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Bounds on the Throughput Gain of Network
Coding in Unicast and Multicast Wireless Networks

Junning Liu, Dennis Goeckel, and Don Towsley

Abstract—Gupta and Kumar established that the per node
throughput of ad hoc networks with multi-pair unicast traffic
scales with an increasing number of nodes n as λ(n) =
Θ(1/

√
n log n), thus indicating that performance does not scale

well. However, Gupta and Kumar did not consider network
coding and wireless broadcasting, which recent works suggest
have the potential to significantly improve throughput. Here,
we establish bounds on the improvement provided by such
techniques. For random networks of any dimension under either
the protocol or physical model that were introduced by Gupta
and Kumar, we show that network coding and broadcasting lead
to at most a constant factor improvement in per node throughput.
For the protocol model, we provide bounds on this factor. We
also establish bounds on the throughput benefit of network
coding and broadcasting for multiple source multicast in random
networks. Finally, for an arbitrary network deployment, we show
that the coding benefit ratio is at most O(log n) for both the
protocol and physical communication models. These results give
guidance on the application space of network coding, and, more
generally, indicate the difficulty in improving the scaling behavior
of wireless networks without modification of the physical layer.

Keywords: Ad Hoc Networks, Scaling Laws, Network
Coding, Wireless Broadcasting

I. INTRODUCTION

MULTI-HOP wireless networks have been intensively
studied in recent years for both commercial and gov-

ernment applications. Such networks, static or mobile, have
the potential to serve as either a self-contained network that
provides communication without the presence of an estab-
lished infrastructure, or as an ubiquitous bridge between end
users and the high speed wired infrastructure. Hence, issues of
the connectivity and capacity of such networks are of interest.

One major concern with wireless networks is scalability.
Under a traditional communication model without network
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coding, [1] studies the network capacity for randomly de-
ployed wireless networks. For multi-pair unicast traffic, which
means there are multiple unicast source destination pairs that
try to deliver the same data rate across all pairs, [1] shows
that the per node throughputs of such random networks scales
as λ(n) = Θ( 1√

n log n
), where n is the total number of nodes

in the network and each node sends to a randomly chosen
destination at a rate of λ(n). Thus, as the total number of
nodes increases, the pairwise throughput does not scale well.
To increase throughput, mobility [2] or hierarchical cooper-
ation involving physical layer modification [3] can achieve
a constant throughput at a cost of unbounded delay. Liu et.
al. [4] studies hybrid networks with infrastructure support and
finds that the infrastructure has to be sufficiently dense to make
a difference in the asymptotic order of the throughput.

Another thread of work is to study in-network computation.
The work by Ahlswede, Cai, Li and Yeoung [5] introduces the
concept of network coding (NC), and there has been tremen-
dous interest in applying network coding in both wired [6] and
wireless networks [7] [8] [9]. For the wired case, the benefit
of network coding in terms of throughput and capacity is often
limited. Specifically, for networks with bidirectional links that
can be modeled as an arbitrary undirected graph, [6] shows
that the throughput improvement is upper bounded by a factor
of two for the single source multicast case, and upper bounded
by one (no benefit) for the single source unicast or broadcast
case. In addition, it is conjectured that there is no throughput
benefit for the multi-pair unicast case; this is called the Li&Li
conjecture, which is still open with no counter-examples found
yet.

Wireless networks cannot be modeled as undirected graphs.
Network coding, combined with wireless broadcasting, can
potentially improve the performance on throughput [8], [9],
energy efficiency and congestion control [7], [8]. In addition,
recent work by Katti et al. [10] demonstrates the potential
throughput benefit of applying network coding to wireless
networks through constructive examples and experiments.
Since network coding was not taken into consideration in
Gupta&Kumar’s original work [1] and the related works that
followed, an interesting question raised after [10] is how
much throughput benefit can it provide in wireless networks.
Answering this question will help us to better understand not
only the benefit and limitations of network coding on the
capacity of wireless networks and networks in general, but also
the degree of scalability of random wireless networks, thus
providing design guidelines for the coverage ratio between
wireless mesh net and the infrastructure wired net in hybrid
networks.
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Fig. 1. An example demonstrating the benefit of Katti etc. [10]’s oppor-
tunistic coding scheme

The idea of [10] is to use network coding to combine (code
together) data from intersecting flows, and then broadcast this
coded information simultaneously to multiple next hop re-
ceivers. Each next hop relay node for a given flow decodes that
flow’s traffic based on all of the broadcasts that it has received
as well as on local information (source data generated locally).
In this way a node can potentially deliver multiple data flows
to multiple neighbors with a single broadcast transmission.
An example of this is shown in Fig. 1. Thus, intuitively
it appears that there could be a throughput benefit ratio
proportional to the expected number of neighbors, Θ(log n) in
the case of uniformly random deployed networks. However,
we demonstrate in this paper that such an improvement is
not possible for any network coding scheme under either the
protocol or physical models of Gupta and Kumar; in fact,
only a constant improvement in throughput can be achieved.
We further provide bounds on the scalar throughput benefit
ratio under the protocol model. A summary of these results is
provided in Table 1.

Next, our attention is turned to the multiple source multicast
problem in large random networks. For a constant number of
destination nodes nd per each of the ns = n source nodes,
we establish that the throughput benefit of network coding and
broadcasting is again bounded by a scalar. When the number
of source nodes is ns = nε and the number of destination
nodes is nd = n1−ε, the throughput improvement of network

coding and broadcasting is upper bounded by
√

log n
√

n1−ε.

Finally, in addition to asymptotic results that focus on a
randomly deployed network with a large number of nodes,
we also consider a wireless network with an arbitrary nodes
deployment and an arbitrary subset of the nodes as sources
and destinations. Under some stationarity assumptions on the
network coding solution, we show that the coding benefit ratio
is at most a factor of O(log n) in this case for one-dimensional,
two-dimensional, or three-dimensional spaces, where n is the
total number of sources and destinations.

The remainder of this paper is organized as follows. Section
II reviews related work. Section III introduces the physical and
protocol models for randomly deployed networks. Section IV
considers the throughput gain provided by network coding and
broadcasting for multi-pair unicast traffic by establishing the
unicast results in Table 1, whereas Section V considers the
multi-pair multicast case. Section VI considers the gain in
arbitrary networks. Section VII provides the conclusions.

II. RELATED WORK

Here, we briefly review other works that focus on the
throughput benefit provided by network coding (NC) [5] in
various scenarios. For the wired case, the benefit of network
coding in terms of throughput and capacity is often limited.
Specifically, for networks with bidirectional links that can be
modeled as an arbitrary undirected graph, [6] shows that the
throughput improvement is upper bounded by a factor of two
for the single multicast case, and nonexistent for the single
unicast or broadcast case.

Katti et al. [10] demonstrates the potential throughput ben-
efit of applying network coding to wireless networks through
constructive examples and experiments. Alimi et al. [11]
demonstrates by simulations that further throughput gain is
possible through mixed network layer coding and physical
layer superposition coding. Another work by Le et al. [12]
studies [10]’s type of point-to-point XOR coding based on
random access physical layers, where point-to-point coding
means that packets are decoded at each hop before being
forwarded on. [11] provides upper bounds on the maximum
number of packets that can be encoded together.

Under a different definition of the model for an arbitrary
network than considered here, the work of [13] shows that for
single source multicast, coding provides at most a constant
factor improvement on throughput. We hasten to note the
distinction of the arbitrary network model of [13] from that
of Section VI of this paper; in particular, [13] establishes the
constant improvement factor of network coding on transport
capacity when the transport capacity of each of the network
coding and the flow schemes is maximized over all possible
sets of source-destination specifications. In contrast, the re-
sult in Section VI applies to a single given (but arbitrary)
wireless network deployment and set of source-destination
specifications. In [13], a corollary to their main result and
Gupta&Kumar’s former result [1], Corollary 3, shows that
the throughput improvement provided by network coding in
the random network multi-pair unicast case is bounded by a
constant, thus providing an alternate proof for one of our main
results that was originally established in [14].

Finally, there are works subsequent to the preliminary
conference versions of this paper that extend our cut technique
of [14], [15] to other communication models such as multi-
packet reception (MPR), physical layer network coding (PNC)
and analog network coding (ANC) [16], [17], [18], [19], [20].

III. MODEL FORMULATION

We consider the network model of Gupta&Kumar [1],
where n nodes are randomly located, i.e., independently and
uniformly distributed, in a fixed size region. We do not
limit the shape of the region or its dimension. However, for
simplicity of presentation, we derive our results based on a
unit square.

There are n source-destination pairs in the network. Each
node i in the network is a data source that needs to route
its data through multi-hop wireless communications to a
destination node that is independently and uniformly randomly
chosen. The same protocol and physical communication mod-
els are employed as in Gupta&Kumar [1].
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Fig. 2. The protocol communication model

For the protocol model (see Fig. 2), a transmission from
node i to j is successful if and only if the distance between
them satisfies |Xi−Xj| ≤ r(n) and any other simultaneously
transmitting node k satisfies |Xk −Xj| ≥ (1+Δ)r(n). Here,
Xi is node i’s location, r(n) is the transmission radius and
Δ > 0 ensures a safety zone that limits the interference; in
particular, Δ is a constant that depends on the properties of
the wireless medium. In addition, there is a finite bandwidth
limit of W bits/sec for each transmission. In order to ensure
connectivity, the fixed transmission radius for the protocol
model needs to be at least r(n) = Θ(

√
log n/

√
n) [1].

In the physical communication model [1], each transmission
has a fixed power P , and a transmission from node i to j is
successful if the signal to interference plus noise ratio is above
a threshold:

P/rγ
i,j

N + Σk∈KP/rγ
k,j

≥ β (1)

where K is the node set of all other nodes that are simulta-
neously transmitting, N is the ambient noise power level and
β > 0 is the threshold.

The protocol model is a simple abstraction of the real
situation that provides a nice basis for analysis yet captures
the core interference effect of the real network, especially for
asymptotic analysis. The protocol model yields same order
throughput results as the physical model, which is a much
more realistic model that models the signal decaying and
interfering effect in wireless transmissions.

As in Gupta&Kumar [1], attention here is focused on the
data rate at which each node can send to its destination node. A
throughput λ(n) (bits/sec) is feasible if there exists a scheme
that achieves λ(n) on average. The throughput capacity of
such a random network is defined as the maximum throughput
that is feasible with high probability.

Here, transmission schemes correspond to the same type
of “spatial and temporal scheduling schemes that operate the
network in a multi-hop fashion and buffers at intermediate
nodes when awaiting transmissions” as in [1]. Two types of
schemes are considered: a flow scheme and a coding scheme. A
flow scheme is a non-coding scheme where data are routed as
commodity flows (duplication, forwarding, but no coding) and
thus the broadcast nature of the wireless medium is not helpful
for the flow scheme for the unicast task. Gupta&Kumar [1]
focus on the throughput of flow schemes. A coding scheme
is one that allows all of the operations in a flow scheme,

along with allowing messages received at each node to be
decoded/recoded; in other words, intermediate nodes can send
the results obtained from applying arbitrary functions to all
previously received bits and its own source data as long as
each destination node is able to decode the data intended for
it from all of its received bits and local data. Thus all possible
benefits of combining network coding and wireless broad-
casting as demonstrated in Katti etc. [10] are incorporated
in the considered coding schemes. The throughput capacity
is denoted as λF (n) for flow schemes and λC(n) for coding
schemes. The throughput benefit ratio of the coding scheme is
denoted as α(n) = λF (n)/λC(n). As in Gupta&Kumar [1],
all packets are independent of each other whether they are
from different sources or the same source.

IV. THROUGHPUT BENEFIT OF CODING SCHEMES FOR

MULTI-PAIR UNICAST TRAFFIC

In this section, we show that under either the protocol or
physical model, coding schemes provide at most a constant
factor improvement in throughput over flow schemes. In other
words, there exists some constant c (i.e. not dependent on
n) such that α(n) ≤ c. We also derive upper bounds for
the constant factor in the protocol model case. Although
our bounds are most conclusive in the one-dimensional case,
throughout this section we focus on the two-dimensional case
of most general interest, referring the interested reader to [15]
and [21] for the proofs and discussion of the results in Table
1 in other numbers of dimensions.

A. Sparsity Cut for a Random Network

In general, a cut Γ is defined as a partition of the nodes in
a graph, the cut capacity is the sum of the links’ bandwidths
crossing the cut, and the sparsity cut is a cut where the cut
capacity divided by the traffic demand is the minimum over
all cuts. Since the network studied here is a random deployed
network embedded in an Euclidean space and transmissions
are between neighboring nodes, attention can be focused on a
narrow class of cuts that are induced by a line segment that
cuts the region into two regions. The cut length lΓ is defined
as the length of the cut line segment. The cut lines that we
consider have zero width measure such that no nodes lie on
them. Denote the two subregions divided by the cut as Γ1 and
Γ2. A sparsity cut for a random network is defined as a cut
induced by the line segment with the minimum length that
separates the region into two equal area subregions. For the
square deployment region illustrated in Fig. 3, the line segment
AB induces a sparsity cut ΓAB . Since nodes are uniformly
randomly deployed in a random network, such a sparsity
cut captures the traffic bottleneck of these random networks
on average. The cut capacity is defined as (ΛΓ1,2 , ΛΓ2,1)
where ΛΓ1,2 equals the transmission bandwidth W times
the maximum possible number of simultaneous transmissions
(broadcast or non-broadcast) across the cut from Γ1 to Γ2;
and ΛΓ2,1 equals the same quantity from Γ2 to Γ1. This cut
capacity constrains the information rate that the nodes from
one side of the cut as a whole can deliver to the nodes at the
other side as a whole. The number of sources in Γ1 whose
destinations are in Γ2 is denoted as nΓ1,2

.
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Fig. 4. Interference of coding schemes in 2D

B. Throughput Order Improvement of the Coding Scheme in
the Protocol Model

The cut capacity is bounded by deriving an upper bound on
the maximum number of simultaneous transmissions across
the cut. It is easy to see that all of the direct receivers of
transmissions across a cut Γ in one direction lie in the shaded
rectangle region with area lΓ×r(n) as shown in Fig. 3. In [1],
disks of radius Δr(n)/2 centered at each receiver are disjoint;
otherwise, some sender is within (1 + Δ)r(n) of some other
sender’s receiver. However, [1] does not exploit broadcast
transmissions while a coding scheme does. As shown in
Fig. 4, with the consideration of broadcast and network coding,
observe that while disks centered at receivers of the same
sender (broadcast transmission) could overlap, disks centered
at receivers of different senders are still disjoint. In other
words, we make the following observation:

Observation 1: The union of disks (with radius Δr(n)/2)
centered at the receivers of one transmission should be disjoint
from the union of disks centered at the receivers of another
transmission.

Lemma 1: The capacity of a cut Γ for a 2D region has an
upper bound of cΔlΓW

r(n) where cΔ = max { 16
πΔ2 ,

√
3

Δ }
Proof: When Δ < 2, Observation 1 means each transmis-

sion across the cut consumes at least an area of 1
4π(Δr(n)

2 )2

of the shaded region in Fig. 3, with the minimum achieved
when a receiver lies in the corner of the shaded region. Thus,

)(
2

3
nr⋅Δ≥

A
r(n)

)(nrΔ

B

When Δ ≥ 2

Fig. 5. 2D Cut capacity: Δ ≥ 2 case

the maximum number of simultaneous transmissions across
the cut is upper bounded by the area of the shaded region
divided by 1

4π(Δr(n)
2 )2, which is 16lΓ

πΔ2r(n) .
When Δ ≥ 2, as shown in Fig. 5, any two receivers of

two different transmissions require a
√

3
2 Δr(n) difference in

their coordinates along the cut line. Thus, there can be at most
lΓ√

3Δr(n)/2
+1 ≤

√
3lΓ

Δr(n) simultaneous transmissions across the
cut.

Since each transmission is able to send W bits/sec, com-
bining the two cases above, the cut capacity is upper bounded
by ΛΓ1,2 ≤ cΔlΓW

r(n) and ΛΓ2,1 ≤ cΔlΓW
r(n) , where cΔ =

max { 16
πΔ2 ,

√
3

Δ }.
Corollary 1: The sparsity cut capacity of a 2D random

network has an upper bound of cΔW/r(n).
Proof: Regardless of the shape of the unit area region, the

sparsity cut must have a length lΓ ≤ 1, as follows. Cuts that
divide the region into two equal parts will pass through the
centroid of the region. Hence, if the sparsity cut has length
greater than one, all cuts across the centroid have a length
larger than 1 and the area of the region will be bigger than
1, which contradicts the unit area assumption. Hence, from
Lemma 1, we derive the corollary.

Next we derive an upper bound for the throughput of all
coding schemes in a 2D random network.

Theorem 1: The throughput of coding schemes in a 2D
random network is upper bounded by Θ( W

nr(n) ) = Θ( W√
n log n

)
Proof: Assume the coding throughput of the n node

random network is λC(n). Then, by its definition, with high
probability (w.h.p.) there exists some coding scheme that, for
some T < ∞, during each time interval [(i − 1)T, iT ] (in
seconds), every node can send TλC(n) bits of information to
its corresponding destination node. For a sparsity cut ΓAB in
the middle, by a Chernoff bound [22] argument, we have that
w.h.p. there are Θ(n) pairs of source-destination nodes that
need to cross ΓAB in one direction, i.e., nΓ1,2

= nΓ2,1
= Θ(n)

w.h.p.. Now we view all of the nodes lying on the right side
of AB as a super node, and treat all of the distinct messages
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it receives from the left side of AB within the time interval
[(i − 1)T, iT ] as a single ‘meta’ message M . We denote the
number of bits of M as BM . According to the definition of
our coding scheme, this meta message M can be arbitrarily
coded but with only one coding constraint: by Shannon’s
data compression theorem [23], in order for the right side
destination nodes to decode the original data from the left
side sources which are independent of each other, M has to
satisfy BM ≥ TnΓ1,2

λC(n) or BM ≥ TΘ(n)λC(n) w.h.p..
At the same time, we derive an upper bound on BM with

the support of Corollary 1. A broadcast transmission across
the cut to multiple receivers delivers identical information to
the receivers; however, by the definition of M , the identical
messages will only be counted once in M for one of the
receivers. Also by the definition of cut capacity and Corollary
1, we get BM ≤ cΔWT/r(n). Combined with the coding
constraint above, we derive λC(n) ≤ cΔW

Θ(n)r(n) w.h.p.. Since
r(n) is at least Θ(

√
log n/

√
n) to ensure connectivity [1], and

throughput is defined as a high probability quantity, we have
λC(n) ≤ cΔW/Θ(

√
n log n).

Theorem 2: The 2D throughput benefit ratio is upper
bounded by a constant: α(n) = Θ(1).

Proof: Gupta&Kumar [1] already establishes a lower
bound for the throughput of flow schemes, λF (n) ≥
Θ( c1W

(1+Δ)2
√

n log n
) where c1 > 0 is a constant. Combined

with Theorem 1, we get α(n) = λC(n)/λF (n) ≤ Θ(1).
Meanwhile, since the set of coding schemes includes all flow
schemes, α(n) ≥ 1, thus α(n) = Θ(1).

Observe that the constant throughput benefit ratio holds
for a random network deployed in any arbitrarily shaped
region. First, the upper bound for the throughput of the coding
scheme still holds. Second, the constructive lower bound
of Gupta&Kumar [1] can in fact be extended to arbitrarily
shaped regions, even though the asymmetry may cause the
constructive scheme in [1] to have a skewed load distribution
for some cut. Since the region is of fixed finite area, the
throughput loss due to the asymmetric shape will be a fixed
constant factor as n increases. Thus, we have shown that
network coding combined with wireless broadcast provides
no order-different improvement on the throughput of a random
network deployed in any arbitrarily shaped 2D region.

C. Bounds on the Throughput Benefit Ratio α in the Protocol
Model

Our technique for bounding the constant α is similar to
those we used in Subsection IV-B. We will first provide a
tighter upper bound for the capacity of the sparsity cut and
thus the coding scheme throughput λC(n); then, we construct
a tighter lower bound for the flow scheme throughput λF (n).

Define the two way cut capacity as the maximum possible
number of bits that can cross the cut concurrently, regardless
of direction. Note that an upper bound for the two way cut
capacity is automatically an upper bound for the one way cut
capacity.

Henceforth, the notation AB will refer to the line segment
between A and B, where A and B are points in the network
deployment space, and |AB| refers to the distance between A
and B.

Lemma 2: The two way capacity of a cut Γ for a 2D region
is upper bounded by W ( lΓ

Δr(n) + 1)
Proof: See Appendix A.

Theorem 3: The throughput of the coding scheme on a 2D
square random network is upper bounded by

λC(n) ≤ 2W

n

(
1

Δr(n)
+ 1

)
.

Proof: The proof is almost the same as that of Theorem
1, except that now we use the tighter bound for cut capacity
in Lemma 2, and we prove this by showing that for any given
constant ε > 0, λC(n) ≤ 2W

n(1−ε) (
1

Δr(n) + 1) for large n.
Theorem 4: The throughput of the flow scheme on a 2D

square random network is lower bounded by

λF (n) ≥ W

cΔ4
√

π(1 + Δ)nr(n)

where cΔ4 = max{2,
√

Δ2 + 2Δ}.
We use a similar technique as [24] that divides the area

into deterministic squarelets, but [24]’s focus is an alternative
proof of Gupta &Kumar’s capacity order result [1] while we
try to bound the constant factor here.

Proof: We show that, for any given constant ε > 0,
λF (n) ≥ W

cΔ4
√

π(1+Δ)(1+ε)nr(n)
for large n.

For the case of Δ < 1, we choose a larger transmission
radius r′(n) =

√
π√

Δ2+2Δ
r(n) than the r(n) required for

connectivity. We then divide the square region into square
cells of size

√
πr(n) × √

πr(n). By the same union bound
argument as in [25], with high probability each square cell
contains at least one node.

Locate the X axis on one edge of the square, and the Y axis
on the edge perpendicular to the first. We construct a scheme
that is a natural extension of the 1D scheme described in
detail in [15] and [21]. Set the transmission radius to r′(n),
and route along cells that lie on a line parallel to either the
X axis or Y axis. The scheduling and routing along parallel
lines to the axis has a phase for scheduling data routed to a
cell header node that can be randomly chosen in each cell
and a phase for scheduling routing between cell headers. The
scheduling is evenly distributed along the line. See [15] and
[21].

To deal with the interference between the parallel lines of
routing, we do time division multiplexing between the lines.
Time is slotted and assign half of the time to transmitting
data along lines parallel to X , and the rest of the time to
transmitting data along lines parallel to Y . In addition, only
transmissions along every other line are scheduled at a given
time, while the other lines remain silent. Thus, each line is
scheduled to transmit every 4 time slots. Data is routed parallel
to the X axis until it reaches a cell that is in the same Y line as
the destination cell; then, it starts to route along a line parallel
to the Y axis.

We can show by a Chernoff bound and union bound, the
load among lines is asymptotically balanced (equally loaded);
more specifically, with high probability the ratios of the loads
between all pairs of lines is arbitrarily close to 1 for large n.
Then, using analogous results from the 1-D case [15], [21],
we evaluate the cut capacity utilization level and derive the
lower bound, λF (n) ≥ W

2
√

π(1+Δ)(1+ε)nr(n)
for large n.
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For the case Δ > 1, we choose r′(n) =
√

πr(n). Again,
time is slotted and now each line is scheduled to transmit every
2
√

Δ2 + 2Δ time slots lines instead of every two lines. Thus
a throughput of W√

Δ2+2Δ
√

π(1+Δ)(1+ε)nr(n)
is achievable for

this case. Combining these two cases proves the theorem.
Theorem 5: The throughput improvement of the flow

scheme on a 2D square random network is upper bounded
by

α(n) ≤ 2cΔ4

√
π

(1 + Δ)
Δ

for large n, where cΔ4 = max{2,
√

Δ2 + 2Δ}
Proof: This result follows from Theorems 3 and 4.

D. Throughput Order Improvement of the Coding Scheme in
the Physical Model

Denote the coding scheme and flow scheme throughputs
under the physical model as λp

C(n) and λp
F (n) correspond-

ingly. We assume β > 1 in (1) which is true for most wireless
communication systems. Under the physical model, receivers
could lie in a line vertical to the cut line. However, there are
still certain geometric properties that the transmissions need
to satisfy. We have the following lemma, which is actually
also true under the protocol model.

Lemma 3: Under both the physical and protocol models,
for any two transmissions across a cut, S1 → R1 and S2 →
R2

1, the line segments S1R1 and S2R2 have no intersection
point and S1S2 cannot be perpendicular to the cut line.

Proof: The proof is similar to that of Lemma 5. Now
we connect S1S2, and draw the perpendicular bisector h of
S1S2. For any communication model, protocol or physical,
|S1R1| < |S2R1|, |S2R2| < |S1R2| is always true. Thus S1

and R1 lie on one side of h, and S2 and R2 lie on the opposite
side. So S1R1 and S2R2 can never intersect (this is in general
true for any two transmissions, not necessarily two across a
cut). Now, if S1S2 is perpendicular to the cut line, h is parallel
to the cut line. Then, since S1 and R1 lie on one side of h
and S2 and R2 the other, one of the transmissions would not
cross the cut. Thus, S1S2 cannot be perpendicular to the cut
line.

Theorem 6: The coding throughput of a 2D random net-
work under the physical model is upper bounded by

λp
C(n) ≤ Θ(W/

√
n)

for large n.
Proof: As shown in [1], (1) implies that

rk,j ≥ (1 + Δ)ri,j (2)

for all k ∈ K , where K is the node set of all other nodes
that are simultaneously transmitting and Δ = β

1
γ − 1. Since

β > 1, we always have Δ > 0.
Under the physical model, nodes can transmit with any hop

distance r so long as the signal to noise ratio is satisfied. We
order the transmissions across the cut in one direction in the
same way as in Lemma 6. Now, senders are on one side of the
cut line since we focus on the one way cut capacity. Applying

1Note that each transmission could have multiple receivers, we just pick
any one of them.

Lemma 3 and (2), we argue in a similar way as Lemma 2. We
have Sj(x) − Sj−1(x) ≥ Δ min{rj , rj−1} for j = 2, . . . , m
where m is the total number of transmissions across the cut
in one direction and rj = |SjRj |. The sparsity cut line has
unit length; thus, we have

Σm
j=2 min{rj , rj−1} ≤ 1/Δ. (3)

Consider a band region of size 2√
n
×|AB| with the cut line in

the center; by a Chernoff bound argument, we know that with
high probability the number of nodes in this region is less than
or equal to 3

√
n; thus, there are at most 3

√
n transmissions

with a radius less than 1√
n

across the cut. Then there are at
least m−9

√
n transmissions crossing the cut such that any one

of them has Sj′Rj′ satisfying min{rj′ , rj′−1, rj′+1} ≥ 1√
n

.
Then, by (3), we have

(m − 9
√

n)
1√
n
≤ 1

Δ
⇒ m ≤ Θ(

√
n).

Thus, we obtain an order upper bound for the sparsity cut
capacity, and then derive an upper bound for the coding
throughput in the same way as we did for the protocol model
in Theorem 3.

Theorem 7: (Franceschetti et al. [26]) For any wireless
medium with γ > 2, the flow throughput of a 2D physical
random network is lower bounded by

λp
F (n) ≥ Θ(W/

√
n)

for large n.
Theorem 8: For any wireless medium with γ > 2, the

throughput benefit ratio of a 2D physical random network
is a constant, and λp

F (n) = λp
C(n) = Θ(W/

√
n).

Proof: This follows from Theorems 6 and 7.
Thus, we have established that coding schemes provide no

more than a constant factor throughput improvement over flow
schemes for the physical communication model.

V. THROUGHPUT BENEFIT BOUND FOR MULTI-SOURCE

MULTICAST

For flow schemes, [27] shows the capacity for single session
multicast and [28] shows the multicast capacity for multiple
source multicast. To our knowledge, there has been no study
on the benefit of network coding on multiple source multicast
in wireless networks.

We use the same random deployment model as in previous
sections and focus on the protocol communication model.
There are ns sources randomly chosen from the n nodes, and
each is a source for nd randomly chosen destination nodes.
We still use λF (n) and λC(n) to denote the flow and coding
throughput per session, respectively, with the modification
that, in the multicast case, each session’s throughput is the
data rate to each of the nd receivers from the source.

First we study the case when ns = n and nd = Θ(1),
and we show that network coding provides at most a constant
factor gain in this case. Then we study the case when ns = nε

and nd = n1−ε and upper bound the network coding benefit
ratio for both 1D and 2D networks.

The following theorem that bounds the coding gain in
multicast networks is a direct corollary of Theorem 1.
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Theorem 9: The multicast coding gain of a random network
with n sources each with Θ(1) random destinations is upper
bounded by a constant.

Proof: The cut technique employed in the unicast case
is still valid. So Theorem 1 holds. In addition, if we treat
each session’s Θ(1) receivers as Θ(1) independent unicast
sessions from the source, then a lower bound of the same
order is established for the throughput of the flow scheme
from Gupta&Kumar’s result. Thus, when nd = Θ(1), we have
α(n) = Θ(1).

Now we consider the case when ns = nε and nd = n1−ε, as
in [28]. We consider two cases here: 1D and 2D networks. The
1D deployment makes the routing combinatorics much sim-
pler and we are able to derive tight bounds on the throughput
and, thus, coding benefit ratio.

Theorem 10: The multicast coding gain of a 1D random
network with nε sources each with n1−ε random destinations
is upper bounded by 1+Δ

1+Δ/2 .
The proof applies the same argument as in Theorem 5 and 6

of [15], with the only difference being that, instead of having
roughly n/4 sources that need to cross the sparsity cut, now
w.h.p. we will have close to nε/2 sources that need to cross
the sparsity cut. The reason is that as n become large, the
n1−ε receivers for each source guarantees that each source
must send traffic across the sparsity cut. Thus, with the same
argument as in Theorems 5 and 6 of [15], we obtain λF (n) =

W
(1+Δ)nε , λC(n) = W

(1+Δ/2)nε and α(n) = 1+Δ
1+Δ/2 .

For the 2D networks, we use two techniques to upper bound
the coding throughput. First notice that Lemma 1 still holds.
Applying the same proof as in Theorem 1 with Θ(nε) sources
that need to cross the cut, we have

λC(n) ≤ Θ
(

W

nεr(n)

)
(4)

The second technique bounds the coding benefit ratio
through an information distance metric.

Lemma 4: The network coding benefit ratio, α(n), for a
multicast random wireless network with ns = nε, nd = n1−ε

is α(n) = O(r(n)
√

n
√

log n)
Proof: We need a lowerbound on λF (n) and an upper-

bound on λC(n). It has been shown in [28] that

λF (n) = Θ
(

1√
nε log n

)

Thus we focus on λC(n).
Any coding scheme disseminates data from ns mutually

independent sources to the nsnd destinations. With high
probability, each bit of data must traverse a distance that
is at least L(nd) = Θ(

√
nd). Although established in the

context of flow schemes, [28], it holds more generally for
any coding scheme. The potential benefit of network coding
is that one transmission can potentially deliver information to
more than one node. In particular, one coding transmission
potentially delivers information to O(nπr2(n)) nodes (whp),
where the distance to a neighbor is at most r(n). Thus each
transmission contributes O(nr3(n)) bit.meters (whp). As the
total number of simultaneous transmissions is upperbounded
by 1/(πr2(n)), the total number of bit.meters accumulated
in one transmission interval is O(nr(n)) (whp). Now, λC(n),

the coding scheme throughput, equals the ratio of number of
bit.meters produced per session per unit time divided by the
number of meters that a bit must traverse. Thus

λC(n) =
O(nr(n))
nsL(nd)

=
O(nr(n))
nsΘ(

√
nd)

= O(r(n)
√

n1−ε)

This coupled with the expression for λF (n) above yields the
desired result.

Theorem 11: The network coding throughput gain is upper

bounded by O(
√

log n
√

n1−ε) for randomly deployed 2D
wireless networks.

Proof: [28] shows that the flow throughput is
Θ( W√

nε log n
). Combined with (4), this yields an upper bound

on the coding scheme benefit ratio, α(n) = O(
√

log n√
nεr(n)

).
On the other hand Lemma 4 provides another upper bound,
α(n) = O(r(n)

√
n
√

log n). Thus,

α(n) = min
{

O(
√

log n√
nεr(n)

), O(r(n)
√

n
√

log n)
}

. (5)

The order of this upper bound is maximized when r(n) =
Θ(n− 1+ε

4 ). Si nce the coding benefit ratio is the maximum
coding benefit over all possible r(n)s, we app ly r(n) =
Θ(n− 1+ε

4 ) to (5) and get an upper bound for the coding

throughput benefit ratio as O(
√

log n
√

n1−ε).

VI. THROUGHPUT BENEFIT BOUND FOR ARBITRARY

NODE DEPLOYMENTS

We begin by first reviewing results from wireline networks
that will be employed below. A wireline network can be
represented by a graph, and the min cut of the graph induces
an upper bound on the throughput. Given an arbitrary directed
graph, Leighton and Rao [29] show that, the max flow for
several variations of the multicommodity flow problem on a
wireline network is within an O(log n) factor of the upper
bound implied by the min-cut, where n is the total number of
nodes in the network. We first review the result in [29] in the
context of our application, state the necessary assumptions,
and then state and prove our result.

Consider a directed graph G(V, E), where V is the vertex
set and E is the edge set. There is a capacity ce associ-
ated with each edge e ∈ E. Let S ⊆ V denote a set
of vertices generating demands and assume equal demands
D(u, v) = 1 (without loss of generality) for all u, v ∈ S,
u 
= v. Define a cut to be (U, Ū) where Ū = V \U 
= ∅.
Let 〈U, Ū〉 = {(vi, vj)|vi ∈ U, vj ∈ Ū}. The cut capacity
is defined as C(U, Ū) =

∑
e∈〈U,Ū〉 ce. Let D(U, Ū) =∑

u∈U∩S

∑
v∈Ū∩S 1 denote the aggregate traffic demand be-

tween sources in U and destinations in Ū . We use the term
sparsity to denote C(U, Ū)/D(U, Ū). Define the minimum
sparsity ξ of G as

ξ = min
U⊂V

C(U, Ū)
D(U, Ū)

, (6)

and, as before, a sparsity cut Γs refers to a cut that has the
minimum sparsity. A consequence of Theorem 17 in [29] is
that the maximum flow for the multicommodity flow problem
is within a log n factor of the sparsity cut where n denotes
the size of S.
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We now focus on a wireless network. Let V ′ denote the
set of nodes, S′ denote the set of source/destinations with
cardinality n. Let ΥC denote a specific network coding scheme
that determines when nodes are allowed to transmit, what data
is coded and decoded, and what routes data takes. Define a
node set m as v’s neighbor receiver set if nodes in m are all
the sucessful receivers of some broadcast transmissions from
v under ΥC . Let N(v) denote the set of all neighbor receiver
sets that node v ∈ V ′ has successfully broadcast data to under
ΥC , m ∈ N(v). Let {Au,v(t)} denote the arrival process for
source u and destination v, u, v ∈ V ′, i.e., Au,v(t) denotes the
number of bits that arrive at u destined for v in the interval
[0, t). Last, let Ru,v(t) denote the number of bits decoded by
v ∈ V ′ that originated from u ∈ V ′. We make the following
assumptions regarding ΥC and {Au,v(t)}:

1) Long term per session arrival rates exist and without
loss of generality, are equal to one,

lim
t→∞

Au,v(t)
t

= 1, ∀u, v ∈ S′

2) Network conservation of flow, in other words

lim
t→∞

Ru,v(t)
t

= 1, ∀u, v ∈ S′

3) The long-term data rate broadcasted from a node to
each of its neighbor receiver sets exists. In particular,
let bu,m(t), denote the total amount of data delivered by
broadcast transmissions from u to the neighbor receiver
set m ∈ N(u) by time t under ΥC .

cu,m = lim
t→∞

bu,m(t)
t

, ∀u ∈ V ′; m ∈ N(u)

Theorem 12: Whenever a network coded network satisfies
the assumptions above, there exists a flow-based network that
can achieve source destination throughputs within a factor of
log n of those of the network coded network.

Proof: We first map the coding network into a directed
graph, and then apply the Leighton/Rao result to prove the
theorem.

Consider coding scheme ΥC . Focus on node u ∈ V ′. For
each neighbor receiver set m ∈ N(u) such that cu,m > 0,
create a virtual node vu,m and add a directed edge (u, vu,m)
with capacity cu,m and infinite capacity edges (vu,m, v), ∀v ∈
m.

Denote the resulting directed graph G0 = (V0, E0) and take
the same set of sources and destinations to be S′. Given that
the flow rate out of the network equals the flow rate in, it
follows that the minimum sparsity, ξ ≥ 1. By Theorem 17 of
[29], there exists a multicommodity flow routing solution ΥF

that achieves per session rates of Ω(ξ/ log n) = Ω(1/ logn).
This solution determines how flow is routed though the net-
work. The method used to construct the directed graph based
on {cu,m : m ⊆ N(u); u ∈ V ′} guarantees the existence of
schedules at all nodes to support this routing scheme.

Note that if we change the traffic demand assumption to be
symmetric only, i.e., D(u, v) = D(v, u), then based on the
O(log3 n) max-flow min-cut result established in [30], [31]
and following the exact same proof above, we show that the
flow based scheme can achieve throughputs within a factor of
log3 n of those of the network coding scheme.

VII. CONCLUSIONS

As summarized in Table I, under the random network
framework of [1], we have shown that the network coding
and broadcasting benefit is upper bounded by a constant in
the multiple unicast scenario for both the protocol model and
the physical model, and we have bounded this constant for the
protocol model. The bounds on the constant are still loose,
and we suspect that the constant factor is quite a bit smaller;
specifically, we conjecture it is 2, and proving it even partially
may involve solving the well-known Li&Li conjecture [6],
which is still open. The reason for conjecture that the gain is
2 is because network coding can only potentially improve the
outgoing information rate from a node, while the incoming
information rate is still constrained as previously, and the
information flow conservation law requires a balance between
outgoing and ingesting rate at a node. Bounds on the benefit
of network coding and broadcasting in the multiple source
multicast case and for the multiple unicast case in an arbitrary
network have also been presented.

Our work, combined with the previous work of [6], is
negative about network coding’s utility for improving network
capacity. However, in general, we believe that what we have
learned is not that network coding is not helpful, but rather
better guidance on where network coding’s true advantage lies.
We feel the key utility of network coding lies in its ability
to blur the information’s identities. For communication in
lossy, unstable, dynamic environments (e.g. Delay/Disruption
Tolerant Networks (DTN)), distributed storage/recoveries in
disaster, fault-tolerant situations (e.g. growth codes [33]) etc.,
network coding’s ability to blur the information identities can
help to balance out the risks and redistribute them uniformly
across all packets, which could benefit the delay, reliability and
robustness of the system. If we think about the capacity benefit
of network coding on directed graphs, the benefit essentially
also comes from its ability to blur the information identity.
For our case of bidirectional wireless networks modeled as
using lossless communication channels, even though network
coding is able to blur the information identities, the overall in-
formation content cannot be compressed with network coding
and thus the capacity gain for this case is limited.

APPENDIX

A. Proof of Lemma 2

Lemma 5: For any two transmissions across a cut, S1 →
R1 and S2 → R2

2, the line segments S1R1 and S2R2 do not
intersect and R1R2 cannot be perpendicular to the cut line.

Proof: As shown in Fig. 6, draw the perpendicular
bisector h of R1R2. By the protocol communication model,
we know |S1R1| ≤ |S1R2| and |S2R2| ≤ |S2R1|. Thus
S1 and R1 lie on one side of h and S2 and R2 lie on the
opposite side. Hence S1R1 and S2R2 cannot intersect. If
R1R2 is perpendicular to the cut line, as we see in Fig. 6,
then h is parallel to the cut line. Therefore, one of the
senders must lie at the same side of the cut line as the
receiver, contradicting the assumption of the lemma. Thus,
R1R2 cannot be perpendicular to the cut line.

2Note that each transmission could have multiple receivers, we just pick
any one of them.
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TABLE I
ASYMPTOTIC CAPACITY RESULTS FOR NETWORK CODING AND FLOW SCHEMES IN RANDOM NETWORKS, WHERE W BITS/SEC IS THE BANDWIDTH

LIMIT FOR EACH TRANSMISSION, Δ IS A CONSTANT THAT DEPENDS ON THE PROPERTIES OF THE WIRELESS MEDIUM, cΔ4 = max{2,
√

Δ2 + 2Δ},
cΔ3 = min{ 192

πΔ3 , 256√
3πΔ2 }.

Model Flow Throughput λF (n) Coding Throughput λC(n) Benefit ratio α(n) =
λC(n)
λF (n)

Unicast Protocol Model

1D 2W
(1+Δ)n

2W
(1+Δ/2)n

1+Δ
1+Δ/2

2D ≥ W
cΔ4

√
π(1+Δ)nr(n)

≤ 2W
n(1−ε)

( 1
Δr(n)

+ 1) ≤ 2cΔ4
√

π 1+Δ
Δ

3D Θ( W
(1+Δ)2

√
n log n

) [32] ≤ cΔ3W

nr(n)2
Θ(1)

kD Θ( W
k
√

n log k−1n
) Θ( W

k
√

n log k−1n
) Θ(1)

Unicast Physical Model 1D Θ(W
n

) Θ(W
n

) Θ(1)

2D Θ( W√
n

) [26] Θ( W√
n

) Θ(1)

Multicast Protocol Model 1D W
(1+Δ)nε

W
(1+Δ/2)nε

1+Δ
1+Δ/2

2D Θ(W
√

n1−ε√
n log n

) ≤ min{O
“

W
nεr(n)

”
, O(W

√
n1−εr(n))} O(

q
log n

√
n1−ε)

X

R1R2

S1 S2

R1

S1
S2

R2

R1

S1

S2

R2

Cut line

no intersecting 
transmissions

no receivers in a line 
vertical to the cut 

line

Y

A

h

h

Not  allowed

Fig. 6. Geometric properties of transmissions across a cut

Next, we construct a coordinate system for a cut AB. Let
A be the origin, the line of AB be the X axis, and a line
perpendicular to AB be the Y axis (see Fig. 7). We denote
the X coordinate of a node R by R(x). Order all of the
simultaneous transmissions across the cut by their intersecting
points with the X axis (the cut line), from small X coordinates
to large ones. Label the sender-receiver pairs of the ordered
transmissions as S1 → R1, S2 → R2, . . ., Sm → Rm, where
m is the total number of scheduled simultaneous transmis-
sions across the cut. Denote Xk = max{Sk(x), Rk(x)} for
1 ≤ k ≤ m and X0 = 0.

Lemma 6: Xk − Xk−1 ≥ Δr(n) for all 2 ≤ k ≤ m.
Proof: W.l.o.g., consider the first two consecutive trans-

missions in the ordered list S1 → R1 and S2 → R2. By
Lemma 5, we know R2(x) > R1(x); otherwise the ordering
should be switched.

Scenario 1: We first consider scenario 1 as shown in Fig. 7,
where the senders are on one side of the cut and the receivers
are on the other. Fig. 7 shows the case for S1(x) ≤ R1(x).
There are two possibilities for R2(y): either R2(y) ≤ R1(y)
or R2(y) > R1(y).

When R2(y) ≤ R1(y), from the facts that |S1R2| ≥ (1 +
Δ)r(n), |S1R1| ≤ r(n), S1(x) ≤ R1(x) and S1(y) < R1(y)
we easily get R2(x) − R1(x) > Δr(n); thus, X2 − X1 >
Δr(n).

When R2(y) > R1(y) as shown in Fig. 7, we look at the tri-

X

R1

S1 S2

)()1( nrΔ+≥

≤ r(n)

R2

θ

Cut line
E

F

φ

Y

A

Fig. 7. Tighter bound for packing transmissions across a cut: Scenario 1

angle R1R2S2. By the protocol model, |R1S2| ≥ (1+Δ)r(n),
|R2S2| ≤ r(n). From R2, drawing R2F⊥R1S2 where F
resides on R1S2, we have |R1F | ≥ |R1S2|−|R2S2| ≥ Δr(n).
Note that F has to lie between R1 and S2, since φ < 90o

(because |R1S2| > |R2S2|). Now, from R1 draw a line R1E
parallel to the X axis, and from R2 draw R2E perpendicular
to R1E and intersecting with R1E at E. It is easy to see
that |R1E| = R2(x) − R1(x). Since S2(y) < R1(y), θ < φ.
Thus |R1E| > |R1F |; then, R2(x) − R1(x) > Δr(n) and
X2 − X1 > Δr(n).

Combining these two cases, yields X2 − X1 > Δr(n) for
the situation when S1(x) ≤ R1(x). A similar argument applies
when S1(x) > R1(x).

Scenario 2: The other scenario is when the two senders are
on different sides of the cut. This scenario divides into two
cases.

Case a): When S2(y) > R1(y), as shown in Fig. 8, using
a similar argument we can show |R1E| > |R1F | > Δr(n);
thus, X2 − X1 > Δr(n).

Case b): Fig. 9 shows the other case, when S2(y) ≤
R1(y). We deduce from the figure that S2(x) − R1(x) ≥√

Δ2 + 2Δr(n) > Δr(n).
By the axis symmetry of the cut line and sender-receiver

symmetry we have X2 − X1 > Δr(n) for this scenario.
Combining Scenario 1 and Scenario 2, and noting that

S1R1 and S2R2 are an arbitrary adjacent pair of transmissions
anywhere in the ordered list {· · · , SkRk, · · · , 1 ≤ k ≤ m},
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X

R1

S1

S2

)()1( nrΔ+≥

≤ r(n)

R2

θ
Cut line

E

F

φ

Fig. 8. Tighter bound for packing transmissions across a cut: Scenario 2
case a

X

R1

S1

S2

)()1( nrΔ+≥

≤ r(n)

R2

Cut line G

( ) )(22 nrΔ+Δ≥

Fig. 9. Tighter bound for packing transmissions across a cut: Scenario 2
case b)

the Lemma is proved.
Applying Lemma 6 to the fact that

∑
1≤k≤m(Xk−Xk−1) ≤

lΓ yields Lemma 2.
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