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Abstract

Block diagonalization is a linear precoding technique far inultiple antenna broadcast (down-
link) channel that involves transmission of multiple dateeams to each receiver such that no
multi-user interference is experienced at any of the rexesivThis low-complexity scheme operates
only a few dB away from capacity but requires very accuraenael knowledge at the transmitter.
We consider a limited feedback system where each receivavkiits channel perfectly, but the
transmitter is only provided with a finite number of channeédback bits from each receiver.
Using a random quantization argument, we quantify the tjinput loss due to imperfect channel
knowledge as a function of the feedback level. The qualitcludnnel knowledge must improve
proportional to the SNR in order to prevent interferenceitiitions, and we show that scaling the
number of feedback bits linearly with the system SNR is sigffit to maintain a bounded rate

loss. Finally, we compare our quantization strategy to amlanfeedback scheme and show the
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superiority of quantized feedback.

. INTRODUCTION

In multiple antenna broadcast (downlink) channels, trahantenna arrays can be used to
simultaneously transmit data streams to receivers aneltliesignificantly increase through-
put. Dirty paper coding (DPC) is capacity achieving for théMD broadcast channel [1],
but this technique has a very high level of complexity. Zeowckhg (ZF) and Block Diag-

onalization (BD) [2] [3] are alternative low-complexityammsmission techniques. Although
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not optimal, these linear precoding techniques utilizexadlilable spatial degrees of freedom
and perform measurably close to DPC in many scenarios [4].

If the transmitter is equipped with/ antennas and there are at leAstaggregate receive
antennas, zero-forcing involves transmissiom\éfspatial beams such that independent, de-
coupled data channels are created from the transmit ani@mag to M/ receive antennas
distributed amongst a number of receivers. Block diagaatitin similarly involves transmis-
sion of M spatial beams, but the beams are selected such that théssigoeived at different
receivers, but not necessarily at the different antennaeés of a particular receiver, are
de-coupled. For example, if there até/2 receivers with two antennas each, then two beams
are aimed at each of the receivers. If ZF is used, an indepemrael de-coupled data stream
is received on each of th&/ antennas. If BD is used, the streams for different receivers
do not interfere, but the two streams intended for a singleiver are generally not aligned
with its two antennas and thus post-multiplication by atiotamatrix (to align the streams)
is generally required before decoding.

In order to correctly aim the transmit beams, both schemgsine perfect Channel State
Information at the Transmitter (CSIT). Imperfect CSIT lsdd incorrect beam selection and
therefore multiuser interference, which ultimately leadsa throughput loss. Unlike point
to point MIMO systems where imperfect CSIT causes only an SiffBet in the capacity
vs. SNR curve, the level of CSIT affects the slope of the ciamd hence thenultiplexing
gain in broadcast MIMO systems. We consider the case whe@&ias known perfectly at
the receiver and is communicated to the transmitter thraugimited feedback channel and
guantify the maximum rate loss due to limited feedback with. B

MISO systems and ZF with limited feedback are analyzed in $inilar to the results
in [5], we show that scaling the number of feedback bits axpmately linearly with the
system SNR is sufficient to maintain the slope of the capastySNR curve and hence a
constant gap from the capacity of BD with perfect CSIT. Thaliag factor for BD offers an
advantage over ZF in terms of the number of bits required hbeae the same sum capacity.

Rather than quantizing the CSIT into a finite number of bitd feeding this information
back, the channel coefficients can also be explicitly tratisthover the feedback link. We
compare this scheme to quantized feedback for an AWGN fegdtlzannel, and show the

superiority of quantized feedback.
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1. SYSTEM MODEL

We consider a MIMO broadcast (downlink) system with a singd@smitter or base station
and K receivers or users. Each user hdsantennas and the transmitter h&s antennas.

The broadcast channel is described as:

vy, =Hix+n,, k=1,... K (1)

whereH,;, € cM*¥ is the channel matrix from the transmitter to th® user ( < k < K)
and the vectorx € cM*! is the transmitted signah, € c¥*! are independent complex
Gaussian noise vectors of unit variance ande cV*! is the received signal vector at the
k™ user. We assume a transmit power constraint so Bjgk||?] < P (P > 0). We also
assume thats = & (with K > 2), which implies that the aggregate number of receive
antennas equals the number of transmit antennas; as a iteisuttot necessary to select a
subset of users for transmission.

The entries oH;, are assumed to be i.i.d. unit variance complex Gaussiamnandriables,
and the channel is assumed to be block fading with indepérddimg from block to block.
Each of the users are assumed to have perfect and instansakeowledge of their own
channel matrix. The channel matrix is quantized by each aisérfed back to the transmitter
(which has no other knowledge of the instantaneous CSI) @vero delay, error free, limited
feedback channel.

It is assumed that a uniform power allocation policy is addpti.e., we do not perform
waterfilling across streams), which is known to be asymeadiii optimal for large SNR.
Hence, in order to perform Block Diagonalization, it is omlgcessary to know the spatial
direction of each user’s channel, i.e., the subspace spamné¢he columns oH,, and the
feedback only needs to convey this information.

The guantization codebook used by each user is fixed befodehad is known to the
transmitter. A quantization codebodkconsists o2 matrices inc”*N i.e. (W1, ..., Wys),
where B is the number of feedback bits allocated per user. The quaitn of a channel
matrix Hy, sayﬁk, is chosen from the codebod@kaccording to the following rule:

H, = argmin d* (H;, W) (2)
Wec

whered (H;, W) is the distance metric. Here, we consider tmerdal distancd6]:

@)
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where thed;’s are the principal angles between the two subspaces spéyrtbe columns of

the matricesdH, and W [6]. As the principal angles depend only on the subspacesngoh

by the columns of the matrices, it can be assumed that thesaksofC are unitary matrices
(i.e. WHW =1y V W € (), without loss of generality. An alternate form for the ctialr
distance isd® (H,, W) = N —tr (ﬁ;'WWHf{k> wheref{,C forms an orthonormal basis
for the subspace spanned Blj.. Note that other distance metrics may also be considered,
but we do not investigate this further in this work. No chdmmagnitude information is fed

back to the transmitter.

[1l. BACKGROUND
A. Block Diagonalization

The Block Diagonalization strategy, when perfect CSI isilalée at the transmitter,
involves linear precoding that suppresses the interferemiceach user due to all other
users (but does not suppress interference due to differgenmas for the same user). If
u;, € cV*! contains theN complex (data) symbols intended for the (1 < k < K) user

andV, € c™*V is the precoding matrix, then the transmitted vector is myilrg:

K
X = Z Vkuk (4)
k=1
and the received signal at t&& user is given by:
K
ye=HiViu, + > HVu +n (5)
j=1,j#k

The ‘ f H}'V,u; term represents the multi-user interference at usem order to
maintaijr;1'7[]h7éelC power constraint, it is assumed tNgtV,, = Iy and E[||u|[’] < £, for
k=1,... K.

Following the BD procedure, eacW, is chosen such th&I?V,C is 0, Vk # j. This
amounts to determining an orthonormal basis for the left space of the matrix formed
by stacking all{H,}, ., matrices together. This reduces the interference termgjuatsn
(©) to zero at each user. This is different from Zero Forcinlgere each complex symbol
to be transmitted to the:" antenna (among th& antennas, i.e;n = 1,..., N) of the ™
user is precoded by a vector that is orthogonal to all thensokiofH;, j # £, as well as

orthogonal to all but then™ column of H,.
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However, zero interference can only be achieved with pekieewledge of{ H, } | at the
transmitter. In the case of limited feedback, when only antjaad version of the subspace
spanned by the columns of ea&h, is available at the transmitter, nameﬁ/k, we use a
naive strategy where the precoding matrices are selectema'gvngﬁl, ce Hy as the true
channels while performing BD. To distinguish these presgdnatrices from those selected
with perfect CSIT, we denote these matrices\Aas. .. ,\A/K, where eacHT/;‘C is chosen such
that IA{;'\Afk =0 Vk # j. Thus,Hf\A/‘k # 0 in general, which leads to residual interference
terms and a loss in throughput. The received signal in the o&dimited feedback is thus
written as:

K
Y = H',:Vkuk + Z H'I:lelj + ng (6)
j=1,j#k

B. Random Quantization Codebooks

Since the design of optimal quantization codebooks for tivergdistance metric is a
very difficult problem, we instead study performance avedagverrandom quantization
codebooks. The Grassmann manifold is the set ofVallimensional subspaces (or planes)
passing through the origin, in a1 dimensional space. This is denoteddyy . We consider
complex Euclidean subspaces in this work. Each of2faunitary matrices making up the
random quantization codebook are chosen independentha@dniformly distributed over
Gu . [7] [8]. We alternatively refer to this uniform distributicas the isotropic distribution
in the respective space. A random element drawn from thisilalision (overgG,, y) can be
generated by generating ad x N matrix with i.i.d. complex Gaussian elements and then
forming a specific orthonormal basis for thé dimensional subspace spanned by the matrix
(e.g., through a QR decomposition).

We analyze the performance averaged over all possible namdolebooks. The distortion
or error associated with a given codebadKor the quantization ot ¢ c**¥ is defined
as:

D2k [dQ(Hk,ﬁk)] —E [%ig}; dQ(Hk,W)] , %

whereH; is the quantization oHj,. It is shown in [7] thatD < D where,

— I -
D= %(C]\JN)TQT + Nexp [—<2BCMN)17Q} y (8)
for a codebook of siz&®. Here,T = N(M — N) anda € (0,1) is a real number between

. N ‘
0 and1 chosen such thatCyy27%) " < 1. Cyy is given by 4 T[] ((%:;))!’. The second

i=1
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(exponential) term in[(8) can be neglected for lafgeFor systems wher&/ = 2 or 3, the

exponential term may be neglected for most practical cases.

IV. ANALYSIS AND RESULTS

In this section, we analyze the achievable throughput ofithited feedback-based system

described so far. We first describe some preliminary matheataesults.

A. Preliminary Calculations

Lemma 1:The quantizatiorﬁk of the channeH, admits the following decomposition:
ﬁk = ﬁkaYk + SiZ; 9

where

H, € ¢V s an orthonormal basis for the subspace spanned by the nslofiH,,

X € ¢V is unitary and distributed uniformly oveiy x,

Z, € cV*N is upper triangular with positive diagonal elements, $gtig tr(Z7Z;) =

& (Hk ﬁk),

Y, € ¢V is upper triangular with positive diagonal elements anisBas Y'Y, =

Iy — Z1Z,, and

S, € cM*¥ is an orthonormal basis for an isotropically distributedniplex) N dimen-

sional plane in thel/ — N dimensional left nullspace dfi;.

Moreover, the quantitie¥,, IA{k and X, are distributed independent of each other, as are

the pairS; andZ,. This decomposition is a generalization of the decompmsiti [5], which
was for the specific case @f = 1. Similar to [5], the matrixZ, represents the quantization

error.
Proof: See AppendiXl|. [

A direct application of Lemma]1 allows us to bound the rates ldge to limited feedback.
This decomposition also allows us to perform low compleiitgnte-Carlo simulations for
evaluating the performance of random quantization codefoeven for very largeB, as
described in detail in Sectidn VtC.
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B. Throughput analysis for quantized feedback

In the case of perfect CSIT and BD, the transmitter has thityabd suppress all inter-

ference terms giving ger userergodic rate of:

P
Resitsp(P) = E { log, |Iy + MH,‘;‘VkV};‘Hk

| (10)
wherek is any user froml, ..., K. The expectation is carried out over the distribution of
H,.

For limited feedback ofB bits per user, multiuser interference cannot be completely

canceled and this leads to residual interference power. preuser rate (throughput) is

given by:
Rouant(P) = E[I(ug; yi|Hg)] (11)
| P P & o I
— E |log, IN+M<IN+M > H,';'Vjvg'Hk> HI'V,VHIH,| |(12)
j=1,j#k
- bk
L j=1
- b
E (log, Iy + 1~ > H,jvjvg'Hk] (13)
J=1,j#k

wherek is any user betweeh and K and the expectation is carried out over the channel
distribution as well as random codeboaks
Theorem 1:The rate loss incurred per user due to limited feedback vesipect to perfect

CSIT using Block Diagonalization can be bounded from aboye b
ARQUANT(P) = [RCSIT—BD(P) - RQUANT(P)]

P
< N1 1+—D
< 0g2<+N)

Proof: See Appendix]I. u

This provides a bound on the rate loss perHJsléurthermore,D can be upper bounded
tightly by D from (8).

C. Controlling feedback quality

If B is kept fixed and the SNR is taken to, it is easy to see that residual interference

will eventually overwhelm signal power, and this leads toaaurtded throughput (i.e., zero

INote that a factor ofV was erroneously omitted from this bound when this result staged in [9].
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Fig. 1. Sufficient number of bits for a gap of 3 dB relative to Bilth perfect CSIT, forN =2 and M = 4,6 and8

multiplexing gain). Therefore, it is of interest to detemaihow fastB must grow with SNR
in order to prevent this behavior and to maintain a boundeel less relative to a perfect
CSIT system.

Theorem 2:In order to bound the per-user rate las&qyanr (£) from above bylog,(b) >

0, it is sufficient for the number of feedback bits per user tosbaled with SNR as:
Br NMNpo — N(M — N)logy(N(b¥ —1)) +

I §m=7)
N(M — N)log, {W} ~loga(Carw) (14)

Proof: This expression can be found by equating the upper bound frbeorem L
with log, b and solving forB as a function ofP. Solving this numerically will yield the
number of bits sufficient for a maximum rate losd@f, b. We assume tha® is large enough
to neglect the exponential term in the expression fofrom (8), which yields the above
approximation. [ |

The total contribution of the term containing the logaritbinthe gamma function is very
small and can usually be neglected. To maintain a systenughpmut loss ofM bps/Hz,
which corresponds to an SNR gap of no more tBadiB with respect to BD with perfect
CSIT, it is sufficient to scale the bits as:

N(M = N)

B~ Pip — IOgQ(waN) (15)
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where C4,, = NYM=-M¢,, . Figure[1 shows the sufficient number of bits required to
maintain this level of performance, whéw =2 and M = 4,6 and8.

The pre-log factor (i.e. the factor that multiplies the SNRdB) is N(M — N) rather
than M N, which is intuitively because the space &8f dimensional subspaces in aia

dimensional space has a dimensionality ofM — N)

V. PERFORMANCE COMPARISON AND NUMERICAL RESULTS
A. Zero forcing vs. Block diagonalization

Zero forcing is simple low-complexity linear precodingatgy, and it is important to
compare the performance of these two schemes under thenpeestlimited feedback. Zero
forcing for a MIMO broadcast system witR* users andV antennas per user is equivalent
to a KN = M user system with a single antenna per user. The feedbacdkgdalv for
such a system is derived in [5] to be:

W=D P (16)

to maintain an SNR gap of no more th&ndB with respect to ZF under perfect CSIT

BZF ~

conditions. In this system, each user withantennas quantizes the direction of the channel
vector (i.e. the channel vector normalized to have normylrit each of theN antennas
separately, and feeds this back to the transmitter.

In general, if BD with perfect CSIT achieves a sum rate?fs;r_gp(P) with M, N an-
tennas at the transmitter and each of%ausers respectively, and ZF achievess;r_zr(P)
for the same systenRcs;r—pp(P) will eventually dominateRcs;r—zr(P) by a constant
amount. Thus, we see an immediate advantage of BD with respet from (15%), where
the pre-log factor for BD isV(M — N) for N antennas, o/ — N per user antenna. This
is compared to the factak/ — 1 in (16), which is for a lower target rate. This difference
betweenM — 1 and M — N is perhaps due to the fact that the spaceNofdimensional
subspaces in ai/ dimensional space has a dimensionalityofM/ — N) while the space
of N one-dimensional subspaces in &hdimensional space has dimensionalNy\/ — 1).

The rate gap between BD and ZF with perfect CSIT is given by [4]

N

Ry(P) = K'log,(e) Z

j=1

N—-j
J

(17)

at high SNR. For fair comparison of the number of bits requifer BD and ZF under

imperfect CSIT and limited feedback, it is necessary to fbommon target rate. By setting
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b = 28(P)*+R in (1) whereR, (P) is the (per-user) rate gap between BD and ZF (with perfect
CSIT) andR the target (per-user) rate loss for the ZF system, we can amthesufficient
number of bits required to achieve the same sum rate for litegies. For examplé? = 1

for a 3 dB target offset in SNR, relative to rate achievable with 2t @erfect CSIT. This
suggests a bit savings of 48% for dd = 6, N = 2 system at 15 dB, and 63% for an
M =9, N = 3 system with BD. The scaling law in Theordm 2 is slightly canaéve for
large b, and the advantage of BD is somewhat underestimated. Ncaheesults show that
the bit savings possible with BD are even higher.

An alternative antenna combining method (when the userg mawltiple antennas) is
proposed in [10], where each user receives only a singlarstref data (as opposed 19
streams of data with BD), but uses the extra antennas torodteery accurate quantization of
the effective channel. This effectively allows for a redotin feedback load, and produces
the same pre-log factor as BD, i.&V,(M — N), but needsV times the number of users in
the system (i.eK = M where each user a§ antennas, rather than thé = % for BD).
Table[l compares thsufficientnumber of bits required to achieve the same target rate3i.e.
dB (in SNR) away from ZF with perfect CSIT, when using BD, ZFdalntenna combining
foranM = 6, N = 2 system. ZF and BD havR = 3, while antenna combining hds = 6.

SNR | Block Diagonalization| Zero Forcing| Antenna Combining
5dB 1 9 8
10 dB 7 17 15
15 dB 13 25 21
20 dB 20 34 28
25 dB 26 42 35
30 dB 33 50 41
TABLE |

FEEDBACK REQUIREMENT(BITS) FOR DIFFERENT MULTIPLE USERANTENNA STRATEGIES(M = 6, N = 2)

B. Analog Feedback

We consider here the case when each usdeeds back its channdl, by explicitly

transmitting theM N complex coefficient§Hy), ,m = 1,...M,n = 1,..., N over the

mn

feedback channel. We assume that the uplink feedback chenuefaded AWGN with the

same SNR as the downlink (i.€?). Each user may transmit each coefficient effectively *
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times on the uplink, resulting in the following matrix beingceived at the transmitter:

G, = +/BPH,+N;,. (18)

Here,N,, represents the feedback (additive white Gaussian) noiseseventries are indepen-
dent and complex Gaussian with unit variance. As the coeffisiofH, are also independent

and complex Gaussian with unit variance, the optimal esomia the MMSE estimator:

. PP

(19)

whereH,, is the estimate ofl, formed at the transmitter. It is convenient to expreéksin
terms of the estimatélk and estimation noise as follows:

. 1
H, = H,+ ———F,,

where the entries aF, are also independent and complex Gaussian with unit vagjaantd

(20)

independent of the estimator.

The beamformer§V,} X | are selected by treatingH, } X, as the ‘true’ set of channels,
and following the BD procedure. Note that the marginal distion of the beamformers are
the same as in the quantized feedback case, as the additindegfendent white Gaussian
noise does not affect the isotropic property. As in the casegfiantized (digital) feedback,
we compute the quantity:

1 g
WF?VJ'
for k # j, which follows from the fact thaH}'V, = 0 for k # j. Similar to [I3), we write

P & ..
Ly + > HPV,VIH,

i=1j#k

Similar to the proof of Theorerh]l1 and using techniques sintilathose in [11], we

HI'V; = (21)

the rate with ‘analog’ feedback as follows:

J2 K
Iy+ o7 > H}'V,;ViH,

J=1

RANALOG(P) =E [10g2

] (22)

compute a bound on the rate gap relative to BD with perfeciTG8lbe:

ARANALOG(P) - [RCSIT-BD(P) - RANALOG(P)] (23)
M—-N P
< N log, (1—1— i 1+ﬁP) (24)
M- N
< N log, (1+ i %) (25)

The proof [24) bound is given in Appendix]lI[_(25) is obtaihby letting P — oo in (24).
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In order to compare analog and quantized feedback, we nee#iseifeedback quantity in
terms of ‘feedback symbols’ rather than bits. Although agdeedback involves effectively
BM N channel uses per user (assuming that the users have ortidgedback channels), it
also conveys more information that the quantized casejfgyadly information regarding the
eigenvalues and eigenvector structure, which the ‘sulespaformation does not capture.

Hence, for fair comparison, we equate thé/ N analog channel uses 0N (M — N)
channel symbols in the quantized case (the ‘subspace’nvdtion may be specified by
N(M — N) complex numbers). Under the simplifying assumption thatreiree communi-
cation at capacity is possible, we det= SN (M — N) log,(1+ P) for SN(M — N) channel
uses of the AWGN feedback channel with SNIR From Theoreni]1, we have:

ARQUANT(P) < N10g2 (1 + %F((]]\\[/_((%:]]\(f))) )

cgggMN»*gNm) (26)

P 1
= N10g2 (1 + WC'MN) (27)
where D has been bounded frorl (8) (neglecting the exponential teany

L ((N(M = N)™Y) vy~
N2<M . N) CJ\/ijNJM N : (28)

Our conclusions are similar to th€ = 1 case, which was considered in [12]. For: 1,

"o
C]\/I N —

both bounds on the rate gap (i.e. for analog and quantizetbh&sk) behave similarly, and
the gap does not vanish @ — oo. For § > 1, the rate gap bound decreases rapidly
(exponentially fast) for quantized feedback, and vanighggely asP — oo. However, for
analog feedback, the decrease is relatively slow (i.e. polynomially fast) and does not
vanish asP — oo. The analysis may also be extended to the case when errous wab

guantized feedback, using techniques similar to those 2h [1

C. Generation of Numerical Results

The number of bits given by (14) can be very large and numlesicaulation becomes a
computationally complex task, as the chordal distance healle to be calculated for each of
the 28 matrices in the codebook. However, utilizing the statstié random codebooks, the
guantization procedure can be preciseipulatedwithout having to do actual quantization.
From Lemmalll, we can repeat the argument by interchanﬁmgand IA{k, to yield the

following equivalent decomposition:

H, = H, X, Y, + S.Z (29)
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which can be used to generaﬁak, given H, and a codebook sizeX; is isotropic and
independent of the codebook size, asSjswhich (in this decomposition) is isotropically
distributed in the left nullspace dTEk. Samples drawn from the distribution of these matrices
can thus be generated as samples from the isotropic disbmbun their respective spaces.

Moreover,d? (ﬁk,ﬁk> =1tr (ZEZk) is the 1%t order statistic fron2” samples. Here, each
sample is drawn from the distribution of the trace of a mataxiate beta distribution (as
described in AppendiX ). Thus, a sample drawn from the ithstion of tr(Z;'Zk) can be
generated by the ‘CDF inversion’ method, by computing theFGbr a specificM and N.

A general expression for the CDF has been computed in clozed in [7], for the case
when d? (ﬁk,ﬁk> < 1. For moderate to larg® and practical values of/, N, this event
occurs with extremely high probability, allowing for low mplexity CDF inversion. For very
small values ofB, d? (ﬁk,ﬁk> may be greater than 1 with appreciable probability, but an
exhaustive searching amon§ possibilities is not a problem in these cases.

From the eigen decompositidt}!Z, = E,D,EY, as described in Appendix IE,, can be
generated as the eigenvectors of any (complex) (Béta/ — N) distributed matrix. Further,
the distribution of the eigenvalues (i.e., the entrie®q) conditionedon their sum (which is
equal ton(f{k, ﬁk)), can be computed from their joint distribution [13] ([7]rfthe complex
case). The conditional distribution can be easily comp@vedmall values of/V.

In particular, for N = 2, if Dy, D, are the diagonal elements @, with joint density

fpy.p,(d1,d2), the distribution ofD; conditioned onZ = D, + D, <1 is given as:

foDl,Dz(dlaZ —dy) d(dy)
FD1|Z(d1\2) = fZ(Z) (30)
[ Var(z = 2d0)2(1 — dy)M=4(1 — = + dy)M= d(d)

0
B fz(2) (1)

where f(z) is the pdf of Z computed to be:

B ZQ]M—EJ(F(M))Q
J2@) = Gr—orem -1

(32)

for z < 1. V), is a normalizing constant and is given by, = $(M — 1)(M — 2)*(M — 3).
For efficient CDF inversionf'p,|z(d:|z) can be computed in closed form for specific values
of M.

As Y'Y, =1y —Z,Z}, Y, can be obtained as well. Putting all this together, one is abl

to randomly generate a realization of the quantized versfd;,, when random codebooks
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are used. This prevents the computational complexity freaowog with B. However, for
extremely largeB, numerical errors may dominate and care must be taken totamain

numerical precision.

D. Numerical Results

M=4N=2K=2
351

w
o
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=
o

a1

T BD with quantized CSIT,

r--" Fixed B = 10 bits

O L L L L L ]
0 5 10 15 20 25 30

SNR (dB)

Fig. 2. MIMO Broadcast Channel withf =4, N =2, K =4

We present numerical results fof = 2 and M = 4,6, 8 in Figures 2[ B[ ¥4 respectively,
while scaling the bits as pelr_({15), i.e. with a target of gigyat most 3 dB away (in SNR)
from BD with perfect CSIT. As Theorem 2 only provides the suéfint number of bits, this
is a conservative strategy and the actual SNR gaps are faubé 2.65 dB, 2.72 dB and
2.84 dB for M = 4,6 and8 respectively, instead ¢f dB. The results also show that keeping

the number of bits fixed will result in a rate gap that increasebounded with SNR.

VI. CONCLUSION

Accurate CSIT is clearly important for MIMO broadcast syssein order to achieve
maximum throughput. When the receiver knows the channdeg@édy and instantaneously
feeds this information back to the transmitter using a finuenber of bits, we have quantified
the rate loss and have shown that increasing the numbersdiirarly with the system SNR
is sufficient to maintain a constant SNR loss with respecteidget CSIT. Further, we have

established the advantage of BD relative to ZF in terms adlfaek load, and the advantage
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Fig. 3. MIMO Broadcast Channel withf =6, N =2, K =4

of using quantized feedback as opposed to using analogdekdbhlote that BD is just one
of many linear precoding techniques that can be used on théOMiiroadcast channel with
multiple user antennas (for e.g., see coordinated beanrigrfth4] and Multiuser Eigenmode
Transmission [15]). It remains to be seen which of theseoperfoest in a limited feedback

setting and also when multiuser diversity/user selectsooonsidered.

APPENDIX |

PROOF OFLEMMA 1]

Let W be any arbitrary matrix in the codeboagk Note thatW is independent oH,.
We then decomposﬁlk into components that lie in the column spaceWf and the left

nullspace ofW as follows:

H, = WW'"H, + (I, - WW") H, (33)

= WW"H, + W-(WH)"H, (34)
where WWH and W (WHH = 1,, — WWH are the projection matrices for the column
space and left nullspace 3 respectively W+ ¢ cM*(M-N) js chosen such that it forms
an orthonormal basis for the left nullsapce Wf.

Let the (thin) QR decomposition SWWHH, be Q. A, where Q;, € cM*VN forms an

orthonormal basis for the same spac&¥sandA; ¢ cV*V is upper triangular with positive
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Fig. 4. MIMO Broadcast Channel withf =8 N =2, K =4

diagonal elements. Furthe®, and A, are independent, from [16, Theorem 2.3.18] (after
verification for the complex case). AQ, and W describe the same subspa€g, may be
represented as a rotation W, i.e., Q, = WX, for some unitary matrixX, ¢ cV*¥,

By isotropy and independence 8 and H;,, X, is also isotropically distributed and is
independent oW, which is an arbitrary orthonormal basis. Also note tfaW" = Q, Q!
and henceA"A, = HYWW"H,. Thus tr(AfA,) = N — & (W, ﬁk>

Note thatW-(W)"H,, is the projection ofH, onto the left nullspace oW. As Hj, is
isotropically distributed, the projection is also isoticglly distributed in the corresponding
M — N dimensional nullspace. Let the (thin) QR decompositioWét (W-)"H, be S, By,
where S, ¢ ¢M*¥ is an orthonormal basis for an isotropically distributedniplex) N
dimensional plane in thé/ — N dimensional left nullspace oW and B, € cV*V is
upper triangular with positive diagonal elements. Simtlarthe previous casey, and B,
are independently distributed. It is also straightforwardee thaB}'B, = Iy — AHA, and
tr (BY/By) = &* (W, Hy).

As H;, and W are independent, which has been our assumption thus fareimpribof,
B!'B,, is matrix-variate (complex) Bet&/, M — N) distributed [13]. We will now argue that
most of the above conclusions remain unchanged, even wieequidmtization procedurg] (2)
is followed.

The quantization procedure amounts to choosilj'8; such that its trace is the minimum
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among2” choices. Thus, it follows that the quantization procedurly affectsB;, (and A,
which is the ‘inverse’ quantization error and is relatedBp by A A, = Iy — BIB,). We
useY, andZ, to denote the matriceA, andB, after following the quantization procedure.
Hence, even thougi!'Z, is not beta distributed, the distribution of the quantitiés, S,
and W remain the same, and are independenZgpf(and Y,). We now useﬁk to denote

W after following the quantization procedure, accordingtte tonvention in[(2).

APPENDIX I

PROOF OFTHEOREM[I

Theorentl is proved as follows:

ARQUANT(P) = [RCSIT-BD(P) - RQUANT(P)] (35)
s [ P
% E |log, IN+MH';:VkV'/:Hk] -
[ Poong o
E 10g2 Iy + M HkaVk H.|| +
- b X o _
E |log, Iy + 1~ > HIV,VIH, (36)
L J=1,j#k .
- b K o )
8 g |log, Iy + 4 > HYV,VIH, (37)
L J=1j#k .
(© P rTH v vH | 13
= E|log, |Ty + +-H > VVE | HeA (38)
L j#k
@ P(K —1) Ty [ oom\ ~
< log, Iy + %E [H,‘;‘ (Vjv;.*) Hk] M‘ (39)
9 Jog, |Iy + P(K — 1)E [z,'j (s;'\?j\?;'sk) zk} ’ (40)
P
< N log, (1 + ND) (41)

Here, (a) follows by neglecting the positive semi-definitieiference terms in the quantity:

] |

By the BD procedure, botN, and\Af,C are distributed isotropically, and are chosen indepen-

dent ofH,,, which results in (b). We writ&l,H" = H,A,HZ, whereH,, € c*¥ forms an

P o~ ho o
Ly + 17 > H{V;VIH,

J=1

E [log2

orthonormal basis for the subspace spanned be the coluntis@fid A, = diag )\, ..., \y]

are theN non-zero, unordered eigenvaluesidfH!' (H; is of rank N and diagonalizable
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with probability 1). Both the density function &, (which is matrix-variate complex Normal
distributed) [16] and the Jacobian of the singular valueodgmosition transformation of a
matrix [17] can be separated into a product of functiondhf and A, alone. ThusH,,

and A, are independent and[A,] = MIy. Step (c) follows using this and the fact that
I+ AB| = |I + BA|, for matricesA andB. Next, (d) follows from Jensen’s inequality due

to the concavity ofog | - |. Step (e) is proved as follows. First, we compute

~

HV, = YIXPHI'V, + ZIsi'V, (42)
_ ZhSHY, (43)

for k # j, which follows from Lemmdll and the fact thBI{V, = 0 Vk # j, by the BD

procedure. Therefore,

log, [Ty + P(K — 1) [V, VI, | ‘ = log, Iy + P(K — DE |2} (SIV,V¥'s,) ] ‘
N
(U] H
O log, |Iy+ P(K — 1)1~ [Z{Z]|  (44)
D N
()]
9 g, Iy + P(K — 1) 45
ogy Ly + P( )NM N (45)

Here, (f) follows from the fact thaf/'j (which is just isotropically distributed in the left
nullspace ofﬁk) and Z, are independent, as a8 andZ, from Lemmall. FurtherS, is
also isotropically and distributed in the left nullspaceﬁ),j, and is independent G/f’k. Thus
VHS,SHV; is matrix-variate BetaV, M —2N) distributed [16], and: [Z',;' (S,‘;‘\A/j\Af;'Sk> Zk} =
K [Z]Z,], by [16, Theorem 5.3.12] and [16, Theorem 5.3.19] (afteification for the
complex case).

Let E;D,E! be the eigen decomposition @t'Z,,, whereE;, € cV*V is orthonormal and
D, € cV*¥ is diagonal, with strictly positive elements along the diagl. If an arbitrary
matrix in the codebook is selected as the quantizatidfl;Z, is matrix-variate (complex)
Betg N, M — N) distributed (as described in Appendix 1), andZ}'Z;| is a multiple of
the identity matrix. Both the density function of this dibtrtion [16] and the Jacobian of
the eigen decomposition transformation for a matrix [14} ba separated into a product of
functions of E;, and D, alone, and these are hence independently distributed.

For the actual quantization matrix, after following the gedure in[(2), only the distribution
of the diagonal matriXD,, is affected, and the distribution df, remains unchanged and
independent ofD,. Thus, we have that [Z',;'Zk} = ply for some constanp, even after

following the quantization procedure. This can also be kated by observing that!'Z, is
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E[tf(?zw]

invariant to unitary rotations. In terms of the trace of thatnx, we havep =

£, and (g) follows.

APPENDIX III

PROOF OF EQUATION(Z24)

ARANALOG(P) = [RCSIT-BD(P) - RANALOG(P)]

@ [ P
< E |log, [Ty + MH',;'VkV,';'Hk] -
- p o
E |logy |Iy + 77 HI'V,VIH, } +
- p _
P .
E [log; Iy + 1 > HIV,VHH, (46)
L i=1,7#k _
- . )
O g llog, Iy + © > HIV,V'H (47)
= o |In M EYiV;tik
L i=1,7#k i
(c) i P 1 = H~x7 ~7H
= E |log, Iy + Ml 8P Z Fkvjvj Fi (48)
L j=1,7#k
o) P(K —1) 1 v
2 log, |T E [FHV»VHF ] 49
>~ 089 N + M 1 T BP EYiV;tk ( )
P(K-1) 1
(e)
© I NI 50
ogy In+ M Trgpl W (50)
M—-N P
— N1 1 51
Og?( T 1 +ﬁP) (51)

Here, (a) and (b) have the same justification as in the prodtherentill (in Appendikdll),
(c) follows from (21), and (d) is obtained by applying Jersarequality. By Gaussianity of
F). and independence d, andV,, F}'V, is matrix-variate complex Gaussian distributed
with i.i.d. elements, and [F',;'\V/‘j\uf;'Fk] — NI, which results in (e).
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