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Abstract—In this paper, we generalize the random access
game model, and show that it provides a general game-
theoretic framework for designing contention based medium
access control. We extend the random access game model to
the network with multiple contention measure signals, study the
design of random access games, and analyze different distributed
algorithms achieving their equilibria. As examples, a series of
utility functions is proposed for games achieving the maximum
throughput in a network of homogeneous nodes. In a network
with n traffic classes, an N-signal game model is proposed which
achieves the maximum throughput under the fairness constraint
among different traffic classes. In addition, the convergence of
different dynamic algorithms such as best response, gradient play
and Jacobi play under propagation delay and estimation error
is established. Simulation results show that game model based
protocols can achieve superior performance over the standard
IEEE 802.11 DCF, and comparable performance as existing
protocols with the best performance in literature.

Index Terms—Medium access control, Random access game,
Nash equilibrium, Distributed strategy update mechanism, Wire-
less LANSs.

I. INTRODUCTION

IRELESS channel is a shared medium that is
Winterference-limited. A contention-based medium ac-
cess control (contention control) is a distributed strategy to
access and share a wireless channel among competing wireless
nodes. It dynamically adjusts channel access probability in
response to the amount of contention in the network. Note
that the amount of contention itself depends on the channel
access probabilities chosen by the wireless nodes. Hence
contention control is an iterative feedback system described
mathematically as:

pi(t+1) = Fi(pi(t),qi(t)), ai(t)=Gi(p)), (1)

where p;(t) is the channel access probability of node i,
p(t) = {p:i(t)} is the corresponding vector, q,(t) is a vector
of certain measures of contention observed by node ¢ that
depends on the vector p(t). The channel access probability
p;(t) is usually implemented either through a backoff algo-
rithm on contention window or as a persistence probability.
For example, the standard IEEE 802.11 DCF has a backoff
algorithm that induces a channel access probability and can
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be modeled by some function F;. The algorithm responds
to whether there is a collision, and hence the measure of
contention q;(t) in DCF is the probability of collision whose
dependence on the channel access probability vector p(t) can
be modeled by some function G;.

The performance of a MAC, e.g., the throughput, fairness
and collision, depends critically on the equilibrium and sta-
bility of the dynamical system defined by (1). In [1], [2],
Chen et al. propose a general game-theoretic model, called
random access game, to understand the dynamical system
(1) for the network where each node 7 observes a single
contention measure ¢;, and use it to guide the design of
new medium access protocols. The key idea of the random
access game model is to consider each node ¢ to have a
utility function U;(p;) as a function of its channel access
probability p;. The goal of node ¢ is to maximize its payoff
function u;(p) := U;(p;) — piq; given the contention measure
q;- Hence, the steady state properties of a MAC can be
analyzed or designed through the specification of the utility
function U;(p;) and the choice of contention measure ¢; (e.g.,
collision probability, or idle time between channel access, etc).
Their specification defines the underlying random access game
whose equilibrium determines the steady state properties such
as throughput, fairness and collision of the MAC. The adap-
tation of channel access probability can be specified through
(F,G) and corresponds to different strategies to approach the
equilibrium of the game.

In this paper, we extend the random access game model to
the network where each node can observe multiple contention
measure signals q;, study the design of random access games,
analyze distributed algorithms achieving their equilibria, and
show that the random access game model provides a general
framework for designing contention based medium access con-
trol. Specifically, in Section III, we describe the generalized
random access game model, and provide conditions under
which an equilibrium for the game exists and is unique. Sev-
eral examples are provided on how to design random access
games by forward engineering from desired operating points
(e.g., in terms of some target throughput and fairness) and
based on heuristics. A series of utility functions is proposed
for games achieving the maximum throughput in a network of
homogeneous nodes. In a network with n traffic classes, an N-
signal game model is proposed which achieves the maximum
throughput under the fairness constraint among different traffic
classes. Supermodular game is also considered, which guar-
antees the existence of Nash equilibrium. Moreover, the best
response strategy discussed in Section IV always converges to
a Pareto dominant equilibrium of supermodular random access
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game. In Section IV, we also consider another two dynamic
algorithms to achieve the equilibrium: gradient play and Jacobi
play. We show that under mild conditions both algorithms
converge to the unique equilibrium. We also establish the
convergence of gradient play under propagation delay and
estimation error. Due to the approximation made in utility
function design, the dynamic algorithms may not converge
exactly to the desired operating point. An equilibrium selection
algorithm is thus proposed to make these algorithms actually
hit the desired point. Simulation results show that game model
based protocols can achieve superior performance over the
standard IEEE 802.11 DCF, and comparable performance as
existing protocols with the best performance in literature.

II. RELATED WORK

There are lots of works on medium access control. Here
we only mention a few that are most closely related to this
work. Game-theoretic approach has been applied extensively
to study medium access, see, e.g., [1]-[8]. Jin et al. [3] study
noncooperative equilibrium of Aloha networks and their local
convergence. Borkar et al. [5] study distributed scheme for
adapting random access. Cagalj et al. [6] study selfish behavior
in CSMA/CA networks and propose a distributed protocol
to guide multiple selfish nodes to a Pareto-optimal Nash
equilibrium. Lee et al. [7], [8] reverse-engineer exponential-
backoff-based MAC protocols using a noncooperative game
model.

Related work also includes [9] that proposes an idle sense
access method without estimating the number of nodes, which
compares the mean number of idle slots between transmission
attempts with the optimal value and adopts an additive increase
and multiplicative decrease algorithm to dynamically control
the contention window in order to improve throughput and
short-term fairness. However, idle sense method intends to
make contention windows equal for all wireless nodes and
requires the calculation of optimal average number of idle slots
between transmissions. It is not clear how to achieve this with
different traffic classes. A priority-based protocol is proposed
in [10] to achieve fairness among flows of different traffic
classes, which estimates the number of nodes in each class
every step and computes the contention window size using
these estimates. However, as commented in [11], protocols
like that in [10] based on estimating the number of nodes do
not converge.

IIT. GAME-THEORETIC MODEL OF CONTENTION
CONTROL

A. Random Access Game

Consider a set A/ of wireless nodes in a wireless LAN with
contention-based medium access. In this paper, we consider
single-cell wireless LANs, where every wireless node can hear
every other node in the network. We assume all nodes always
have a frame to transmit, and the network is noise free and
packet loss is only due to collision.

In practice, it is hard for wireless nodes to learn the exact
channel access probabilities of others. Each node infers the
contention of the wireless network through observing certain
contention measure signals q;(p), which are functions of the
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nodes’ channel access probabilities. Following [1], [2], we
model the interaction among wireless nodes as a random
access game.

Definition 1: A generalized random access game G is
defined as a triple G := {N,(S;)ien, (ui)ien'}, where N
is a set of players (wireless nodes), player ¢ € A strategy
Si = {pilpi € [vi,wi]} with 0 < 1v; < w; < 1, and payoff
function w;(p) = Ui(p:) — p:Ci(q;) with utility function
U, (p;) and price function C;(q;).

This definition of game model is an extension of the basic
random access game model proposed in [1], [2], which was
defined for the network where each wireless node observes a
single contention measure ¢;, to the network where each node
can observe multiple contention measure signals q;. The dif-
ference is the introduction of a price function C;(q;), instead
of adapting directly to a contention measure ¢;. Although we
can reduce the above definition to the basic random access
game model by defining the contention measure ¢; = C;(q;),
the introduction of the price function enables us to give
physical interpretation to the contention measure signals.

As shown in [1], [2], random access game is a rather
general model for contention control, as it can be reverse-
engineered from existing protocols. To see this, note that the
equilibrium point of (1) defines an implicit relation between
channel access probability p; and contention measure signals
q;. If this relation can be written as

Ci(ai) = Fi(pi), (2)
the utility function of each node i is defined as
Vi) = [ Fitoo. )

Therefore, we can reverse engineer medium access control
protocols and study them in game theoretic framework:
medium access control can be interpreted as a distributed
strategy update algorithm to achieve the equilibrium of the
random access game.

In random access game, one of the most important questions
is whether a Nash equilibrium exists or not. Denote the
channel access probability for all nodes but i by p_; :=
(P1,- -+ Pi—1,Pit1s -, D)), and write (p;, p—;) := p. We
have the following definition of Nash equilibrium [12].

Definition 2: A channel access probability vector p* is
said to be a Nash equilibrium if no node can improve its
payoff by unilaterally deviating from Nash equilibrium, i.e.,
ui(pf,p*;) > wi(pi, p*;), Vpi € S;. A Nash equilibrium p*
is a nontrivial equilibrium if p; satisfies

aipiui(pf,p*_i) —0,VieN. 4
The reason to consider nontrivial Nash equilibrium is to avoid
those equilibria in which some player takes strategy at the
boundary of the strategy space, which usually results in great
unfairness or low payoff.

Throughout this paper, we will only consider those con-
tention measure signals that can be described by q; = Gi(p—_i).
To facilitate analysis in the following, we list the assumptions
that will be used in this paper.

Al: The utility function U;(-) is twice continuously dif-

ferentiable, strictly concave and increasing, with finite
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curvatures bounded away from zero, i. e., there exist some
positive constants p and y such that = > =1/U/(pi) > %

A2: The inverse function (U/) e’ (qz)) maps any q; into
a point within S; for all i € N.

A3: At a nontrivial Nash equilibrium p*, there exists a
function ®;(p;) for each node ¢ such that ®;(pf) =
®;(p}), Vi,j € N and ®;(p;) is strictly monotone in S,
Vie N.

These assumptions are similar to those specified in [1], [2],
and similarly, the following results are immediate.

Theorem 3: Under assumption Al, there exists a Nash
equilibrium for any random access game G.

Theorem 4: Suppose A2 holds. Random access game G
has a nontrivial Nash equilibrium.

Theorem 5: Suppose that Al and A3 hold and random ac-
cess game G has a nontrivial Nash equilibrium. If additionally
for all i € N, C;(q;(p)) is strictly increasing in p, then G
has a unique nontrivial Nash equilibrium.

Since the equilibrium determines the operating point of
medium access control, it is desired to have a unique nontrivial
Nash equilibrium. Theorem 5 guarantees the uniqueness of
nontrivial Nash equilibrium. This will facilitate the design of
medium access methods.

B. Utility Function Design

As shown in the last subsection, random access game can
be reverse engineered from the exiting protocols. An example
of reverse-engineering the IEEE 802.11 DCF was given in
[1], [2]. In the following, we give several examples to show
how to design utility functions and random access games by
forward engineering from desired operating points and based
on heuristics.

1) Forward Engineering from Desired Operating Points:
A System of Homogeneous Nodes: In [9], a medium access
method is proposed by using the mean number of idle slots
between transmission attempts. Let 7, denote the average
collision duration and Tsr,oT denote the slot duration. It is
derived in [9] that when the number of users in the network
IN| — oo, the throughput-optimal number of idle slots
between two transmission attempts is

—opt 6_5
i = T o€ ®)
where ¢ satisfies 1 — &€ = 776’5 and n =1 — Ts,o1/T.. Note
that n(’pt is completely determined by the protocol parameters
but not by the number of nodes in the network. Let ¢; :=
1- HjEN/{i}(l p;). The probability of an idle slot is
Gi)= 5t =¢

—opt

tie o€ ©)

Applying (3) with C;(gi) = gi, we obtain the utility function
as

Ui(pi) = pi + e~ log(1 — py). ™

Note that U;(p;) does not satisfy A2 but clearly the random

access game with utility (7) has a nontrivial Nash equilibrium.

This also shows the limitation of Theorem 4. Utility (7) does

not satisfy Theorem 5. In fact, there exist infinite number

of equilibria for the game with (7). To design a game with

unique equilibrium, we note that when |\ is large the optimal
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attempt probability that maximizes the throughput is very
small as shown in [9]. We thus have

(1=p)*(1 —q;) = (1 — ; (®)

where o > 1 and the approximation holds when « is not very
large. Applying (3), we obtain the utility function as

pi)®T le=€ e €

U:(p:) = p; il_.l—a 9
i(pi) =pi+ (1 —p) " ©)

Note that (9) still does not satisfy A2. But at least one non-
trivial Nash equilibrium exists, i.e., p} = 1 — e~ &/(a+VI=1),
Define @;(p;) = (1= pi)(1 = U/(ps)) = (r=5ye=r, which is
strictly increasing in p; when « > 1. Also ¢;(p) is strictly
increasing in p. By Theorem 5, the random access game G
has a unique nontrivial Nash equilibrium. Note that due to the
approximation made in (8), the equilibrium point obtained by
(9) may not achieve the optimal number of idle slots nopt
We will discuss in Section IV-D how to design equ111br1um
selection algorithm such that the equilibrium point by using
(9) can actually hit 752"

A System of Heterogenous Nodes: We have considered the
network with a single traffic class. We now consider a network
with n > 1 different traffic classes as in [10]. Let ¢; denote
the weight associated with class-i traffic and f; denote the
set of nodes carrying class-¢ traffic, 1 < ¢ < n. Without loss
of generality, we assume that 1 = ¢1 > ¢o > -+ > ¢, >
0 and each wireless node carries only one class traffic. At
equilibrium, to achieve the desired fairness among the nodes
carrying the same traffic class, say class i, the channel access
probabilities of these nodes must be equal, denoted as p;. To
achieve the desired fairness among different traffic classes, we
must have [10]

pil —p;) _pi(l —pi)’ 1<Vi,j<n.
o ®;
The probability of a successful transmission from any node
carrying class-¢ traffic is

(10)

Pi =|filpi(1 = p) VT [ =o)L an
J#
and the probability of an idle slot is
Pr= H(l —p)il. (12)

The optimal channel access probability of each node can be
obtained by maximizing the throughput subject to the fairness
constraint (10). As shown in [10], it is difficult to maximize
the throughput directly. We instead consider the case that all
|fi| are large. Let | fi|p; = & and € = Y"1 | &. By following
similar argument as in [9], we find that the throughput is
maximized when ¢ is the solution to 1 — ¢ = ne~¢ where
7 is defined as in (5). Note that p; also needs to satisfy (10).
When |f;| is large, we use the approximation 1 — p; ~ 1.
Finally, we obtain

| fil i
i | file

In [10], n + 1 contention measurements are used: the
average number of consecutive idle slots and the average
number of time slots between two consecutive successful
class-j transmissions, which are equivalent to n+ 1 contention

&= £ 13)
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measure signals g0 = Pr and qi; = Py, 1 = 1,...,n, at node

k € N. At equilibrium, we have

ari = | filpi(L—p) T T =) = | filpie™ = Gie™,
J#i
(14)
and
o = [[(1—p)iT = e, (15)

i

From (14), we obtain |f;| ~ efqix/p;. By using (13) and
assuming p; is small, we obtain

_ Qi Pi /i

Qi1 = pi) o D

' ' Do kb5 /P;

where o > 0. Applying (3), we obtain the utility function

qro&, (16)

Upi(pi) =1 — 0%51(1 —p)ti=1,...n,  (7)
and the price function
n
1 QkiP5/P5
Cki(qk)=M,1=1,...,n, (18)
qro/Di
where qi = [qko, k1, - - -, qkn) . Note that there are n utility

and price functions at each node k. Each node k keeps and
updates its own p;, i = 1,...,n, denoted as pg;. At node k, p;
in (18) actually means pg;. Computing (18) does not require
information exchange between nodes.

The game with utility (17) and price (18) does not quite fit
into the random access game model. The Nash equilibrium is
not the proper solution concept either. Instead, the nontrivial
equilibrium should be defined as those p; that satisfies

0
Opi
Clearly, there exists a nontrivial equilibrium in the resulting
random access game. We can further show that this nontrivial
equilibrium is unique provided that p;
2) Forward Engineering Based on Heuristics: Consider a
random access game with the following payoff function

Uilpi) —pi [ [(1 = p)) = Uslps)
J#i
where C;(q;) = qi = [[;4,(1 — p;) is the contention measure
signal representing the probability that all nodes except node
i do not transmit. This payoff function is motivated by
the heuristic that each wireless node should be “charged”
according to the throughput it achieves.
It turns out that the random access game with payoff (20) is
a supermodular game [14]. Supermodular games have many
nice properties such as the existence of Nash equilibria and
the convergence of the equilibria under different strategy
update algorithms. The simplicity of supermodular games
makes concavity/convexity and differentiability assumptions
unnecessary, though we make such assumptions in this paper.
In the setting of random access games, the definition of super-
modularity and supermodular game reduces to the following.
Definition 6: The payoff function w;(p;, p—;) has increas-
ing differences (supermodularity) in (p;, p—;) if for all p_; >
; the quantity w;(p;, p—;) — ui(p;, P"_;) is increasing in p;.
For twice differentiable payoffs, supermodularity is equivalent
to %"’(p) > 0 for all 7 # 1.

Ui(pf):Ci(qi*),ViEN. (19)

u;(p) == —piqi, (20)
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Definition 7: A random access game G is supermodular
if for each node i € A the payoff function w;(p;, p—:) has
increasing differences in (p;, p—;).

It is easy to verify that 9*u;(p)/Opidp; = [T jr4;(1 =
pjr) > 0. The following result is immediate [14].

Theorem 8: A random access game G with the payoff
function (20) is a supermodular game, and the set of Nash
equilibria for G is nonempty.

As indicated by Theorem 8, no concavity/convexity assump-
tion on utility function is required to guarantee the existence
of Nash equilibria as in non-supermodular games. However,
the uniqueness of Nash equilibrium may require stronger
condition. Similarly to Theorem 5, we have the following
corollary on the uniqueness of equilibrium for supermodular
random access games.

Corollary 9: Suppose that utility function U;(-) is twice
continuously differentiable, increasing and strictly convex, and
the supermodular random access game G with the payoff (20)
has a nontrivial Nash equilibrium. If ®;(p;) = (1 — p;)U/(p:)
is a strictly monotone function in S;, then G has a unique
nontrivial Nash equilibrium.

As an example, we consider the following utility function
given in [1], [2]

1 i — 1)b;
Ui(pi) == — <% In (a;p; — b;) —Pi> ; (21)

i
where 0 < b < 1, a < 1,

(%, (ab % bi)). It is easy to check that
Ui(pi) is strlctly convex and ®(p;) < 0 when p; <

/b2 _
bityb; +a1(a bi—bi— . From Corollary 9, the supermodular

game W1th ut111ty functlon (21) has a unique nontrivial Nash
equilibrium.

There are many ways to design utility functions and random
access games. We only show a few examples in this section.
The key message is that the random access game model is
a rather general construction, as we can derive or design the
game by reverse engineering from existing protocols and by
forward engineering from desired operating points and based
on heuristics.

and p; €

IV. DYNAMICS OF RANDOM ACCESS GAME

The dynamic of game studies how players could converge to
an equilibrium. It is a difficult problem in general. In random
access games, wireless nodes can observe the outcome of
the actions of others, but do not have direct knowledge of
other nodes’ actions and payoffs. We consider repeated play of
random access game, and look for distributed strategy update
mechanism to achieve the Nash equilibrium.

A. Basic Dynamic Algorithms

1) Best Response: The simplest update mechanism is the
best response strategy: at each stage, every node chooses the
best response to the actions of other nodes in the previous
stage. Let p(0) be the largest vector in the strategy space
(Si)ien. At stage t + 1, node i chooses a channel access
probability

i(t))}m)

pi(t+1) =B;(p(t)) =max {arg r‘rslaxui (p, p—
PES;
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At each stage, if there are more than one best response
probabilities, the algorithm (22) always chooses the largest
probability. Clearly, if the above dynamics reaches a steady
state, this state is a Nash equilibrium. As there is no conver-
gence result for general games using this dynamics, we restrict
our discussion to supermodular games with payoff (20) in this
subsection. We have the following result.

Theorem 10: The best response strategy converges to a
Nash equilibrium of random access game G. Moreover, it is
the largest equilibrium p in the set of Nash equilibria.

The proof basically follows [14, Lemma 4.1] and the details
can be found in [13], [15]. If we set p(0) to the smallest
vector in the strategy space and always choose the smallest
probability, the best response strategy will converge to the
smallest equilibrium p. When there exist multiple equilibria,
the following theorem indicates that the equilibrium attained
by (22) yields the highest aggregate payoff.

Theorem 11: The best response strategy converges to a
Pareto dominant equilibrium, i.e., u;(p) > u;(p) for all p
in the strategy space.

The following result guarantees that the best response
converges to a nontrivial equilibrium.

Theorem 12: If the best responses to the smallest and
largest vectors in the strategy space are within the strategy
space, then nontrivial Nash equilibrium exists. Moreover, the
best response strategy (22) converges to the largest nontrivial
Nash equilibrium.

The proof of Theorem 11 and Theorem 12 can be found in
[13], [15]. By using Theorem 12, it is easy to obtain conditions
on a; and b; in (21) such that the best response strategy
converges to a nontrivial equilibrium of the corresponding
game.

2) Gradient Play: One other update mechanism is gradient
play [16]. In gradient play, every node adjusts its channel
access probability gradually in a gradient direction suggested
by contention measure signals. At stage ¢ + 1, node i € N
updates its strategy according to

pi(t+1) = [pi(t) + &) (U (pi(1)) — Ci(ai(p(1))] (23)
where the stepsize ¢;(-) > 0, []5* denotes the projection onto
node i’s strategy space. In the following, We assume that all
nodes have the same stepsize €;(t) = €(t), Vi € N.

Theorem 13: Let C(p) = (Ci(q;(p))) be a mapping and
J¢ = (Jg) be the Jacobian of C'(p). Suppose that the smallest
eigenvalue of J©, A\, (JO), satisfies p + Amin(J¢) > 0,
max; ‘Jg 2 < M, and the random access game has a unique
nontrivial Nash equilibrium p*. The gradient play (23) con-
verges geometrically to p* if the stepsize €(t) < %

The proof of Theorem 13 is given in Appendix A. Theorem
13 also shows the convergence rate of gradient play. As an
example of using Theorem 13, we consider the utility function
defined in (9). By assuming that all nodes’ strategy spaces are
identical, i.e., S; = [v,w]. In this case, we have

. ae¢ . et
P @ =) AT A —wyett
To find Amin(J€), we note that

J%p) = - (H(l —m) (diag(x)? —xx"),  (25)

(24)

i

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 7, SEPTEMBER 2008

1

T
where x = [ . Note that each entry of x

1
T—p17" " 1-pn
1

is less than 1—. By using Rayleigh quotient [17], it is easy
to show that the maximum eigenvalue of diag(x)? — xx7' is

less than ﬁ Thus, Theorem 13 requires that
(1— o)l et
(1-w)? = (1—-p)ett
Condition (26) is mild. For example, if we take w = 2/33
and o = 2, all v € [0, 1] satisfy (26). We see that a larger o
indicates a larger 1, which means a greater convergence rate
by (44).

3) Jacobi Play: Finally, we consider another alternative
strategy update mechanism called Jacobi play [18]. In Jacobi
play, every player adjusts current channel access probability
gradually towards the best response strategy. At stage t + 1,
node i € N chooses a channel access probability

pi(t+1) = Ji(p()) := [pi(t) +€i(t) (Bi(p (1) —pi ()] 27)
where the stepsize ¢;(t) > 0 and B;(p(t)) is defined in (22).
When ¢,(t) = 1, we recover the best response strategy. In the
case of supermodular game, if €;(t) < 1, it is easy to verify
that {p;(¢t)} is a nonincreasing sequence. Thus, Theorem 12
still applies to Jacobi play. For general random access games,
we can also show the convergence of Jacobi play in the same
way as in gradient play, see [13] for details.

)\min(JC)+M2 - > 0.

(26)

B. Dynamic Algorithms under Propagation Delay

Due to propagation delay, wireless nodes may use feedback
signals generated at different times. In this subsection, we dis-
cuss the convergence of the algorithms in Section IV-A under
propagation delay. We assume that the contention measure
signals that node ¢ uses to update its channel access probability
result from the vector

P(r (1) = (P2 (7). p2(T3 (D) . P (i (1) )+ 28)

where 0 < T}(t) < t denotes the most recent time that node
J’s action affects node i’s observation, and 7! (t) = ¢.

1) Best Response: The best response strategy (22) is mod-
ified to

pi(t+1)=Byp(r'(t))) =max {arg Igax u; (p, p—i(7’ (t)))}
PES: 39
Parallel to Theorem 10, we have the following theorem on the
convergence of the best response under propagation delay for

supermodular games.

Theorem 14: The best response strategy (29) converges to
a Nash equilibrium of the random access game G. Further-
more, it is the largest equilibrium in the set of Nash equilibria.
Proof: We show this by induction. Suppose that p(r +
1) < p(7r),Vr € {0,...,t —1}. It is true when t = 0 as p(0)
is the largest vector in the strategy space. As 7/(t+1) > 74(t),
we have p;(7;(t +1)) < p;(7;(¢)). By induction hypothesis,
we get p—i(7;(t + 1)) < p-i(7;(¢)). By supermodularity
and [14, Lemma 4.1], we can show that p;(t + 1) < p;(¢).

Therefore, the hypothesis is also true when 7 = t. By
induction, we have
p(0) >p(1)>--->p(t)>---, (30)
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or {p(t)} is a nonincreasing sequence. The remainder of proof
follows that of Theorem 10. [ ]
All other results in Section IV-A for best response also hold
in the case under delay.
2) Gradient Play: The gradient play (23) is modified to

pilt+1) = [pi(t) + () (Ups(1)) — Cilas (o= (1)))] >

(€29)
Since at each step, nodes update channel access probabilities
by a small amount, gradient play is expected to converge if
T;(t) is not far away from ¢, Vj € N. The following result
confirms this intuition.

Theorem 15: Let C(p) = (Ci(q;(p))) be a mapping and
JC = (J5) be the Jacobian of C(p). Assume a constant
stepsize €;(t) = ¢ in (31). Suppose that ||JC|; < My,
max; ‘Jgf < Mos, and the random access game has a
unique nontrivial Nash equilibrium p*, and t — 7} (t) < B
with constant B > 0. The gradient play (31) geometrically

converges to p* if there exists € > 0 and 0 < v < 1 such that

2
y=1-2¢ (M—Ml,/%ﬂ(xﬂ%)). (32)

The proof is given in Appendix B. We can similarly
establish the convergence of the Jacobi play under propagation
delay.

C. Dynamic Algorithms under Estimation Error

In this section, we consider dynamic algorithms under esti-
mation error. The dynamic algorithms require the information
of contention measure signals. In practice, contention measure
signals can be estimated via the observation of the wireless
medium. As an example, we consider the contention measure
— conditional collision probability used in the game for the
network of homogeneous nodes studied in Section III-BI.
Let n and n denote the number of consecutive idle slots
and its mean between two transmissions. As proposed in
[11, [2], we can estimate the conditional collision probability
by observing the idle period between transmissions: at every
ntrans transmissions, each node updates n according to
n o pa+ (1 — B)-2%"  where isum is the total number of

ntrans’
idle slots during nirans transmissions, and estimates its con-
ditional collision probability according to ¢; = %

Due to the use of estimated contention measure signals, the
algorithms in Section IV-A are in fact stochastic algorithms.
In the following, we only consider gradient play. The results
for Jacobi play can be obtained similarly. We assume that
Ci(ai(p(t))) is replaced by Ci(q;(p(?))) = Ci(a:(p(t))) +
w;(t) in (23), where w;(t) is the estimation error. Without loss
of generality, we write w;(t) as w;(t) = w;(t) +w;(t), where
w;(t) = E{w;(t)} can be considered as the deterministic
error and w;(t) = w;(t) — w;(t) is the stochastic error with
zero mean. We further assume that lim;_, o, w;(t) = w;. The
deterministic error may be caused by the bias of signal esti-
mation and carrier sense error due to fading and background
noise. For ease of understanding, in the following, we discuss
deterministic and stochastic errors separately. The proof of the
following theorems can be found in Appendices C, D and E.
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Theorem 16: Let \yin(J€) denote the smallest eigenvalue
of J¢ and max; |J5 ‘2 < M. Let p* denote the equilibrium
defined by

Ui(p;) = Ci(ai(p™)) + wi.
If p* is within the strategy space and is the unique equilibrium
defined by (33), the gradient play converges to p* provided
B+ Amin(F€) > 0 and €(t) < Lhamniro).

The uniqueness of p* can be obtained by using Theorem
5. Note that under certain conditions, by implicit function
theorem [19], (33) defines an implicit function p*(w) at the
neighborhood of w = 0. Therefore, for any ¢ > 0, there exists
a 0 > 0 such that if ||[w|l2 < 9, ||p* (W) —p*(0)|]2 < €. So the
gradient play converges to a neighborhood of the equilibrium
point without errors.

For the stochastic error, we consider gradient play with
variable stepsize and constant stepsize, respectively.

Theorem 17: Let \pin(J€) denote the smallest eigenvalue
of J¢. Suppose that E{w;(t)} = 0, E{w?(t)} < B, and

(33)

Ze(t) = 00, ZeQ(t) < 00, e.g., €(t) =1/t. (34)
t=0 t=0

If p* is the unique nontrivial Nash equilibrium, the gradi-
ent play converges to p* with probability 1 provided u +
Amin (J€) > 0.

Theorem 18: Let \in(J€) denote the smallest eigenvalue
of J¢ and max; ‘J5|2 < M. Suppose that E{w;(t)} = 0,
E{w?(t)} < B,and €(t) = ¢, Vt. If p* is the unique nontrivial
Nash equilibrium, there exists a constant D(B,e) > 0 such
that

liinsup Ilp(t) — p*|l2 < D(B,e) (35)
—00

: L min c
provided jf—.)\min(JC) >0and e < %.
By combining Theorems 16 and 18, we can conclude that
with constant stepsize, the stochastic gradient play converges
to a neighborhood of the equilibrium point.

D. Equilibrium Selection

The equilibrium attained by using the dynamic algorithms
in Section IV-A does not necessarily converge to the desired
operating point when the utility functions in Section III-B1 are
considered. This is because the approximation used in (8). One
approach of equilibrium selection is to estimate the number
of users via N = log(1 — ¢;)/log(1 — p;) + 1 at equilibrium
and to set the channel access probability to be the optimal
value computed by using N. However, as commented in [11],
this approach may not converge due to open loop control. The
other approach is to use an outer loop iteration and treat the
algorithms in Section IV-A as the inner loop iteration. Take
utility function (9) for example. Let 7 denote the counter of
outer loop iteration and define the utility function at the 7-th
outer iteration as

77(7—) 11—«

Uz(pz) =pi+ 1— a(l pz) )

with 17(0) = e~¢. Denote the equilibrium of the game with

utility (36) by p(7). To cancel the effect of neglecting (1 —
pi)* 1 in (8), we do the outer iteration

M+ 1) = (1= () e,

(36)

(37)



50

1122 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 7, SEPTEMBER 2008
0.06 : : ‘ \ 0.06 : ‘
—_ Perfect Idle Sense — Perfect Gradient Play
- - Estimated Idle Sense - - Estimated Gradient Play
% Optimal
0.05F B 0.05 |
= 2
3 0.04 413 0.04 B
© ©
g 5
s s
12} (2}
& 003 1 & o0s g
8 Q
3 ]
© ©
c c
S 0021 4 oo 4
o e
O O
001 S 9 00T R N L 9
< \’r RNy \” . ".\\x”'/ B P = T == = T
0 L L L L L L L L L 0 L L L L L L L L 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45
Number of iterations Number of iterations
(a) Idle sense (b) Game model
Fig. 1. The evolution of channel access probability of idle sense and gradient play of the one-signal game with utility function (9) in a network of 20 nodes.

At equilibrium, all nodes have the same access probability,
denoted as p(7). By (37), we obtain

plr+1)=1— W/ p(r))a-tet.  (38)

Let M(p) be the mapping defined by (38). By mean value
theorem, it is easy to see

e TVTHF=T (o — 1)(1 — w) WiFa=T "

[M(p1)—M(p2)| < NV +a-1

Thus, if & < 1, M(p) is a

contraction mapping ‘f\{b—iaanld (38) converges to the unique
fixed point of M(p), which is the desired operating point.
From (39), we can see that a larger « indicates a smaller
outer loop convergence rate, while a larger « results a greater
inner loop convergence rate as suggested in Theorem 13.
Therefore, there exists an optimal « to achieve the least
overall convergence rate. In practice, outer loop iteration can
be executed without waiting for the convergence of the inner
loop iteration.

[p1—p2|
. (39)
(a—1)(1—w)NTFa=1 !

V. EXPERIMENTAL RESULTS

In this section, we run some numerical experiments to
compare the performance of different medium access proto-
cols. The system parameters are those specified in the IEEE
802.11b standard with DSSS PHY layer [20], summarized in
Table I. The RTS/CTS mechanism is disabled. We consider
a single-cell network with perfect wireless channel, i.e., there
is no corrupted frame. In all simulations, the initial channel
access probability is set to be 2/33, which corresponds to
CWhin = 32 in 802.11b DCF. For our game based protocols,
we set ntrans = 5 and § = 0.8. Throughput and fairness are
obtained after 10° transmissions.

A. One-signal Game

We consider the one-signal game with utility function (9)
derived in Section III-B1, and compare the performance of the

TABLE I
PARAMETERS IN SIMULATIONS
Slot Time (7spoT) 20 ps
SIFS 10 us
DIFS 50 wus
Basic Rate 1 Mbps
Data Rate 11 Mbps
Propagation Delay 1 ps
PHY Header 192 bits
MAC Header 272 bits
ACK 112 bits
Packet Payload (sq) 12000 bits

MAC based on this game with that of idle sense protocol in
[9]. In (9), we choose & = 0.1622 and o = 2. The parameters
in idle sense are set as those in [9].

Figure 1 compares the evolution of channel access proba-
bility of idle sense and gradient paly (23) of the one-signal
game in a network of 20 nodes, where for the gradient
play £ = 0.1622, o = 2 and the stepsize is chosen to be
€;(t) = 0.02. We see even with perfect knowledge of expected
number of idle slots, idle sense oscillates around the optimal
value. On the other hand, game model achieves a smoother
dynamic in both cases with perfect signal and estimated signal.
Both algorithms have roughly the same convergence rate. We
can clearly see the geometric convergence rate predicted by
Theorem 13. The equilibrium by our method is close to the
optimal value but not equal due to the approximation in (8).

Figure 2 compares the throughput of idle sense, the game
based design, and DCF with the same parameters as used in
Figure 1. We use estimated signals in idle sense and the game
based design. When the number of nodes in the network is
small, idle sense achieves the highest throughput. Game based
design performs worse in this case because the approximation
used in (8) is not accurate when the number of nodes is small.
The performance of the game based design can be improved
by using equilibrium selection algorithm. As the number of
users increases, both idle sense and the game based design
perform fairly close to the optimal throughput. They achieve
a much higher throughput than DCFE. This also indicates that
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Fig. 2. The throughput comparison between idle sense and the MAC based
on one-signal game with utility function (9) in a network of 20 nodes.

when the number of users is large, equilibrium selection is
not necessary as the achieved throughput by the game based
design is already very close to the optimal throughput.

Figure 3 compares the short-term fairness of different pro-
tocols using Jain fairness index [21] for normalized window
sizes that are multiples of the number of wireless nodes. All
parameters are the same as those used in Figure 1. We see that
both idle sense and the game based design provide much better
short-term fairness than 802.11b as in both protocols wireless
nodes have roughly the same contention window size.

B. N-signal Game

Next, we compare P-MAC protocol proposed in [10] with
the MAC based on the N-signal game with utility function
(17) and price function (18) derived in Section III-B1. In (17),
we choose £ = 0.1622 and a = 2. The parameters in P-MAC
are set as those in [10].

Figure 4 compares the dynamics of P-MAC and the MAC
based on N-signal game in a network of 25 nodes and two
traffic classes with |f1| = 10, |f2] = 15 and weights ¢ =
1, ¢o = 0.5. The N-signal game uses gradient play, with
the stepsize €;(t) = 0.05. The initial value of window size
is chosen to be C'Wyyiy plus a random number between O
and 10. We see P-MAC does not converge because it uses
open loop control, which agrees with the observation in [11].
On the other hand, the game based design converges to the
equilibrium only after 10 iterations with perfect contention
measure signals. Even with estimated signals, the game based
design converges to a neighborhood of the equilibrium after
20 iterations. In Figure 4, we also show the optimal channel
access probability that achieves the maximum throughput. The
equilibrium of class 1 is less than the optimal value, while the
equilibrium of class 2 is greater than the optimal value. This
is because we use the approximation (13). As will be shown
later, this approximation does not affect the throughput and
fairness too much when the number of users is large.

Figure 5 compares the throughput of P-MAC and the MAC
based on N-signal game. We use estimated signals in both
protocols. The number of nodes in two traffic classes are [%1

1123

Jain index
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-+ Idle Sense

— 802.11b DCF
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0 5 10 15 20 25 30 35 40 45 50
Normalized window size
Fig. 3. The fairness comparison between idle sense and the MAC based on

one-signal game with utility function (9) in a network of 20 nodes.

and (%], respectively, K = 1,...,50. When the number of
nodes in the network is small, P-MAC achieves the highest
throughput. The game based design performs worse in this
case because of the approximation used in (13). As the number
of users increases, both P-MAC and the game based design
perform fairly close to the optimal throughput. They achieve
a much higher throughput than DCF.

Figure 6 compares the short-term fairness of different
protocols using Jain fairness index [21]. All parameters are
the same as those used in Figure 4. We see that both P-
MAC and the game based design provide much better fairness
than 802.11b as 802.11b does not differentiate different traffic
classes.

To show that the game based design is well-behaved in the
presence of traffic fluctuations, we consider a network with
a variable number of nodes, as shown in Figure 7. At first,
|f1] = 10 and | f2] = 15. After 300 iterations, 5 class-1 and 5
class-2 traffic nodes enter the network. After 600 iterations, 5
class-1 and 5 class-2 traffic nodes leave the network. P-MAC
still does not converge. The game based design responses
to traffic fluctuation very fast. With estimated contention
measurement signals, the game based design oscillates around
the equilibrium.

C. Equilibrium Selection

Finally, we check the equilibrium selection algorithm de-
scribed in Section IV-D. We consider a network of 5 nodes.
The gradient play for the game with utility function (9) is
simulated, where { = 0.1622 and the stepsize ¢;(¢) = 0.02.
We assume perfect contention measure signals and we decide
that the inner loop convergence is attained if ||p(t + 1) —
p(t)|]2 < 3x10~%. Figure 8 compares the evolution of channel
access probability with different a values for (9). We see that
the inner loop convergence rate increases by increasing «,
while the outer loop convergence rate decreases by increasing
a.
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VI. CONCLUSIONS

We have generalized the random access game model, and
shown that it provides a general framework for designing
contention based medium access control. Several examples
have been given on how to design random access games from
reverse-engineering and forward-engineering. We have shown
that the given examples attain a unique equilibrium provided
the corresponding conditions are satisfied, and established the
convergence of various dynamic algorithms to the equilibrium.
Simulation results have shown that the game model based
protocols achieve superior performance over the standard
IEEE 802.11 DCF, and comparable performance as existing
protocols with the best performance in literature.

APPENDIX A: PROOF OF THEOREM 13
Proof: By equation (23), we have

p(t+1) —p*|5

<7 |pilt) + (@) (U (pi(t)) — Ci(p(1))) — pi
ieN

<llp(t) = 13 + 26(6) 3 (wi(t) — pi) (U (0i(1)) ~ C(p(1)))
+E) D (Ulpi(t) — Ci(p(1)))?

i

(a) N2 *\ (77 =
<llp(t) — ™13 + 2¢(t) > (pi(t) — p}) (Ui (pi(1)) — U (07))

7

—2e(t) Y (pilt) — pi) (Ci(p(t) — Ci(p"))

i

| 2

+E0) Y (Uipi(1) — Calp(1)))”
Z (“0)
where we have used C;(p(¢)) to denote C;(q;(p(t))). In (a),
we use the fact that U/(p}) = C;(p*) at the nontrivial Nash
equilibrium. By mean value theorem, we find

> (pelt) = pi) (Ui(pi(t)) = Ui(pi))

: !/~ *\ 2 * 12 (41)
:ZUi(pi)(pi(t)fpi) < —ulp(t) —p’|3,

Number of iterations
(b) Game model
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Fig. 5. The throughput comparison between P-MAC and the MAC based

on N-signal game with utility function (17) and price function (18).

where p; = vpi(t) + (1 —v)p;, 0 < v < 1. Define a scalar
function f(p) = (p(t) — p*)T C(p). By mean value theorem,
we have

Fe() = £(p*) =(p(t) = p") I (B)(P(t) — P*)

> Auia(3)Ip(8) = p° 13- @
We also have
S (Uli(0) — Culp(0)”
=ﬁj (UL i(0) — UL(p?) + Cilp") — Culp(1)))?
<2 ZZ(prz-(t)) U + 2 X (Cp(t) - i)’
1 ' @3)

L2lp() - b1 423 (30 p() - p7)’

<2|lp(t) — p" 3 +2 <Z mas |5 (B')
@

<20 + IWIM)|[p(t) — P |3,

) Ip(t) — p°2
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where (a) comes from mean value theorem. Substituting (41)-
(43) into (40), we obtain

Ip(t+1) —p*l3 <

(1 — 2¢(t) (u + Amin(T9) — e(t) (X + |N|M))) Ip(t) — p*|3.

(44)

Therefore, if p+ )\min(J.C) >0 and €(t) < %, p(t)
converges to p* geometrically. |

APPENDIX B: PROOF OF THEOREM 15
Proof: We show this by induction. The proof basically

follows that of Theorem 13. For brevity, we omit several
immediate steps. Suppose that

[p(r+1)=p*[3 < vp(r)—p*[3, V7 € {0,...,1=1}, (45)
where 0 < v < 1 is a constant. When 7 = ¢, by equation (31),
Ip(t+1) = p*|3

<X |po +e (U1 (milt) - a(p(ri(t))))—pz

SHP( )—p HQ"’QGZ pi(t) —

2

pi) (Ui(pi(1) = Ui (pY))

(46)
—2¢ 3 (pi(t) ~ p) (a(pwt))) - Ci(p"))

+E3 (Vi) - G )

By mean value theorem, we have

F(r' (1)) = f(p7)
=(p(t) = p")" I°B) (p(~'(1)) - P7)
139 ®)II[Ip(t) — p*[l2llp(7" () —

(47)
> —
> — Mi|p(t) — p*|l2|lp(7*(t)) — P*||2-

P2

1125
Note that
Ip(~* (1)) — p*3
3 7 2
= |pi(rj (1) — <Y (i) - p*|
JEN JEN (48)
‘r’:’(t)ft * (12 |N| *(12
<y AT Ip(t) —P*[I” < —& lIp() = P"|".
JEN v

Similar to (44), we obtain

*112
lp(t+1) —pl;

2
<IIp(t) — p" I <1—2e <M—M1 R R ))) |

Therefore, if there exists ¢ > 0 and 0 < v < 1 such that (32)
holds, the induction hypothesis is true for 7 = t. [ ]

APPENDIX C: PROOF OF THEOREM 16

Proof: By following (40), we obtain

Ip(t+1) —p"|3
<lp(t) — p*|I3 + €(t) Z (Ul (pi(t)) — Cilp(t)) — wi(1))?
+ 2€(t) Z (pi(t) = pi) (Ui (pi(t)) — Ci(p(t) — wi(1)))

— w;| + 262 Z w; (t

7wz R

<lpt) = p*ll5 + 4ew > |wi(t)
' 49)

where 7 = 1 — 2¢(p + Anin(J€) — e(x? + 4M)) and € <

. c . . — —
ptdminld ) By assumption limy .o @;(t) = @;, for any & >

X2 +4|N M
0, there exists a to such that if ¢t > ¢y |w;(t) — w;| < 9, Vi.
Applying (49) recursively, we obtain
Ip(t+1) —p"|3
t—tg t—tg

< llp(t0) — I +4cwlVI8 3 o7 +20N15” 3 o
T= T7=0

2 + 4€CIJ|N|5

* 2e|./\/’|52
P2 1
-

<y "llp(to) — T

+
(50)
By taking 6 — 0 and ¢ — oo, we obtain limsup,_,  [|p(t)—

p*||3 = 0. Therefore, p(t) converges to p*.
|

APPENDIX D: PROOF OF THEOREM 17

Proof: By following (40), we obtain

E{|lp(t +1) - p"[3}
<llp(t) = p"[I3 + €*(8) Y (Ui (pi(1)) = Cip(1)) — @i(t))

i

+26(t) > (pit) = pi) (Ui(pi(t)) = Ci(p(t) — @i(1)))

i

2

<llp(t) = p"[Iz — e(t)xllp(t) — p"|I3 +26*(1) E { u??(t)}

—2¢(t)E {Z(pi(t) — pi )Wi (t)}

<[lp(t) -

i

P’z — e()rlp(t) — P7[I3 +2¢* ()N B,

(5D
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Fig. 7. The dynamics of P-MAC and the MAC based on /N-signal game with utility function (17) and price function (18) in the presence of traffic fluctuations

in a network with two traffic classes.

where

e(t)(x*

From (34), 3ty, x such that for all ¢ > ¢y, (52) holds. Taking
expectation both sides of (51) over F; and applying the
resulting equation recursively,

2(1t + Amin(J€) — +4N|M)) > k>0,  (52)

E{|pt+1)—p*l3}
SE{Hpt(to) -p'l3} t 3
- K Z e E{|pt) —p*l3} +2|N|B Z (1),

p*||I3} < oco. Since

from which we get >7.°, ¢e(t) E{||p(
\ 0, p(t) converges

Y2 €(t) = oo and E{||p(t) — p*|
to p* with probability 1.

t) -
5 =
m

APPENDIX E: PROOF OF THEOREM 18
Proof: By following (49), we obtain

Ip(t +1) = p"[I3
<Ip(t) = p"[3 +E®) > (Ui (1)) — Calp (1)) — (1))’

i

+ 2¢(1) Z(pi(t) —p;i) (Ui (pi(t)) — Ci(p(t) — wi(t)))
t) + 2¢> Zw?(t),

(54)

<llp(t) —p*lz — 262 pilt

— pi)Wi(

where v is defined after (49). Applying (54) recursively, we
obtain

t
Ip(t+ 1) = p*I3 <7 [p(0) — "3 + 26 347 S w2 (r)
7=0

—QGth "2 pilr) = p))i(7):

(55)
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Fig. 8. The dynamics of the game with utility function (9) using equilibrium
selection in a network of 5 nodes. Different o values for (9) are compared.

B, by using [22,

As E{w;(t)} = 0 and E{Y, @2(r)
1, t O such that

;<
Lemma 2], there exists a constant D(B,¢) >

lim inf
t—oo

<2e2 DoAY wi()

i

726271& szz ) — pi)wi(T )) < D(B,e).
' (56)

Therefore, we get (35). [ |
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