoding is to introduce an additional
degree of liberty in the system. In Sec. VIII-B, we
develop a correlated game framework that enables
users to learn their rank of decoding in a simple
way. In the following, we assume that each user
has a unique has a unique i.d. numberj ranging
between 1 toK.

A. Ordering whenK → ∞
If the number of usersK → ∞, with L fixed,

the whole law of the total channel energy will be
realized. Assume the base station advertises to the
users that they will be decoded by decreasing total
channel energy. Each user knows, according to the
realization of its fading, its rank in the decoding
order given byK times1 minus the cumulative dis-
tribution functionD(·) of the total channel energy
Ej .

rankj = K(1 −D(Ej)).

In case that the base station advertises to the users
that they will be decoded by increasing total channel
energy, userj will have rank rankj = KD(Ej).

B. Correlated Equilibrium

We wish to introduce a simple mechanism that
enables players to coordinate and to know in which
order they will be decoded. We place ourselves
in the context of correlated games. The notion of
correlated equilibrium was introduced by R. Au-
mann3 in [36] and further studied in [37], [38], [39].
They represent a generalization of Nash equilibrium.
The important feature of correlated games is the
presence of anarbitrator. An arbitrator needs not
have any intelligence or knowledge of the game,
it needs only to send random (private or public)
signals to the players that are independent of all
other data in the game. In the context of non-
cooperative games, each player has the possibility
not to consider the signal(s) it receives. Coordina-
tion between players turns out to be useful also in
the case of cooperative optimization. The signals
enable joint randomization between the strategies
of the players, possibly resulting in equilibria with

3Prof. R. Aumann has received in 2005 the Nobel prize in economy
for his contributions to game theory, together with Thomas Schelling.
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higher payoffs. The concept of correlated games
was recently introduced in a networking context in
[40], where the authors consider a simple ALOHA
setting.

The simplest and most intuitive coordination
mechanism is given by a common signal which
users as well as the base station overhear before
each transmission. There areK! possible permu-
tations of K users. Hence, the arbitrator broad-
casts a signal to the users belonging to the set
{0, . . . , K!−1}. Each of these numbers corresponds
to a permutationπ of {1, . . . , K} that gives the
(random) ordering of decoding as rankj = π(j). The
users can then adjust their transmit power according
to this ordering. In terms of size of the message,
this is equivalent to the case when the base station
decides the decoding order and broadcasts it to the
users, or sendsK individual messages ofln(K)
bits containing the rank, sinceln(K!) = K ln(K)+
o(K ln(K)). However, there is no need of either any
knowledge of the system or computations at the base
station in the case of the correlated mechanism.

C. SIC Power Allocations

In both cases, once the users know their order,
they can calculate their transmit power according to
the filter that is used. The equilibrium still occurs
when all users reach the SINRβ⋆. A single user will
not benefit by deviating, since it would decrease its
utility. From now on, indexk denotes the rank of
decoding.

In the case of the matched filter with SIC, the
SINR of the user decoded at rankk is

βMF
k =

Pk

(

1
N

∑N
n=1 |hnk|2

)2

σ2

N

∑N

n=1 |hnk|2 + 1
N2

∑

j>k

∑N

n=1 Pj |hnj|2 |hnk|2
.

(41)

From (41), we get the equilibrium PA of userk as

Pk = β⋆·
σ2

N

∑N

n=1 |hnk|2 + 1
N2

∑

j>k

∑N

n=1 Pj |hnj|2 |hnk|2
(

1
N

∑N

n=1 |hnk|2
)2 .

(42)

In the case of the MMSE filter with SIC, the SINR
of the user decoded at rankk is

βMMSE
k = Pk

1

N

N
∑

n=1

|hnk|2
1

σ2 + 1
N

∑

j>k

Pj |hnj |2
1+βMMSE

j

.

(43)
From (43), we get the equilibrium PA of userk as

Pk =
β⋆

1
N

∑N
n=1

|hnk|2
σ2+ 1

1+β⋆
1

N

PK
j>k Pj |hnj |2

. (44)

For flat fading, a simple recursion gives the
equilibrium PA (see Appendix XI-E). We obtain
respectively

PMF
k =

σ2β⋆

|hk|2
(

1 +
1

N
β⋆

)K−k

, (45)

PMMSE
k =

σ2β⋆

|hk|2
(

1 +
1

N

β⋆

1 + β⋆

)K−k

. (46)

As far as frequency-selective fading is concerned,
this gives us the form of the asymptotic expressions.
Asymptotically, the power allocation of one user
will not depend on the PA of the other users, as
shown in Appendix XI-B. With a similar reasoning
as in Sec. VII, the expressions mimic (45) and (46)
with the total channel energyEk replacing |hk|2,
i.e.,

PMF
k =

σ2β⋆

Ek

(

1 +
1

N
β⋆

)K−k

, (47)

PMMSE
k =

σ2β⋆

Ek

(

1 +
1

N

β⋆

1 + β⋆

)K−k

. (48)

These expressions are also validated by simulations.
Since MMSE SIC with perfect decoding is equiv-

alent to the optimum filter, we thus obtain a second
possible equilibrium PA for the optimum filter. In
Sec. IX, we investigate which is the PA which min-
imizes total amount of power needed to transmit at
equilibrium SINR. In the case of automatic ordering
of the users, one question is whether it is best to
order the users by increasing or decreasing total
fading energy. The answer is the following: it is
always best to decode the users by decreasing total
channel energyE1 < · · · < Ek (see Appendix
XI-F).

An interesting feature of equilibrium PA (47) and
(48) is that there is no limitation on the number
of users than can be accomodated by the system,
contrary to the previous case of (34), (38) and (39).
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The limitation is only imposed by the increasing
power needed for each new user decoded last, which
grows without bound as an exponential.

IX. NUMERICAL RESULTS

In all the following, we consider thatPmax is
chosen sufficiently high so that users can actually
transmit at the equilibrium PA values. For the simu-
lations, we consider the usual case of Rayleigh fad-
ing. Although Rayleigh distribution is not bounded
from above, simulations show that the results still
hold.

We consider a CDMA system withK = 32
users and a spreading factorN = 256. The noise
variance isσ2 = 10−10. For a number of bits
in a CDMA packetM = 100, the goodput is
γ(β) =

(

1 − e−β
)100

(see [24]), andβ⋆ = 6.48.
The capacity achieved at the Nash Equilibrium is
C = α log2 (1 + β⋆) = 0.39 bits/s. Unfortunately,
the capacity itself cannot be used as a relevant
performance measure in the definition of the utility,
because in this case the maximal utility is obtained
when not sending.

We have performed simulations over 10000 re-
alizations. Fig. 1 shows the good fit of theoretic
values calculated directly from (34), (38) and (39)
with those simulations. The values of the utility do
not depend on the number of multipaths. We see
that optimum filter requires the minimal power, and
matched filter the maximal power to achieve the
required goodput.

In Fig. 2 we have plotted the average utility
versus the number of multipathsL. Multipaths are
supposed to be i.i.d. Rayleigh distributed with vari-
ance 1/L, in order for the channels to have the
same energy. Two cases are considered: the utility
obtained in the Nash equilibrium, according to the
PA given by (31) and (36), and the utility in the
case where all nodes transmit at the same power.
For comparison purposes, the sum of the uniform
powers is equal to the sum of the powers used
in the Nash equilibrium. In addition, simulations
(not reproduced here) show that this value gives the
higher average utility for a uniform PA. The utility
does not vary withL in the Nash equilibrium: the
Central Limit Theorem applies to the utility, which
is a constant times the random variableEk in the
Nash equilibrium. The utility with uniform powers
is always inferior to the utility in the Nash equilib-
rium. However, asL increases, the gap decreases,

as the variance ofEk decreases, and the equilibrium
PA becomes uniform.

In Fig. 3 we have plotted the average of the
inverse power of the users in the Nash equilibrium
for each of the investigated schemes. We plot the
average inverse power because of the direct relation
to the utility for the users. The higher this average,
the higher the utility for the user. The SIC filters are
always more efficient than their linear counterparts.
However, for a loadα < 0.12 and optimum filter4,
it is better to use the first variation of PA (39)
than use MMSE SIC (48). This relation is reversed
when α > 0.12. In addition to the theoretical
curves, Monte-Carlo simulations were performed
both with random ordering (circles) and ordering by
decreasing total channel energy (crosses), forL = 8
multipaths. Simulations show that the optimal order-
ing improves the power efficiency of the successive
interference cancellation filters.

In Fig. 4, we investigate the amelioration pro-
vided by optimal ordering as a function of the
number of multipaths. The simulations are done for
K = 128 users, in order to be in the “interesting”
zoneα > 0.12. As expected, as the number of paths
increases, the total channel energy is more and more
the same for each channel and the gain provided
by ordering the users decreases. However, when the
number of users is very large and they benefit from
automatic ordering, we see that the utility with the
MMSE SIC equilibrium PA is the maximal utility
that can be obtained in the non-cooperative setting.

X. CONCLUSION

Using tools of random matrices, we have de-
rived the equilibrium power allocation in a game-
theoretic framework applied to asymptotic CDMA
with cyclic prefix, under frequency-selective fad-
ing. Three receivers are considered: matched filter,
MMSE and optimum filter (given by Shannon’s
capacity). In addition, distributed ordering mecha-
nisms are introduced and the successive interference
cancellation variants of the linear filters are studied.
For each user, this power allocation depends only
on the total energy of the channel of the user
under consideration. For a frequency-flat channel,
the power allocation among users is dis-uniform,
whereas when the number of multipaths increases,

4The value of α is obtained as solution of the equation
αβ⋆ β⋆

1+β⋆
(1 − α β+

1+β+ ) = β+(1 − exp(−α β⋆

1+β⋆
)).
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Fig. 1. Comparison of theoretic values and simulations for utilities
in the Nash equilibrium.
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Fig. 2. Simulation of utilities in the Nash equilibrium and constant
power allocations versusL.

the power allocation tends more and more to a
uniform one.

XI. A PPENDIX

A. Proof of Prop. 3

Notice that whenσ2 → ∞,COPT = 0,CMMSE = 0
and βMMSE(x) = β(x) = 0. Thus we only have to
prove that the derivatives of either side of (20) are
equal.

Using ρ(f, x) = P (x) |h(f, x)|2, (13) can be
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Fig. 4. Simulation of utilities in the Nash equilibrium withSIC
filter with and without optimal ordering, versusL.

rewritten

β(x) =

∫ 1

0

ρ(f, x)df

σ2 +
∫ α

0
ρ(f,y)2dy

1+β(y)

. (49)

From (1),
∫ 1

0
ρ(f, x)u(f,−σ2)df satisfies the

same implicit equation (49) asβ(x) and thus

u(f,−σ2) =
1

∫ α

0
ρ(f,y)dy

1+β(y)
+ σ2

. (50)



14

Using (49) and (50), we can rewrite
∫ 1

0

u(f,−σ2)df − 1

σ2

=

∫ 1

0

1
∫ α

0
ρ(f,y)dy

1+β(y)
+ σ2

df −
∫ 1

0

1

σ2
df

=

∫ 1

0

−
∫ α

0
ρ(f,x)
1+β(x)

dx

σ2
(

∫ α

0
ρ(f,y)dy

1+β(y)
+ σ2

)df

=

∫ α

0

−1
(1+β(x))

σ2

∫ 1

0

ρ(f, x)df
∫ α

0
ρ(f,y)dy

1+β(y)
+ σ2

dx

= −
∫ α

0

β(x)

σ2 (1 + β(x))
dx.

Thus from (18)

∂COPT

∂σ2
= − log2(e)

∫ α

0

β(x)

σ2 (1 + β(x))
dx. (51)

Differentiating (15) with respect toσ2, we obtain

∂CMMSE

∂σ2
= log2(e)

∫ α

0

1

1 + β(x)

∂β

∂σ2
(x)dx. (52)

Let π(x) = 1
σ2(1+β(x))

. From (51) and (52), we
obtain

∂COPT

∂σ2
− ∂CMMSE

∂σ2

= − log2(e)

∫ α

0

(

β(x) + σ2 ∂β

∂σ2
(x)

)

π(x)dx.

(53)

From (13), we have
∫ α

0

σ2β(x)
∂π

∂σ2
(x)dx

=

∫ α

0

∫ 1

0

σ2ρ(f, x)df

σ2 +
∫ α

0
σ2ρ(f, y)π(y)dy

∂π

∂σ2
(x)dx

=

∫ 1

0

∫ α

0
ρ(f, x) ∂π

∂σ2 (x)dx

1 +
∫ α

0
ρ(f, y)π(y)dy

df

=
1

log2(e)

∂

∂σ2

∫ 1

0

log2

(

1 +

∫ α

0

ρ(f, y)π(y)dy

)

df.

Observing that
∫ α

0

(

β(x) + σ2 ∂β

∂σ2
(x)

)

π(x)+σ2β(x)
∂π

∂σ2
(x)dx

=
∂

∂σ2

∫ α

0

σ2β(x)π(x)dx

we obtain (20) from Prop. 3.

B. Influence of Other Players’ Strategies

We want to prove that asymptotically, in the game
{SK ,P, (uk)k∈SK}, the strategy of a single player
does not have any influence on the payoff of the
other players. In other words, for allk 6= i ∈ SK ,
for all p = (P1, . . . , PK) ∈ PK , for all P ′

i ∈ P,
∣

∣uk(p) − uk(P
′
i ,p(−i))

∣

∣→ 0, asN → ∞.

Remember thatuk = γ(βk)
Pk

, and γ is at least
C2. Let (β1, . . . , βK) be the SINRs associated with
the power allocationp and(β ′

1, . . . , β
′
K) the SINRs

associated with the power allocation(P ′
i ,p(−i)).

Then a simple Taylor expansion ofγ in β ′
k gives

γ(β ′
k) = γ(βk)+(β ′

k−βk)
∂γ

∂β
(βk)+o(β

′
k−βk). (54)

According to (54), it is sufficient to show that
∣

∣

∣

∣

β ′
k − βk

Pk

∣

∣

∣

∣

→ 0, asN → ∞. (55)

a) Matched Filter: For the matched filter,
the inequality is obtained directly from (11).
The denominator of (11) is always greater than
σ2

N

∑N

n=1 |hnk|2. Hence,
∣

∣

∣

∣

β ′
k − βk

Pk

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

Pk
1
N

(P ′
i − Pi)

1
N

∑N

n=1 |hni|2 |hnk|2

Pkσ4

∣

∣

∣

∣

∣

≤ Pmaxh
2
max

σ4N
.

b) MMSE Filter: For the MMSE filter, the
inequality is obtained from (12), Lemma 1 from [33]
and Lemma 2.1 from [41], which we both reproduce
below for convenience.

Lemma 1: [33] Let C be a N × N complex
matrix with uniformely bounded spectral radius for
all N : supN(|C|) <∞. Let w = 1√

N
[w1, . . . , wN ]T

where {wi}i=1...N are i.i.d. complex random vari-
ables with zero mean, unit variance and finite eighth
moment. Then:

E

[

∣

∣

∣

∣

wHCw − 1

N
trC

∣

∣

∣

∣

4
]

≤ C

N2

whereC is a constant that does not depend onN
or C.

Lemma 2: [41] Let σ2 > 0, A and B N × N
with B Hermitian nonnegative definite, andq ∈ CN .
Then

tr
((

(B + σ2I)−1 − (B + qqH + σ2I)−1
)

A
)

≤ ‖A‖
σ2

.



15

In Lemma 2,‖A‖ is the spectral norm ofA, i.e.,
the square root of the largest singular value ofA.

From (7), we can write

βk = Pkwk
HHH

k

(

G(−k)G
H
(−k) + σ2IN

)−1
Hkwk,

β ′
k = Pkwk

HHH
k

(

G(−k)
′GH

(−k)

′
+ σ2IN

)−1

Hkwk

where

G(−k)
′GH

(−k)

′
= G(−k)G

H
(−k)

+ (P ′
i − Pi)(hi ⊙ wi)(hi ⊙ wi)

H .

A corollary of Lemma 1 is that for either matrix

C = HH
k

(

G(−k)G
H
(−k) + σ2IN

)−1

Hk or matrix

C = HH
k

(

G(−k)
′GH

(−k)

′
+ σ2IN

)−1

Hk, we obtain
[33]

∣

∣

∣

∣

wk
HCwk −

1

N
trC

∣

∣

∣

∣

→ 0, asN → ∞.

Matrix B = G(−k)G
H
(−k) is Hermitian nonnega-

tive definite, as for allw ∈ C
N , wHG(−k)G

H
(−k)w =

∥

∥G(−k)w
∥

∥

2 ≥ 0. Diagonal matrixA = HkH
H
k has

spectral norm
∥

∥HkH
H
k

∥

∥ ≤ h2
max. Using Lemmas 1

and 2, asN → ∞, we obtain
∣

∣

∣

∣

β ′
k − βk

Pk

∣

∣

∣

∣

→ 0, asN → ∞.

c) Optimum and Successive Interference Can-
cellation Filters: The analog of the SINR derived
for the optimum filter stems from the MMSE filter
with SIC. The SINR for SIC filters have similar
expressions with less interfering users appearing in
the denominator. Hence the result is immediate.

C. Proof of Prop. 5

Given C⋆, we can use (20) to obtain a Nash
equilibrium power allocation in the following way.
We rewrite (20) assuming that the target SINR for
the MMSE filter isβ+.

α log2

(

1 + β+
)

− α log2(e)
β+

1 + β+

+ log2

(

1 +
1

σ2 (1 + β+)

∫ α

0

P (y) |h(y)|2 dy
)

= α log2 (1 + β⋆) . (56)

In the left-hand side of (56),P (y) is given by a
MMSE power allocation similar to the one given

by (28). Hence, the term
∫ α

0
P (y) |h(y)|2 dy in (56)

does not depend on the actual realizations of the
channels. Replacingβ⋆ by β+ in (27), we obtain
that

∫ α

0
P (y) |h(y)|2 dy = ασ2β+

1−α β+

1+β+

, which gives us

(30). Replacingβ⋆ by β+ in (28), we obtain the
power allocation (29).

D. Expectation of the random variable(33)

For each userj, there areL > 1 paths with
respective attenuationshℓ

(

j

N

)

, ℓ = 1, . . . , L, which
are i.i.d. complex random variables with mean zero
and even distributions of the real and imaginary
parts. The Fourier transform of those attenuations
is hnj = h

(

n
N
, j

N

)

=
∑L

ℓ=1 hℓ

(

j

N

)

e−2πi n
N

(ℓ−1). The

total energy of the paths isEj =
∑L

ℓ=1

∣

∣hℓ

(

j

N

)
∣

∣

2
.

We want to show that the expectation of the
random variable 1

K

∑K

j=1
|hnj |2

Ej
is equal to 1. By

expanding the expression ofhnj , this is equivalent to
showing that the expectation of the random variable

hℓ

(

j

N

)

hℓ′

(

j′

N

)

Ej

is equal to 0. Denoting byp(·) the distribution of
hℓ = hℓ

(

j

N

)

, this expectation is equal to theL-
dimensional integral of

hℓhℓ′

|hℓ|2 + |hℓ′ |2 +
∑

k 6=ℓ,ℓ′ |hk|2
p (hℓ) p (hℓ′)

∏

k 6=ℓ,ℓ′

p (hk)

which is an odd function ofhℓ. Its integral is
therefore 0, which proves the desired result.

E. Proof of (45) and (46)

Denotemk = PK−k |hK−k|. From (42), with flat
fading, the sequence{mk}k∈SK satisfiesm0 = β⋆σ2

and mk+1 = β⋆σ2 + β⋆

N

∑k

j=0mj. Using the fact
that

∑k
i=j

(

i

j

)

=
(

k+1
j+1

)

, it is immediate to prove by
recurrence that

mk = β⋆σ2
k
∑

j=0

(

k

j

)

1

N j
β⋆j = β⋆σ2

(

1 +
1

N
β⋆

)k

.

Hence formula (45). The demonstration is exactly
similar for (46) from the recursionm0 = β⋆σ2 and
mk+1 = β⋆σ2 + β⋆

(1+β⋆)N

∑k
j=0mj .
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F. Optimal Ordering of Users

We determine the ordering that makes use of the
least total power for equilibrium PA (45) (the case
is similar for (46), (47) and (48)). Let the ordering
of the users be such as|h1|2 < · · · < |hK |2. Let
π be any permutation of{1, . . . , K}. Let aij =
(

1 + 1
N
β⋆
)K−i −

(

1 + 1
N
β⋆
)K−j

.
Then showing that the optimal ordering is such

as|h1|2 < · · · < |hK |2 is equivalent to showing that
for any π

K
∑

k=1

1

|hk|2
akπ(k) > 0. (57)

Consider first a cyclic permutation. By the def-
inition of aij , the sum of theakπ(k) is equal to
zero:

∑K
k=1 akπ(k) = 0. The first coefficienta1π(1)

is positive. It is affected coefficient 1
|h1|2

, which is
the greatest coefficient in the sum in (57). Hence
the sum in (57) is positive in this case.

Permutationπ can be decomposed as a product of
disjoint permutation cycles. Each cycle determines a
subset of indexesk, these subsets form a partition of
{1, . . . , K}. With a similar reasoning as precedently,
replacing index1 with the smallest index in the
cycle, the sum over the indexesk pertaining to a
cycle of 1

|hk|2
akπ(k) is positive. Hence the global sum

of (57) is also positive.
It can be proven in a similar way that the same

ordering maximizes the sum of inverse powers of
the users.
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