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Abstract

Block diagonalization is a linear precoding technique for the multiple antenna broadcast (down-

link) channel that involves transmission of multiple data streams to each receiver such that no

multi-user interference is experienced at any of the receivers. This low-complexity scheme operates

only a few dB away from capacity but requires very accurate channel knowledge at the transmitter.

We consider a limited feedback system where each receiver knows its channel perfectly, but the

transmitter is only provided with a finite number of channel feedback bits from each receiver.

Using a random quantization argument, we quantify the throughput loss due to imperfect channel

knowledge as a function of the feedback level. The quality ofchannel knowledge must improve

proportional to the SNR in order to prevent interference-limitations, and we show that scaling the

number of feedback bits linearly with the system SNR is sufficient to maintain a bounded rate

loss. Finally, we compare our quantization strategy to an analog feedback scheme and show the

superiority of quantized feedback.

I. INTRODUCTION

In multiple antenna broadcast (downlink) channels, transmit antenna arrays can be used to

simultaneously transmit data streams to receivers and thereby significantly increase through-

put. Dirty paper coding (DPC) is capacity achieving for the MIMO broadcast channel [1],

but this technique has a very high level of complexity. Zero Forcing (ZF) and Block Diag-

onalization (BD) [2] [3] are alternative low-complexity transmission techniques. Although
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not optimal, these linear precoding techniques utilize allavailable spatial degrees of freedom

and perform measurably close to DPC in many scenarios [4].

If the transmitter is equipped withM antennas and there are at leastM aggregate receive

antennas, zero-forcing involves transmission ofM spatial beams such that independent, de-

coupled data channels are created from the transmit antennaarray toM receive antennas

distributed amongst a number of receivers. Block diagonalization similarly involves transmis-

sion ofM spatial beams, but the beams are selected such that the signals received at different

receivers, but not necessarily at the different antenna elements of a particular receiver, are

de-coupled. For example, if there areM/2 receivers with two antennas each, then two beams

are aimed at each of the receivers. If ZF is used, an independent and de-coupled data stream

is received on each of theM antennas. If BD is used, the streams for different receivers

do not interfere, but the two streams intended for a single receiver are generally not aligned

with its two antennas and thus post-multiplication by a rotation matrix (to align the streams)

is generally required before decoding.

In order to correctly aim the transmit beams, both schemes require perfect Channel State

Information at the Transmitter (CSIT). Imperfect CSIT leads to incorrect beam selection and

therefore multiuser interference, which ultimately leadsto a throughput loss. Unlike point

to point MIMO systems where imperfect CSIT causes only an SNRoffset in the capacity

vs. SNR curve, the level of CSIT affects the slope of the curveand hence themultiplexing

gain in broadcast MIMO systems. We consider the case when theCSI is known perfectly at

the receiver and is communicated to the transmitter througha limited feedback channel and

quantify the maximum rate loss due to limited feedback with BD.

MISO systems and ZF with limited feedback are analyzed in [5]. Similar to the results

in [5], we show that scaling the number of feedback bits approximately linearly with the

system SNR is sufficient to maintain the slope of the capacityvs. SNR curve and hence a

constant gap from the capacity of BD with perfect CSIT. The scaling factor for BD offers an

advantage over ZF in terms of the number of bits required to achieve the same sum capacity.

Rather than quantizing the CSIT into a finite number of bits and feeding this information

back, the channel coefficients can also be explicitly transmitted over the feedback link. We

compare this scheme to quantized feedback for an AWGN feedback channel, and show the

superiority of quantized feedback.
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II. SYSTEM MODEL

We consider a MIMO broadcast (downlink) system with a singletransmitter or base station

andK receivers or users. Each user hasN antennas and the transmitter hasM antennas.

The broadcast channel is described as:

yk = HH

kx+ nk, k = 1, . . . , K (1)

whereHk ∈ C
M×N is the channel matrix from the transmitter to thekth user (1 ≤ k ≤ K)

and the vectorx ∈ C
M×1 is the transmitted signal.nk ∈ C

N×1 are independent complex

Gaussian noise vectors of unit variance andyk ∈ C
N×1 is the received signal vector at the

kth user. We assume a transmit power constraint so thatE[||x||2] ≤ P (P > 0). We also

assume thatK = M
N

(with K ≥ 2), which implies that the aggregate number of receive

antennas equals the number of transmit antennas; as a resultit is not necessary to select a

subset of users for transmission.

The entries ofHk are assumed to be i.i.d. unit variance complex Gaussian random variables,

and the channel is assumed to be block fading with independent fading from block to block.

Each of the users are assumed to have perfect and instantaneous knowledge of their own

channel matrix. The channel matrix is quantized by each userand fed back to the transmitter

(which has no other knowledge of the instantaneous CSI) overa zero delay, error free, limited

feedback channel.

It is assumed that a uniform power allocation policy is adopted (i.e., we do not perform

waterfilling across streams), which is known to be asymptotically optimal for large SNR.

Hence, in order to perform Block Diagonalization, it is onlynecessary to know the spatial

direction of each user’s channel, i.e., the subspace spanned by the columns ofHk, and the

feedback only needs to convey this information.

The quantization codebook used by each user is fixed beforehand and is known to the

transmitter. A quantization codebookC consists of2B matrices inCM×N i.e. (W1, . . . ,W2B),

whereB is the number of feedback bits allocated per user. The quantization of a channel

matrix Hk, sayĤk, is chosen from the codebookC according to the following rule:

Ĥk = argmin
W ∈ C

d2 (Hk,W) (2)

whered (Hk,W) is the distance metric. Here, we consider thechordal distance[6]:

d (Hk,W) =

√√√√
N∑

j=1

sin2 θj (3)
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where theθj ’s are the principal angles between the two subspaces spanned by the columns of

the matricesHk andW [6]. As the principal angles depend only on the subspaces spanned

by the columns of the matrices, it can be assumed that the elements ofC are unitary matrices

(i.e. WHW = IN ∀ W ∈ C), without loss of generality. An alternate form for the chordal

distance isd2 (Hk,W) = N − tr
(
H̃H

kWWHH̃k

)
, whereH̃k forms an orthonormal basis

for the subspace spanned byHk. Note that other distance metrics may also be considered,

but we do not investigate this further in this work. No channel magnitude information is fed

back to the transmitter.

III. B ACKGROUND

A. Block Diagonalization

The Block Diagonalization strategy, when perfect CSI is available at the transmitter,

involves linear precoding that suppresses the interference at each user due to all other

users (but does not suppress interference due to different antennas for the same user). If

uk ∈ C
N×1 contains theN complex (data) symbols intended for thekth (1 ≤ k ≤ K) user

andVk ∈ C
M×N is the precoding matrix, then the transmitted vector is given by:

x =
K∑

k=1

Vkuk (4)

and the received signal at thekth user is given by:

yk = HH

kVkuk +
K∑

j=1,j 6=k

HH

kVjuj + nk (5)

The
K∑

j=1,j 6=k

HH

kVjuj term represents the multi-user interference at userk. In order to

maintain the power constraint, it is assumed thatVH

kVk = IN and E [||uk||2] ≤ P
M

, for

k = 1, . . . , K.

Following the BD procedure, eachVk is chosen such thatHH

j Vk is 0, ∀k 6= j. This

amounts to determining an orthonormal basis for the left null space of the matrix formed

by stacking all{Hj}j 6=k matrices together. This reduces the interference terms in equation

(6) to zero at each user. This is different from Zero Forcing where each complex symbol

to be transmitted to themth antenna (among theN antennas, i.e.,m = 1, . . . , N) of the kth

user is precoded by a vector that is orthogonal to all the columns ofHj, j 6= k, as well as

orthogonal to all but themth column ofHk.
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However, zero interference can only be achieved with perfect knowledge of{Hk}Kk=1 at the

transmitter. In the case of limited feedback, when only a quantized version of the subspace

spanned by the columns of eachHk is available at the transmitter, namelŷHk, we use a

naive strategy where the precoding matrices are selected bytreatingĤ1, . . . , ĤK as the true

channels while performing BD. To distinguish these precoding matrices from those selected

with perfect CSIT, we denote these matrices asV̂1, . . . , V̂K , where eacĥVk is chosen such

that ĤH

j V̂k = 0 ∀k 6= j. Thus,HH
j V̂k 6= 0 in general, which leads to residual interference

terms and a loss in throughput. The received signal in the case of limited feedback is thus

written as:

yk = HH

k V̂kuk +
K∑

j=1,j 6=k

HH

k V̂juj + nk (6)

B. Random Quantization Codebooks

Since the design of optimal quantization codebooks for the given distance metric is a

very difficult problem, we instead study performance averaged over random quantization

codebooks. The Grassmann manifold is the set of allN dimensional subspaces (or planes)

passing through the origin, in anM dimensional space. This is denoted byGM,N . We consider

complex Euclidean subspaces in this work. Each of the2B unitary matrices making up the

random quantization codebook are chosen independently andare uniformly distributed over

GM,N [7] [8]. We alternatively refer to this uniform distribution as the isotropic distribution

in the respective space. A random element drawn from this distribution (overGM,N ) can be

generated by generating anM × N matrix with i.i.d. complex Gaussian elements and then

forming a specific orthonormal basis for theN dimensional subspace spanned by the matrix

(e.g., through a QR decomposition).

We analyze the performance averaged over all possible random codebooks. The distortion

or error associated with a given codebookC for the quantization ofHk ∈ C
M×N is defined

as:

D
∆
=E

[
d2(Hk, Ĥk)

]
= E

[
min
W∈C

d2(Hk,W)

]
, (7)

whereĤk is the quantization ofHk. It is shown in [7] thatD ≤ D where,

D =
Γ( 1

T
)

T
(CMN)

− 1
T 2−

B
T +N exp

[
−(2BCMN)

1−a
]
, (8)

for a codebook of size2B. Here,T = N(M −N) anda ∈ (0, 1) is a real number between

0 and 1 chosen such that
(
CMN2

B
)− a

T ≤ 1. CMN is given by 1
T !

N∏
i=1

(M−i)!
(N−i)!

. The second

November 7, 2018 DRAFT



6

(exponential) term in (8) can be neglected for largeB. For systems whereN = 2 or 3, the

exponential term may be neglected for most practical cases.

IV. A NALYSIS AND RESULTS

In this section, we analyze the achievable throughput of thelimited feedback-based system

described so far. We first describe some preliminary mathematical results.

A. Preliminary Calculations

Lemma 1:The quantization̂Hk of the channelHk admits the following decomposition:

H̃k = ĤkXkYk + SkZk (9)

where

H̃k ∈ C
M×N is an orthonormal basis for the subspace spanned by the columns ofHk,

Xk ∈ C
N×N is unitary and distributed uniformly overGN,N ,

Zk ∈ C
N×N is upper triangular with positive diagonal elements, satisfying tr(ZH

kZk) =

d2
(
Hk, Ĥk

)
,

Yk ∈ C
N×N is upper triangular with positive diagonal elements and satisfiesYH

kYk =

IN − ZH

kZk, and

Sk ∈ C
M×N is an orthonormal basis for an isotropically distributed (complex)N dimen-

sional plane in theM −N dimensional left nullspace of̂Hk.

Moreover, the quantitiesYk, Ĥk andXk are distributed independent of each other, as are

the pairSk andZk. This decomposition is a generalization of the decomposition in [5], which

was for the specific case ofN = 1. Similar to [5], the matrixZk represents the quantization

error.

Proof: See Appendix I.

A direct application of Lemma 1 allows us to bound the rate loss due to limited feedback.

This decomposition also allows us to perform low complexityMonte-Carlo simulations for

evaluating the performance of random quantization codebooks, even for very largeB, as

described in detail in Section V-C.

November 7, 2018 DRAFT



7

B. Throughput analysis for quantized feedback

In the case of perfect CSIT and BD, the transmitter has the ability to suppress all inter-

ference terms giving aper userergodic rate of:

RCSIT-BD(P ) = E

[
log2

∣∣∣∣IN +
P

M
HH

kVkV
H

kHk

∣∣∣∣
]

(10)

wherek is any user from1, . . . , K. The expectation is carried out over the distribution of

Hk.

For limited feedback ofB bits per user, multiuser interference cannot be completely

canceled and this leads to residual interference power. Theper-user rate (throughput) is

given by:

RQUANT(P ) = E [I(uk;yk|Hk)] (11)

= E


log2

∣∣∣∣∣∣
IN +

P

M

(
IN +

P

M

K∑

j=1,j 6=k

HH

k V̂jV̂
H

j Hk

)−1

HH

k V̂kV̂
H

kHk

∣∣∣∣∣∣


(12)

= E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1

HH

k V̂jV̂
H

j Hk

∣∣∣∣∣

]
−

E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1,j 6=k

HH

k V̂jV̂
H

j Hk

∣∣∣∣∣

]
(13)

wherek is any user between1 andK and the expectation is carried out over the channel

distribution as well as random codebooksC.

Theorem 1:The rate loss incurred per user due to limited feedback with respect to perfect

CSIT using Block Diagonalization can be bounded from above by:

∆RQUANT(P ) = [RCSIT-BD(P )− RQUANT(P )]

≤ N log2

(
1 +

P

N
D

)

Proof: See Appendix II.

This provides a bound on the rate loss per user1. Furthermore,D can be upper bounded

tightly by D from (8).

C. Controlling feedback quality

If B is kept fixed and the SNR is taken to∞, it is easy to see that residual interference

will eventually overwhelm signal power, and this leads to a bounded throughput (i.e., zero

1Note that a factor ofN was erroneously omitted from this bound when this result wasstated in [9].
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Fig. 1. Sufficient number of bits for a gap of 3 dB relative to BDwith perfect CSIT, forN = 2 andM = 4, 6 and8

multiplexing gain). Therefore, it is of interest to determine how fastB must grow with SNR

in order to prevent this behavior and to maintain a bounded rate loss relative to a perfect

CSIT system.

Theorem 2:In order to bound the per-user rate loss∆RQUANT(P ) from above bylog2(b) >

0, it is sufficient for the number of feedback bits per user to bescaled with SNR as:

B ≈ N(M−N)
3

PdB −N(M −N) log2(N(b
1
N − 1)) +

N(M −N) log2

[
Γ( 1

N(M−N)
)

N(M−N)

]
− log2(CMN) (14)

Proof: This expression can be found by equating the upper bound fromTheorem 1

with log2 b and solving forB as a function ofP . Solving this numerically will yield the

number of bits sufficient for a maximum rate loss oflog2 b. We assume thatB is large enough

to neglect the exponential term in the expression forD from (8), which yields the above

approximation.

The total contribution of the term containing the logarithmof the gamma function is very

small and can usually be neglected. To maintain a system throughput loss ofM bps/Hz,

which corresponds to an SNR gap of no more than3 dB with respect to BD with perfect

CSIT, it is sufficient to scale the bits as:

B ≈ N(M −N)

3
PdB − log2(C

′
MN) (15)

November 7, 2018 DRAFT



9

whereC ′
MN = NN(M−N)CMN . Figure 1 shows the sufficient number of bits required to

maintain this level of performance, whenN = 2 andM = 4, 6 and8.

The pre-log factor (i.e. the factor that multiplies the SNR in dB) is N(M − N) rather

than MN , which is intuitively because the space ofN dimensional subspaces in anM

dimensional space has a dimensionality ofN(M −N)

V. PERFORMANCE COMPARISON AND NUMERICAL RESULTS

A. Zero forcing vs. Block diagonalization

Zero forcing is simple low-complexity linear precoding strategy, and it is important to

compare the performance of these two schemes under the presence of limited feedback. Zero

forcing for a MIMO broadcast system withK users andN antennas per user is equivalent

to a KN = M user system with a single antenna per user. The feedback scaling law for

such a system is derived in [5] to be:

BZF ≈ (M − 1)

3
PdB (16)

to maintain an SNR gap of no more than3 dB with respect to ZF under perfect CSIT

conditions. In this system, each user withN antennas quantizes the direction of the channel

vector (i.e. the channel vector normalized to have norm unity) of each of theN antennas

separately, and feeds this back to the transmitter.

In general, if BD with perfect CSIT achieves a sum rate ofRCSIT−BD(P ) with M , N an-

tennas at the transmitter and each of theM
N

users respectively, and ZF achievesRCSIT−ZF (P )

for the same system,RCSIT−BD(P ) will eventually dominateRCSIT−ZF (P ) by a constant

amount. Thus, we see an immediate advantage of BD with respect to ZF from (15), where

the pre-log factor for BD isN(M −N) for N antennas, orM −N per user antenna. This

is compared to the factorM − 1 in (16), which is for a lower target rate. This difference

betweenM − 1 and M − N is perhaps due to the fact that the space ofN dimensional

subspaces in anM dimensional space has a dimensionality ofN(M − N) while the space

of N one-dimensional subspaces in anM dimensional space has dimensionalityN(M − 1).

The rate gap between BD and ZF with perfect CSIT is given by [4]:

Rg(P ) = K log2(e)

N∑

j=1

N − j

j
(17)

at high SNR. For fair comparison of the number of bits required for BD and ZF under

imperfect CSIT and limited feedback, it is necessary to fix a common target rate. By setting
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b = 2Rg(P )+R in (14) whereRg(P ) is the (per-user) rate gap between BD and ZF (with perfect

CSIT) andR the target (per-user) rate loss for the ZF system, we can compare thesufficient

number of bits required to achieve the same sum rate for both strategies. For example,R = 1

for a 3 dB target offset in SNR, relative to rate achievable with ZF and perfect CSIT. This

suggests a bit savings of 48% for anM = 6, N = 2 system at 15 dB, and 63% for an

M = 9, N = 3 system with BD. The scaling law in Theorem 2 is slightly conservative for

large b, and the advantage of BD is somewhat underestimated. Numerical results show that

the bit savings possible with BD are even higher.

An alternative antenna combining method (when the users have multiple antennas) is

proposed in [10], where each user receives only a single stream of data (as opposed toN

streams of data with BD), but uses the extra antennas to obtain a very accurate quantization of

the effective channel. This effectively allows for a reduction in feedback load, and produces

the same pre-log factor as BD, i.e.,N(M −N), but needsN times the number of users in

the system (i.e.K = M where each user asN antennas, rather than theK = M
N

for BD).

Table I compares thesufficientnumber of bits required to achieve the same target rate, i.e., 3

dB (in SNR) away from ZF with perfect CSIT, when using BD, ZF and Antenna combining

for anM = 6, N = 2 system. ZF and BD haveK = 3, while antenna combining hasK = 6.

SNR Block Diagonalization Zero Forcing Antenna Combining

5 dB 1 9 8

10 dB 7 17 15

15 dB 13 25 21

20 dB 20 34 28

25 dB 26 42 35

30 dB 33 50 41

TABLE I

FEEDBACK REQUIREMENT(BITS) FOR DIFFERENT MULTIPLE USER-ANTENNA STRATEGIES(M = 6, N = 2)

B. Analog Feedback

We consider here the case when each userk feeds back its channelHk by explicitly

transmitting theMN complex coefficients(Hk)mn , m = 1, . . .M, n = 1, . . . , N over the

feedback channel. We assume that the uplink feedback channel is unfaded AWGN with the

same SNR as the downlink (i.e.,P ). Each user may transmit each coefficient effectively ‘β’

November 7, 2018 DRAFT



11

times on the uplink, resulting in the following matrix beingreceived at the transmitter:

Gk =
√

βPHk +Nk. (18)

Here,Nk represents the feedback (additive white Gaussian) noise, whose entries are indepen-

dent and complex Gaussian with unit variance. As the coefficients ofHk are also independent

and complex Gaussian with unit variance, the optimal estimator is the MMSE estimator:

H̆k =

√
βP

1 + βP
Gk, (19)

whereH̆k is the estimate ofHk formed at the transmitter. It is convenient to expressHk in

terms of the estimatĕHk and estimation noise as follows:

Hk = H̆k +
1√

1 + βP
Fk, (20)

where the entries ofFk are also independent and complex Gaussian with unit variance, and

independent of the estimator.

The beamformers{V̆k}Kk=1 are selected by treating{H̆k}Kk=1 as the ‘true’ set of channels,

and following the BD procedure. Note that the marginal distribution of the beamformers are

the same as in the quantized feedback case, as the addition ofindependent white Gaussian

noise does not affect the isotropic property. As in the case for quantized (digital) feedback,

we compute the quantity:

HH

k V̆j =
1√

1 + βP
FH

k V̆j (21)

for k 6= j, which follows from the fact that̆HH

k V̆j = 0 for k 6= j. Similar to (13), we write

the rate with ‘analog’ feedback as follows:

RANALOG(P ) = E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1

HH

k V̆jV̆
H

j Hk

∣∣∣∣∣

]
− E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1,j 6=k

HH

k V̆jV̆
H

j Hk

∣∣∣∣∣

]
(22)

Similar to the proof of Theorem 1 and using techniques similar to those in [11], we

compute a bound on the rate gap relative to BD with perfect CSIT to be:

∆RANALOG(P ) = [RCSIT-BD(P )− RANALOG(P )] (23)

≤ N log2

(
1 +

M −N

M

P

1 + βP

)
(24)

< N log2

(
1 +

M −N

M

1

β

)
(25)

The proof (24) bound is given in Appendix III. (25) is obtained by lettingP → ∞ in (24).
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In order to compare analog and quantized feedback, we measure the feedback quantity in

terms of ‘feedback symbols’ rather than bits. Although analog feedback involves effectively

βMN channel uses per user (assuming that the users have orthogonal feedback channels), it

also conveys more information that the quantized case, specifically information regarding the

eigenvalues and eigenvector structure, which the ‘subspace’ information does not capture.

Hence, for fair comparison, we equate theβMN analog channel uses toβN(M − N)

channel symbols in the quantized case (the ‘subspace’ information may be specified by

N(M −N) complex numbers). Under the simplifying assumption that error-free communi-

cation at capacity is possible, we setB = βN(M −N) log2(1+P ) for βN(M−N) channel

uses of the AWGN feedback channel with SNRP . From Theorem 1, we have:

∆RQUANT(P ) ≤ N log2

(
1 +

P

N

Γ ((N(M −N))−1)

N(M −N)
C

(N(M−N))−1

MN 2−
B

N(M−N)

)
(26)

= N log2

(
1 +

P

(1 + P )β
C ′′

MN

)
(27)

whereD has been bounded from (8) (neglecting the exponential term), and

C ′′
MN =

Γ ((N(M −N))−1)

N2(M −N)
C

(N(M−N))−1

MN . (28)

Our conclusions are similar to theN = 1 case, which was considered in [12]. Forβ ≈ 1,

both bounds on the rate gap (i.e. for analog and quantized feedback) behave similarly, and

the gap does not vanish asP → ∞. For β > 1, the rate gap bound decreases rapidly

(exponentially fast) for quantized feedback, and vanishesentirely asP → ∞. However, for

analog feedback, the decrease is relatively slow (i.e. onlypolynomially fast) and does not

vanish asP → ∞. The analysis may also be extended to the case when errors occur with

quantized feedback, using techniques similar to those in [12].

C. Generation of Numerical Results

The number of bits given by (14) can be very large and numerical simulation becomes a

computationally complex task, as the chordal distance willhave to be calculated for each of

the 2B matrices in the codebook. However, utilizing the statistics of random codebooks, the

quantization procedure can be preciselyemulatedwithout having to do actual quantization.

From Lemma 1, we can repeat the argument by interchangingH̃k and Ĥk, to yield the

following equivalent decomposition:

Ĥk = H̃kXkYk + SkZk (29)
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which can be used to generatêHk, given H̃k and a codebook size.Xk is isotropic and

independent of the codebook size, as isSk which (in this decomposition) is isotropically

distributed in the left nullspace of̃Hk. Samples drawn from the distribution of these matrices

can thus be generated as samples from the isotropic distribution in their respective spaces.

Moreover,d2
(
H̃k, Ĥk

)
= tr

(
ZH

kZk

)
is the1st order statistic from2B samples. Here, each

sample is drawn from the distribution of the trace of a matrix-variate beta distribution (as

described in Appendix I). Thus, a sample drawn from the distribution of tr
(
ZH

kZk

)
can be

generated by the ‘CDF inversion’ method, by computing the CDF for a specificM andN .

A general expression for the CDF has been computed in closed form in [7], for the case

whend2
(
H̃k, Ĥk

)
≤ 1. For moderate to largeB and practical values ofM , N , this event

occurs with extremely high probability, allowing for low complexity CDF inversion. For very

small values ofB, d2
(
H̃k, Ĥk

)
may be greater than 1 with appreciable probability, but an

exhaustive searching among2B possibilities is not a problem in these cases.

From the eigen decompositionZH

kZk = EkDkE
H

k , as described in Appendix II,Ek can be

generated as the eigenvectors of any (complex) Beta(N,M −N) distributed matrix. Further,

the distribution of the eigenvalues (i.e., the entries ofDk) conditionedon their sum (which is

equal tod2(H̃k, Ĥk)), can be computed from their joint distribution [13] ([7] for the complex

case). The conditional distribution can be easily computedfor small values ofN .

In particular, forN = 2, if D1, D2 are the diagonal elements ofDk with joint density

fD1,D2(d1, d2), the distribution ofD1 conditioned onZ = D1 +D2 ≤ 1 is given as:

FD1|Z(d1|z) =

z∫
0

fD1,D2(d1, z − d1) d(d1)

fZ(z)
(30)

=

z∫
0

VM(z − 2d1)
2(1− d1)

M−4(1− z + d1)
M−4 d(d1)

fZ(z)
(31)

wherefZ(z) is the pdf ofZ computed to be:

fZ(z) =
z2M−5(Γ(M))2

(M − 1)Γ(2M − 4)
(32)

for z ≤ 1. VM is a normalizing constant and is given byVM = 1
2
(M − 1)(M − 2)2(M − 3).

For efficient CDF inversion,FD1|Z(d1|z) can be computed in closed form for specific values

of M .

As YH

kYk = IN −ZkZ
H

k , Yk can be obtained as well. Putting all this together, one is able

to randomly generate a realization of the quantized versionof H̃k, when random codebooks
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are used. This prevents the computational complexity from growing with B. However, for

extremely largeB, numerical errors may dominate and care must be taken to maintain

numerical precision.

D. Numerical Results
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Fixed B = 10 bits
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Fig. 2. MIMO Broadcast Channel withM = 4, N = 2, K = 4

We present numerical results forN = 2 andM = 4, 6, 8 in Figures 2, 3, 4 respectively,

while scaling the bits as per (15), i.e. with a target of staying at most 3 dB away (in SNR)

from BD with perfect CSIT. As Theorem 2 only provides the sufficient number of bits, this

is a conservative strategy and the actual SNR gaps are found to be 2.65 dB, 2.72 dB and

2.84 dB for M = 4, 6 and8 respectively, instead of3 dB. The results also show that keeping

the number of bits fixed will result in a rate gap that increases unbounded with SNR.

VI. CONCLUSION

Accurate CSIT is clearly important for MIMO broadcast systems in order to achieve

maximum throughput. When the receiver knows the channel perfectly and instantaneously

feeds this information back to the transmitter using a finitenumber of bits, we have quantified

the rate loss and have shown that increasing the number of bits linearly with the system SNR

is sufficient to maintain a constant SNR loss with respect to perfect CSIT. Further, we have

established the advantage of BD relative to ZF in terms of feedback load, and the advantage
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Fig. 3. MIMO Broadcast Channel withM = 6, N = 2, K = 4

of using quantized feedback as opposed to using analog feedback. Note that BD is just one

of many linear precoding techniques that can be used on the MIMO broadcast channel with

multiple user antennas (for e.g., see coordinated beamforming [14] and Multiuser Eigenmode

Transmission [15]). It remains to be seen which of these perform best in a limited feedback

setting and also when multiuser diversity/user selection is considered.

APPENDIX I

PROOF OFLEMMA 1

Let W be any arbitrary matrix in the codebookC. Note thatW is independent of̃Hk.

We then decomposẽHk into components that lie in the column space ofW and the left

nullspace ofW as follows:

H̃k = WWHH̃k +
(
IM −WWH

)
H̃k (33)

= WWHH̃k +W⊥(W⊥)HH̃k (34)

whereWWH andW⊥(W⊥)H = IM − WWH are the projection matrices for the column

space and left nullspace ofW respectively.W⊥ ∈ C
M×(M−N) is chosen such that it forms

an orthonormal basis for the left nullsapce ofW.

Let the (thin) QR decomposition ofWWHH̃k be QkAk whereQk ∈ C
M×N forms an

orthonormal basis for the same space asW, andAk ∈ C
N×N is upper triangular with positive
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Fig. 4. MIMO Broadcast Channel withM = 8, N = 2, K = 4

diagonal elements. Further,Qk andAk are independent, from [16, Theorem 2.3.18] (after

verification for the complex case). AsQk andW describe the same subspace,Qk may be

represented as a rotation ofW, i.e.,Qk = WXk for some unitary matrixXk ∈ C
N×N .

By isotropy and independence ofW and H̃k, Xk is also isotropically distributed and is

independent ofW, which is an arbitrary orthonormal basis. Also note thatWWH = QkQ
H

k

and henceAH

kAk = H̃H

kWWHH̃k. Thus tr
(
AH

kAk

)
= N − d2

(
W, H̃k

)
.

Note thatW⊥(W⊥)HH̃k is the projection ofH̃k onto the left nullspace ofW. As H̃k is

isotropically distributed, the projection is also isotropically distributed in the corresponding

M −N dimensional nullspace. Let the (thin) QR decomposition ofW⊥(W⊥)HH̃k beSkBk,

whereSk ∈ C
M×N is an orthonormal basis for an isotropically distributed (complex) N

dimensional plane in theM − N dimensional left nullspace ofW and Bk ∈ C
N×N is

upper triangular with positive diagonal elements. Similarto the previous case,Sk andBk

are independently distributed. It is also straightforwardto see thatBH

kBk = IN −AH

kAk and

tr
(
BH

kBk

)
= d2

(
W, H̃k

)
.

As H̃k and W are independent, which has been our assumption thus far in the proof,

BH

kBk is matrix-variate (complex) Beta(N,M −N) distributed [13]. We will now argue that

most of the above conclusions remain unchanged, even when the quantization procedure (2)

is followed.

The quantization procedure amounts to choosing aBH

kBk such that its trace is the minimum
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among2B choices. Thus, it follows that the quantization procedure only affectsBk (andAk,

which is the ‘inverse’ quantization error and is related toBk by AH

kAk = IN −BH

kBk). We

useYk andZk to denote the matricesAk andBk after following the quantization procedure.

Hence, even thoughZH

kZk is not beta distributed, the distribution of the quantitiesXk, Sk

andW remain the same, and are independent ofZk (andYk). We now useĤk to denote

W after following the quantization procedure, according to the convention in (2).

APPENDIX II

PROOF OFTHEOREM 1

Theorem 1 is proved as follows:

∆RQUANT(P ) = [RCSIT-BD(P )−RQUANT(P )] (35)
(a)

≤ E

[
log2

∣∣∣∣IN +
P

M
HH

kVkV
H

kHk

∣∣∣∣
]
−

E

[
log2

∣∣∣∣IN +
P

M
HH

k V̂kV̂
H

kHk

∣∣∣∣
]
+

E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1,j 6=k

HH

k V̂jV̂
H

j Hk

∣∣∣∣∣

]
(36)

(b)
= E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1,j 6=k

HH

k V̂jV̂
H

j Hk

∣∣∣∣∣

]
(37)

(c)
= E

[
log2

∣∣∣∣∣IN +
P

M
H̃H

k

(
∑

j 6=k

V̂jV̂
H

j

)
H̃kΛk

∣∣∣∣∣

]
(38)

(d)

≤ log2

∣∣∣∣IN +
P (K − 1)

M
E

[
H̃H

k

(
V̂jV̂

H

j

)
H̃k

]
M

∣∣∣∣ (39)

(e)
= log2

∣∣∣IN + P (K − 1)E
[
ZH

k

(
SH

k V̂jV̂
H

j Sk

)
Zk

]∣∣∣ (40)

≤ N log2

(
1 +

P

N
D

)
(41)

Here, (a) follows by neglecting the positive semi-definite interference terms in the quantity:

E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1

HH

k V̂jV̂
H

j Hk

∣∣∣∣∣

]
.

By the BD procedure, bothVk andV̂k are distributed isotropically, and are chosen indepen-

dent ofHk, which results in (b). We writeHkH
H

k = H̃kΛkH̃
H
k , whereH̃k ∈ C

M×N forms an

orthonormal basis for the subspace spanned be the columns ofHk andΛk = diag[λ1, . . . , λN ]

are theN non-zero, unordered eigenvalues ofHkH
H

k (Hk is of rankN and diagonalizable
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with probability 1). Both the density function ofHk (which is matrix-variate complex Normal

distributed) [16] and the Jacobian of the singular value decomposition transformation of a

matrix [17] can be separated into a product of functions ofH̃k and Λk alone. Thus,H̃k

and Λk are independent andE [Λk] = MIN . Step (c) follows using this and the fact that

|I+AB| = |I+BA|, for matricesA andB. Next, (d) follows from Jensen’s inequality due

to the concavity oflog | · |. Step (e) is proved as follows. First, we compute

H̃H

k V̂j = YH

kX
H

k Ĥ
H

k V̂j + ZH

kS
H

k V̂j (42)

= ZH

kS
H

k V̂j (43)

for k 6= j, which follows from Lemma 1 and the fact that̂HH

k V̂j = 0 ∀k 6= j, by the BD

procedure. Therefore,

log2

∣∣∣IN + P (K − 1)E
[
H̃H

k V̂jV̂
H

j H̃k

]∣∣∣ = log2

∣∣∣IN + P (K − 1)E
[
ZH

k

(
SH

k V̂jV̂
H

j Sk

)
Zk

]∣∣∣

(f)
= log2

∣∣∣∣IN + P (K − 1)
N

M −N
E

[
ZH

kZk

]∣∣∣∣ (44)

(g)
= log2

∣∣∣∣IN + P (K − 1)
D

N

N

M −N

∣∣∣∣ (45)

Here, (f) follows from the fact that̂Vj (which is just isotropically distributed in the left

nullspace ofĤk) andZk are independent, as areSk andZk from Lemma 1. Further,Sk is

also isotropically and distributed in the left nullspace ofĤk, and is independent of̂Vk. Thus

V̂H

j SkS
H

k V̂j is matrix-variate Beta(N,M−2N) distributed [16], andE
[
ZH

k

(
SH

k V̂jV̂
H

j Sk

)
Zk

]
=

N
M−N

E

[
ZH

kZk

]
, by [16, Theorem 5.3.12] and [16, Theorem 5.3.19] (after verification for the

complex case).

Let EkDkE
H

k be the eigen decomposition ofZH

kZk, whereEk ∈ C
N×N is orthonormal and

Dk ∈ C
N×N is diagonal, with strictly positive elements along the diagonal. If an arbitrary

matrix in the codebookC is selected as the quantization,ZH

kZk is matrix-variate (complex)

Beta(N,M − N) distributed (as described in Appendix I), andE
[
ZH

kZk

]
is a multiple of

the identity matrix. Both the density function of this distribution [16] and the Jacobian of

the eigen decomposition transformation for a matrix [17] can be separated into a product of

functions ofEk andDk alone, and these are hence independently distributed.

For the actual quantization matrix, after following the procedure in (2), only the distribution

of the diagonal matrixDk is affected, and the distribution ofEk remains unchanged and

independent ofDk. Thus, we have thatE
[
ZH

kZk

]
= ρIN for some constantρ, even after

following the quantization procedure. This can also be concluded by observing thatZH

kZk is
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invariant to unitary rotations. In terms of the trace of the matrix, we haveρ =
E[tr(ZkZ

H

k)]
N

=

D
N

, and (g) follows.

APPENDIX III

PROOF OF EQUATION(24)

∆RANALOG(P ) = [RCSIT-BD(P )− RANALOG(P )]

(a)

≤ E

[
log2

∣∣∣∣IN +
P

M
HH

kVkV
H

kHk

∣∣∣∣
]
−

E

[
log2

∣∣∣∣IN +
P

M
HH

k V̆kV̆
H

kHk

∣∣∣∣
]
+

E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1,j 6=k

HH

k V̆jV̆
H

j Hk

∣∣∣∣∣

]
(46)

(b)
= E

[
log2

∣∣∣∣∣IN +
P

M

K∑

j=1,j 6=k

HH

k V̆jV̆
H

j Hk

∣∣∣∣∣

]
(47)

(c)
= E

[
log2

∣∣∣∣∣IN +
P

M

1

1 + βP

K∑

j=1,j 6=k

FH

k V̆jV̆
H

j Fk

∣∣∣∣∣

]
(48)

(d)

≤ log2

∣∣∣∣IN +
P (K − 1)

M

1

1 + βP
E

[
FH

k V̆jV̆
H

j Fk

]∣∣∣∣ (49)

(e)
= log2

∣∣∣∣IN +
P (K − 1)

M

1

1 + βP
NIN

∣∣∣∣ (50)

= N log2

(
1 +

M −N

M

P

1 + βP

)
(51)

Here, (a) and (b) have the same justification as in the proof ofTheorem 1 (in Appendix II),

(c) follows from (21), and (d) is obtained by applying Jensens inequality. By Gaussianity of

Fk and independence ofFk and V̆j, FH

k V̆j is matrix-variate complex Gaussian distributed

with i.i.d. elements, andE
[
FH

k V̆jV̆
H

j Fk

]
= NIN , which results in (e).
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