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Abstract— In this contribution, the performance of a power allocation mechanism allows to prevent an
multi-user system is analyzed in the context of frequency excessive consumption of the limited ressources of
selective fading channel; Us!ng game theoretlg tools, athe ysers.
useful framework is pr.owded in order to determine tht_a The most straightforward way to design a power
optimal power allocation when users know only their . . . .
own channel (while perfect channel state information is allocation (PA) mechanism 'S_ as a ce_n_trallzed_ p_ro-
assumed at the base station). We consider the realisticcedure, with the base station receiving training
case of frequency selective channels for uplink CDMA. sequences from the users and signaling back the op-
This scenario illustrates the case of decentralized schemie timal power allocation for each user. Power control
where limited information on the network is available at gchemes in cellular systems were first introduced for
the terminal. Various receivers are considered, namely the . :

Matched filter, the MMSE filter and the optimum filter. TDMA/FDMA [1]'. [2]; more recent.ly. Qn optlm_al
The goal of this paper is to derive simple expressions for scheme was derived for Code D_IV|S|0n MUI_tlpIe
the non-cooperative Nash equilibrium as the number of Access (CDMA) [3]. In order to achieve the optimal
mobiles becomes large and the spreading length increasescapacity, the users may also be sorted according to
To that end two asymptotic methodologies are combined. some rule of precedence [4]. However, this involves
The firstis a_lsymptc?ti_c random matrix theory WhICh allows 3 non neg||g|b|e overhead and numerous non infor-
us to obtain explicit expressions of the impact of all \h51i0na) transmissions. In addition, the complexity
pther mobiles on any given tagged n_10b|Ie. The second f centralized schemes incr drasticall ith th
is the theory of non-atomic games which computes goodO centralized schemes ', c eases, astically wi X €
approximations of the Nash equilibrium as the number of NUmMber of users. As discussed in [5], centralized
mobiles grows[] algorithms generally do not have a practical use

for real systems, but provide useful bounds on

the performance that can be attained by distributed

I. INTRODUCTION a|gorithms_

Resource allocation is of major interest in the A way to avoid the constraints of a centralized
context of multi-user systems. In the uplink multiprocedure is to implement a decentralized one where
user systems, it is important for users to transngiach user calculates its estimation of the optimal
with enough power to achieve their requested quétansmission power according to its local knowledge
ity of service, but also to minimize the amount off the system. This is, for example, the case in
interference caused to other users. Thus, an effici@dthoc networks applications. Most of the time,

a distributed algorithm means an iterative version
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Supposing that an optimal power allocation existsquilibrium is a good approximation for the latter,
a distributed iterative algorithm is derived from @&ee details in [18]. In this paper, we derive the non-
differential equation in [6] and its convergence iatomic equilibrium, which generally corresponds to
proven analytically. A distributed version of the ala non-uniform PA for the users.
gorithm of [2] is presented in [7]. Building on these The non-atomic Nash equilibrium is studied in
results, a general framework for power control ithis paper for several linear receivers, namely the
cellular systems is given in [8]. A review of differentmatched filter and the MMSE filter, as well as non-
methods of centralized and distributed power contriihear filters, such as the successive interference
in CDMA systems is given in [5]. cancellation (SIC) [19] version of those filters.
In this context, a natural framework is gameélowever, in order to perform SIC, the users need
theory, which studies competition (as well as cae know their decoding order, in order to adjust
operation) between independent actors. Tools thieir rates. In this paper, we introduce ways of
game theory have already been frequently usedastaining an ordering of the users in a distributed
a central framework for modeling competition anechanner. The ordering can be determined simply in
cooperation in networking, see for example [9] ama distributed manner under weak hypotheses. This
references therein. Building on the framework dfives rise to a different kind of power allocation,
[8], a game theoretic approach was introduced ihat depend explicitly on the order in which the
[10], [11]. Numerous works on power allocatiorusers are decoded.
games have followed since, a selection of which we Moreover, we quantify the gain of the non-
present in Sed.lIl. uniform PA with respect to uniform PA, according
Game theory can be used to treat the case tofthe number of paths. The originality of the paper
any number of players. However, as the size @igés in the fact that we show that as the number
the system increases, the number of parametefspaths increases, the optimal PA becomes more
increases drastically and it is difficult to gain insighdind more uniform due to the ergodic behavior of
on the expressions obtained. all the CDMA channels. This is reminiscent of
In order to obtain expressions depending onn effect (“‘channel hardening”) already revealed in
on few parameters, we consider the system in 81MO [20]. The highest gain (in terms of utility) is
asymptotic setting, letting both the number of useebtained in the case of flat fading (which also favors
and the spreading factor tend to infinity with a fixedis-uniform power allocation between the users).
ratio. We use tools of random matrix theory [12] to The layout of this paper is the following. First, a
analyze the system in this limit. Random matrix thetetailed account of related works is made in $éc. Il.
ory is a field of mathematical physics that has beén order to be self-contained, we introduce useful
recently applied to wireless communications to amotations and concepts of random matrix theory in
alyze various measures of interest such as capa@gc[Ill. The communication model that will be used
or Signal to Interference plus Noise Ratio (SINR}hroughout the paper is detailed in IV. Asymp-
Interestingly, it enables to single out the main paetic SINR and capacity expressions are given in
rameters of interest that determine the performangec.[W. The particular game played between users
in numerous models of communication systems wit§ introduced in Sed._VI, along with the existence
more or less involved models of attenuation [13hf a Nash equilibrium. Finally, theoretical results
[14], [15], [16]. In addition, these asymptotic resultfor the power allocation are derived in Séc. VI
provide good approximations for the practical finiteor unordered users and Sdc. VIII when there is
size case, as shown by simulations. an ordering of the users. Analytical results are
In the asymptotic regime, the non-cooperativ@atched with simulations in Sec_1IX. Conclusions
game becomes a non-atomic one, in which tkge provided in Sec.
impact (through interference) of any single mobile
on the performance of other mobiles is negligible.
In the networking game context, the related solu-
tion concept is often called Wardrop equilibrium This section is dedicated to present some of the
[17]; it is often much easier to compute than theorks that use game theory for power control.
original Nash equilibrium [9], and yet, the formeiWe remind that a Nash equilibrium is a stable

Il. RELATED WORK



solution, where no player has an incentive to deaatrices with non-equal variances due to Girko
viate unilaterally, while a Pareto equilibrium is 426] whereas classical results rely on the work of
cooperative dominating solution, where there is rfailverstein [27]. A part of this work was previously
way to improve the performance of a player withoyiublished as a conference paper [28].
harming another one. Generally, both concepts doMoreover, in addition to the linear filters studied
not coincide. Following the general presentation @i [24], we study the enhancements provided by the
power allocation games in [10], [11], an abundan@aptimum and successive interference cancellation
of works can be found on the subject. filters.

In particular, the utility generally considered in

those articles is justified in [21] where the authgi|. RaANDOM MATRIX THEORY NOTATIONS AND
describes a widely applicable model “from first CONCEPTS

principles”. Conditions under which the utility will The following definitions and theorem can be

allow to obtain non-trivial Nash equilibria (i.e.,founcl in [12] and will be used in the following
users actually transmit at the equilibrium) are de-

rived. The utility consisting of throughput-to-powe[netgg(érrlss -+ In this section)y" and K are positive
ratio (detailed in Sed. V1) is shown to satisty these Definition 1: Let v be a probability measure. The

COII’IdIFI.OI’lS.. In addition, it possesses a propriety %ftieltjes transformm” associated to is given by
reliability in the sense that the transmission occurs

at non-negligible rates at the equilibrium. This kind m () = 1 v(dt)
of utility function had been introduced in previous o — '
works, with an economic leaning [22], [23]. Definition 2: Let v = [v1,...,vn] be a vector.

Unfortunate|y’ Nash equi”bria often lead to ithS empirical distributionis the funCtionF]‘\// ‘R —

efficient allocations, in the sense that higher ratés 1] defined by:

(Pareto equilibria) could be obtained for all mo- 1

biles if they cooperated. To alleviate this problem, Fy(e) = y#{vi szfi=1...N}.

in addition to the non-cooperative game setting, In other words, /¥ (z) is the fraction of elements
[23] introduces a pricing strategy to force usemsf v that are inferior or equal te. In particular, if
to transmit at a socially optimal rate. They obtaim is the vector of eigenvalues of a matixk, £y is
communication at Pareto equilibrium. called theempirical eigenvalue distributioof V.

In [24], defining the utility as advised in [21] Definition 3: Let V be a/N x K random matrix
as the ratio of the throughput to the transmissionth independent columns and entrigs Denote by
power, the authors obtain results of existence ahd the closest smaller integeV, is said tobehave
unicity of a Nash equilibrium for a CDMA system.ergodicallyif, as N, K — oo with K/N — «, for
They extend this work to the case of multiple carriz € [0, 1], the empirical distribution of
ers in [25]. In particular, it is shown that users will
select and only transmit over their best carrier. As DUL:L’NJJ

far as the attenuation is concerned, the consideration o
converges almost surely to a non-random limit dis-

is re_strlcte_d to flat fad_lng in [24] and in [25] (eaCQribution denotedrY () and, fory € [0,a], the
carrier being flat fading in the latter). However o ST

. . émpirical distribution of
wireless transmissions generally suffer from thé

i i - 2 2
effect .of multiple paths,‘thus begomlng frquency [‘ULLZJNJ} a---a}UN,LyNJ} }
selective. The goal of this paper is to determine the
influence of the number of paths (or the selectivityonverges almost surely to a non-random limit dis-
of the channel) on the performance of PA. tribution denotedr) (-).

This work is an extension of [24] in the case Definition 4: Let V be aN x K random matrix
of frequency-selective fading, in the framework ahat behaves ergodically as in DEf. 3, such/35-)
multi-user systems. We do not consider multiplend FY(-) have all their moments bounded. The
carriers, as in [25], and the results are very differetwo-dimensional channel profitef V is the function
to those obtained in that work. The extension 8’ (x,y) : [0,1] x [0,a] — R such that, if the
not trivial and involves advanced results on randorandom variableX is uniformly distributed in0, 1],
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then the distribution 0pY (X, y) equalsF,’(-) and, time received signaj(t) at the base station has the

if the random variableY” is uniformly distributed form:

in [0,a], then the distribution opV(z,Y) equals K

va() t) = sn/c Tug(t —nT — 1)dT +n(t
Theorem l:LetY = VOW be aN x K matrix, vt ;; ’ Tl Jar + )

where ® is the Hadamard (element-wise) product . . .

and V and W are independentV x K random wheren(t) is zero-mean complex white Gaussian

matrices. Assume tha&¢ behaves ergodically with 101S€ With V"?‘”ancegj?- The signal (after pulse
channel profilepV (z,y) as in Def.@ and thaW matched filtering by)*(—t)) is sampled at the chip
has iid. entries WiZ[h zero mean and variaryge rate to get a discrete-time signal that has the form:

Then, asV, K — oo with /N — «, the empirical K
eigenvalue distribution oY’ Y# converges almost y=> CiviVPisi+n (2)
surely to a non-random limit distribution function k=1

whose Stieltjes transform is given by: whereC, are N x N Toeplitz matrices representing

YYH(Z) . % Trace ( (YY H zI)_1> the frequency selective fading for theth user,v,, is

m N a N x 1 vector representing the spreading code of
1 the k-th user, andn is an N x 1 Additive White
= / u(x, z)dr Gaussian Noise (AWGN) vector with covariance
0 matrix o*I .
andu(z, z) satisfies the fixed point equation: We consider the case of a multipath channel.

Under the assumption that the number of paths from

u(z, z) = - 1 (1) userk to the base station is given iy, the model
e (y)dy —z of the channel is given by
0 1+ [y pV (2 y)u(a',z)dx’
Li—1
The solution to equationi (1) exists and is unique en(7) = i (O (T — 7(0) 3)
in the class of functions:(x, z) > 0, analytic for g — g R

Im(z) > 0, and continuous om € [0, 1]. o .
where we assume that the channel is invariant during

the time considered. In order to compare channels

at the same signal to noise ratio, we constrain the
We consider a single uplink multi-user Sysdistribution of the i.i.d. fading coefficientsy (¢)

tem cell, i.e., inter-cell interference free case. THich as:

spreading length is denotéd. The number of users _ 21 _ @

in the cell isK. The load isx = K/N. The general E [n(0)) = 0 andE [Jn(6)]"] Ly @

case of wide-band CDMA is considered where the Usually, fading coefficients),(¢) are supposed

signal transmitted by user has complex envelopeto be independent with decreasing variance as the
delay increases. In all caseg, is the average
t) = 2UL(T —nT).
zr(1) ;Sk ve(t =) power of the channel, such && [|c.(7)°] =
_ _ S ESVE [Ine(0)fF] = o, for all channels consid-
u(t) is a weighted sum of elementary modulatiogred. For each usek, let h; be the Discrete
pulses which satisfy the Nyquist criterion with reFourier Transform of the fading procesgr). The

IV. MODEL

spect to the chip interval, (T'= NT.): frequency response of the channel at the receiver is
N given by:
Uk(t) = Z'Ug“b(t — (ﬁ — 1)Tc). Li—1 . ,
=1 hi(f) = Y (e 2T O (5)
(=0

The signal is transmitted over a frequency selective
channel with impulse responsg (7). Under the where we assume that the transmit filte¢f) and
assumption of slowly-varying fading, the continuouthe receive filterl*(—f) are such that, given the



bandwidth1V/, In (9), H is the frequency selective fading matrix,

_ of size N x K:
wp={t T-T=fsT g " h
10 otherwise. e
H= : : :
Sampg/ng at the various frequWenci]%§ = —%, hyvi hye ... hyk
(j)r?otain the cogﬁicientﬁigNl < < N, as VP is the root square of the diagonal power
- control matrix, of sizeK x K.
Ll . . W is an N x K random spreading matrix:
hie = hy(f;) = Z nk(g)e—ﬂ%rﬁWTk(Z)ejWWTk(Z). p g
=0 Wik

D w- herew; =
Note thatE [|/|*] = o [wilws| - - [wi] wherew,

Since the users are supposed to be synchronized
with the base station and for sake of simplicity, we Note that asymptotically (asV — o0), for a
will consider in all the following that users add &iven multipath channel of lengtii, model (9)
cyclic prefix of length equal to the channel impulsis also valid for the case of uplink DS-CDMA
response length to their code sequ&d@his case since all Toeplitz matrices can be asymptotically
is similar to uplink MC-CDMA [30], [31]. As a diagonalized in a Fourier Basis [29], [34].
consequence, matricd<C,.} are circulant [32] and In the following, we will assume that the fre-
can all be diagonalized in the Fourier baBig29]. quency selective fading matridI behaves er-
Model (2) simplifies therefore to: godically, as in Def.[3. The two-dimensional
channel profile of HyVP is denotedp(f,z) =
P(z)|h(f,2)]*, f € [0,1], = € [0,a]. f is the
frequency index andc is the user index. This
enables us to use TH. 1 in order to obtain expressions
where H;, is a diagonal matrix with diagonal ele<gr the SINR.
ments{hi }i—1..n. For each usek, the coefficients |t is also assumed that the power of all users is
hi, are the discrete Fourier transform of the channgbper bounded byna and the square norm of the

impulse response. fading, on all paths, for all users, is upper bounded
We make the hypothesis that the users emplgy

Gaussian i.i.d. codes with zero mean and variance

1/N [33]. This hypothesis enables us to state sSimply  \/ AsympTOTIC SINR EXPRESSIONS
our results, however almost all of the results are
Let h;, be thek-th column ofH, andH_; be

valid for any distribution of the codes as Ionq{ : _
it h d iancéN [16]. | with h, removed. Similarly, Igtwk be thek-th
as it has mean zero and varianggy [16]. In golumn of W, andW_,, be W with w;, removed.

particular, since every unitary tranformation of . :
Gaussian i.i.d. vector is a Gaussian i.i.d. vector (&&* VP (_y) be VP with the k-th column and line

thatw; = F/v; has the same distribution as for removed. Finally, letG ;) = H VP ©
any i), we multiply y in (8) with F and obtain W)
without any change in the statistics:

WNE

K
y=> FHF"vi\/Ps,+n (8)
k=1

max-

A. Matched Filter

K
y = Hywi/Pisp+n Supposing perfect CSI at the receiver, the
k=1 matched filter for thek-th user is given byg, =
— (HVPOW)s+n (9) VPx (h, © wy). This leads to the following expres-

sion for the SINR of usek

where® is the Hadamard (element-wise) product. ‘ = ‘2
81 8k

SINRy, =
ZNote that in the asymptotic case (whah— oo), the result holds K o2aH + qH(a
without the need of a cyclic prefix as long as the channel islabsly 8 8k T 8y (=)
summable [29].

Gl,)) &



Proposition 1:[16] As N,K — oo with DenotingSINR;, = SYMSE Prop.[2 enables us to
K/N — «, the SINR of userk at the output of extract an approximation of the value of the SINR

the matched filter is given by of userk in the finite size case
k S 1
SINR;. = " (N) = Z il 2
n=1 o? + N Z];ﬁk 1+IBMMSE
where 3MF : [0, a] — R is given by (14)
From [12), we observe that, = 2 e o MMSE,
MF(2) = P(x)- From Prop[R2, we have the capaC|ty of uger
(H(:c))2 : CMMSE _ ]1710& (1+ BUMSE)
h(f dfd
)+ Iy fo ) (1 o) () df (Z:/LO) The global capacity of the system is
and H(z) = [ |h(f.z) i CMMSE — /0 log, (14 MV*5(2)) dz.  (15)
Denotlng SINRk = BMYF, Prop.[1 enables us to
extract an approximation of the value of the SINR. Optimal Filter
of userk in the finite size case The term optimal filter designates a filter capa-
VI ble of decoding the received signal at the bound
ko= given by Shannon’s capacity. Hence it is difficult
p (L Y n |2>2 to define an SINR associated to it. However, results
F n=1"nk of random matrix theory can still be applied. Let

okl + 2 Y e o Pl [P Y = Hx/f@W). The definition of Shannon’s
(11) capacity per dimension for our system is

We observe thaPkaﬁk = BMF. Cay = Jiflog2 det (IN + %YYH) . (16)
g

B. MMSE Filter As N, K — oo with K/N — a,

. . 1
Supposing perfect CSI at the receiver, 08\',°)TH / log, (1 + —2t) v(dt) a7
the MMSE filter for the k-th user is g
given by gVMSE — R-lg,, where R = where v is the empirical eigenvalue distribution

H . of YY#, as in Def.[2. If we differentiate the
((Hf@W) (Hﬁ@w) - UZIN)' This  asymptotic valueC©®T of (I7) with respect tar?,

leads to the following expression for the SINR ofve obtain

userk [14] OCOPT — 4t
. 002 g2(€)/1+oLtV(dt)
SINRj, = gt (G(-nG(ly +0'Iv) & (12) 2 (02 Lp_ L1
g —4t ) + =y
Proposition 2:[16] As N,K — oo with :105-’;2(6)/ 0—20(1+it) v(dt)
K/N — «, the SINR of userk at the output of . o .
the MMSE iver is gi by: _
e receiver is given yk = log,(e) (/ - U2y(dt) _ g/V(dt))
SINR, = MMSE [ ™ 5 1
F= A = logy(e) (m"(=0%) = — (18)
where SMMSE - [0, o] — R is a function defined by wherem?(-) is the Stieltjes transform of the empir-
the implicit equation ical eigenvalue distribution oV Y*. From Th.[1,

m”(-) is given by

1 2
MMSE .\ _ p [A(f, 2)|” df 13
= [ )= [ s



where u(f, z) is given by (1) witthﬁ(f, x) = In our setting, the players are simply the users,
p(f,x) = P(z)|h(f,z)]*. Given that ifo> = +00, indexed by the se* = {1,..., K}. The strategy
COPT =, it is immediate to obtailC°"T from (I8) for a mobile is its power allocatio®,, which we
as will assume belongs to a compact internval =

+o0 1 0, Pnay € R. The utility measures the gain of a
COT = log,(e) /2 m’(—z) — ~dz. (19) user as a result of the strategy this user plays. In
Proposition 3: C°°T and CMMSE  are related to Power Ratio (TPR) under minimal requirements.

[21], the author derives what he calls Throughput

through the following equality The utility of userk is expressed
a MMSE Tk
OPT _ ~MMSE s (x) Up = —. (22)
cv=C — log,(e) i T FVSE(7) GSE 1) dx TP,

! 1 [ p(f,2) We denotey, = 7(3), where(-) is the same
+/ log, <1 + —2/ %dm) df. function for all users. In[{22)y is at leastC? and
0 ot Jo 14 FMHw) (20) should satisfy conditions detailed in [21] in order to

Proof: See AppendifXIA. n obtain an interesting equ_lllbrlum. _
The additional term in the right-hand side bf (20 For example, in the _S|mu_lat|0ns, we consider
corresponds to the non-linear processing gain. 15 goﬁod%utv(ﬁk), \_Nh'Ch IS proportl_onal 0
quantifies the gain in terms of capacity that can B¢ — ¢ t)" whereM is the number of bits trans-
achieved between pure linear MMSE and non-linedttéd in a CDMA packet. Remark that the usual
filtering. deflnlthn of goodput would rath%r be considered
Assuming perfect cancellation of decoded usef¥oportional tog(/3;) = (1 — BER,)™, where BER

successive interference cancellation with Mmste the bit error rate. However, this quantity is not
filter achieves the optimum capacity [35]. The fol2€0 when the transmitted power is zero. Using this

lowing proposition ensues from this fact. function in the utility would lead to the unsatisfying
Proposition 4:[16] As N,K — oo with conclusion that mobiles should not transmit at all,

since the (improbable) event of a correct guess gives
R them infinite utility [10]. Therefore, an adapted
(COPT _ / log, (1 1 ﬁS'C(x)) da version of the goodput is adopted, where a factor 2
0 is added before the BER. The performance measure
considered is hence proportional ¢9(5x) = (1 —
2BER; )M, leading to the expression above. This
function has the desirable properiy(0) = 0 and its

K/N — «, the optimal capacity is given by:

where3%'°: [0, a] — R is a function defined by the
implicit equation

F5%(2) = P(x) Y |h(f, ) df 1) shape follows closely the shape of the original good-
)= 0 o2 +fx P(y)|h(fy)Pdy put ¢(-). This is a relevant performance measure,

0 1+85C(y) . . . L
Prop.@ enables us to extract an expression thaffs €ach mobile wants to use its (limited) battery

analog to the SINR for the optimal filter. Similarly_p(lzWer t(t)' transmit the maximum possible amount of
to the case of{"MSE in Sec[V-B, the derivative of "o/ ation.

. . 8pSIC This utility is expressed iits per joule In the
this expression obeys the property efl% = 5 non-cooperative game setting, each user wants to
selfishly maximize its utility. A Nash equilibrium is
VI.  GAMES AND EQUILIBRIA obtained when no user can benefit by unilaterally
From now on, we denoteINR,, = 3, whichever deviating from its strategy.
filter is actually used. To obtain the maximum utility achievable by user

k, we differentiateu, with respect to the powep,

A. Power Allocation Game and equate to 0. We obtain

A game with a unique strategy set for aI_I users is pk%y(gk) —~(B) = 0. (23)
defined by a triple{S, P, (ux)res} WhereS is the _ k . .

set ofplayers PP is the set ofstrategiesand (ux)res FOY a_II filters gnder consideratior],_{(10], {13) and
is the set ofutility functions wu;, : PI¥1 — R. @1) imply P57t = f, thus [2B) reduces an



equation ongy or equivalently in a discrete form

/
By (Be) — v(Br) = 0. (24) 3* <0—2 +LYE P, |hj\2>

Eq. (23) is particularly interesting in the case 1% = o2
when there exists a unique solution. [P

The existence of a solution tb (24) is guarante&&umming [(25) overk = 1,..., K, we obtain a
as long as the functiony(-) is a quasiconcaveclosed form expression for the minimum power with
function of the SINR, i.e., there exists a point belowhich userk transmits when using the matched filter
which the function is non-decreasing, and above 9 e
which the function is non-increasing [23], [21]. In P, = 1 5 "B for o < i (26)
addition, we assume that the functior-) takes || "1 —aB* B
yal_u_e 7(0?.: 0, so that users cannot achieve an 2) MMSE filter: From Prop.[R, the continuous
infinite utility by not transmitting. This occurs forformulation is
several functionsy(-) of interest, in particular the

(25)

goodput [24], which we will use for simulations. B (02 + 1+15* foa P(y) |h(y)|2dy>
Unfortunately, the capacity can not be used as a P(z) = 5
function ~(-), since it leads to the trivial result |h(z)]

£* = 0 for this utility function. The uniqueness ofgr equivalently in a discrete form
the solutiong* to (24) is due to fact that the SINR

of each user is a strictly increasing function of its B <a2 + ﬁ% Ele’#k P; |hj|2)
transmit power. Given the target SINR, we obtain P, = 5 . (27)
the strategy of users in the next section. ||
Summing [(2F) overk = 1,..., K, we obtain a
VIl. POWERALLOCATION IN THE NASH closed form expression for the minimum power with
EQUILIBRIUM which userk transmits when using the MMSE filter
A. Flat Fading 1 523" 1
In this subsection, we show that the results of Tk =57 5 fora <1+ 7 (28)
[24] for Matched and MMSE filters are a special i1 = ez

case of our setting wheh = 1 (flat fading case). Both (28) and[{28) are the same results as in [24].
In addition, we derive the power allocation for the 3y Optimum filter: Each user maximizes its util-
Optimum filter. When there is only one path, fofy for a SINR equal tg3*. However, in the case of
each uset, denoted by its index; = = € [0,a], the optimum filter, the SINR is not defined directly.
h(f,z) does not depend ofi Given the target SINR |t js nevertheless possible to extract an equivalent
3%, we have explicit expressions of the power withyantity from the expression of the capacity, since

which userk .transmits for the various receivers. the value of the capacity of usérat the equilibrium
In Appendix(XI-B, we show that the influence ofg given byC* = Liog, (14 3).

the strategy of a player on the payoffs of other play- pygposition 5: The power allocation is given by
ers is (asymptotically) “small”. It justifies the fact

that we can obtain an equilibrium in the asymptotic p - 1 o’p* f 1 1 29
: : = — g fora<l+—  (29)
setting, without the need for players to possess all \he|” 1 — atisr I6;

the information on the system. Their local informa- _ _
tion is sufficient. In the asymptotic limit, we obtairwhere 3™ is the solution to
results similar to Wardrop equilibrium: the strategy

—+
used by each user does not influence the strategy of 1o (1 + 8%) — aloo, (e
other users. B (1+77) BTy g
1) Matched filter: From Prop[1L, the continuous 1 aBt
formulation is Hogy | 1+ 77— | = loe (1+057).
* @ 2 TR It
P(x) = B (o> + [y P(y) [h(y)]” dy) (30)

|h(z))? Proof: See AppendiXXI-C. u



B. Frequency Selective Fading It follows that asymptotically®? = f_ﬁ;"i (and

In the context of frequency selective fading, fopimulations in Se¢. IX prove that this approximation
each uset;, denoted by its indext — x € [0,a], S valid for moderate finite values of). From (31),
there arel > 1 paths with respective attenua¥e obtain a formula similar td (26)
tions hy(x), ¢ = 1,...,L, which are i.i.d. ran- 1 o3 1
dom variables with some known distribution. We Py = El—ap for a < 3 (34)

suppose thath,(z) has mean ZE€ro, gnd the dis- 2) MMSE filter: The continuous formulation is
tributions of the real part and imaginary part of

he(z) are even functions, as for example the Gaus- P(z) = p ~ (35)
sian distribution, which we consider in the simu- Jo s "}(j’;&)ﬁ”y)ﬁdy
0T 115% Jo )

lations. h(f,z) depends onf through h(f,x) = _ _ _
SO he(x)e?"/(=1 | Given the target SINR3*, Of equivalently in a discrete form

the Nash equilibrium power allocation is determined B G 36
by implicit equations for the various receivers. L ZN G (36)
1) Matched filter: The continuous formulation is N cn=1 g24 Lo LS sk Pilhng)?
_ n—1 k
P(x) = B* In @8), hur = h ("5, %)

) . ) ) As previously, when the number of users tends
o?H(x) + [y Jo P@) (£, )" Ih(f,2)[ dfdy  to infinity, L3 Py |h,l* is asymptotically a

(H(x))2 constant (not depending or), denoted.

. . . 2

or equivalently in a discrete form aﬁ*ﬁ% le %
Q= > (37)

Py = p* 1 — a8 LKl

o2 ZN |h |2+ 1 ZN |h |2 1 ZK P|h '|2 1+8* K j=1 E;

N Znzt onl T 2w okl N 2o 73 il where By = & SN [hy
<% SN \hnk|2> It follows that asymptotically2 = lf‘flg we
(31) obtain a formula similar td(28)
_ n—1 k 1 2 Q% 1

In @1), hare = h ("5, %) Poe Lt T traci+l (38)

In this expression, the power allocation of uger Erl—a G
seems to depend on the power allocation and fadlng3) Optimum filter: Each user maximizes its util-

realization of all the other users. However, when th%for a SINR equal ta3*. However, in the case of

S |
number of users tends to infinity, the strategy of an optimum filter, the SINR is not defined directly.
IS nevertheless possible to extract an equivalent

single user does not have any influence on the payh
uantity from the expression of the capacity, since
ie value of the capacity of usgrat the equilibrium

of user k, as shown in Appendix_XI-B. Hence,
the appropriate fra}rpework isé non-atomic game
The expressiont: > o1 Py |hagl” is asymptotically . . A
=1 is given byC* = + log, (1 + 3).
a constant (not depending o), denoted. Proposition 6: Asymptotically, asN, K — oo,

o’ L Ele % the power allocation is given by
(2::1__ Gy K T (32) . 1 26+ f X 1 a0
AP K 2uj=1 TE, B or a < +ﬂ_+ (39)

1+87+

_ L\ 12
Where £ = > s |fimj " where 3+ is the solution to

As K — oo, we can apply the Central Limit

Theorem to the sum of random variables N B+
LT alog, (1473 )—alogz(e)m
KL, (33 o5
j=1 +log, 1-+»1_+%3+ 5F = alog, (14 5%).
It tends to its expectation, which is equal tdsee 1= oy

Appendix[X[D). (40)
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Proof: The proof is similar to the proof of the fact that the whole law of; is realized in this

Prop.[5. B case, so that users automatically know their rank

We observe that for all filters considered, thef decoding. Another manner to give a (random)
optimal PA is a constant times the inverse of therdering of decoding is to introduce an additional
total energy of the channdl;. Via Parseval’'s The- degree of liberty in the system. In Séc. VIII-B, we
orem, E; = S, |he (%)}2 It is a sum of i.i.d. develop a correlated game framework that enables
random variables. As the number of paths increas&§ers to learn their rank of decoding in a simple
the optimal PA tends to a uniform PA. This igvay. In the following, we assume that each user
an effect similar to “channel hardening” [20]: a$as a unique has a unique i.d. numberanging
the number of paths increases, the variance of tgtween 1 tox..
distribution of the channel energy decreases and
the Nash equilibrium PA becomes more and moge Ordering whenk — oo

uniform for all users. If the number of usersk — oo, with L fixed,

the whole law of the total channel energy will be
VIIl. SUCCESSIVEINTERFERENCE realized. Assume the base station advertises to the
CANCELLATION users that they will be decoded by decreasing total

The optimal filter gives a bound on the Ioencorghannel energy. Each user knows, according to the
alization of its fading, its rank in the decoding

mance that can be achieved through (non-Iineé er ai VK ti L h lative di
filtering at the base station. In order to improve gl G€r given Dyit times.1 minus the cumuiative dis-

performance of the system, we introduce Success!gguuon function D() of the total channel energy
Interference Cancellation (SIC) [19] at the basg’" B
station. Under the assumption of perfect decoding, rank; = K (1 — D(E;)).

SIC improves immensely the performance of lin- In case that the base station advertises to the users
ear filters (Matched Filter or MMSE Filter). Thethat they will be decoded by increasing total channel
MMSE SIC filter actually achieves the optimum filenergy, usey will have rank rank = K D(E;).

ter bound, under the assumption of perfect decoding.

The principle of SIC receivers is quite si.mple: USERS Correlated Equilibrium

are ordered and are decoded successively. At each ish 1o i ol hani h
step, supposing that the user has been encoded at t%{el W'Sl to introduce a simple mekc anism th_art]
appropriate decoding rate, the signal is decoded a‘?ﬂcxlab eshp ayems tt)o cgordlgaée and tol now in WI IC
its contribution to the interference is then perfect§d€r they will be decoded. We place ourselves
subtracted. This removes some of the inter-uggy the context of correlated games. The notion of

interference and therefore increases$heR of the cOrrelated equilibrium was introduced by R. Au-
following decoded users. manfi in [36] and further studied in [37], [38], [39].

-Eey represent a generalization of Nash equilibrium.

The challenge is that the users must transmit 7. ; f lated i th
at the appropriate rate to avoid the catastrophT e important feature of correlated games is the

occurrence of imperfect decoding. Usually, the opréSence of amrbitrator. An arbitrator needs not

dering of users is done in a centralized way, at tt Ve Zmy |n|teII|genced or kgowledg_e of the gaérlr_le,
base station which then advertises it to the uselfsN€€ds only 1o send random (prlvate or public)
However, for the protocol to remain distributedSlgnals to the players that are independent of all

users should be able to decide, based on their of4€" data in the game. In the context of non-
information, at which rate to transmit. cooperative games, each player has the possibility

At equilibrium, the rate is determined by thd1ot to consider the signal(s) it receives. Coordina-

SINR 4%, and it is the transmission power of théion between players turns out to be useful also in

user that is determined according to its rank (r)tﬁe case .Of coopergtivg optimization. The 3‘9“"?"5
decoding. The equilibrium PA can be determine%lnable joint random_lzatlon b_etwe_en th.G. st_rate_gles
in a simple manner when the number of muItipatt%j the players, possibly resulting in equilibria with

'S_ finite (L < OO) and the number of users is VEIY 3prof. R. Aumann has received in 2005 the Nobel prize in ecghom
high (K — o0). In Sec.[VII[-A, we make use of for his contributions to game theory, together with Thomessefling.
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higher payoffs. The concept of correlated gamés the case of the MMSE filter with SIC, the SINR
was recently introduced in a networking context iof the user decoded at rarkis

[40], where the authors consider a simple ALOHA | N 1

setting. MMSE _ p, — Z 12545 —
The simplest and most intuitive coordination N o2+ L. Bl

N £aj>k 148"

mechanism is given by a common signal which ! (43)

users as well as the base station overhear befefem (43), we get the equilibrium PA of uséras

each transmission. There af€! possible permu- 3+

tations of K users. Hence, the arbitrator broad- P, = o T (44)

casts a signal to the users belonging to the set N Don=t PENE AT

{0,..., K!—1}. Each of these numbers corresponds

to a permutationt of {1,..., K} that gives the For flat fading, a simple recursion gives the
(random) ordering of decoding as rank (7). The equilibrium PA (see AppendiX_X[dE). We obtain

users can then adjust their transmit power accordifgFPectively

to this ordering. In terms of size of the message, we 025 1 K=k

this is equivalent to the case when the base station P =—7 (1 + —5*) , (45)
. . . ] N

decides the decoding order and broadcasts it to the ) Kk

users, or sends< individual messages ofi(K) phmse _ 75" 14 L p* (46)

bits containing the rank, sinde(K!) = K In(K) + K || N1+ B~ '

o(K In(K)). However, there is no need of either any

K led fih t tati tthe b As far as frequency-selective fading is concerned,
nowledge ot the system or computations at tn€ b, gives us the form of the asymptotic expressions.
station in the case of the correlated mechanism.

Asymptotically, the power allocation of one user
will not depend on the PA of the other users, as
shown in AppendiX_XI-B. With a similar reasoning

as in Sec[_VlI, the expressions mimic {45) a@Q] (46)
|

C. SIC Power Allocations

they can calculate their transmit power according t@.,
1 K—k
(1 + Nﬂ*) , 47)
not benefit by deviating, since it would decrease its
In the case of the matched filter with SIC, thgy,oqq expressions are also validated by simulations.

In both cases, once the users know their ord&ith the total channel energy; replacing |hy
the filter that is used. The equilibrium still occurs o2 3*
when all users reach the SINR. A single user will PYF = B
k

utility. From now on, indext denotes the rank of PMMSE _ o’ ] 1 G* K=k (48)
decoding. kT B N1+ g+ '
SINR of the user decoded at rafkis Since MMSE SIC with perfect decoding is equiv-

alent to the optimum filter, we thus obtain a second

N = possible equilibrium PA for the optimum filter. In
P, (L ZN h k|2>2 Sep.[]X, we investigate which is the PA which m.in-
N &n=11710 imizes total amount of power needed to transmit at

SN Nkl + 52 e SN, Py By ? [hei[? equilibrium SINR. In the case of automatic ordering
(41) of the users, one question is whether it is best to
order the users by increasing or decreasing total

From [41), we get the equilibrium PA of usgéras fading energy. The answer is the following: it is
always best to decode the users by decreasing total

P, = G5~ channel energyF; < --- < E, (see Appendix
a2 N 2 N 2 2 XI-F).
T 2onm |+ 52 2050k 2oy B 1Pons|” o An interesting feature of equilibrium PA{47) and
<i >V ‘2)2 "~ (48) is that there is no limitation on the number
N fun=1 |70k of users than can be accomodated by the system,

(42) contrary to the previous case 6f {34),1(38) and (39).
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The limitation is only imposed by the increasings the variance oF), decreases, and the equilibrium
power needed for each new user decoded last, whi#h becomes uniform.

grows without bound as an exponential. In Fig. [3 we have plotted the average of the
inverse power of the users in the Nash equilibrium
IX. NUMERICAL RESULTS for each of the investigated schemes. We plot the

In all the following, we consider thaf,, is average inverse power because of the direct relation
chosen sufficiently high so that users can actually the utility for the users. The higher this average,
transmit at the equilibrium PA values. For the simuhe higher the utility for the user. The SIC filters are
lations, we consider the usual case of Rayleigh faglways more efficient than their linear counterparts.
ing. Although Rayleigh distribution is not boundeddowever, for a loady < 0.12 and optimum filtet,
from above, simulations show that the results stitl is better to use the first variation of PA (39)
hold. than use MMSE SIC(48). This relation is reversed

We consider a CDMA system withk’ = 32 when o > 0.12. In addition to the theoretical
users and a spreading factdr = 256. The noise curves, Monte-Carlo simulations were performed
variance isc? = 107!°. For a number of bits both with random ordering (circles) and ordering by
in a CDMA packet M = 100, the goodput is decreasing total channel energy (crosses)/fef 8
v(B) = (1 —6‘5)100 (see [24]), ands* = 6.48. multipaths. Simulations show that the optimal order-
The capacity achieved at the Nash Equilibrium isg improves the power efficiency of the successive
C = alog, (1+ 3*) = 0.39 bits/s. Unfortunately, interference cancellation filters.
the capacity itself cannot be used as a relevantln Fig.[4, we investigate the amelioration pro-
performance measure in the definition of the utilityided by optimal ordering as a function of the
because in this case the maximal utility is obtaingtimber of multipaths. The simulations are done for
when not sending. K = 128 users, in order to be in the “interesting”

We have performed simulations over 10000 regonea > 0.12. As expected, as the number of paths
alizations. Fig.[IL shows the good fit of theoretimcreases, the total channel energy is more and more
values calculated directly fromh_(B4), (38) arid |(33he same for each channel and the gain provided
with those simulations. The values of the utility dby ordering the users decreases. However, when the
not depend on the number of multipaths. We se@mber of users is very large and they benefit from
that optimum filter requires the minimal power, andutomatic ordering, we see that the utility with the
matched filter the maximal power to achieve thRIMSE SIC equilibrium PA is the maximal utility

required goodput. that can be obtained in the non-cooperative setting.
In Fig. 2 we have plotted the average utility
versus the number of multipaths Multipaths are X. CONCLUSION

supposed to be i.i.d. Rayleigh distributed with vari-

L der for the ch s to h th Using tools of random matrices, we have de-
ance1/L, in order for the channels to have -Jived the equilibrium power allocation in a game-

PA given by [31) and[(36), a_nd the utility in thang. Three receivers are considered: matched filter,
case where. all nodes transmit at the same POWEIMISE and optimum filter (given by Shannon’s
For com.parlsonlpturpt(;]ses, the ?utr;: of the unifor pacity). In addition, distributed ordering mecha-
PoOWers 1S equal to the sum o € POWErS USEfkms are introduced and the successive interference

Irrlm tthe Najh eguk:llbrlun;]. Intﬁdflt'ﬂpn’ SI'mUI?t'OntE%ncellation variants of the linear filters are studied.
(not reproduced here) show that this value gives thg, o5, user, this power allocation depends only

higher average utility for a uniform PA. The utilityOn the total energy of the channel of the user

does not vary withL, in the Nash equmb.r‘lum: the under consideration. For a frequency-flat channel,
Central Limit Theorem applies to the utility, WhICh[he power allocation among users is dis-uniform.

IS a constant times the f@”dor_“ varl_alE@ in the whereas when the number of multipaths increases,
Nash equilibrium. The utility with uniform powers

is always inferior to the utility in the Nash equilib- “The value of o is obtained as solution of the equation

rium. However, asl increases, the gap decreasesg (1 —alf;) = BT (1 — exp(—atiy)).
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uniform one.

Yop(f,o)df
B(x) = - (49)
X1. APPENDIX /0 o’ + Jg pﬁﬁé{jy

A. Proof of Prop[B
From (1), fo u(f,—o?)df satisfies the

Notice that whemr? — oo, COPT = (, CMMSE —
same implicit e uatlo 9 and thus
and gMMSE(z) = B(z) = 0. Thus we only have to P a rE@ ) as(x)

prove that the derivatives of either side bf](20) are .

equa!' 2 u(f, _02) = o p(fy)dy 2"
Using p(f,z) = P(z)|r(f,z)]", @3) can be 0 1) 0

(50)




Using (49) and[(50), we can rewrite
1
1
| utr=otar -

1
1
/foa”fyd“r 2 _/0 Y

14-6(

apfxdx

:/ 0 1+8()
0 02( . q<_{ggd§f+a2)

wie [f__prod
fa p(fy dy + g2

1+6(y)

:‘/o mdﬂ”

Thus from [18)

8COPT B « 6(37)
0 1°g2<€)/0 (L + )

Differentiating [I1%) with respect to?, we obtain

8CMMSE «@ 1 0/6
| - 7
0o? 0:(¢) /0 1+ B(z) 0o? (z)dz
_ 1
Let 7(z) = Zrypmy-
obtain
acoPT 80MMSE
do® Qo2

—log,(e) /0 ’ (5(33) + 02%@:)) m(z)dx.

From (13), we have

JRE O e

/ / o2+f0 = f>j{<>dy§;(x)d9’

Iy ot 56)5,,2( z)dx
0 1+f0 ( )dy

1 0 1 *
:1og2(e)%/o log, <1+/0 p(f,y)ﬂ(y)dy) df.

Observing that

/oa (5 (z) + "2%@)) w(a) 0% B(o) o ()

0

we obtain [(20) from Prop.]3.

=5 /0 " 028 (x)dz

14

B. Influence of Other Players’ Strategies

We want to prove that asymptotically, in the game
{SE P, (ux)resx }, the strategy of a single player
does not have any influence on the payoff of the
other players. In other words, for all £ i ¢ S¥,
forallp=(P,...,Px) € PX, for all P/ € P,

2))‘ — 0, asN — oc.

Remember thaty, — %if), and v is at least

C?. Let (By,...,Bk) be the SINRs associated with
the power allocatiop and (31, . . ., 3% ) the SINRs
associated with the power allocatioiP;, p(_;)).
Then a simple Taylor expansion ofin 3, gives

Y(Br) = (B)+ (B~ 5k> (5k)+0(ﬁk Br). (54)

‘uk(p) - uk(Pilv P(-

op
According to [54), it is sufficient to show that
Be = B — 0, asN — cc. (55)
Py

a) Matched Filter: For the matched filter,

. (52) the inequality is obtained directly from[([11).

The denominator of[(11) is always greater than

From [51) and[(52), we %ZnNzl |hni|”. Hence,

Bi—Bi| _ |Pew (B = P) % Yom il o
Pk - Pk0'4
Pmaxh%ax
- oiN

b) MMSE Filter: For the MMSE filter, the
inequality is obtained from_(12), Lemma 1 from [33]
and Lemma 2.1 from [41], which we both reproduce
below for convenience.

Lemma 1:[33] Let C be a N x N complex
matrix with uniformely bounded spectral radius for
all N: supy(|C|) < oo. Letw = \/Lﬁ[wl, N
where {w; };—;. y are i.i.d. complex random vari-
ables with zero mean, unit variance and finite eighth
moment. Then:

4

C

E N2

1
wiCw — NtrC

whereC' is a constant that does not depend &n
or C.

Lemma 2:[41] Let 0> > 0, A andB N x N
with B Hermitian nonnegative definite, agdc CV.
Then

A
tr (((B + 0_21)—1 _ || H )

o2

(B+aq” +0°I)7")A) <
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is the spectral norm oA, i.e., by (28). Hence, the ternf," P(y) Ih(y)|? dy in (GB)
the square root of the largest singular valueAof does not depend on the actual realizations of the

From (7), we can write channels Replacin@* by ﬁ+ in (27), we obtain
that dy = -5 which gives us
B = BowTHY (GG )+U2IN) "Hywy, Jo B Ih)l dy = 1—agls whieh gives d
) RN (30). Replacrngﬁ* by 6% in (@8) we obtain the
By = PewTHY! (G( WGl +o IN) H,wi  power allocation[(29).

where
D. Expectation of the random variab
G(_k)/G{I_R)/ - G(_k)G{{k) For IOeach userj, there arel. > 1 (flr)hs with
' _ P\(h. (. NH U :
+ (P = B)(h; © wi) (hi © wi) . respective attenuatiorts (<), ¢ =1,..., L, which
A corollary of Lemmad_ll is that for either matrixare i.i.d. complex random variables with mean zero

-1 . . . . .
Cc = HI <G . Gf{—k +021N) H, or matrix and even distributions of the real and imaginary
parts. The Fourier transform of those attenuations

-1
C =HI (G G, +a IN) H,, we obtain iS by = h (2,4) =30 he (£ )6_2’”N“ Y. The

[33] total energy of the paths i8; = 3"/, |he (& )\ .
1 We want to show that t!re expectation of the
‘WkHCWk - NUC‘ — 0, asN — oo. random variableX 7 | 'hgi‘ is equal to 1. By

_ expanding the expression bf;, this is equivalent to
Matrix B = GG, is Hermitian nonnega- showing that the expectation of the random variable
tive definite, as for aliv € CV, w’G_ G( W =

|G x wH > 0. Diagonal matrixA = HkHH has he (%) he <_)
spectral norm|H,H/|| < h .. Using Lemmas]l E
and[2, asN — oo, we obtain
3 — B, is equal to 0. Denoting by(-) the distribution of
kP — 0, asN — 0. he = h(4), this expectation is equal to the-
k dimensional integral of
c) Optimum and Successive Interference Can-
cellation Filters: The analog of the SINR derived hyhy (he) p (he) H p (hy)
for the optimum filter stems from the MMSE filter||” + |7 |” + Py \hk| oty

with SIC. The SINR for SIC filters have similar o . , .
expressions with less interfering users appearing\ich is an odd function ofh,. Its integral is
the denominator. Hence the result is immediate. therefore 0, which proves the desired result.

C. Proof of Prop[b E. Proof of (@5) and (48)

Given C*, we can use[(20) to obtain a Nash Denotemy, — Pi_y |h_x|- From [@2), with flat
equilibrium power allocation in the following way. fading, the sequenc{enk}kesx satisfiesn, = 30

We rewrite [(20) assirmrng that the target SINR fqr I mk+1 _ o2 + :0 m;. Using the fact
the MMSE filter is3 Bb1y e r .
that S ( ) = (]H), |t is immediate to prove by
Gt recurrence "that

alog, (1 + ﬁ+) - a10g2(e>m

PR\ 1 1 k
1 o — 42 ) — *J . gx 2 1 L *) ‘
+ log, (1—%702 (1+ﬁ+)/0 P(y) |h(y)|2dy) my, = "o Jgo (j)NJﬁ Bro ( + Nﬁ

= alogy (14 57). (56) Hence formula[(45). The demonstration is exactly

In the left-hand side of[(B6)P(y) is given by a similar for (46) from the recursromo 3*o? and
MMSE power allocation similar to the one givenns+1 = Bro® + (Hﬁ* N ZJ LR



F. Optimal Ordering of Users [6]

We determine the ordering that makes use of the
least total power for equilibrium PAZ(45) (the case
is similar for [486), [4V) and(48)). Let the orderingl[’]

of the users be such 84> < --- < |hg|*. Let
7 be any permutation 01{1 .., K}. Let a;;
1 ge\ Kt * (8]
(1 B = (L 30

Then showing that the optlmal ordering is such
as|h|? . < |hg|? is equivalent to showing that [9]

for any 7
K

1

Consider first a cyclic permutation. By the de
inition of a;;, the sum of thea,.y) is equal to
zero: ) | Q) = 0. The first coeff|C|enta17r( 1)
is positive. It is affected coeff|C|e , Which is
the greatest coefficient in the sum 57) Hengss)
the sum in[(8F) is positive in this case.

Permutationr can be decomposed as a product tﬂf

(57) [10]

f11]

[12]

disjoint permutation cycles. Each cycle determines a
subset of indexes, these subsets form a partition of
{1,..., K}. With a similar reasoning as precedently,
replacing indexl with the smallest index in the
cycle, the sum over the indexéspertaining to a
cycle of I ‘Qa,m(k is positive. Hence the global suntt®
of (&7) is ‘also positive.

It can be proven in a similar way that the samié’l
ordering maximizes the sum of inverse powers of
the users. [18]
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