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Abstract

In this paper, we derive the optimal transmitter/receivearbforming vectors and relay weighting matrix for the
multiple-input multiple-output amplify-and-forward esf channel. The analysis is accomplished in two steps. In the
first step, the direct link between the transmitter (Tx) aackiver (Rx) is ignored and we show that the transmitter and
the relay should map their signals to the strongest riglgudar vectors of the Tx-relay and relay-Rx channels. Based
on the distributions of these vectors for independent idalhy distributed (i.i.d.) Rayleigh channels, the Grassmian
codebooks are used for quantizing and sending back the ehaformation to the transmitter and the relay. The
simulation results show that even a few number of bits carsidenably increase the link reliability in terms of bit
error rate. For the second step, the direct link is cons@lénethe problem model and we derive the optimization
problem that identifies the optimal Tx beamforming vectar the i.i.d Rayleigh channels, we show that the solution
to this problem is uniformly distributed on the unit spherel ave justify the appropriateness of the Grassmannian
codebook (for determining the optimal beamforming vegtboth analytically and by simulation. Finally, a modified
quantizing scheme is presented which introduces a nelfgligibgradation in the system performance but significantly
reduces the required number of feedback bits.

Index Terms

Multiple-input multiple-output systems, Amplify-and+ward relaying, Grassmannian criterion, Beamforming,
Bit error rate.

|I. INTRODUCTION

The multiple-input multiple-output (MIMO) technology prioles a wireless system with a large number of degrees
of freedom, which can be used for increasing the capacitjoaneliability of the wireless links. Relaying technigues
on the other hand, can extend the communication range aretage, by supporting the shadowed users through
the relay nodes, and reduce the transmission power reqtdgregiach the users far from the base station. These
benefits make MIMO relaying techniques a powerful candiftaténplementation in the next generation of wireless
networks.

Considering a system with a single data stream and perfectneth knowledge at the receiver, several methods

can be used to achieve the benefits of the MIMO link. Maximutio reansmission and receiving (MRT-MRC)
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[1] is one of the simplest methods which can achieve full diig order while providing considerable array gains
compared to space-time codes [2]. This gain is obtainedeattipense of the channel knowledge at the transmitter
and therefore, the receiver needs to send the quantizediehaformation back to the transmitter. While a general
purpose MMSE quantizer can be used to describe each chaatrek entry, it requires a large number of feedback
bits and does not preserve the structure of the optimal baanrig vector [3]. A more efficient approach is to have
a common beamforming-vector codebook with finite carditpaind send back the label of the best beamforming
vector to transmitter. This codebook is designed offlineiarichown to the transmitter and the receiver. For the case
of flat Rayleigh fading channel, the codebook design prolitas been shown to be related to the Grassmannian
line packing problem [4, 5, 6].

In this paper, we generalize the idea of MRT-MRC to a MIMO lwkth an amplify-and-forward relay station.
The scenario, considered in this paper, comprises a tr#esr(ilx), a receiver (Rx) and a relay which helps the
transmitter to send its data to the receiver. A general méiion theoretic analysis of MIMO relay link has been
presented in [7] and [8]. Although an efficient signalingatingh the relay channel requires a full-duplex relay with
specific processing capabilities (e.g. encoding/decqdargplify-and-forward (AF) relays are still attractiveelto
their lower complexity. Moreover, the full-duplex assuinptcannot be realized by the current technology, as the
input and output signals need to be separated in time or érexyuat the relay. For these reasons, this paper focuses
on the half-duplex AF relay system. In such a system, thesimétiter sends out its symbol in the first time slot and
the relay and the receiver receive their signal. In the sg¢ivne slot, the transmitter remains silent and the relay
multiplies its received signal by a matrix (amplificatiomjdasends the resulting signal to the receiver. The receiver
decodes the transmitted symbol based on the signals receite/o consecutive slots.

The half-duplex MIMO AF scenario has been considered in f8 §l0], where the authors present different
solutions for maximizing the instantaneous capacity wehpect to the weighting (amplification) matrix of the
relay. These papers assume no channel state informatidre atansmitter (CSIT) and consider uniform power
allocation over the Tx antennas. The work in [11] considbesgame problem with perfect CSIT and derives the
optimal power allocation scheme for the transmitter andy€Without considering the Tx-Rx link). Our problem

setup is different from these papers in two major aspeatedibelow:

« The objective of the aforementioned references is the maation of the instantaneous capacity. Our problem,
however, can be categorized as a beamforming problem, whereptimize the Tx/Rx beamforming vectors
and the relay matrix to maximize the signal-to-noise ra8®R) of a single data stream at the Rx output.

« The above papers assume either no channel information opleterchannel information at the transmitter or
the relay. Our work, however, focuses on a “limited feedBagistem, where the receiver end of a link sends
the properly quantized channel information back to thedmaitter end.

The analysis in this paper starts by first ignoring the dilieét between transmitter and receiver, where we show

that the transmitter and the relay should map their symlmthée strongest right singular vectors of the Tx-relay

and relay-Rx channels. For Rayleigh fading channels, tiestrs are uniformly distributed on the unit sphere and
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therefore the Grassmannian criterion can be used sepafatelx-relay and relay-Rx codebook design.

In the second part of the paper, we include the direct linkhin gystem model. As expected, one needs to know
both Tx-relay and Tx-Rx channel matrices to determine théna Tx beamforming vector for this case. We first
assume that such a knowledge is available (for example ateflag), and we derive the optimization problem
that characterizes the optimal Tx beamforming vector. éuih this problem does not appear to have an analytic
solution, we are able to show that for i.i.d. Rayleigh chdsmiee solution to this problem is uniformly distributed
on the unit sphere, based on which, the appropriatenes®dbtassmannian quantizer can be shown analytically.

In the next step, we relax the assumption of complete knaydesf the Tx-relay and Tx-Rx channels. Without
this assumption, the Rx and relay should somehow exchaegeitifiormation of the Tx-relay and Tx-Rx channels.
We focus on a scheme, where the Rx quantizes the Tx-Rx chamateilx and sends it to the relay, which already
knows the Tx-relay channel matrix. Assuming an ideal soglemntizer for the singular values of the Tx-Rx channel
matrix, we justify the use of the Grassmannian quantizergigaintizing the singular vectors. Finally, we present
a modified quantizer, which only quantizes the strongegjuar vector of the Tx-Rx channel and sends it to the
relay. This quantizer requires fewer number of feedback &itd performs very close to the original quantizer.

The remainder of this paper is organized as follows. In $adli we present a brief introduction to Grassmannian
line packing problem and its connection to the MIMO beamfiogncodebook design. Section 11l presents the
problem setup and the solution for the MIMO relay channehuwitt considering the direct link. In Section 1V, the
beamforming codebook design problem is solved with thectliiek included in the system model. The simulation
results are discussed in Section V. Finally, Section VI tades the paper.

Notations:IR and C denote the set of real and complex numbers. Bold upper cakéoaer case letters denote
matrices and vectord. shows the identity matrix/™ denotes the set of all unitary matrices@¥>*™. |- | and
I - || show the absolute value of a scalar and the Euclidean nornveétar.|| - ||, denotes the Frobenius norm of a
matrixl. (-)7 and(-)# denote the transpose and Hermitian of a matrix. The not&@iendiag,, (o1, 2, , dr)
with » = min{m,n} shows a rectangular diagonal matdx € C"™*™ with ®(i,:) = ¢; for i = 1,2,--- ,r and
®(i,7) = 0fori # j. For an arbitrary matrif € C™*", the singular value decomposition (SVD)Hfis expressed
asH = UXV¥H, whereU € Y™ andV € U" include the left and right singular vectors as their coluyrarsd
Y = diag,xn(o1,02, - ,04), Wherer = min{m,n} andoy>09>--- >0,>0; if R = rank(H), the firstR
nonzero diagonal enteries &f are called the singular values 8. CA(0, X) represents a circularly symmetric
complex Gaussian distribution with zero mean and covaeanatrix . Finally, E{-} denotes the expectation

operation.

II. MIMO B EAMFORMING CODEBOOK DESIGN AND GRASSMANNIAN LINE PACKING

The connection between Grassmannian line packing probieirbaamforming codebook design for a Rayleigh

fading channel has been independently observed in [5] gn@@hsider the MIMO channel in Fig. 1. The transmitter

HAlZ =32, laij|* = Tracd AAH) = 37, o7, whereoy’s are the singular values of the matrk = [a;;].
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z~CN(0,1)
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Fig. 1. Single stream MIMO link with Tx and Rx beamforming.

maps the symbat;,, to the antenna array using the beamforming vestdrhe signal passes through the channel
v PH with complex Gaussian noise ~ CN(0,I). The receiver recovers the symhe),; using the receive
beamforming vector. The matrix/PH € C**™ models the flat fading channel amad and! are the number of
the Tx and Rx antennas respectively. The entrie¥lofire assumed to be independent and identically distributed
according taC NV (0, 1). The coefficientP is referred to as the “link signal-to-noise ratio (SNR)”.€Tbutput symbol
can be expressed as

Tour = VPrTHsz,, + rz.

Assuming a transmission power constraintiokatisfied byE{|z;,|*} = 1 and||s|| = 1, the received SNR is:
_ P|rf'Hs|?
el

which should be maximized with respect toand s. Maximization with respect ta is achieved by matching
r = Hs, hence the optimas should maximizey = P|Hs||?. It is easy to show that the optimalis the right
singular vector ofH corresponding to its largest singular value. If we denote lt#rgest singular value and the
corresponding right singular & by o; and vy, the optimal Tx beamforming vector is equald¢db = v; and the
maximum SNR isy* = Po?.

For the Rayleigh fading channel mati, the singular vectors have been shown to be uniformly tisteid on
the unit sphere inC™ (see [5], [12]). Therefore, a good quantizer of the optimain a sense, should place its
codebook vectors uniformly on the unit sphere. This regquéet can be shown to be related to the criterion used
in the Grassmannian line packing problem, which we desaribe.

Consider the complex spaé&™ and letQ2 be the unit sphere) = {w € C™|||w| = 1}. Define the distance of

two unit vectors to be sine of the angle between them:

d(wi,wa) = /1 — |wilws|?, 1)

for wi, wo € Q. For a codeboolkC = {w1,wa, -, wy} with N distinct unit vectors, defingC) as the minimum
distance of the codebook:

i#]
For a fixed dimensionn and codebook sizév, the Grassmannian line packing problem [4] is that of finding

codebookC of size N with the largest minimum distance. Many researchers haveiest the solution to this
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problem for moderate values af and N [13], [14]. However, there is no known standard way of findthgse
codebooks in general.

For the problem setup in Fig. 1, consider a beamforming codleli(N, ¢) of size N and minimum distance
d. The receiver chooses the vector in this codebook that niaggrthe SNR and sends the label of this vector
back to the transmitter. Let denote the resulting SNR. = maxyec P||Hw||?. The authors in [5] have used the

distribution of optimal beamforming vecter to bound the average SNR loss as:

E{v}-E{7} <

PE{o}} (1—N <g)2<m_l) <1—§>> : )

wherem is the space dimension (number of Tx antennas). The upperdhiou2) is a decreasing function 6f for
any m > 1. Therefore, to minimize the upper bound of the SNR loss, wrikhmaximize the minimum distance
of the codebook. This is the same criterion used in the defimivf the Grassmannian line packing problem and
establishes the connection between the beamforming coltetesign problem and the Grassmannian line packing.
Before concluding this section, we mention that the cod&laesign problem for the beamforming system in
Fig. 1 has been generalized by [15] to the multiplexing systewhere the Tx transmits multiple substreams to the
Rx. In such systems, the transmitter and receiver share eboodt of precoding matrices and the receiver sends
back the label of the matrix that maximizes a certain perforae criterion (e.g. the minimum substream SNR). In
this paper, we take the first step in designing the limitediieek systems for beamforming over MIMO AF relay
channels. The generalization of the relay problem to the césnultiple data streams is considered as the future

work.

I1. MIMO A MPLIFY AND FORWARD RELAY CHANNEL WITHOUT THE DIRECT LINK

In this section, we consider the MIMO amplify-and-forwaiH) relay channel without the direct link and
derive the optimal transmitter/receiver beamforming eectand relay weighting matrix in Subsection I1l.A. Next,
we present the quantization scheme in Subsection Ill.Bhdukl be noted that if the relay performs decode-and-
forward, the MIMO relay channel reduces to two MIMO links iaries, therefore the optimal structure and the
guantization scheme in Section | can be applied to each ofitke separately. However, the derivation of the
optimal unquantized scheme and designing the correspgrgliantization scheme is not trivial when the relay

performs amplify-and-forward.

A. Optimal Unquantized Scheme

Consider the MIMO amplify-and-forward relay system in F&g, where the direct link between transmitter and
receiver is ignored. The transmitter, the relay and theivecare equipped withn, n and! antennas, respectively.
The matrices,/PiH; € C"*™ and/P,H, € C'*™ model the flat fading channels of the Tx-relay and relay-Rx
links, respectively. The coefficienf3 and P, are referred to as Tx-relay and relay-Rx “link SNRs”. Thengmaitter

uses the vectos for beamforming. The relay multiplies its noisy receivedrsil by the matrixW < C**! and
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constraint constraint at Xreiqy
@
1
2,~CN(0,) z2~CN(0,C—21)
2

Xout

HAL 5

(b)

Fig. 2. (a) MIMO amplify-and-forward relay channel modeltmdut the direct link, (b) The model after the change of \dda x =
VP VEH;s andy = VR U?Hr.

sends it to the receiver. The receiver recovers its symhobube receive beamforming (combining) vecitonWe
assume power constraints equalltat the transmitter and the relay outputs.

The problem is to find the optimal, W andr, to maximize the SNR at the receiver output subject to power
constraints at the Tx and at the relay. For this problem setugasonable solution is “matching”, as described below.
The transmitter should map its symbol to the strongest sgigular vector ofH; (as described in Section II). The
relay should absorb maximum signal power by matching to ffextive channg H:s, scale the resulting (noisy)
signal to meet its power constraint and transmit it throuwh $trongest right singular vector #f,. Finally, the
receiver should match to the relay-Rx link by using the siest left singular vector dl, as the Rx beamformer.

This matching solution is depicted in Fig. 3a, in which
H, = A®BY,
H, = FOGY, (3)
are the SVD decompositions &1; andH-, and
A=[a;|ay|---|a,] € U™, F=[f|f] - |f] €U,
B=[bi[by| - [bp] € U™,  G=[gi|go|---[gn] €U",
®=diag, m{d1, 2, ¢r 1, ¥=diag;, {1, Y2, ¥r, )
wherer; = min{n,m}, ro = min{l,n}. Although matching seems to be the natural solution to thiblem,

showing that the optimaW is a rank one matrix and that matching is optimal is not tfividis is mainly due

2This matching vector is parallel to the strongest left siagwector of H;.
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to the noise amplification at the relay, which generatesredimoise at the receiver input. In the remainder of this
section, we present a proof for the optimality of this scheme

The relay and receiver output signals in Fig. 2a are:
Tout — P1PQI'HH2WH15Iin =+ \/ PQI'HHQWZ1 + I'HZQ,
Xrelay =V PIWHlsxin + WZl,

wherez; ~ CN(0,I) andzs ~ CN(0,I) are the complex Gaussian noise vectors at the relay and Ru. ifpe
transmitter power constraint is satisfied by lettiig|x;,|>} = 1 and ||s|| = 1. Also, the relay power constraint,

which limits the power of the amplified signal and noise, canelspressed as:
B [%retay |} = Py [WHs|* + [W]2 = 1.

Finally, the “received SNR” can be written as:
PPy |[rHH,WH, s
= 2 )
Py |[WHHr||” 4 |r||?

where we can assunig|| = 1, without loss of generality. The optimization problem candummarized as:

PP |[rHH,WH, s’

4
Py |[WHHE | +1 @

s.t.
[[sll = [lrf| = 1
Py [[WHys|* + [W]2 =1
W e Xl seC™, reCn.
Theorem 1:The optimal values of Tx/Rx beamforming vectors and relaygiMing matrix for the SNR maxi-

mization problem in (4) are given by:
s*=by, r"=f;, W=o0gia,’,

where we have used the SVD equations in (3), and (1 + P1¢§)_%. Note that the optimal weighting matrix
W+ is a rank one matrix.

Proof: The optimization is accomplished in two steps. In the firspstwe fixs and r and maximize the
objective with respect tdV. In the second step, optimalandr are derived after substituting the optin®l in
the SNR expression.

Step 1) Maximization with respect t&v:

Defineh; = /P H;s andh, = /P,H{r. By fixing s andr, h; andh, are also fixed. Let; = |/h;|| and
c2 = |[hz.

ConsiderW = UXZV¥# as the SVD of W, where U,V € U! and ¥ = diag;{o1,09,---,01}. The

calculations provided below perform the optimization widspect toU, V and X.
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Definex = V7h; andy = U h,, which impose the constraintsc|| = ||h;|| = ¢; and||y|| = ||ha|| = c2 on
x = [1,29, -, x]" ,y = [y1,y2,--- ] € C'. The maximization with respect ttJ, V and X, i.e. (4), can

now be rephrased as a maximization with respect,tg and X:
[y 5]

T s a— ()
ISy|* +1

S.t.

[ = e1

Iyl = c2

S o lail’ + i 0 =1

zi, y; €C, 0,20, i =1,2,--- 1
where the power constraint of the relay is computed as faliow

PUIWHs| + [W[2 = [USVh |+ W2
I=x]* + 3, 0
= Y0t |nl + 3,07

The problem in (5) is exactly the SNR maximization problemtfee (single-hop) MIMO link depicted in Fig. 2b,

wherex andy are the transmit and receive beamformers ahé the channel. Note that the only constraint on
the receiver beamformer is on its Euclidean norm, therefore, the optingals the minimum mean square error
(MMSE) fiIteH. Hence, the optimay and the corresponding SNR are:

-1
y=c (22 + %I) ¥x (6)
€

~1
1
y=x1% (22 + c_21> ¥x, @)
2

whereX? + éI is the covariance matrix of the equivalent noise &l is the equivalent channel from the input
symbol to the receiver input. The scalars chosen to satisfy the constraihg|| = cs.

For the next step, we find an upper bound for the SNR expre&si¢r) by considering the constraints an's
ando;’s, and we present the optimal valuesxofind 3 that achieve this upper bound. Considering (7), we get to

the following maximization problem.

1 2
max Z || TR (8)
i=1 op + Z
S.t.
%] =1

l 2 l
Zi:l 0i2 |z +Z¢:1 01'2 =1
:Z?l'E(D, Uizo,i:1,2,~-~,l

3For a general input-output relatiar,,: = y (hz;, + z), the optimal (SNR maximizing) receiver beamforming vedtothe MMSE filter
y = cK~1h for K being the covariance matrix af and any scalac. The resulting (maximum) SNR is = h# K~ 1h.
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Define 8; = ‘””;;'2 ‘Iiil‘lz' Clearly,0 < 8; <1 and Zizl B; = 1. Now, consider the objective function in (8):
1

2

,Y:Z |a:|2 01'2 2022 |x1|2 0;
—~ " af+1/c ! —~ i o} +1/c3

> Bio?
= ’ < 9
cl;ﬁazﬂ/c clzﬂm FyE: ©)
2 > 0F|wil? 2 ¢
= 2 = 10
T Al g g (0
where( def >, 02|z;?. The inequality in (9) is a result of the concavity of the ftion ﬁ for ¢ > 0.
2
Now, from the second constraint of the problem (8), we have:
1_ZUEZZUE|@|2§Z% Z|xz|2—clza
Therefore,y ", 07 > 1+ —— and by applying the same constraint, we can bogind
20,12 i 11
¢= Zolle—l— it e (11)

Finally, by combining (10) and (11), and noting that (10)nsreasmg i, we have the following upper bound

for the SNR:

2 2
0102

— 12
"S1ya+ra (12)
By reconsidering the problem in (5), it is easy to check tiat following choices ofk, ¥ andy satisfy the

constraints and achieve the upper bound in (12).

X:[Claoa' ' '7O]T7 y:[62707' ' '7O]T7 Ezdiaglxl{avoa' ) O}? (13)

whereo = (1 + c%) %. Recalling the definitions at, y, ¢c; andcs, the optimal values in (13) can be achieved by:

=Mhi|vi] - |[vie1], U=lhafug| -y,
Ezdiaglxl{avoa' ' 30} (14)
whereh; = o, hy = 25 ando = (1 + [|hy*)~2. Here{vi,---,vi-1} and {uy,--- ,w_} are arbitrary

orthonormal basis for the null-spaces of the andh, respectively.

To summarize, having andr fixed, the optimal structure oW = UXV# and the corresponding SNR value

are:
W = ghyh! (15)
[ || [z
= 3 3 (16)
L+ [[hy " + [/
whereo = (14 ||hy||*)~ 2, hy = /P H;s, andh, = v/P,Hr. This result finalizes the maximization with respect
to W.

Step 2) Maximization with respect te andr:

From (16) we see that is increasing both inf|hy || and ||hy||. Therefore, for maximizing the SNR, we should
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10

2,~CN(0,1) 2,~CN(0, 1)

Relay
Xin VP1H; \L HT»H\/PZHZQ—» Xout

-1
o= (+PgH?

(@

2,~CN(0,1) 2,~CN(0,1)

Xin JP_1H1 J%EFR@; l—\/P—ZHz %L Xout

(b)

Fig. 3. (a) Optimal unquantized scheme for MIMO AF withoue thirect link, whereH; = A®B and Hy = FTGH . (b) Quantized
scheme for MIMO AF without the direct link.

maximize|/h; || and| hz||, subject to||s|| = ||r|| = 1. Considering the definitions di; andh,, the optimal value
is achieved by letting be the strongest right singular vector Hfy andr be the strongest left singular vector of
H,. This concludes the maximization in step 2. [ |

Substituting the optimal solution, found in Theorem 1, iuaiipn (16) reveals the optimal SNR:

. i3
- nn 17
e 4
where
7= Jax Pi||H;s|* = P1gi,
v = max Py||Has||* = Pyyy. (18)
s||=

The optimal solution in Theorem 1 verifies the optimality bétscheme in Fig. 3a, where the Tx and relay use
the strongest right singular vectors of the Tx-relay andyrd®x channel matrices for beamforming. Assuming that
the relay knowd; and the receiver knowHl,, the optimal structure can be achieved if:

« The relay informs the transmitter &f;, the strongest right singular vector H¥;.

« The receiver informs the relay @f;, the strongest right singular vector Hfs.

Considering this, we continue the problem in SubsectioB IHy characterizing the codebooks that should be used

for quantizing the optimal beamforming vectors.

B. Quantization Scheme

Fig. 3b presents a scheme which mimics the optimal schenge 88), with the difference that the Tx and relay
beamforming vectors belong to certain codebooks with fio#edinality.
In Fig. 3b, the Tx beamforming vectdr should belong to a codebod&; (N1, d;) shared between the Tx and

relay, and similarly, the relay beamforming vecfpshould belong to a possibly different codebd®k(N, d2),
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which is shared between the relay and Rx. The relay and R¥aumed f for receive beamforming, respectively.
All transmit/receive vector, b, f andg are assumed to be of unit norm, and= (1 + P;|a"H;b|?)~'/2 in
order to satisfy the relay power constrEin‘t‘he received SNR of the quantized scheme can be easily stwba
equal to:

Y172
_ ’ 19
T 7+ 72 (19)

wherevy, = P; ‘éHHlf)‘Q andvy, = P, ‘fHHgg‘z are the received SNRs of the Tx-relay and relay-Rx channels.
As v is increasing both in; and~s, we should maximize these quantities to maximize the SNRefguantized
scheme. This is accomplished, as in Section Il, by letéirand f to be matched td ;b andH,g, and, choosing

b andg based onb = argmaxycc, P1||Hw||?> andg = arg maxwec, P2||[H2w|?. The corresponding received
SNR values are

’;/1 = max PlHH1WH27 ’3/2 = Imax PQHH2W||2, (20)
weC, weCs

and the maximum received SNR of the quantized schénsan be computed by substituting these quantities in
(29):
N Y12
T @1
In Appendix II.A, we use the distributions of the optimal b&arming vectorsb; andg; for Rayleigh channels

to compute the following upper bound for the total loss in SddRised by quantization.

E{y"} - E{7} < 2mnP, (1—N1 (%)Q(W_l) <1‘%>>

5o 2(n—1) 5o

This upper bound is decreasing dn andd, for anym > 1 andn > 1. Therefore, to minimize this upper bound,
we should maximize the minimum distanegsandd,. This is exactly the criterion used in Grassmannian codieboo
design and proves the efficiency of these codebooks for fuiragtthe optimal beamforming vectors. In Section
V, we present simulation results which compare the perfoceaf the Grassmannian quantizers with the optimal

(unquantized) scheme and other possible quantizatiomsehe

IV. MIMO A MPLIFY AND FORWARD RELAY CHANNEL WITH THE DIRECT LINK

In this section the direct link is included in the system md#e. 4). The optimal unquantized scheme is derived
in Subsection IV.A and the quantization scheme is preseintdd. B. Finally, in IV.C we introduce a modified
guantized scheme, which significantly reduces the numbdeedback bits with a negligible degradation in the

system performance.

4The Tx power constraint is automatically satisfied by assanijb|| = 1.
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Relay power
constraint

Tx power 21~CN(0,1) z,~CN(0,1)
constraint
y
PiHy & W [ [PHy Syt
ay
Xout
Ao
PoH ¢y,
‘{ 0
2o~CN(0,1)

Fig. 4. Half-duplex MIMO AF relay channel model with direéhk between the transmitter and the receiver.

A. Optimal Unquantized Scheme

Consider the half-duplex MIMO-relay link in Fig. 4. At thedirtime slot, the relay is silent and the Rx receives
its symbol. At the second time slot, the Tx is silent and tHayr@amplifies and forwards its signal (received in the

first time slot) to Rx. The receiver has access to two recesyeabolsy, andy, separated in time:

Yo = / PoI‘gIH()SZC + I'gIZQ
Yy = P1P21‘{IH2WH1$$ + I‘{I (\/ PgHQWZl + Zg) .

The receiver computes the linear MMSE combinatiory9fandy; to compute the output symbel,,,;:

Tout = Yo + Q1Y1.

By proper choice ofyg and«; the output SNR %

Y =0+ Yrs (23)

where~, and~, are the received SNR values of the direct link and the Txyr8la link. Therefore, the total SNR
is maximized if the received SNRs of the direct and relaydimke maximized. The only common parameter in
maximizing these two quantities is the Tx beamforming vesto

By fixing s and following the same steps in Sections Il and lll, the optinalues of other parameters can be
easily derived, as showed in Fig. 5a. In the first time sla, tlay and the Rx should respectively matciHes
and Hys at their inputs. In the second time slot, the relay maps imaﬁzeﬁ symbol tog; the strongest right
singular vector ofHH; and the receiver usef, the strongest left singular vector #f5, for receive beamforming.

The corresponding received SNRs of the direct link and réfdyare:

Yo = Po||Hos||?

1%
r = ’ 24
e +7+7 @4

5This is a result of the MMSE combination, or MRC after scalthg noise levels of the symbolg andy;.

5To meet the relay power constraint.
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Fig. 5. (a) Optimal unquantized scheme for MIMO AF with theedt channel. In the first time slot, the relay and the Rx matckl; s*
and Hys*, respectively. (b) Quantized scheme for MIMO AF with dirdick. In the first time slot, the relay and the Rx matchHb § and

Hys, respectively. In the second time slot, the relay matcheBlt@&. Whens is replaced bys* in (31), we will refer to this system as the
“properly quantized scheme”.

wherev; = Pi||H;s||2 and~ is the maximum received SNR of the the relay-Rx ligk:= P»||Hag ||2 = Pytp2.
By combining (23) and (24) the total received SNR is:
Y= Py|[Hs|*~3
1+ Pi||His|2+ 73
and therefore, the optimal can be expressed as:

* = arg max 7”1115”2
Isi=1 [|[His||? + A

+ POHHOS||27

+ pul[Hos||?, (25)

where\ = % andp = %. The corresponding total received SNR is:
2

7y

*

13

Tl

+, (26)

whereq = Py||Hos*||? and~f = Py||Hs*||%
The objective function of the problem in (25) has multipledb maximum points and moreover, the global
maximum point is not unquﬂe This problem does not appear to have an analytic solutiehasna result we use

a numerical approach to perform this optimization, whicli & described in Section V.

7If s is a global maximum point, so is’?s, for anyd € R.
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Despite the fact that we do not have a closed form expressiothE solution of problem (25), we are still
able to identify the distribution of the solution for Rayhi fading channels. The main result of this section is the
following theorem.

Theorem 2:For independent Rayleigh channel matrigé®g andH;, the optimal Tx beamforming vectar that
maximizes the total received SNR (or equivalently the dibjecfunction in (25)) is uniformly distributed on the
unit sphere inC™, wherem is the number of Tx antennas.

Proof: See Appendix I. ]
Note that if we had a single channel from the transmitter ® riéceiver, the optimal Tx beamforming vector
would be uniformly distributed on the unit sphere@f* (see Section lIl). Interestingly, Theorem 2 states that the
optimal Tx beamforming vector is still uniformly distrited on the unit sphere, when there are two independent

parallel channels from the transmitter to the receiversTéibasically due to the independencd®hf andH;, and
the specific properties of the Rayleigh channel matrices.

The result in Theorem 2 is used in Appendix I1.B to derive anRSINss upper bound, similar to (2) and (22),

which justifies use of the Grassmannian codebook for quagtihe optimal Tx beamforming vectar-.

B. Quantization Scheme

Having identified the optimal scheme, we continue by considethe quantization scheme in Fig. 5b. In the
first time slot, the Tx use§ for beamforming, and relay and Rx match their receive vactod;s and Hys. In
the second time slot, the relay scales its symbol and gdes beamforming and Rx matches H,g. The Tx-RX,

Tx-relay, relay-Rx and total received SNR values is given by
Y0 = Pol[Hos ||, 7 = Pi[[HiS|?, 72 = P Hag|?

Y172
=1z 27
7 1+ +7 o @7)

We need to maximize (27) with respect to the Tx and relay beemifig vectorss andg, which belong to certain
codebooks with finite cardinalities. As in Section Ill, wesame that the codebool3; (N1, d1) and Ca (N2, d2)

are shared between Tx-relay and relay-Rx, respectiveBar@§l, g should be chosen to maximizg:
g = arg max P |Hyw||%. (28)
weC,

The corresponding relay-Rx received SNRAs:= maxwec, Ps|Haw]2.

For choosing the propes, we need to know botiily and H;. We continue the problem here by assuming that
the relay knowsH, in addition to its channeH;. This assumption will be relaxed in IV.B.2.

1) Complete Knowledge @, at the Relay:If the relay knows botlH, and H,, then based on (27) the best

vectors should be chosen as follows:
= + fi| How|?, (29)

where\ = % and i = %. The maximum total received SNR of the quantized schéncan be computed by
substituting (28) and (29) in (27).
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In Appendix I1.B, we use the distribution af, given in Theorem 2, to prove the following bound on the SNR

loss caused by quantization.

E{y"} - E{3}

2 (mlPy + mnPy) <1—N1 <5_21>2<m1) (1_%>>
e <1 N2<522) o <1_%2>> (30)

This upper bound is decreasing @ = §(C;) and 62 = §(Cz) for any m,n > 1 and justifies the use of
Grassmannian codebooks; and C., for quantizing the optimal Tx and relay beamforming vester andg;.

2) Partial Knowledge ofH, at the Relay:As mentioned earlier, the computations in IV.B.1 are basedhe
assumption that the relay knovid, completely. In reality, however, the Rx needs to quanfkg and send it
to the relay. We should note that, the only way tli#§ contributes to the problem in (28) is through the term
|How]||2, which can be expanded as followgHw||> = 3/, v2|efw|2, wherev;’s ande,’s are the singular
values and right singular vectors B, and Ry = rank(Hj). Therefore, the relay only needs to know the singular
values and the right singular vectors of the direct link c¢telnSince our focus in this paper is on the vector
guantization feedback schemes, we assume that the relayskhe singular values completely but has only access
to the quantized versions of the singular vectors.

For quantizing the singular vectors, the Rx and the relayesh@odebookC, (N, do), which is possibly different
from C, (used for determining). We assume that the Rx quantizes each veefdo a vectore; € Cy that is

closest toe;.

€, = argvgréicrjl d(w,e;).
0]

Having v;’'s ande;’s at the relay, the problem of finding the Tx beamforming veét can be reformulated Bs

| Hww?

. 2 2
§* = arg max vile;jw 31
B THwl? 1% u; & wl?, (31)

where A = 152, i = £, and§, = maxweo, P2f|Howl||?. The total received SNR* can be computed by

substituting (28) and (31) in (27). Finally, the loss in tleeeived SNR can be bounded as follows (see Appendix

8Here, we have used the notatigh to distinguish this vector form the vectérin (28), where we were assuming that the relay kndilis

completely.
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I.C).

E{y"} —E{7"}

51 2(m—1) 51
<2(mlPy+mnPy) | 1-Ny (5) <1—?)
5y 2(n—1) 5y
2(m—1)

The upper bound in (32) is decreasingdfn = §(Cy) for any m > 1. This justifies use of the Grassmannian
codebook to quantize the singular vectorsH§, since it has the maximum minimum distanég The same
conclusion holds folC; and Cs, since the upper bound in (32) is decreasingiirandd, for any m,n > 1.

To summarize the results, all three codebo@ks C,; and C, need to be Grassmannian codebooks to minimize
the upper bound of the loss in the total received SNR. We tefére scheme, determined by (31), as the “properly
guantized scheme”. In the following we outline the stepseatednining the beamforming vectors of the “properly
quantized scheme” (Fig. 5b).

1) The Rx uses a Grassmannian codeb@gk shared between the Rx and the relay, to quargjzbe strongest
right singular vector of the relay-Rx chanridk. The label of the quantized vector is sent to the relay. The
relay uses this vector for its beamforming in the second tioé The Rx also sends the SNR valygeto
the relay. This will be used in step 3.

2) The Rx quantizes the right singular vectors of the Tx-Rarotel using a Grassmannian codeb@ik which
is shared between the Rx and the relay. The labels of the igadntectors and the singular valuess are
sent to the relay.

3) The relay forms the objective function in (31) and maxiesiit over the Grassmannian codebdodk which
is shared between the Tx and the relay. The relay sends tkedélhe maximizing vector to the Tx. The
transmitter uses this vector for its beamforming in the firsie slot.

Before concluding Section IV, we introduce a modified schemiéch performs very close to the “properly

guantized scheme” but requires fewer number of feedbask bit

C. Modified Quantized Scheme

Consider the problem of determining the Tx beamformingeftir the quantized scheme in Fig. 5b (see equation
(31)). There are two links between the transmitter and tleeiver; the direct (Tx-Rx) link and the Tx-relay-Rx
link, which we refer to as the relay link. If the direct link imuch weaker than the relay link and can be ignored
safely, our problem reduces to the problem in Section Il Hredrelay does not need to know anything about the
direct link channeH,. On the other hand, if the relay link is very weak and can beiigd, the only thing that we
need to know abouH|, is its strongest right singular vector. Therefore, in bothhese extreme cases we do not

need to have any knowledge Hfy other than its strongest right singular vector. Based aitftuition, we propose
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a new scheme, referred to as the “modified quantized scham@hich the Rx only quantizes the strongest right
singular vector ofH; and sends the corresponding label (and the largest singailae ;) to the relay. The relay
then determines the proper Tx beamforming vector by forntiregfollowing problem.
Smodified = aTg nax % + wiler wl?, (33)
where) and i have the same definitions as in (31).
The “modified quantized scheme” requires much fewer numbkit®, since it only quantizes one singular vector
(see step 2 for the properly quantized scheme). Our simulagsults show that the “modified quantized scheme”

performs very close to the “properly quantized scheme”, asmill see in Section V.

V. SIMULATION RESULTS

In this section, we provide simulation results for the sec&sadiscussed in the Sections Il and IV. The results
are divided into two subsections. In V.A the direct link betm the transmitter and the receiver is ignored, as in
Section Il (see Fig. 2). In V.B, the simulation results aregented for the case where the direct link is present in
the model (Fig. 4).

The general setup for the simulations is as follows. The tirggunbols belong to a BPSK constellation with
unit power. The entries of the channel matrices, which maleli.i.d Rayleigh fading channels, are generated
independently according t6A(0,1). To model quasi-static fading channels, the simulatioretii divided to
20,000 coherence intervals, each consisting20f) symbols. The channels are assumed to be constant over each
coherence interval and to be independent from one inteovttié¢ other. The simulation results compare different

(quantized and unquantized) schemes from the bit-erter{BER) point of view.

A. MIMO AF Relay Channel without the Direct Link

In this section, the direct link is not considered in the dation model (Fig. 2). All of the stations (Tx, relay
and Rx) are assumed to have two antenmas<n = [ = 2). The relay-Rx link SNR is fixed aP, = 8dB and the
BER values have been recorded for different values of theelay link SNR P;. For the quantization purposes,
the Tx and relay share a codebo@X of size N;. Similarly, the relay and Rx share a codebddk of size N,.

Fig. 6 compares the performance of the “optimal unquantsgteme” (Fig. 3a) with the performance of the
Grassmannian codebook® andC, of sizesN; = Ny, = 4 or 8. The Grassmannian codebooks are adopted from
[5]. The total number of the feedback bits used by the Grassraa quantizer isog, N1 + log, N2 which equals
4 or 6 bits for Ny = N2 = 4 or 8. As Fig. 6 shows, we can get very close to the optimal schertte avily a few
number of bits per each coherence interval. We have alsdaiealthe performance of the Alamouti code, to show

the high power gain that can be achieved by using the Grassaranodebooks compared to space-time c@:des

9n the implementation of the Alamouti code, we have assunhed the relay does not perform any decoding on its receivedbsis,
to comply with the amplify-and-forward assumption. Theayedecomposes the symbols coded by the Almouti code, andrpesfanother
Alamouti coding on the decomposed symbols and sends thedssgimbols through the relay-Rx channel.
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Fig. 6. Comparison of the performance of Grassmannian taioh scheme with the optimal (unquantized) scheme aedAtflamouti

space-time coding. The relay-Rx link SNR is fixedSalB.

In Fig. 7 we compare the performance of the Grassmanniantigeeswith other quantization schemes. For the
MMSE quantization scheme, the Rx and relay quantize evetry ef the channel matriceBl; and H; according
to the MMSE criterion and send the quantized channel matticehe relay and Tx, respectively. The Tx and the
relay perform singular value decomposition on these gmadtmatrices and use the corresponding strongest right
singular vectors for beamforming. We have assumed thatubatizer uses two bits to quantize each channel entry,
i.e., one hit for each of the real and imaginary parts. #0e= n = | = 2 this results in2(mn + nl) = 16 bits
which should be compared to the small number of feedbackibitse Grassmannian scheme.

Fig. 7 also compares the Grassmannian quantizer with thrdomramuantization scheme. The random quantizer
uses a set of randomly selected vectors on the unit spheits gsidntization codebook. The performance of the
random scheme has been averaged over ten such codebookgy. Asdhows, the Grassmannian scheme shows
considerable gain as compared with the random quantizevekter, this gain decreases as the codebook sizes are
increased fromt to 8. The main advantage of the random codebooks is that theyaasete generate as compared

with the Grassmannian codebooks.

B. MIMO AF Relay Channel with the Direct Link

In this section, we simulate the system model in Section IWerg the direct link has been included in the
analysis. All the stations are equipped with three anteifnas- n = | = 3).

Fig. 8 compares the “optimal unquantized scheme” (Fig. 5#) some other unquantized schemes. The Tx-
relay and relay-Rx link SNR’s are fixed & = P, = 2dB and the BER values are recorded for different values

of the direct link SNRP,. For the optimal scheme, we use the gradient descent metitadiefermining the Tx
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Fig. 7. Comparison of the performance of the Grassmanniamtqer with the MMSE and random quantizers. The relay-Rk BNR is
fixed at8dB.

beamforming vector from (25). The constrajfsi] = 1 is eliminated by the change of variable= ”—3”

The curve marked by shows the performance of the scheme that ignores the dingcinl determining the Tx
beamforming vector. For this scheme, the Tx beamformingovés always set to the strongest right singular vector
of the Tx-relay channel. As expected, the performance & skcheme diverges from the optimal scheme as the
direct link gets stronger. The next curve, markedhyshows the performance of the scheme which considers only
the stronger link for determining the Tx beamforming vectorthis scheme, the Tx switches between the strongest
right singular vectors of the Tx-relay and Tx-Rx links degiig on their received SNR values. The last scheme,
called the “modified unquantized scheme”, has the sametstauas the “optimal unquantized scheme” with the
difference that the relay only considers the strongestuamgralue and singular vector @&, in formulating the
problem of determining the Tx beamforming vector. This peabis exactly the same as the problem (25), used by
the optimal scheme, except thds||? is replaced by/?|ef’s|?, wherev; ande; are the strongest singular value
and right singular vector oHy. In Appendix Ill, we show that the average SNR loss of thisesel with respect
to the optimal scheme is at mos24dB for the system withn = n = [ = 3 antennas. As the simulation results
in Fig. 8 verify, the modified unquantized scheme performy \@ose to the optimal scheme. This unquantized
scheme is the basis for a quantization scheme that has bfsredeto as the “modified quantized scheme” in
Section IV (see (33)).

In the next two simulation setups, we study the performaridee quantized schemes. As discussed in Section
IV, the scheme consists of three codebotks C; and C, of sizesNy, N1 and N,. The codeboolC, is used for
guantization of the direct link channkl,. The codeboolC; is used to determine the relay beamforming vector in

the second time slot. The codebo@% determines the Tx beamforming vector in the first time slag. B shows
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Bit error rate

—©&— Optimal unquantized scheme
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Fig. 8. Comparison of the optimal unquantized scheme witferotinquantized schemes. The Tx-relay and relay-Rx link Shife fixed at
P; = P, = 2dB.

the performance of the “properly quantized scheme” withsSmaannian codebooks of siz&s = N, = N3 = 8,16
(see the three steps for properly quantized scheme in &e&fjo The Tx-relay and relay-Rx link SNRs are fixed
at P, = P, = 2dB and the BER values have been recorded for different vadfiebe direct link SNRP,. The
Grassmannian codebooks are adopted from [14].

The figure also shows the performance of the Grassmanniaboo#is with “modified quantized scheme” (see
(33)). This scheme shows a negligible performance degmadatith respect to the “properly quantized scheme”,
but requires fewer number of feedback bits. As an examplecempare the total number of bits required by
the properly quantized and the modified quantized schemeg&antization of the scalar values, we assume a
hypothetical quantizer which requiréshits for quantizing a scalar quantity. Recall the three stefpthe properly
quantized scheme in Section IV. For step one, we degd N-) bits for quantizingg andb bits for quantizingys.

In step two, we nee®(log,(Ny)+b) for the “properly quantized scheme” aib, (V) + b bits for the “modified

quantized scheme”, whei®, = rank(Hj). Finally, for the third step, we neddg,(N;) bits for quantizing the Tx
beamforming vector. Therefore, we need a totalbf- Ro)b + 1og2(N§°N1N2) bits for the “properly quantized
scheme” andb + log,(NoN1 N3) bits for the “modified quantized scheme”. Table | comparess¢hvalues for
N =Ng=N; =Ny, =38, 16, andm = n = [ = 3. Here we have assumed a full rank channel maifix

Fig. 9 also shows the performance of the MMSE quantizer. §aisntizer require@(mn + ml + In) bits for
guantizing the channel matrices ahdbits for quantizingys.

Fig. 10 compares the performance of the same schemes of kigaQdifferent scenario. For this figure, the
direct link and relay-Rx link SNR are fixed &, = —4dB and P, = 2dB. The BER values have been recorded for

different values of the Tx-relay link SNI®;. Once again, we see that the performance of the “modifiedtpeah
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TABLE |

COMPARISON OF THENUMBER OF THEFEEDBACK BITS FORDIFFERENTQUANTIZATION SCHEMES

Scheme Number of feedback bitg
N =238 N=16

Properly quantized| 15+ 4b 20 + 4b
Modified quantized| 9+ 2b 12 4+ 2b
MMSE 54+

Bit error rate

—©— Optimal unquantized scheme

—5— Properly quantized scheme, 16 vectors

—— Properly quantized scheme, 8 vectors

_5| | —e— Modified quantized scheme, 16 vectors

10°H A MMmsE quantization
T T

T T i
-10 -8 -6 -4 -2 0 2
Direct link SNR (PO) dB

Fig. 9. Comparison of the properly quantized scheme withifieablquantized and MMSE quantization schemes. The Tx-ratay relay-Rx
link SNRs are fixed afy, = P> = 2dB.

scheme” is very close to the “properly quantized scheme”.

VI. CONCLUSION

In this paper, we derived the optimal (unquantized) Tx/Rarbforming vectors and the optimal relay weighting
matrix to maximize the total received SNR of MIMO AF relay an&l both with and without the direct Tx-Rx
link. We showed that the Grassmannian codebooks are apgi®phoices for the quantization codebooks in the
guantized scheme. We proposed a modified quantized scherok pérforms very close to this quantized scheme
and requires considerably fewer number of feedback bitwllyi the analytical results were verified by comparing

the performance of the unquantized and quantized schenues different scenarios.
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Bit error rate
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Fig. 10. Comparison of the properly quantized scheme withifigal quantized and MMSE quantization schemes. The dimglctand relay-Rx
link SNR are fixed atPy = —4dB and P, = 2dB.

APPENDIX |

THE DISTRIBUTION OF THEOPTIMAL BEAMFORMING VECTORS*

In this appendix, we show that there exists a solutibtio the problem (25) that is uniformly distributed on the
unit sphere inC™, wherem is the number of Tx antennas.

The problem (25) is repeated here:

H 2
s* = arg max [Hs] + p||Hos||?, (1.1)

lsl=1 [ELis[2 + A

ConsiderH, = UpXoV{ andH; = U;%,V{ as the SVD ofH, andH;. Clearly: |[Hos|| = |2 V{s|| and
[His| = ||=1V{s|, sinceU, and U, are unitary matrices.

It is easy to check that* = Vo1 (o, X1, VI V) is a solution to (1.1), where the functiof(-, -, -) is defined

to be a solution to the following problem:

n(X0,21, Vi'Vo)
H 2
arg o AEVEVOL e e (2)
Iel=2 ]| 3, VEVt || + A

If we fix Xy andX;, the solutions*, identified above, can be expressed as a functioN @and V;:

* de;
' = Coym, (Vo, Vi) & Von(30,31, VE V). (1.3)

Now, for any unitary matrixQ, we have the following from (1.3).

<):0,):1 (QVO, Qvl) = QC):O,Z:I (Vo, Vl) = QS*-
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For a Rayleigh channel matrildy, we know the the random matri¥, is independent o0&, and its distribution
does not change by pre-multiplication by a unitary maifx The same argument holds féf;, V; and X;.
Therefore, conditioned ol and 3, the matrixQV, has the same distribution ag,, and similarlyQV; has
the same distribution a¥;. Since the Tx-Rx and Tx-relay channels are assumed to beémndent,V, and V;
are also independent, and therefore the joint distributibriV,, V) is also the same as the joint distribution
of (QVy,QV1). Hence, any arbitrary function of these pairs will have thens distribution. By applying this
to the function(y, 5 (-), we conclude thas* = ¢ 5 (Vo, Vi) andQs* = ¢, ; (QVo,QV1) have the same
distribution. Since this it true for any unitary mati@, we conclude tha¢* is uniformly distributed on the complex
unit sphere, conditioned oB, and X;.

Note that if the conditional distribution &f is uniform, its unconditional distribution is also uniforioreover,
the random vectos* is independent of the random matricEg and X, since its conditional and unconditional

distributions are the same.

APPENDIXII

PROOF OFSNR LOSSUPPERBOUNDS

In this appendix, we prove the SNR loss upper bounds of (3B), &nd (32) in three separate sections. We will
first prove the following lemmas, which are frequently usedhese sections.
Lemma 1:For nonnegative variables;, z2, y; andys, we have:

T1Y1 T2Y2

14214+ B 1+20+ 1y
Proof: We use the following inequality, which can be easily verifigdbasic computations. For amy> 0,

<1 — w2 + y1 — y2|-

b >0 andc > 0 we have:

a b 1
- < —la —b|. 1.1
a+c b+c| ™ c| | (1)
Now the expression in Lemma 1 can be written as:
T1Y1 o T2Y2
1+zi+y1 14+z2tye
@ _zmyn  aye Tiy2  Tay2
T4ty IHxitye I+z1t+y2  14+z2ty2
— Y1 Y2 +y T1 T2
=21 — —
yit+(z1+1)  yot+(z1+1) z14+(ye+1)  xo+(y2+1)

(b) X1 Y2 (¢)
< - — < — _
S ly1 y2|+y2—|—1 |z1 — x| <|z1 — T2| + |11 — Y2|,

where (a) is the triangle inequality and (b) results from1{ll Finally (c) results fromﬂ%d and yzyjl <1, since
x1 andy, are nonnegative. [ |
Lemma 2:For the matrixH € CP*¢ with independen€\ (0, 1) entries, we haveE {}", 02} = pq, whereo;’s

are the singular values df.
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Proof: Let H = [h;;], whereh;; ~ CN(0,1). We have:

E {Z o2 } =E {Tracd HH" )}

=E ¢ hii? p =D E{|hiI*} = pa.
i,j i,j
[ ]
Lemma 3:Consider the codebook = {wy,wa, .-, wx} and the matrixt with o;’s as its singular values.

For any unit vectos defines, € C as the closest vector in codebo@kto s and letd(s) = d(s,s.), where

d(-,-) is the distance function defined in (1). Then, we have:
[ Hs|)* = [[Hs ?] < 2| 07 | do(s),
Proof: For arbitrary unit vectorsi, v andw, we have the following from the triangle inequality:
|[d(u,v) —d(v,w)| < d(u,w).

On the other hand,
ld(u,v) + d(v,w)| < [d(u,v)| + [d(v,w)| < 2.

By multiplying the both sides of these inequalities we get:
| (u,v) — d*(v, w)| < 2d(u,w).
Considering the definition of the distance functiédf, -) in (1) we have:
’|uHV|2—‘VHW|2‘ < 2d(u,w). (1.2)
Now, if the right singular vectors dH are denoted by;’s, we have:

> o2 (v’ - |vgfw|2)‘

|| Hs||* — [ Hw|*|=

2

SZ o}
%

2 2
[vis|” = [viiwl|

and by applying (11.2), we get:

B2 — [ Hw] 2| <2 (Z cf?) (s, w). (13)

The proof will be complete after substituting in (11.3) by s_. ]
Lemma 4:Consider the codebook(N,d) and the functioni (-) defined in Lemma 3. For the random vector

s € C™ uniformly distributed on the unit sphere we have:

E{do(s)} <1- N (g)m_” - g) |

Proof: The proof is based on the arguments given in [5]. ]
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A. Proof of the Upper Bound in (22)

The optimal unquantized SN and the quantized scheme SNRire given in (17) and (21), which are repeated

here:

e = (1.4)
L+97+93 14+7+72
where~$, 73, 41 and 4, are defined in (18) and (20). Clearty > 4; and~3 > 42, and thereforey* > 4. Our

=

goal is to boundy* — 4. For this purpose, we need the following definitions.

/ /
AP, 1%, %Y P Hag,, |7 Y R

L+ 45
Wherebc] is the closest vector in the codebo@k to b;, and gc, is the closest vector in the codebo@k to

g1. Note that, by the notation of Section Il; andg; are the strongest right singular vectorskéf andH,. By
considering the definitions af; and4, in (20) and the fact thab, € C; andg,, € Co, itis clear thaty; > v;

and¥, > +4, and thereforey > ~'. Hence, we can write:

At e B M
- Lai+y 1+7+7
)

<(v =)+ (7 =) (11.5)

where for (a) we have used Lemma 1. The terms on the right $idk.%) can be bounded as follows.

Noting the definitions ofyy, v; we have:

Yt —vi=P1 (|Hib1 |~ [[Hib, [*) < 2P, (Z¢ )

where for (b) we have used Lemma 3, angds are singular values cH;. The term~3—~4 can be similarly

bounded. Combining these bounds with (II.5), we get theofalhg upper bound:

-5<2 <Z¢2> (by) +2<Zw2> g1), (11.6)

where);’s are singular values dfl;. Noting that the singular vectots; andg; are uniformly distributed on the
unit spheres (of the corresponding dimension) and are gxtt#gnt of the singular values, we can apply Lemma 2

and 4 to (11.6) to achieve the upper bound in (22).

B. Proof of the Upper Bound in (30)

Define:

def 71(51)72(52)
S1,82) =

"8082) = T ) + ()

+70(s1),

where-;(s) = P;||H;s||?, for i = 0,1,2. With these definitions, the SNR of the optimal unquantizeftesney*
and the SNR of the quantized schefmean be expressed as:

7?75

. *

~v*= max v(s1,82) = ¥(s 7g1) Tt
3 A
Sa||l=

¥ = max v(wi,wa) =7(8,8), (I.7)
w1 €Cy
w2 cCo
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where g, is the strongest right singular vector Bf;, ands*, § and g are defined in (25), (29) and (28). Also
76 = "0(s*), 71 = m(s*), andy3 = 2(g1).
Our goal is to bound the SNR losg — 4. For this purpose, we need the following definitions.

ydef Vi

iz ”
T+ +7  °

def def def
P = 5), M= s, %= 1(8s,),

wheres’é1 € C; is the closest vector in the codebo@k to s*, andgC2 € C,, is the closest vector in the codebook
C, to g;.

Noting the above definitions, it is clear that > 4 > 4/ and we can write:

N
i+ 14+71+7

!/

+ 176 =0l

V=< < ‘

@

< —wl+ i =7l + 0 =l

(b)

P, |[Haga|? - [Hage, || + Py [IH:s™|2 ~ |Hus, |
+ P ||[Hos" |2 [ Hosy, |1

)

(S 2P, <Z 1#12) dc2 (81) + 2P (Z ¢12> dcl (S*)
+ 2P, <Z u§> dg, (s), (11.8)

where we have used Lemma 1 for (a). In (b);}2_, and{~/}2_, have been replaced by their definitions. Finally,
(c) results from Lemma 3.

We know from Appendix I, thad¢* is uniformly distributed on the unit sphere and is independéthe eigenvalues
v;'s and ¢;'s. The same argument holds for the singular vegfprand the singular values;’s. Considering this,
we can take expectation from both sides of (11.8) and use Larhinand Lemma 4 to achieve the upper bound in

(30).

C. Proof of the Upper Bound in (32)
As in Appendix II.B, the SNR of the optimal unquantized is agivby:

v* = max y(s1,s2) = (s*,81),
lIs1(l=1
lIs2[l=1

wheres*, g; and the functiony(-, -) are defined in Appendix II.B. As described in Section IV.Bl#% quantized

beamforming vectors are determined from:

S & _ 5 1.9
g argvrvréaé%(W), s argvrvréacrix(w,g), (1.9)
where
def  71(s1)y2(s2) 2 |aH o |2
S1,82) = +P, E v; |€;'s1| . 11.10
x(s1,52) T+ (s1)+2(s2)  ° - 6751 (11-10)
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In (11.10), v;’s are the singular values @&, andé;’s are the quantized version ef’'s which are the right singular

vectors ofHy. The SNR value resulted from the choices in (11.9) is:
7 =(",8). (11.11)
Our goal is to bound/* — 4*. For this purpose, we need the following definitions from Apgix 11.B:

§ = arg max y(w, g)

¥ =1(8,8) (1.12)
The SNR lossy* — #* can be expressed as:

V== -N+E -7 (11.13)

The first term has already been bounded in Appendix I1.B. Tanlcthe second term we will need the result proven

in Lemma 5 (at the end of this section). Liet= 2P, >°. v2d, (e;), then we have:

i1 'Co
@)

- - - ®
¥=7(5,8) <x(,8) +0 < x(s",8) +0
©

< ~(8%,8g) + 20 =" + 20, (1.14)

where in (a) and (c) we have used Lemma 5, and (b) results ffb®) &nd the fact thag € C;. By combining

(11.24), (11.13) and (11.8) we get the following upper bound

Y= FT<2P, <Z 1/’3) de, (81)

+2 (Pl (Z ¢$> + Py (Z u?)) de, (s7)
+4P) Y " v2dg (e:). (11.15)

From Appendix I,s* is uniformly distributed on the unite sphere and is indepenidf the singular values;’s
andy;’s. The same argument holds for the singular vecgarande;’s and the corresponding singular valugss
andv;’s. By considering these facts and taking the expectatiobpotti sides of (11.15) and using Lemma 1 and 4,
we get the upper bound in (32).

Lemma 5:For any unit vectos, we have:

|’Y(Svg) - X(Sag)| < 2POZVi2dco (el)

Proof: Noting the definition ofy(-,-) in Appendix I.B,

o ml(s)(E) 2
V(Sag) = 1+’;1(S)j-72(g) +P0;Vi2|eﬁs| :

Therefore,

Iv(s, &) — x(s,8)|= Po

> v? (Jef's|” - [&f's[)

K2

(a)
§2P0 Z Vzgd(eia él)a

K2
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where in (a), we have used (I.1) in Lemma 3. Noting thas are by definition the closest vectors @ to €;'s

we haved(e;, &;) = d, (e;) and the proof is complete. [ |

APPENDIXIII

COMPARISON OF THEOPTIMAL AND MODIFIED UNQUANTIZED SCHEMES

In this appendix the following lemma will be used to bound 8M¥R loss of the modified unquantized scheme
with respect to the optimal unquantized scheme.
Lemma 6: Consider the SVIH = UX V¥ for an arbitrary matri € C'*", whereU € U!, V = [vq]---|v,] €

U™, andX = diag;y, (01,09, -+ ,0.), wherer = min{l, n}. Then for any unit vectos we have:

o? ’VfS’Q < |Hs|? < o7 |v{ s‘ + 03
Proof: Note that|Hs|> = S, o2 |vs|”. The left side inequality in Lemma 6 is obvious, singelv/s|* >
0 for ¢+ > 1. The right side inequality can be proven as follows:

|Hs||*=0? ‘vl s‘ + 2:02 ‘v s‘

i>1

Lo2 [vis| + 02 3 [vis|?
i>1

(
<01‘V1 s‘ —i—aSZ‘v 5‘2 2’V1 s’ +02,
=1

where (@) results from, > o; for i > 1. In (b) we are adding the nonnegative t&m%]’vfls‘Q and (c) results from
n
SOV = VS| = s7VVHs = sfs = ||s|2 = 1,
i=1

sinceV is a (square) unitary matrix. ]

Considering the definition of the functiop(-, -) in Appendix 11.B, the SNR of the optimal unquantized is given
by:
’7* = max 7(51152) W(S*agl)a

[[s1]]=1
l[s2[]=1
whereg; is the strongest right singular vector B, ands* = arg maxjs—1 (s, g1)-

On the other hand the Tx beamforming vector of the modifieduantjized scheme is determined by:

Smodifica = A18 MNAX £(s,81), (1.1)

where
def  Y1(s1)v2(s2) 2| H. |2
S1,89) = + Pyvy |ey s1| -
5( 1 2) 1+’71(Sl)+72(52) 0 1‘ 1 1‘

Here v, ande; are the largest singular value and strongest right singdator of Hy, respectively. The corre-

sponding SNR of the modified scheme is:

Vimodified — ’Y(Smodified7 gl)'
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Noting the definitions ofy(-,-) and{(-,-) and using Lemma 6, we have the following for any unit veetor

v(s,g1) < &(s,g1) + Pova, (n.2)

wherev, is the second largest singular valuelg§. Taking the maximum of the both sides of (l11.2) over the unit

sphere, we get:

V' =7(5*,81) < &(8,001 50000 81) + Pov3
@

SV(Smodifiedv gl) + POV% = Vimodificd + P0V227 (”I"?’)
where (@) results from the fact théfs;,s2) is globally upper bounded by(s;,s2) for anys; ands, (Note the
first inequality in Lemma 6 and the definitions ¢f-, -) and{(-, -)). Taking expectation of both sides of (I11.3), we
get:

E{’Y*} - E{'ymodified} < POE{V%]" (”I-4)

On the other hand,

*

Y = max ’7(51752) Z V(elagl) Z POI/127

lIs1]=1
lIsz(|=1
and thereforeE{~v*} > P,E{v#}. Combining this with (lIl.4), we get the following upper bod.
* 2
B} BOA)
E{'ymodified} E{Vl}
or
x E{v3}
E{'Y }dB - E{'Ymodified}dB <10 10g10 <1 + Wé) :

For Rayleigh channel matrikl, € C3*3, this upper bound is equal th24dB.
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