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How Many Users should be Turned On
in a Multi-Antenna Broadcast Channel?

Wei Dai, Member, IEEE, Youjian (Eugene) Liu, Member, IEEE, Brian C. Rider and Wen Gao

Abstract— This paper considers broadcast channels with
L antennas at the base station and m single-antenna users,
where L and m are typically of the same order. We assume
that only partial channel state information is available at
the base station through a finite rate feedback. Our key
observation is that the optimal number of on-users (users
turned on), say s, is a function of signal-to-noise ratio
(SNR) and feedback rate. In support of this, an asymp-
totic analysis is employed where L, m and the feedback
rate approach infinity linearly. We derive the asymptotic
optimal feedback strategy as well as a realistic criterion to
decide which users should be turned on. The corresponding
asymptotic throughput per antenna, which we define as the
spatial efficiency, turns out to be a function of the number
of on-users s, and therefore s must be chosen appropriately.
Based on the asymptotics, a scheme is developed for systems
with finite many antennas and users. Compared with other
studies in which s is presumed constant, our scheme
achieves a significant gain. Furthermore, our analysis and
scheme are valid for heterogeneous systems where different
users may have different path loss coefficients and feedback
rates.

Index Terms— Broadcast channels, feedback, MIMO
systems, throughput.

I. INTRODUCTION

It is well known that multiple antennas can improve
the spectral efficiency. This paper considers broadcast
channels with L antennas at the base station and m
single-antenna users. To achieve the full benefit, perfect
channel state information (CSI) is required at both re-
ceiver and transmitter. Perfect CSI at the receiver can be
obtained by estimation from the received signal. How-
ever, if CSI at the transmitter (CSIT) is obtained from
feedback, perfect CSIT requires an infinite feedback rate.
As this is not feasible in practice, it is important to
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analyze the effect of finite rate feedback and design
efficient strategy accordingly.

The feedback models for broadcast channels are de-
scribed as follows. To save feedback rate on power
control, we assume a power on/off strategy1 where each
user is either turned on with a constant power or turned
off. For a given channel realization, the users quantize
their channel states into finite bits and feedback the
corresponding indices to the base station. After receiving
the feedback from users, the base station decides which
users should be turned on and then forms beamforming
vectors for transmission.

Broadcast channels with feedback have been widely
studied recently. Ideally, if the base station has the per-
fect CSI, dirty paper codes or zero-forcing transmission
can help clean off interference among users. However,
with only finite rate feedback on CSI, the base station
does not know the perfect channel state information
and therefore interference from other users is inevitable.
The interference gets so strong at high signal-to-noise
ratio (SNR) regions that the system throughput is upper
bounded by a constant even when SNR approaches infin-
ity. This phenomena, called interference domination, was
reported on in [1], [2]. One way to combat it is to allow
the number of users to be much larger than the number
of antennas at the base station. With sufficiently many
independent realizations of the channel, it is possible
to obtain L orthogonal users with feedback: Sharif and
Hassibi select users whose channel directions are close
to a random generated basis vectors in [1]; Yoo, et.
al., pick up near orthogonal users in an iterative way
[3], [4]. Recently, Bayesteh and Khandani quantified the
feedback required as a function of the number of users
[5], [6]. Another approach is to fix both the number of
antennas at the base station and the system size (the
number of users). It has been shown in [7] that the
maximum achievable multiplexing gain is one (at high
SNR) with finite rate feedback. The full multiplexing
gain requires the feedback rate increases linearly with
SNR [2]. In both approaches, a homogeneous system is
assumed where all the users share the same path loss
coefficient and feedback resource.

Separate from the above, this paper studies a more

1This assumption will be further validated in Section II.
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realistic scenario:
• We consider heterogeneous systems where different

users may have different path loss coefficients and
feedback rates.

• The size of the broadcast system is small. That is,
the number of users and the number of antennas
at the base station are typically of the same order.
Note that a cooperative communication network can
often be viewed as a composition of multi-access
and broadcast sub-systems with a small number of
users. Research on broadcast systems of small size
also provides insights into cooperative communica-
tions.

• Analysis and design are valid for arbitrary SNR.
According to the authors’ knowledge, the above prac-
tically important scenario has not been systematically
studied due to the associated difficulty in analysis.

For such systems, we solve the interference domina-
tion problem by choosing the appropriate number of on-
users s. This solution comes from an asymptotic analysis
where L,m, s and the feedback rates approach infinity
linearly. As have been demonstrated in [8] and will
be verified in our simulations in Fig. 1, this type of
asymptotic analysis is surprisingly reliable when being
applied to small systems. The main asymptotic results
include:
• It is asymptotically optimal to only quantize the

channel directions and ignore the channel magni-
tude information. The asymptotically optimal feed-
back function and codebook are derived accord-
ingly.

• A realistic on/off criterion is proposed to decide
which users should be turned on.

• The corresponding throughput per antenna con-
verges to a constant, defined as the spatial effi-
ciency. It is a function of the normalized number
of on-users s̄ = s

L . Further, there exists a unique
s̄ ∈ (0, 1) to maximize the the spatial efficiency.

Based on the insights obtained from the above asymp-
totic results, we develop a scheme to choose the appro-
priate s for systems with finite L and m. Simulations
show that the gain achieved by choosing s is significant
compared with the strategies where s = L [2]. In
addition, our scheme has the following advantages.
• It is valid for heterogeneous systems.
• The associated computation complexity is low. In

the proposed scheme, the choice of on-users is in-
dependent of the channel realization, and therefore
there is no need to select on-users every fading
block. The computation complexity is much smaller
than that of user selection [1], [5], [6].

• Only on-users need to feedback CSI, which saves
the precious feedback resource.

II. SYSTEM MODEL

Consider a broadcast channel with L antennas at the
base station and m single-antenna users. Assume that the
base station employs zero forcing transmitter. Let γi ≥ 0
(1 ≤ i ≤ m) be the path loss coefficient for user i. Then
the received signal Yi ∈ C for user i is given by

Yi =
√
γih
†
i

 m∑
j=1

qjXj

+Wi,

where hi ∈ CL×1 is the channel state vector for user,
qj ∈ CL×1 is the zero-forcing beamforming vector for
user j, Xj ∈ C is the source signal for the user j and
Wi ∈ C is the circularly symmetric complex Gaussian
noise with zero mean and unit variance CN (0, 1). Here,
we assume that q†jqj = 1 and the Rayleigh block fading
channel model: the entries of hi are independent and
identically distributed (i.i.d.) CN (0, 1). Without loss of
generality, we assume that L ≤ m; if L > m, adding
L − m users with γi = 0 yields an equivalent system
with L′ = m.

For the above broadcast system, it is natural to assume
a total power constraint

m∑
i=1

E
[
|Xi|2

]
≤ ρ.

Further, we assume a power on/off strategy with a
constant number of on-users as follows.

A1) Power on/off strategy: a source Xi is either
turned on with a constant power Pon or turned
off.

A2) A constant number of on-users: we assume
that the number of on-users s (1 ≤ s ≤
m) is a constant independent of the specific
channel realizations, and thus Pon = ρ

s . Here,
s is allowed to be a function of SNR, which
distinguishes this paper from [1], [2] where
s = L always.

A similar strategy has been demonstrated near optimal
for single user MIMO systems in our work [8]. Although
little is known about the optimality of the proposed
strategy in broadcast systems, we adopt it for two rea-
sons: first, this strategy has simple implementation and
similar forms are employed in many practical systems,
see IEEE802.20 and IEEE802.22 for example; second,
it saves precious feedback resources on power control.

The finite rate feedback model is then described as
follows. Assume that both base station and user i knows
γi

2 but only user i knows the channel state realization
hi perfectly. For given channel realizations h1 · · ·hm,

2There are many ways in which the base station obtains γi. A simple
example could be that the base station measures the feedback signal
strength.
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an on-user i quantizes his channel hi into Ri bits and
then feeds the corresponding index to the base station.
Formally, let Bi =

{
ĥ ∈ CL×1

}
with |Bi| = 2Ri be a

channel state codebook for user i. Then the quantization
function is given by q (hi,Bi) = ĥi. In Section III-A and
III-B, we will show how to design q and B respectively.

After receiving feedback information from users, the
base station decides which s users should be turned on
and forms zero-forcing beamforming vectors for them.
Let Aon be the set of the s on-users. The zero-forcing
beamforming vectors qi’s i ∈ Aon is calculated as
follows3. Let P⊥i be the plane generated by{

ĥj : j ∈ Aon\ {i}
}
.

Let Pi be the orthogonal complement of P⊥i and t be the
dimensions of Pi. Let Ti ∈ CL×t be a random matrix
whose columns are orthonormal and span the plane P .
Then qi is the unitary projection of ĥion Ti, that is,

qi := TiT
†
i ĥi/

∥∥∥TiT
†
i ĥi
∥∥∥ .

Here, if s = 1 and Aon = {i}, Ti is a L × L unitary
matrix and

qi = ĥi/
∥∥∥ĥi∥∥∥ .

III. ASYMPTOTIC ANALYSIS

As m and L are of the same order, we consider the
asymptotic region where L,m,Ri′s→∞ linearly.

A. Design of Quantization Function

Generally speaking, full information of hi contains the
direction information vi := hi/ ‖hi‖ and the magnitude
information ‖hi‖. In our Rayleigh fading channel model,
it is well known that vi and ‖hi‖ are independent.
Intuitively, joint quantization of vi and ‖hi‖ is preferred.

Interestingly, Proposition 1 implies that there is no
need to quantize the channel magnitudes. Indeed, as
L,m → ∞ linearly, all users’ channel magnitudes
concentrate on a single value in probability.

Proposition 1: For ∀ε > 0, as L,m→∞ with m
L →

m̄ ∈ R+,

Pr
(

max
1≤i≤m

1
L
‖hi‖2 ≥ 1 + ε

)
→ 0,

and
Pr
(

min
1≤i≤m

1
L
‖hi‖2 ≤ 1− ε

)
→ 0.

The proof is given in Appendix A. It is noteworthy
that whether the users’ channel magnitudes concentrate

3Our interpretation of constructing zero forcing beamforming vec-
tors is different from the traditional one (see [4] for example). We
adopt the unitary projection because not only does it have an explicit
geometric meaning but also it provides a nice “isotropic” property,
which is crucial in proofs (see Appendix C and D for details).

or not depends on the relationship between L and m:
the concentration happens when L and m are of the
same order. To fully understand Proposition 1, it is
important to realize that the Law of Large Numbers
does not imply that all users’ channel magnitudes will
concentrate uniformly. The Law of Large Numbers says
that 1

L ‖hi‖ → 1 almost surely for any given i. However,
if m approaches infinity exponentially with L, there
are certain number of users whose channel magnitudes
are larger than others’, and therefore it may be still
beneficial to quantize and feedback channel magnitude
information. Formally, consider a broadcast channel with
γ1 = · · · = γm = 1. As L,m→∞ with log (m) /L→
m̄′ ∈ R+, there exists an ε > 0, δ1 > 0 and δ2 > 0 such
that

1
L

log
∣∣∣∣{i :

1
L
‖hi‖2 > 1 +

ε

2

}∣∣∣∣→ δ1,

and
1
L

log
∣∣∣∣{i :

1
L
‖hi‖2 < 1− ε

2

}∣∣∣∣→ δ2

in probability. The proof follows from the standard large
deviation technique and is omitted here.

Proposition 1 implies that it is sufficient to quantize
the channel direction information only and omit the
channel magnitude information. For this quantization,
the codebook is given by Bi =

{
p ∈ CL×1 : ‖p‖ = 1

}
with |Bi| = 2Ri . Let vi = hi/ ‖hi‖. The quantization
output is given by

pi = q (hi,Bi) = arg max
p∈Bi

∣∣∣v†ip∣∣∣ . (1)

B. Asymptotically Optimal Codebooks

Consider design of codebooks. Given the quantization
function (1), the distortion of a given codebook Bi is the
average chordal distance between the actual and quan-
tized channel directions corresponding to the codebook
Bi and defined as

D (Bi) := 1− Ehi

[
max
p∈Bi

∣∣∣v†ip∣∣∣2] .
The following lemma bounds the minimum achievable
distortion for a given codebook rate.

Lemma 1: Define D∗ (R) , inf
B: |B|≤2R

D (B). Then

L− 1
L

2−
R

L−1 (1 + o (1)) ≤ D∗ (R)

≤
Γ
(

1
L−1

)
L− 1

2−
R

L−1 (1 + o (1)) , (2)

and as L and R approach infinity with R
L → r̄ ∈ R+,

lim
(L,R)→∞

D∗ (R) = 2−r̄.
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The following Lemma shows that a random codebook
is asymptotically optimal in probability.

Lemma 2: Let Brand be a random codebook where
the vectors p ∈ Brand’s are independently generated
from the isotropic distribution. Let R = log |Brand|. As
L,R→∞ with R

L → r̄ ∈ R+, for ∀ε > 0,

lim
(L,R)→∞

Pr
{
Brand : D (Brand) > 2−r̄ + ε

}
= 0.

The proofs of Lemma 1 and 2 are given in our paper
[9]. Due to the asymptotic optimality of random code-
books, we assume that the codebooks Bi’s i = 1, · · · ,m
are independent and randomly constructed throughout
this paper.

C. On/off Criterion

After receiving feedback from users, the base station
should decide which s users should be turned on.

Ideally, for given channel realizations h1, · · · ,hm,
the optimal set of on users A∗on should be chosen to
maximize the instantaneous mutual information. How-
ever, finding A∗on requires exhaustive search, whose
complexity exponentially increases with m.

A suboptimal option is the random orthonormal beams
construction method in [1]: the base station randomly
constructs L orthonormal beams b1, · · · ,bL, finds the
users with highest signal-to-noise-plus-interference ra-
tios (SINRs) through feedback from users, and then
transmits to these selected users. Note that the maximum
SINR achievable for user i is max

1≤k≤L

∣∣∣h†ibk∣∣∣. However,

Proposition 2 below shows that in our asymptotic region
where L,m → ∞ linearly, all users’ channels are near
orthogonal to all of the L orthonormal beams bi’s.
Therefore, all users’ maximum SINRs approach zero
uniformly in probability, and no user should be turned on
in probability. The method in [1] fails in our asymptotic
region.

Proposition 2: Given ∀ε > 0 and any L orthonormal
beams bk ∈ CL×1 1 ≤ k ≤ L, as L,m → ∞ linearly
with m

L → m̄ ∈ R+,

lim
(L,m)→∞

Pr
(

max
1≤i≤m, 1≤k≤L

1
L

∣∣∣h†ibk∣∣∣ > ε

)
= 0.

Proof: See Appendix B.
In this paper, we take another approach where the

on/off decision is independent of channel directions. We
start with the throughput analysis for a specific on-user
i ∈ Aon. Note that

Yi =
√
γih
†
iqiXi +

√γih†i ∑
j∈Aon\{i}

qjXj +W

 .

The signal power and interference power for user i are
given by

Psig,i =
ρ

s
γi

∣∣∣h†iqi∣∣∣2 (3)

and
Pint,i =

ρ

s
γi

∑
j∈Aon\{i}

∣∣∣h†iqj∣∣∣2 (4)

respectively. If the choice of Aon is independent of
the channel directions vi’s, we have a nice property
regarding to Psig,i and Pint,i.

Theorem 1: Let |Aon| = s be chosen independently
of vi’s. Let L,m, s,Ri′s → ∞ with m

L → m̄ ∈ R+,
s
L → s̄ ∈ [0, 1] and Ri

L → r̄i ∈ R+. Assume that vi’s
i ∈ Aon are independent. Then for ∀i ∈ Aon,

Psig,i →
ρ

s̄
γi
(
1− 2−r̄i

)
(1− s̄) ,

Pint,i → ργi2−r̄i ,

and therefore the throughput of user i satisfies

Ii := log
(

1 +
Psig,i

1 + Pint,i

)
→ log

(
1 + ηi

1− s̄
s̄

)
,

in probability, where

ηi :=
ργi (1− 2−r̄i)
1 + ργi2−r̄i

. (5)

Proof: See Appendix C and D.
Theorem 1 shows that if Aon is independent of vi’s,
Ii is a function of ηi but independent of the specific
channel realization hi in probability. Based on this fact,
we select the set of s on-users Aon such that |Aon| = s
and

Aon = {i : ηi ≥ ηj for ∀j /∈ Aon} ; (6)

if there are multiple candidates, we randomly choose
one of them. It is the asymptotically optimal on/off
selection if the on/off decision is independent of the
channel direction information. The difference between
the throughput achieved by optimal on/off criterion (re-
quiring exhaustive search) and the proposed (6) remains
unknown.

D. The Spatial Efficiency

We define the spatial efficiency (bits/sec/Hz/antenna)
as

Ī (s̄) := lim
(L,m,s,Ri

′s)→∞
Ī(L),

where L,m, s,Ri
′s → ∞ in the same way as before,

Ī(L) is the average throughput per antenna given by

Ī(L) := EBi
′s,hi

′s

[
1
L

∑
i∈Aon

log
(

1 +
Psig,i

1 + Pint,i

)]
,

and Aon, Psig,i and Pint,i are defined in (6), (3) and (4)
respectively.

We shall quantify Ī (s̄) for a given s̄. Define the
empirical distribution of ηi as

µ(m)
η (η ≤ x) :=

1
m
|{ηi : ηi ≤ x}| ,
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and assume that µη := limµ
(m)
η exists weakly as

L,m,Ri
′s → ∞. In order to cope with µη’s with mass

points, define∫ ∞
x+

f (η) dµη := lim
∆x↓0

∫ ∞
x+∆x

f (η) dµη

for ∀x ∈ R, where f is a integrable function with respect
to µη . Then Ī (s̄) is computed in the following theorem.

Theorem 2: Let L,m, s,Ri′s → ∞ with m
L → m̄,

s
L → s̄ and Ri

L → r̄i. Define

ηs̄ := sup
{
η : m̄

∫ ∞
η

dµη > s̄

}
.

Then as s̄ /∈ (0, 1), Ī (s̄) = 0. If s̄ ∈ (0, 1),

Ī (s̄) = m̄

∫ ∞
η+

s̄

log
(

1 + η
1− s̄
s̄

)
dµη

+

(
s̄− m̄

∫ ∞
η+

s̄

dµη

)
log
(

1 + ηs̄
1− s̄
s̄

)
. (7)

Proof: It actually follows from Theorem 1.
We are also interested in finding the optimal s̄ to

maximize Ī (s̄). Though Ī (s̄) is not a concave function
in general, the following theorem provides a criterion to
find the optimal s̄.

Theorem 3: Ī (s̄) is maximized at a unique s̄∗ ∈
(0, 1) such that

0 ∈
[
lim inf
∆s̄→0

Ī (s̄∗)− Ī (s̄∗ −∆s̄)
∆s̄

,

lim sup
∆s̄→0

Ī (s̄∗)− Ī (s̄∗ −∆s̄)
∆s̄

]
. (8)

The proof is in Appendix E. The corresponding Ī (s̄∗)
is the maximum achievable spatial efficiency for the
proposed power on/off strategy. It is noteworthy that s̄∗

is not a monotone function of SNR ρ according to our
empirical calculation.

IV. FINITE DIMENSIONAL SYSTEM DESIGN

Based on the above asymptotic results, we now pro-
pose a scheme for systems with finite L and m.

A. Throughput Estimation for Finite Dimensional Sys-
tems

While asymptotic analysis provide many insights, we
do not apply asymptotic results directly for a finite
dimensional system. The reason is that in asymptotic
analysis 1

L → 0 while 1
L > 0 for finite dimensional

systems. To see the difference more explicitly, let us
calculate the main order term of the throughput for user

i ∈ Aon. For user i ∈ Aon, the corresponding throughput
is

Ii = E
[
log
(

1 +
Psig,i

1 + Pint,i

)]
= log

(
1 +

E [Psig,i]
1 + E [Pint,i]

)
+ E

[
log
(

1 + Psig,i + Pint,i

1 + E [Psig,i] + E [Pint,i]

)]
− E

[
log
(

1 + Pint,i

1 + E [Pint,i]

)]
,

where Psig,i and Pint,i are defined in (3) and (4). We
quantify E [Psig,i] and E [Pint,i] in below.

Theorem 4: Let Bi’s be randomly constructed and
Di = EBi

[D (Bi)] for all 1 ≤ i ≤ m. For randomly
chosen Aon and i ∈ Aon, if 1 ≤ s ≤ L

E [Psig,i] = γiρ
L

s

[
(1−Di)

(
1− s− 1

L

)
+Di

s− 1
L (L− 1)

]
, (9)

and
E [Pint,i] = γiρ

L

s

s− 1
L− 1

Di; (10)

if s > L, E [Psig,i] = 0.
The proof is provided in Appendix C and D. Define

Imain,i := log
(

1 +
E [Psig,i]

1 + E [Pint,i]

)
. (11)

It can be verified from Theorem 1 that Ii = Imain,i +
o (1) and therefore Imain,i is the main order term of
Ii. Then the difference between asymptotic analysis and
finite dimensional systems analysis is clear. In the limit,
s−1
L → s̄ and Ri

L−1 → r̄i. However, for finite dimensional
systems, simply substituting the asymptotic values into
(9-11) directly introduces unpleasant error, especially
when L is small. Therefore, to estimate Ii (∀i ∈ Aon) for
finite dimensional systems, we have to rely on (9)-(11).

The calculation of E [Psig,i] and E [Pint,i] relies on
quantification of Di. In general, it is difficult to compute
Di precisely. Note that the upper bound in (2) is derived
by evaluating the average performance of random code-
books (see [9] for details). We use its main order term
to estimate Di:

Di ≈
Γ
(

1
L−1

)
L− 1

2−
Ri

L−1 .

B. A Scheme for Finite Dimensional Systems

Given system parameters, a practical scheme finding
the appropriate s and Aon is developed.

For a given s, the set of Aon is decided as follows:
calculate Imain,1, · · · , Imain,m according to (11) and
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choose the s users with the largest Imain,i’s to turn on; if
there exists an ambiguity, random selection is employed
to resolve it. For example, if Imain,1 = Imain,2 = · · · =
Imain,m, the s on-users are randomly drawn from all
the m users. Note again, that Aon is independent of the
channel realization.

The appropriate s is chosen as follows. Let

Imain (s) = max
Aon: |Aon|=s

∑
i∈Aon

Imain,i.

We choose the number of on-users to be

s∗main = arg max
1≤s≤L

Imain (s) .

Although the above procedure involves exhaustive
search, the corresponding complexity is actually low.
First, the calculations are independent of instantaneous
channel realizations. Only system parameters L, m, γi’s,
Ri’s and ρ, are needed. Provided that γi’s change slowly,
the base station does not need to recalculate s∗main and
Aon frequently. Second, Ri = Rj in most systems. For
such systems, the s on-users are just simply the users
with the largest γi’s.

After calculating s∗main and Aon, the base station
broadcast Aon to all the users. For each fading block,
the system works as follows. 1) At the beginning of
each fading block, the base station broadcasts a single
channel training sequence to help all the users estimate
their channel states hi’s. 2) After estimating their hi’s,
the on-users quantize hi’s into pi’s according to (1) and
feed the corresponding indices to the base station. 3) The
base station then calculates the transmit beamforming
vectors qi’s and transmits qiXi’s.

Remark 1 (Fairness Scheduling): For systems with
γi 6= γj or Ri 6= Rj , there may be some users always
turned off according to the above scheme. Fairness
scheduling is therefore needed to ensure fairness of the
system. An example could be as follows. Given m users,
calculate the corresponding s∗main and Aon, and then
turns on the users in Aon for the first fading block. At
the second fading block, only consider the users who
have not been turned on {1, · · · ,m} \Aon. Calculate the
corresponding s∗main and Aon, and then turns on the users
in the new Aon. Proceed this process until all users have
been turned on once. Then start a new scheduling cycle.

C. Simulation Results

Fig. 1 gives the simulation results for the proposed
scheme using zero-forcing. In the simulations, L = m =
4. For simplicity, we assume that γ1 = γ2 = · · · =
γm = 1 and R1 = R2 = · · · = Rm = Rfb. With these
assumptions, the s on-users can be randomly chosen
from all the m users. Without loss of generality, we
assume that Aon ≡ {1, · · · , s}. Let I (s) =

∑
i∈Aon

Ii.
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Fig. 1. Total Throughput for Zero Forcing Beamforming

In Fig. 1, the solid lines are the simulations of I (s∗main)
while the dashed lines are the theoretical calculation
of Imain (s∗main). The simulation results show that the
optimal s is a function of ρ and Rfb. For example,
s = 1 is optimal when ρ ∈ [15, 20]dB and Rfb = 6
bits, while s = 3 is optimal for the same SNR region as
Rfb increases to 12 bits. The reason behind it is that
the interference introduced by finite rate quantization
is larger when Rfb is smaller: when Rfb is small, the
base station needs to turn off some users to avoid strong
interference as SNR gets very large.

We also compare our scheme with the schemes where
the number of on-users is a presumed constant (in-
dependent of ρ and Rfb). The throughput of schemes
with presumed s is presented in dotted lines. From the
simulation results, the throughput achieved by choosing
appropriate s is always better than or equals to that with
presumed s. Specifically, compared to the scheme in
[2] where s = L = 4 always, our scheme achieves a
significant gain at high SNR by turning off some users.

It is interesting to observe that given feedback rates,
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the optimal number of on-users s∗main is not monotonic
with SNR ρ. As discussed before, s∗main = 1 as ρ→∞
to avoid the interference domination phenomenon. While
ρ→ 0, it can be shown that s∗main = 1 as well. For this
case, compared with the noise power, the interference is
weak and can be ignorable. Setting s = 1 avoids signal
power loss (the − s−1

L term in (9)) due to zero forcing
projection and therefore is optimal. For median SNRs,
we have to rely on the scheme in Section IV-B.

V. CONCLUSION

This paper considers heterogeneous broadcast systems
with a relatively small number of users. Asymptotic
analysis where L,m, s,Ri → ∞ linearly is employed
to get insight into system design. We derive the asymp-
totically optimal feedback strategy, propose a realistic
on/off criterion, and quantify the spatial efficiency. The
key observation is that the number of on-users should
be appropriately chosen as a function of system param-
eters. Finally, a practical scheme is developed for finite
dimensional systems. Simulations show that this scheme
achieves a significant gain compared with previously
studied schemes with presumed number of on-users.

APPENDIX

A. Proof of Proposition 1

This proposition is proved by standard large deviation
argument. Note that ‖hi‖’s (i = 1, · · · ,m) are indepen-
dent and identically distributed.

Pr
(

max
1≤i≤m

1
L
‖hi‖2 ≥ 1 + ε

)
= 1−

(
Pr
(

1
L
‖h1‖2 < 1 + ε

))m
= 1− exp

{
m log

(
1− Pr

(
1
L
‖h1‖2 ≥ 1 + ε

))}
.

For all α ∈ (0, 1), by Chebyshev’s inequality,

Pr
(

1
L
‖h1‖2 ≥ 1 + ε

)
= Pr

(
L∑
l=1

(
|h1,l|2 − 1

)
≥ Lε

)
≤ exp

{
−L

(
αε− log E

[
eα(|h1,1|2−1)

])}
= exp {−L (α (1 + ε) + log (1− α))} .

Take α = ε
1+ε . We have

Pr
(

1
L
‖h1‖2 ≥ 1 + ε

)
≤ exp {−L (ε− log (1 + ε))} .

Let f+ (ε) := ε − log (1 + ε). It can be verified that
f+ (ε) > 0 for ε > 0. Thus, for any given δ > 0, if L is
sufficiently large,

Pr
(

max
1≤i≤m

1
L
‖hi‖2 ≥ 1 + ε

)
≤ 1− exp

(
m̄L (1 + o (1)) log

(
1− exp

(
−Lf+ (ε)

)))
= 1− exp

(
−m̄Le−Lf

+(ε) (1 + o (1))
)
≤ δ,

which proves the first part of Proposition 1.
The second part is proved similarly. For any given

δ > 0,

Pr
(

min
1≤i≤m

1
L
‖hi‖2 ≤ 1− ε

)
= 1− exp

{
m log

(
1− Pr

(
1
L
‖hi‖2 ≤ 1− ε

))}
(a)

≤ 1− exp
{
m log

(
1− e−L(α(1−ε)+log(1−ε))

)}
(b)
= 1− exp

{
m log

(
1− e−L(− log(1−ε)−ε)

)}
(c)
= 1− exp

{
−m̄Le−L(− log(1−ε)−ε) (1 + o (1))

}
≤ δ,

where (a) holds for all α ∈ (−1, 0) (by Chebyshev’s
inequality), (b) follows from setting α = − ε

1−ε , and
(c) follows from the fact that − log (1− ε)− ε > 0 for
ε ∈ (0, 1) and the Taylor’s expansion of log (1− x).

B. Proof of Proposition 2

This proposition is based on the observation that∣∣∣h†ibk∣∣∣ ∼ CN (0, 1) are i.i.d. (1 ≤ i ≤ m, 1 ≤ k ≤ L).
Let B = [b1 · · ·bL]. Then the above observa-
tion is verified by E

[(
B†hi

) (
B†hi

)]
= I, and

E
[(

B†hi
) (

B†hj
)]

= 0 for i 6= j. Note that

Pr
(∣∣∣h†1b1

∣∣∣2 > Lε

)
= e−Lε.

For any given δ > 0, as L is sufficiently large,

Pr
(

max
1≤i≤m,1≤k≤L

1
L

∣∣∣h†ibk∣∣∣2 > ε

)
= 1−

(
1− Pr

(∣∣∣h†1b1

∣∣∣2 > Lε

))mL
= 1− exp

{
m̄L2 (1 + o (1))

· log
(

1− Pr
(∣∣∣h†1b1

∣∣∣2 > Lε

))}
= 1− exp

{
−m̄L2e−Lε (1 + o (1))

}
≤ δ,

which completes the proof.
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C. Signal Energy Calculation

The signal power can be written as

1
L

∣∣∣h†1q1

∣∣∣2 =
1
L

∣∣∣h†1 [p1p⊥1
] [

p1p⊥1
]†

q1

∣∣∣2
=

1
L

∣∣∣h†1p1p
†
1q1

∣∣∣2 +
1
L

∣∣∣h†1p⊥1 (p⊥1 )† q1

∣∣∣2
+

1
L

(
h†1p1p

†
1q1

)(
q†1p

⊥
1

(
p⊥1
)†

h1

)
+

1
L

(
h†1p

⊥
1

(
p⊥1
)†

q1

)(
q†1p1p

†
1h1

)
.

1) Asymptotic Analysis: Here, we prove that
1
Lh†1q1q

†
1h1 → (1− s̄) (1− 2r̄1). It is an application

of the following Lemma 3-5.

Lemma 3: 1
L

∣∣∣h†1p1p
†
1q1

∣∣∣2 → (1− s̄) (1− 2−r̄) .
Proof: We claim that

1
L

∣∣∣h†1p1

∣∣∣2 → 1− 2−r̄

in probability. It is follows from the facts that 1
L ‖h‖

2 →
1 in probability and that v†1p1p

†
1v1 → 1− 2−r̄ (Lemma

2). We shall show that∣∣∣p†1q1

∣∣∣2 → 1− s̄

in probability. Note that p1 and T1 are isotropically
distributed and independent. The statistics of T†1p1 is
the same as that of

1
‖h‖ /

√
L

1√
L

T†1h
′

where h′ ∈ CL×1 is a random Gaussian vector with
independent CN (0, 1) entries. Note that T1 has rank
L−(s− 1) with probability one. T†1h

′ contains L−s+1
i.i.d. CN (0, 1) entries with probability one. It follows
that 1

L ‖h
′‖2 → 1,

1
L

∥∥∥T†1h′∥∥∥2

→ 1− s̄

and ∥∥∥T†1p1

∥∥∥2

→ 1− s̄

in probability. Hence,∣∣∣p†1q1

∣∣∣2 = p†1T1T
†
1p1 → 1− s̄

in probability.
Lemma 4:

1
L

∣∣∣h†1p⊥1 (p⊥1 )† q1

∣∣∣2 → 0

in probability.

Proof: Suppose that p1 is given. Without loss of
generality, assume that p1 = [1, 0, · · · , 0]†4. Let

w := p⊥1
(
p⊥1
)†

h1/
∥∥∥p⊥1 (p⊥1 )† h1

∥∥∥
be the unitary projection of h1 on p⊥1 . Then w has the
form [0, w1, · · · , wL−1]†. We shall show it is invariantly
distributed under the rotation

U1
L :=

[
1
UL−1

]
as follows. Let

H1 := {h1 : q (h1,B1) = p1} .

Note that for any U1
L ∈ U1

L,

q
(
U1
Lh1,U1

LB
)

= U1
Lp1 = p1.

H1 is invariantly distributed under U1
L. Further, p⊥1 is

also invariantly distributed under U1
L. Since w is nothing

but the unitary projection of h1 on p⊥1 , w is invariantly
distributed under U1

L (see also [10]) . Hence, the statistics
of w is the same as that of

√
L− 1∥∥h′L−1

∥∥ 1√
L− 1

[
0

h′L−1

]
where h′L−1 ∈ C(L−1)×1 is a random standard Gaussian
vector. It can be verified that for any given q ∈ CL×1

with unit norm,
1√
L− 1

[
0,h′

†

L−1

]
q→ 0

in probability. Now note that

1
L

∥∥∥p⊥1 (p⊥1 )† h1

∥∥∥2

→ 2−r̄

and
‖h′L−1‖√
L−1

→ 1

in probability. This Lemma is proved.
Lemma 5:

1
L

(
h†1p1p

†
1q1

)(
q†1p

⊥
1

(
p⊥1
)†

h1

)
→ 0

in probability.
Proof: It follows from that

1
L

∣∣∣h†1p1p
†
1q1

∣∣∣2 → c <∞

and
1
L

∣∣∣q†1p⊥1 (p⊥1 )† h1

∣∣∣2 → 0

in probability.

4If p1 does not have the claimed form, we then apply the rotationˆ
p1p⊥1

˜† for some p⊥1 to h1, · · · ,hs and B1, · · · ,Bs. This rotation
gives p′1 = q

`
h′1,B′1

´
= [1, 0, · · · , 0]† but will not change the

analysis.
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2) Finite Dimensional Analysis: For finite dimen-
sional system, we shall show that

E
[

1
L

h†1q1q
†
1h1

]
= D1

s− 1
L (L− 1)

.

This result is proved by combining Lemma 6-9.
Lemma 6: Given p1,

ET1

[∣∣∣p†1q1

∣∣∣2] =
L− s+ 1

L
.

Furthermore,

Eh1,B1

[
1
L

∣∣∣h†1p1

∣∣∣†] = 1−D1.

Proof: Given p1,∣∣∣p†1q1

∣∣∣2 = p†1T1T
†
1p1.

Note that T1 ∈ UL×(L−s+1) with probability one,
is isotropically distributed and independent of p1. By
arguments on the Grassmann manifold [9], it can be
verified that

ET1

[∣∣∣p†1q1

∣∣∣2] =
L− s+ 1

L
.

Lemma 7: Given p1 and p⊥1 ,

ET1

[(
p⊥1
)†

q1q
†
1p
⊥
1

]
=

s− 1
L (L− 1)

IL−1.

Proof: For any given V ∈ UL−1, let

U =
[
pp⊥

] [ 1
V

] [
pp⊥

]†
. (12)

Then U ∈ UL, Up⊥ = p⊥V and Up = p. Let T ∈
UL×(L−s+1) be isotropically distributed and independent
of p and p⊥. Then

ET

[(
p⊥
)† TT†p
‖TT†p‖

(
TT†p
‖TT†p‖

)†
p⊥
]

(a)
= EUT

[(
p⊥
)† TT†p
‖TT†p‖

· · ·
]

= EUT

(Up⊥
)† UT (UT)†Up∥∥∥UT (UT)†Up

∥∥∥ · · ·


(b)
= ET

[(
Up⊥

)† TT†Up
‖TT†Up‖

· · ·
]

= V†ET

[(
p⊥
)† TT†p
‖TT†p‖

· · ·
]
V, (13)

where (a) follows from the fact that T is isotropically
distributed and therefore dµT = dµUT, and (b) follows
from the variable change from UT to T. Since (13) is
valid for arbitrary V ∈ UL−1, ET [· · · ] = cI for some
constant c ≥ 0.

We calculate c as follows. Note that
q†
[
pp⊥

] [
pp⊥

]†
q = 1. Then

c =
1

L− 1
E
[
tr
((

p⊥
)†

qq†p⊥
)]

=
1

L− 1
E
[
q†p⊥

(
p⊥
)†

q
]

=
1− L−s+1

L

L− 1
=

s− 1
L (L− 1)

.

Lemma 8: Given p1 and p⊥1 ,

Eh1,B1

[(
p⊥1
)†

h1h
†
1p
⊥
1

]
=

D

L− 1
IL−1.

Proof: For an arbitrary V ∈ UL−1, let U ∈ UL be
in (12). Then

q (Uh1,UB1) = Uq (h1,B1) = Up1 = p1.

By following the same idea of the proof of Lemma 7,
this lemma is proved.

Lemma 9: Given p1 and p⊥1 ,

ET1

[
p†1q1q

†
1p
⊥
1

]
= 0†

and
Eh1,B1

[
p†1h1h

†
1p
⊥
1

]
= 0†.

Proof: By the same method in Lemma 7 and 8,
for an arbitrary V ∈ UL−1, E [· · · ] = E [· · · ] V, which
holds if and only if E [· · · ] = 0†.

D. Interference Power Calculation

The interference from user j to user 1 can be written
as The signal power can be written as

1
L

∣∣∣h†1qj∣∣∣2 =
1
L

∣∣∣h†1 [p1p⊥1
] [

p1p⊥1
]†

qj
∣∣∣2

=
1
L

∣∣∣h†1p⊥1 (p⊥1 )† qj∣∣∣2 ,
where the last step follows from the construction qj ⊥
p1. The total interference at user 1 is then

1
L

s∑
j=2

∣∣∣h†1p⊥1 (p⊥1 )† qj∣∣∣2 .
1) Asymptotic Analysis: Without loss of generality,

assume that p = [1, 0, · · · , 0]†. We have analyzed the
property of h†1p

⊥
1

(
p⊥1
)†

in the proof of Lemma 4. It has
been shown there that the statistics of 1√

L
h†1p

⊥
1

(
p⊥1
)†

is the same as that of XL
1√
L−1

h′L−1, where

XL =
∥∥∥∥ 1√

L
h†1p

⊥
1

(
p⊥1
)†∥∥∥∥ √L− 1∥∥h′L−1

∥∥ → √2−r̄

in probability and h′L−1 ∈ C(L−1)×1 is a standard
Gaussian vector. Now for any given 2 ≤ j ≤ s, since
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qj ⊥ p1 and ‖qj‖ = 1, the statistics of qj is the same
as that of

√
L− 1∥∥h′′L−1

∥∥ 1√
L− 1

[
0,h′′

†

L−1

]†
,

where h′′L−1 ∈ C(L−1)×1 is another standard Gaussian
vector. h′L−1qj ∼ CN (0, 1). It then can be verified that

1
L− 1

s∑
j=2

∣∣h′L−1qj
∣∣2 → s̄

in probability. Therefore, the total interference converges
to s̄2−r̄ in probability.

2) Finite Dimensional Analysis: It can be shown that
the average interference power is

1
L

tr
(

E
[((

p⊥1
)†

h1h
†
1p
⊥
1

)
·

(p⊥1 )† s∑
j=2

(
qjq

†
j

)
p⊥1

 .

Given p1 and p⊥1 , it can be shown that
s−1∑
j=2

Eh′js,B′js

[(
p⊥1
)†

qjq
†
jp
⊥
1

]
=
s− 1
L− 1

IL−1

by the same technique in the proof of Lemma 7. Com-
bining this fact and Lemma 8, calculates the average
interference power.

E. Proof of Theorem 3

Here, we only prove Theorem 3 by assuming that dµη
contains no mass point. The proof for dµη containing
mass points follows the same line but is much more
complicated and omitted due to the space limitation. For
compositional convenience, we use the following nota-
tions: f (η, s) = log

(
1 + η 1−s

s

)
, f ′ (η, s) = ∂f(η,s)

∂s ,
and y (s) =

∫ +∞
t

f (η, s) dµη where t is given by
inf
{
t :
∫∞
t
dµη < s

}
. When dµη contains no mass

point, (8) is reduced to 0 = y′ (s). To proceed, we need
Lemma 10-12 in below.

Lemma 10:

y′ (s) :=
dy (s)
ds

= f (t, s) +
∫ ∞
t

f (η, s) dµη.

This lemma is proved by elementary calculation.
Lemma 11: If y′ (s) = 0 implies y′′ (s) < 0 on (0, 1),

then one of the following three cases must be true:
1) y′ (x) > 0 on (0, 1) and sup

s∈(0,1)

y (s) = lim
s→1

y (s);

2) f ′ (x) < 0 on (0, 1) and sup
s∈(0,1)

y (s) = lim
s→1

y (s);

3) there exists a unique s∗ ∈ (0, 1) such that y′ (s∗) =
0, and sup

s∈(0,1)

y (s) = y (s∗).

Proof: Since the first two cases are trivial, we only
prove the third case. We shall prove that there exists

a unique s∗ ∈ (0, 1) s.t. y′ (s∗) = 0. The existence is
clear since we have excluded the first two cases. The
uniqueness is proved by constructing a contradiction.
Suppose that there are zi ∈ (0, 1)’s s.t. y′ (zi) = 0. Take
the largest zl < s∗. Since y′′ (zl) < 0 and y′′ (s∗) < 0,
there exists a δ < x∗−zl

2 s.t. y′ (z) < 0 on (zl, zl + δ)
and y′ (z) > 0 on (s∗ − δ, s∗). But this implies that
there exists z′ ∈ [zl + δ, s∗ − δ] s.t. y′ (z′) = 0, which
contradicts the assumption that zl < s∗ is the largest
root of y′ (z).

Lemma 12:

2x
1 + x

+ log2 (1 + x)− 2 log (1 + x) > 0

for all x > 0.
Proof: Let

g (x) =
2x

1 + x
+ log2 (1 + x)− 2 log (1 + x) .

Since g (0) = 0, this lemma is true if g′ (x) > 0 for
x > 0. Note that

g′ (x) =
2

1 + x

(
log (1 + x)− x

1 + x

)
.

We have g′ (x) > 0 on x > 0 if

g̃ (x) = log (1 + x)− x

1 + x
> 0

on x > 0. Since g̃ (0) = 0 and g̃′ (x) = x
(1+x)2 > 0 on

x > 0, g̃ (x) > 0 on x > 0. This lemma is proved.
In order to prove Theorem 3, as the first step, we show

that there exists s∗ ∈ (0, 1) s.t. y′ (s∗) = 0. Note that

y′ (s) = log
(

1 + t
1− s
s

)
−
∫ ∞
t

1
1 + 1−η

η s
· dµη
s
.

It is easy to verify that lims→1 y
′ (s) < 0. Now let s→

0. Since

1 +
1− η
η

s ≥ 1− s,

∫ ∞
t

1
1 + 1−η

η s

dµη
s
≤ 2 as s ≤ 1

2
.

But

lim
s→0

log
(

1 + t
1− s
s

)
=∞.

Then lims→0 y
′ (x) > 0. We conclude that y′ (s∗) = 0

happens for some s∗ ∈ (0, 1).
According to Lemma 11, it is sufficient to prove that

as s ∈ (0, 1), y′ = 0 implies y′′ = 0. Set y′ = 0. Then

log
(

1 + t
1− s
s

)
− 1 +

∫ ∞
t

1− η
1 + η 1−s

s

· dµη
s

= 0.
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Now we calculate y′′.

y′′ =
(
f (t, s) +

∫ ∞
t

f ′ (η, s) dµη

)′
= 2f ′ (t, s) +

∫ ∞
t

f ′′ (η, s) dµη

= −1
s

2t 1
s

1 + t 1−s
s

+
1
s

(
1−

∫ ∞
t

(
1− η

1 + η 1−s
s

)2
dµη
s

)
(a)

≤ −1
s

[
2t 1−s

s

1 + t 1−s
s

− 1 +
(∫ ∞

t

1− η
1 + η 1−s

s

dµη
s

)2
]

(b)
= −1

s

[
2t 1−s

s

1 + t 1−s
s

− 1 +
(

1− log
(

1 + t
1− s
s

))2
]
,

where (a) comes from the fact that t 1
s ≥ t 1−s

s and
Jensen’s inequality, and (b) is from the assumption y′ =
0. Note that t 1−s

s > 0. By Lemma 12, y′′ < 0. The
x∗ ∈ (0, 1) s.t. y′ (s∗) = 0 is therefore unique and
maximizes y.
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