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Abstract—In this work, we give good concatenated code as the number of accumulators increase. In the limit of
ensemblfes for the blnary erasure channel (BEC). In particidr, infinitely many accumulators, it was shown in [5] that thg,
we consider repeat multiple-accumulate (RMA) code ensembs approaches the Gilbert-Varshamov bound (GVB). Recently,

formed by the serial concatenation of a repetition code with . . .
multiple accumulators, and the hybrid concatenated code (&C) Kliewer et al. [10] and Fagnani and Ravazzi [11,12] showed

ensembles recently introduced by Kolleret al. (5th Int. Symp. independently that RMA code ensembles are asymptotically
on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting good, in the sense that their typieal;, asymptotically grows

of an outer multiple parallel concatenated code serially cocate- |inearly with the block length. A method for the calculation
nated with an inner accumulator. We introduce stopping sets of a lower bound on the growth rate coefficient was also
for iterative constituent code oriented decoding using maxnum . - . . .

a posteriori erasure correction in the constituent codes. We given in [10]. The sgme principle was applied in [8,9] to
then analyze the asymptotic stopping set distribution for MA  HCC structures. In this work, when we speak about HCCs we
and HCC ensembles and show that their stopping distance mean the HCC structures from [8], even if this is not exdicit
hmin, defined as the size of the smallest nonempty stopping set,stated.

asymptotically grows linearly with the block length. Thus, these In iterative decoding for the binary erasure channel (BEC),

code ensembles argood for the BEC. It is shown that for RMA . AV
code ensembles, contrary to the asymptotic minimum distarec stopping set distributions play an analogous role to that of

dmin, Whose growth rate coefficient increases with the number of the distance spectra in maximum-likelihood (ML) decoding.
accumulate codes, thehmin growth rate coefficient diminishes Stopping sets for iterative belief-propagation (BP) décgd
with the number of accumulators. We also consider random of LDPC codes were introduced by Bt al.in [14]. In [15],
puncturing of RMA code ensembles and show that for sufficiedy  pognes and Ytrehus adapted the concept of stopping sets to
hl_gh code rates, the asymptotichmin does not grow linearly turbo d di d introd d turbo st . ts. Al
with the block length, contrary to the asymptotic dmin, Whose urbo eco. _Ing ana in ro_ uce_ urbo stopping sets. AlSo, an
growth rate coefficient approaches the Gilbert-Varshamov bund ~ €xact condition for decoding failure on the BEC was stated as
as the rate increases. Finally, we give iterative decodingitesholds  follows. Apply turbo decoding until the transmitted codedo
for the different code ensembles to compare the convergencehas been recovered, or the decoder fails to progress further
properties. Then the set of erased positions that remain when the decoder
Index Terms—Asymptotic stopping set distribution, binary stops is equal to the unique maximume-size turbo stopping set
erasure channel, EXIT charts, hybrid concatenated codes.epeat \hich is also a subset of the (initial) set of erased position
%ﬁgﬂrgg\ﬁﬁe codes, spectral shape function, stopping setiform stopping set concept has also been adapted to iterative
' row-column decoding of product codes in a recent paper [16].
|. INTRODUCTION . In _this worI§, we adapt .the concept _of stqpping ;ets to
iterative constituent code oriented decoding using marirau
posteriori (MAP) erasure correction in the constituent codes

d by MacKay in [3 idered th of RMA codes and HCCs. We then give expressions for their
ered by Mackay in .[ ], are considered among the .mog&/erage stopping set distributions and analyze their aytiop
powerful error-correction schemes of today due to their lo

decodi lexi d i : ‘Behavior. We show that both RMA and HCC ensembles,
ecoding comp exity an hear-capacity periormance on & wi onsisting of an outer multiple parallel concatenated code
variety of channels. Recently, serially concatenated sod

. CC) serially concatenated with an inner accumulatoy [8
such as very simple repeat accumulate (RA) codes, and hy g:l ) y v 18]

- - ibit totic st ing distangg,;,, defined th
concatenated codes (HCCs), i.e., mixed parallel and St ! an asymplotic stopping cistanag, ennec as e

. _Slze of the smallest nonempty stopping set [17], that grows
structures combining the features of the two concatensitiq early with the block length. Therefore, these code ertgem
[4-13], have also attracted some attention, since theydyi i '

o . regoodfor the BEC. For RMA code ensembles, contrary to
better minimum distances than turbo codes.

; . the asymptotiad,,;n, Whose growth rate coefficient increases
For repeat multiple-accumulate (RMA) codes, Pfister aqlg ymp i 9

. o . K ith the number of accumulate codes, the asymptbtig,
Siegel [5] showed that the minimum distanég;, increases growth rate coefficient diminishes with the number of accu-
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K Co N o N_ CL N IIl. | TERATIVE CONSTITUENT CODE ORIENTED

w qw h DECODING AND STOPPINGSETS

In this paper, we consider stopping sets for iterative de-
coding of concatenated codes. Thus, we assume that the
concatenated codes in Figs. 1 and 2 are decoded iteratively
described in Section II. In Section Ill, we describe iterati in & constituent code oriented fashion using MAP constituen

constituent code oriented decoding using MAP erasure c8gecoders over the BEC. By iterative constituent code cetént
rection in the constituent codes of concatenated codes &l&foding we mean a decoding strategy that iterates between
introduce stopping sets for this particular iterative dbng the constituent decoders, i.e., the turbo-decoding ppieci
algorithm. We further give some of the basic properties a@pplied to more general concatenated codes. MAP decoding
show that these stopping sets characterize exactly therperPf the constituent codes can be implemented efficiently on a
mance of iterative constituent code oriented decoding en thellis representation of the constituent code [15, 19} &m
BEC. Section |V discusses Stopping set enumerators for R[\mtre”iS'based iterative constituent code oriented dﬁwon

and HCC ensembles. Also, a factor graph interpretation tie BEC is to find a set of paths through each constituent
given. Section V introduces the asymptotic stopping set sigode trellis that is consistent with the received sequence.
spectral shape function. In Sections VI and VII a stoppinjhe decoding starts with a set of all paths and iteratively
distance analysis is performed for RMA code ensembl@fminates those that are inconsistent. This iterativecgse
and HCC ensembles, respectively. Convergence propertes@ntinues until either there is only one possible path left i
studied in Section VIII, where an extrinsic informationrtsher €ach constituent trellis (successful decoding), or thered

(EXIT) charts analysis is performed. Conclusions are given change from one iteration step to the next [15]. The compjexi
Section IX. of iterative constituent code oriented decoding of contatied

codes is linear in the block lengtlv when the number of
constituent code activations is independenf\af
) ) o As an alternative to trellis-based decoding, decoding of
The encoder structure of RMA codes is depicted in Fig. §he constituent codes could be based, e.g., on a factor graph
It is the serial concatenation of a repetition cadg of rate  representation, but this will not necessarily be MAP erasur
R = 1/q with the cascade of > 1 identical rate-1, memory- correction. Note that if the factor graph is constructedebas
one, accumulators;, I =1, ..., L, with generator polynomi- o aj| codewords of the dual code, or if the factor graph does
als g(D) = 1/(1 + D), through interleavers, ..., m.. The  not contain any cycles, then theeling decodenf Luby et
overall nominal code rate (avoiding termination) is deddig 5 [20] implements MAP erasure correction in the constituent
R = K/N = 1/q, where K’ and N denote the input and the codes [21, 22]. Indeed, for the stopping set analysis chuig
output bloc_k length, respectively. nghgr rates may beiobth , this paper, we do not require to make any assumption on
by puncturing the output of the most inner accumuldior  the decoding algorithm used at each constituent decoder. Th
We also consider the HCC ensembles introduced in [Rby point is that decoding is performed in a constituent code
consisting of an outer MPCC witl parallel branche<i,  oriented fashion, and that the constituent decoders perfor
[=1,...,q, serially concatenated with an inner accumulatofggap decoding. However, we prefer to refer to trellis-based
denoted byCy,. Four different encoder structures, depicteflecoding, since the trellis representation of the corestitu
in Fig. 2, are considered. For type-1 and type-2 codes, @ll tncoders is very useful for the derivation of the stopping se
code bits from the outer MPCC enter the inner accumulat@iymerators and the subsequent asymptotic analysis. Tihis w
while for type-3 and type-4 codes only — 1 of the ¢ pecome apparent in the following sections.
parallel branches enter the inner accumulator. The nominal
code rate is denoted bl = K/N. For type-1, type-3, and .
type-4 HCCs the code rate L/R = 1/q, while for type- A. Stopping Sets for RMA Codes
2 HCCs R = 1/(q1 + ¢2) = 1/q, whereq, denotes the ~We will now give the formal definition of a stopping set
number of feedforward branches agg denotes the numberfor RMA codes, adapted from the definition in [15] for turbo
of recursive branches. The outer MPCC of type-2 and typglopping sets. The generalization to the HCC ensembles of
3 HCCs generalizes th& = 1/4 MPCC introduced in [18], Fig. 2 and to the case with puncturing is straightforward. In
which incorporates a feedforward branglip) = 1+ D) since the following stopping set definition, we need the concept of
it yields better convergence behavior than a MPCC with onfigpport set of a binary vector and of a binary linear code.
recursive branches. Note also that in the type-4 HCC encodéle support set(x) of a binary vectox = (z1,...,2y) (of
C, performs an identity mapping, i.e., the HCC is systematitength V) is the set of nonzero coordinates. As an example,
In [8], the asymptotic and finite-length,;, properties of these With x = (0,1,1,0,1), x(x) = {2,3,5}. The support set
four encoders were studied in detail fpr= 4. Furthermore, x(C) of a binary linear code”' is the union of the support
iterative decoding thresholds on the additive white Gaussisets of each codeword i@. Also, we need the concept of a
noise (AWGN) channel were estimated using EXIT charts. gHbcodeA subcodeC' of a binary linear cod€’ is a subspace
terms ofd,;, properties, type-1 codes are the best and typeoh C. Finally, an interleaver will be regarded as a mapping
codes the worst, while in terms of iterative decoding thoéd from the set of coordinates of its input sequence to the set of
on the AWGN channel the ranking is opposite [8]. coordinates of its output sequence.

Fig. 1. Encoder structure for RMA codes.

Il. ENCODERSTRUCTURES



Fig. 2. Encoder structures for HCCs.

Definition 1: Let Crya denote a given RMA code with in- constituent code. The Tanner graphs of the constituentscode
terleaversry, ..., mp. AsetS = S(m,...,m) C{1,...,N} are interconnected through the interleavers. An example of
of the coordinates of the output sequence (or codeword) isach a factor graph is given in Fig. 4 for a repeat accumulate-
stopping set if and only if there exidt + 1 linear subcodes accumulate (RAA) code witly = 3. The interested reader is
C, € C € {0,1}N, 1 =0,...,L, with support sets¢(C;) referred to [15] for further details. For the special casRIFA

such that codes and HCCs with accumulate constituent encodersni tur
) R R out that iterative BP decoding on the overall factor graph is
x(Cr) =S andm(x(Ci-1)) = x(C1), I =1,..., L. equivalent to iterative constituent code oriented deapdiinis

he size of . . dinali is because the factor graph of an accumulator (depicted in
The sizeo a stopp_m_g_ seb is its cardinality. _ Fig. 4) does not contain cycles [24, p. 583]. Thus, iterative
Note that in Definition 1 we used the fact that the mappingp gecoding of a constituent accumulator (using a factor
between the input support set and the output support setyf$ ) is equivalent to MAP erasure correction. Actuahys t
an identity mapping for ratg? = 1 encoders. For general og it holds for any accumulator with generator polynomial
R < 1 encoders this is not true. Also, note that Definition 3:/(1 + DY), t > 1. However, we stress that the traditional
does not exclude the empty set. Thus, the empty St §sinition of stopping sets (on an overall factor graph) i/on
formally a stopping set of size zero. The size of the smalleghnropriate when the constituent encoders are accumsylator
nonempty stopping set is called te®pping distancgl7] and 1yt not for general concatenated codes, i.e., when other con
is denoted byuy,;n. We emphasize the fact that the concept Qfg|ytional codes are used as constituent codes. This is bne o
stopping sets for RMA codes, as defined above, is conceptugj|e reasons why we have introduced iterative constitueti co
different from the traditional concept of stopping sets iS&iented decoding and the corresponding general definition
in connection with iterative BP decoding of LDPC codegopping sets in Definition 1. Indeed, an asymptotic stappin
but it reduces to the traditional concept of stopping sets fisiance analysis of the concatenated codes analyzed here
Tanner graphs when the constituent codes are single parfiking e.g., 4-state or 8-state convolutional encoderkidoe:

check codes. Indeed, the RMA code could be decoded usiigieq out using the approach in [25] to compute asymptotic
iterative BP decoding on a Tanner graph representing theent, ¢ output weight distributions of convolutional eneos,
code [23]. On the other hand, the concept of stopping sets fr%eneralized to the stopping set case.

Definition 1 is related to iterative constituent code oréght In summary, the stopping set enumerators and the analysis
decoding. In general, the concept of stopping sets can be ’

: . ) . . ; in"the following sections are general and do not only apply
defined forany iterative decoding algorithm when it operateiO iterative constituent code oriented decoding; iteeataP

on th_e BEC an_d should_not t_)e u;ed without having a SpeCIdcécoding on the overall factor graph of RMA codes and the
iterative decoding algorithm in mind. : .

| | th bability after iterative BP de HCCs of Fig. 2 leads to the same stopping set enumerators as
__'hgeneral, the erasure probabliity after fterative “Oiterative constituent code oriented decoding.
ing of a concatenated code using its factor graph is grelzder t i _
or equal to the erasure probability after iterative constit | Ne following lemma can easily be proved.
code oriented decoding using MAP erasure correction in theLemma 1:Let C' denote a RMA code (or a HCC). Then,
constituent codes for any channel erasure pattern. Hetl, whe support set of any codeword @ is a stopping set.
the factor graph of a general concatenated code we mean @heorem 1:Let C' denote a RMA code (or a HCC) that
factor graph constructed from arbitrary Tanner graphs oheawe use to transmit information over the BEC. The received



vectors are decoded iteratively using constituent codented

decoding using MAP erasure correction in the constituent 0 0
codes until either the codeword has been recovered, or the n 1/
decoder fails to progress further. Then the set of erased

positions that remain when the decoder stops is equal to the A
unigue maximum-size stopping set that is contained in the 1 1

(initial) set of erased positions. -

Proof: The proof uses the same basic ideas as the proof _ 1 . .
f Theorem 1 in [15] and is omitted for brevit - F|_g. 3. Extended trellis _module of the rate-1 recursive otutonal encoder
0 ' ) h Y. with generator polynomiay(D) = 1/(1 + D). The edge labels have the
From Theorem 1 it arises that an important paramet@fmat input/output.
for code performance is the stopping distarigg,. In the
following sections we address the asymptotic behavidr,.gf,

for RMA and HCC ensembles where EiR}flA___ n._,.n 1S called the conditional support size

enumerating function ofgna .

Now, consider thg¢ N, K') HCC ensemble€ycc of Fig. 2.

IV. SUPPORTSETS AND STOPPINGSET ENUMERATORS  Assuming trellis termination, théth constituent code is a

Let C denote ar(V, K) binary linear code. Partition all the binary linear code with input block lengthki; and output block
subcodes of’ of dimensiond, d = 0, ..., K, into equivalence length N;. Except forCy, which is directly connected to the
classes based on their support sets. In particular, allslgsc input, every code is preceded by an interleaver. Furtheemor
within a specific subcode class are required to have the sawe assume that the codg, ; is directly connected to the
support set, but the subcodes may have different dimensioglsannel. Partition the st , 2, ... ., ¢} into two disjoint subsets
We define thesubcode input-output support size enumerating and its complemer® such that) contains the indices of all

function (SIOSEF) [15] ofC as codes directly connected to the channel. The ensemblageer
K N IOSSEF ofCycc can be written as [8, 15]
C _ C w rrh C Cyt1
A (W’ H) U’Z:(”lgoaw’hw " <§CHCC _ i .. i aw?hlaqueé hi,h=3cq ﬁ agihz
_ _ w,h _ ~ ( Kot1 ) L. (Kl)
wherelV and H are dummy variables, and; , is the number hi=0 " hq=0 Yicgh =2 tw
of subcode classes @f of input support set sizay andoutput Ny Ng
support set sizé. In the rest of the paper, with a slight abuse = Z Z gff,fﬁm_h N
of notation, we will refer interchangeably to botf’ (W, H) hi=0  h,=0 o
anda¢ , as the SIOSEF of a cod®. 2)

_ where ngH,fﬁ__ n o is called the conditional support size
A. Stopping Set Enumerators for RMA and HCC Ensemb'%“numerat’ing function ofoc.

Let 3¢ , be the ensemble-averaggut-output stopping set  The evaluation of (1) and (2) requires the computation of
size enumerating functiolOSSEF) of the code ensemife the SIOSEFs of the constituent encoders. In the following,
with input and output block lengti and IV, respectively, we give closed-form expressions for the SIOSEFs of rate-1,
denoting the average number of stopping sets of inputwizememory-one, encoders, and repeat codes. They will be used
and output sizer over C. Also, denote bysé = Zfzo ¢, later to derive the asymptotic expressions for the stoppétg
the ensemble-averagtopping set size enumerating functiomlistributions in Sections VI and VII.

(SSEF) of the code ensemlde giving the average number of
stopping sets of sizé over_C. _ B. SIOSEFs for Memory-One Encoders and the Repetition

Using the concept of uniform interleaver [26], the IOSSEEode
of a RMA code ensembl€ryia can be obtained from the
SISOEFs of the constituent encoders. Indeed, the corigiput 1 heorem 2:The SIOSEF for rate-1, memory-one, convolu-
of the SISOEFs of the constituent encoders to the I0SSEF{§nal encoders with generator polynomigl)) = 1/(1+ D)

a RMA code ensemble is, through Definition 1, analogous #'d¢9(D) = 1+ D that are terminated to the zero state at the
the role played by the weight spectra of constituent encod&nd of the trellis and with input and output block length
in the weight spectrum of a concatenated code ensemble. £&8 Pe given in closed form as

ensemble-average IOSSEF @fya can then be written as |2 ]
15,26 L N—-h\[(h-1 h—d
[15.20] == (Y000 (0 ) @
N N ,Co 4Ot L—1 ,C1 aCr =1 - w =
ECR#A _ Z Z w,qw T quw,hy H hi—1,h hr—1,h .
v hi=0  hp_1=0 (q]i) —2 (hf\jl) (hi\i]) for positive input sizesv. Also, a;(” = aéng =1.
N N Proof: Let CY denote the binary linear code obtained by
= Z Z gir_f;flé__ hoovh terminating (to the zero state) the rate-1 recursive canvol
h1i=0  hy_1=0 7 tional encoder with generator polynomi@D) = 1/(1 + D)

(1) and with input and output block length a¥. In Fig. 3,



the extendedtrellis module [15], denoted by/..:, of the Co /T\ /T\ /‘i /R o /R
encoder is depicted. We call the trellis module in Fig. 3 the

extended trellis module because it extends (and comprises) | m |
the trellis module of the code to represent all support vscto 4 % o %

of subcodes. Each edge between two trellis states is labeled

with a binary paira/b, where a denotes the input support | |
vector bit andb denotes the output support vector bit. The C %. ool flee .CR}QO
overall transition between two statesands, is denoted by 2 : :

(845 a/.b,.so). Note that7.y; is |dgnt|cal to the trellis modqle of Fig. 4. Factor graph representation of a RAA code with 3.
the original code, except that it has an extra edge (withllabe

1/1) from state one to state one. The paths of lengthtarting
from the zero state and ending in the zero state inNan
fold concatenation of.,; give all possible support vectors of

subcodes o2V [15]. Also, the N-fold concatenation 0f .y (0,0,0) 1,0,1) (1,1,0) 0.1,1) 11

does not contain duplicates, i.e., there are no two paths witg. 5.  Factor graph representation of an extended tredition of an
the same input/output label sequence. From [27], we kngiFfumulate code.

that the number of paths in aN-fold concatenation off.;

corresponding to codewords, i.e., paths that do not cotitein C. A Factor Graph Interpretation

(1,1/1,1) transition, of even input weight» > 2 (there are

no codewords of odd input weight) and output weighis In this section, we consider an equivalent factor graph
representation of the accumulate code to better clarify the

N—h h—1 computation of the SIOSEF and its connection with stopping

w/2 J\w/2—-1)" sets of a concatenated code. The factor graph of a RAA code

) ) with ¢ = 3 is depicted in Fig. 4. Consider a single section of
These codewords consist af/2 error events with a total {he factor graph corresponding to one of the two accumulate
of h —w/2 transitions from state one to state one. Nowgoges, marked with a dashed box, and transmission over the
the number of paths in the extended trellis, i.e., fiidold BEC. We have the relation,, = z;_; + x5, whereu, is the
concatenation of ., consisting ofd error events with a total jnformation symbol, andr,_; and =, are the code symbols

output weight ofh, and total input weight ofv > 2 is of sectionk. The decoder will fail in recovering an erased
symbol at sectionk if and only if two or more symbols
N-h\/h—-1\(h—-d ) . )
d d—1)\w— 24 at sectionk are erased. Four possible triplts;, zx—1, xk)

are possible, namelgl,0, 1), (1,1,0), (0,1,1), and(1,1,1),
since the transition(1,1/1,1) does not increase the outputvherel means that the symbol is erased. Their factor graph
weight ¢ is 1 for both edges between state one and stafi@Presentation is given in Fig. 5, where a bIacI§ circle means
one), but only the input weight. The result for the encoddpat the symbol is erasedl) and an empty circle means

g(D) = 1/(1 + D) follows by summing over all possible that the symbol is not erasgd). Clearly, to enumerate the
] stopping setof an accumulate code of lengtN we must

1+D __ H H
values ofd. Furthermores " = 1, since the empty set is Ponsider all valid combinations (of length) of the sections

the support set of the trivial subcode containing only the al” . .
zero codeword. The SIOSEF for the feedforward encoder with Fig. 5 plus the one corresponding o the triplet0, 0) (no

generator polynomiag(D) — 1+ D is obtained in a similar erlasures.). Note that.we dp not need to consider the triplets
manner with a smglg one, since in this case the_erasure wc_>u|d be
' . . recovered, yielding td0, 0,0). To simplify this computation,
Note _that the for_mula in (3) gerlerallzes the plosed-fo_rlme five factor graph sections of Fig. 5 can be equivalently
expression for the input-output weight enumerating florcti represented in a more compact form By in Fig. 3, which
for rated, memory-one, convolutional encoders from [27]. '

_ " gives a trellis representation of all possible support mecof
Theorem 3:The SIOSEF for the K q, K) repetition code g heqges of an accumulate code The five triplets(0, 0, 0),

Cp with input bloc_k length K obtained by cor?gatenating(l’ovl)' (1,1,0), (0,1,1), and(1,1,1) of Fig. 5 correspond
togetherI_{ successive codewords of(g, 1) repetition code to transitions(0,0/0,0), (0,1/1,1), (1,1/0,0), (1,0/1,1),
can be given in closed form as and (1,1/1,1), respectively, inTcx;. The enumeration of all

(K> stopping setsor all 1support sets of subcodes, of the accumulate
J— 1+D

(4) code, given bya,"’, can then be computed using,, as
shown in the pre\}ious subsection. Please note that here, for
Proof: Consider the(q, 1) repetition codeC'. This code better understanding, we used the concepstopping sets

consists of two codewords, the all-zero codeword and the alpplied to an accumulate code. Formally speaking, stopping

one codeword. ObviouslyA® (W, H) = 1 + WHY. With sets, as defined in Section Ill-A, apply only to iterative ac

an input block length of K, we get (1 + WHY)X = ing of concatenated codes. When referring to the constituen

S (BYyw Haw, from which it follows thata$?,,, = (X).  codes (with the associated MAP decoding algorithm) it isenor

w=0 \w w,qw w

B appropriate to use the concept of support sets discussed in

Co

w,qw

w



Section IlI-A. Theorem 11 in [11] to prove that RMA codes and HCCs are
Finally, the IOSSEF of RMA and HCC ensembles can baso good for the BEC.
obtained by properly combining the SIOSEFs of the con- We remark that in the rest of the paper, with a slight

stituent encoders through (1) and (2), respectively. abuse of language, we sometimes referptoas the exact
value of the asymptotic growth rate coefficient. However, we
V. FINITE-LENGTH AND ASYMPTOTIC ANALYSIS OF emphasize that, strictly speaking, is only a lower bound on
STOPPINGSETS the asymptotic growth rate coefficient.

A. Finite-Length Analysis of Stopping Sets

The ensemble-average SSEf of a concatenated code

ensemble’ can be used to bound its,;, in the finite-length I this section, we analyze the asymptotic stopping digtanc
regime, similarly to the case of th&,;, [2,5]. In particular, Properties of RMA code ensembles. We first show that the

the following bound holds. hmin Of RA code ensembles cannot grow linearly with the
Lemma 2:The probability that a code chosen randomliplock length. Then, we consider the ensemble of RMA codes

from the ensemble with ensemble-average SSEE has obtained from the concatenation of a repeat code with the
stopping distancé.,i, < % is upper-bounded as cascade of. > 1 accumulators and show that the asymptotic

hmin grows linearly with the block length.

VI. STOPPINGDISTANCE ANALYSIS FORRMA CODES

h—1
Pr(hmin < h) < Y 5. (5)
h=1 A. RA Codes
Proof: The bound follows from the application of the We consider theh,,;, of code ensembles formed by the
union bound and the Markov inequality [5]. B concatenation of &, = 1/¢ repetition code with a single

Lemma 2 can be used to obtain a probabilistic lower bound amer accumulatory = 1) with generator polynomiag}(D) =
the stopping distance of a code ensemble. In particulargif vit/(1 + D) through a uniform interleaver [26] (see Fig. 1). In
setPr(hmin < h) = €, wheree is any positive value betweenparticular, we prove the following theorem.

0 and 1, we would expect that at least a fractidn— ¢ of Theorem 4:The stopping distancé‘?* of a RA code

the codes in the ensemble have a stopping distapgeof at ensembleCr 4 with repetition factorqg > 3 satisfies
leasth. g2
lim Pr (i < N2 ) =0
N —o0
B. Asymptotic Analysis of Stopping Sets wheree is any positive constant.
We define the asymptotic stopping set size spectral shape Proof. Using (1), (3), and (4), the ensemble-average
function as [2] IOSSEFEi}j;; with w > 0 of a RA code ensemble can be
1 c written as
rs(p) = lim sup—1Insj y (6) qw
o TN CLeN] Ky~ %] (N—hy (h—1\( h—d
N— —CrA __ (w) Zd:21 ( d )(dfl) (qw72d)
wheresup(-) denotes the supremum of its argument: % Sw,h = (N
quw

is the normalized stopping set size, aNds the block length. )
'szfom (6), tr'll'eh SSFF Cﬁ}fn Ee expressedsas- egrs@ when  ysing Stirling’s approximatior(”) < (2£)" and the fact that

— oo. Therefore, if there exists some abscigga> 0 ! ; N 1(1+1) _Cra

. —i) > = Atd)

such thatsup,<,- 7s(p) < 0 Vp* < po, andrs(p) > 0 HZ:Ob(Nb Z)d—aazv(l)’ with ¢x (1) exp( 2X ) [10], 5.,%
for somep > pp, then it can be shown (using Lemma Fan be bounded as
for example) that, with high probability, the stopping diste Crns < Nw—[% | pawt|% -3
of most codes in the ensemble grows linearly with the block”’

length N, with growth rate coefficient of at leagh. On the (qw)le? T =1y (quw — 1) L] (qu — 2d)2d—aw
other hand, ifry(p) is strictly zero in the rang€o, po), it X W yw di(d — 1)d1
; . . qYw = d¥
cannot be proved directly whethér,;, grows linearly with
the block length or not. g(w,N)
In [11, 12], it was shown that the spectral shape function of (7)

RMA codes, for the codeword case, exhibits this behaviofhe total average number of nonempty stopping sets of size

i.e., it is zero in the rang€0, py) and positive for SOME ;, — 1 can now be obtained from Ao 222155%' Using
p > po, Wherep means here the normalized output Welght.7 = ’

By combining the asymptotic spectral shapes with the use of)’ we get

bounding techniques, Fagnani and Ravazzi were able to prove EiRikh < Ne-[%] hqwﬂ%Jg(w, N). (8)
in [11, Theorem 11] that the minimum distance of RMA codes T

indeed grows linearly with the block length with growth rateet 57%% = S _ Suhah = 2wl Suh<ns Where we used
coefficient of at leasp,. In Sections VI and VIl we show that the fact thatw < 2k/q. This follows from the binomial
the stopping set size spectral shape function of RMA and HG@eﬁicient(qZ:‘;d), from which it follows thatqgw < h+d <
ensembles exhibits a similar behavior. We shall then extehd+ |qw/2], which implies thatw < 2h/q < 2k/q. Also, we



assume that can be expressed in terms of the block lengthrows linearly with the block length. In particular, we need

N ash = NV, with 0 < v < 1. From (8), it follows that prove thaﬁiiﬁ? tends to zero a®' — oo for all i < poN,
c 2 - 0w [ 41 for some valuep, between0 and1. To prove this, we follow
Speh < §1<gl3§(h/ N[ gt L )+ g(w, N) similar arguments to the ones used in [10] and [11, 12] for the
9 . ! . asymptoticd iy .
e e EAV TR EARRTTE W Using (3) and (4) in (1), the conditional support size
9 enumerating function (withv > 0) of RMA code ensembles
for large enoughV. We chooses such that can be written as
' 1-[4]pat[$]+1 - Ky~ L% (N—hy\ (ha—1\ [ hy—d
Nh—n>100N IR (1L N) =0 Crua B (w) Dodiei ( da 1)(d11—1)(qwl—2d11)
. . . Sw,hl.’...,thl,h - N
which implies that (qw)
1= [9) 4w (o [ 2] +1) <0 (©) o L] vy ey (i
2 2 « H Z =1 ( d; )(dl—1)(m,1—2dl)
since g(1, N) approaches a constant whe¥i approaches =2 (hf\il)
infinity. The evaluation of (9) leads to < % and we can V“]J
. ) PN N L (N—h)(hq)( h—dy )
express the stopping set sizieas N3«+2 € for any positive o == dp J\dp—1/\hp_1—2dr
constante. Since (see Lemma 2 in Section V-A) (hﬁ])
Pr(niy <n) <5, L)1) [
PIPIED AL -
the theorem follows. [ e R e
We remark that we can improve the lower bound(gf- T " (10)

2)/(3q + 2) from Theorem 4 using a much more convoluted _ _
approach. In particular, the lower bound can be tightened \#thout loss of generality, we can write

(g —2)/(3q) for all ¢ > 3 using a similar technique as in w=aN® hy = BN% i=1,.. L—1,

the proof of Theorem 1 in [10]. However, in the stopping set o (12)
case, the summation oveérin (7) needs to be upper-bounded h=pN® andd; =y N%, i=1,..., L
by [%] times the maximum element found by taking thgynere0 < g < by < by <---<b,_  <c<1,0<e; <a<
deriv_ative with respect tel. Further details are omitted forL and O_S ei_g b;1 S_l. i = 2. ._,L._'I'hese_ineq_ualiﬁes
brevity. _ ~ can be derived from the binomial coefficients in the exprssi
Corollary 1: In the ensemble of RA codes with repetition, (10) combined with the fact that for a binomial coefficient
factor ¢ > 3 almost all codes have stopping distance Iowe(an), n>k>0.Also,a,Bi,...,00 1,7 ~1., andp are
bounded forN. — oo by p]E)sitive constants. We must consider two cases: 1) at least
RCRA < N%*E one of the quantitiesv, hy,...,hp_1,d1,...,d, or h is of
mm ordero(N), and 2) all quantitiesv, hy,...,hy—1,d1,...,dL,
wheree is any positive constant. and h can be expressed as fractions of the block length
An upper bound for the stopping distance is given by thee., a = by = -+ = by =dy = - =dp = ¢ = 1.
following theorem. The following lemma addresses the first case for RAA code

Theorem 5:The stopping distancéﬁ}};j of anycode in the ensembles.
RA code ensemble with repetition factgr > 3 is upper- Lemma 3:In the ensemble of RAA codes with block length

bounded forN — oo by N andgq > 3, in the case where at least one of the quantities
- 1 w, hy, dy, dy, or h is of ordero(N), N5sisr, -\ — 0
i SO(N ‘ ) as N —s oo for all values ofh, 1 < h < N/2.
Proof: See Appendix A. ]

Proof: The proof given in [28] ford,;, of RA code

ensembles still holds for the stopping distance. Lemma 3 can be generalized to the case of RMA codes

As a consequence of Theorems 4 and 5, the stoppiW. hLz> 3_ (with or without puncturing) ano_l to the HC(_:
distance of almost all codes in the RA code ensemble wi sembles in Section VII. The proofs are omitted for brevity

g > 3 grows with N' as O(N"), where(q — 2)/(3¢ + 2) < As a consequence of Lemma 3, the contribution of the first

e
v < (g—1)/q, i.e., the RA code ensembletimd for the BEC, CaSe 105, Z;" tends to zero a& — co, and we can assume
thatw, hi,...,hr_1,d1,...,dr, andh are all linear in the

block length.
B. RMA Codes We now address the second case by deriving an expression
In the following, we consider the ensemble of codes formddr the stopping set size spectral shape function in (6) for
by a rateR, = 1/q repetition code followed by the cascade oRMA code ensembles. Using Stirling’s approximation for the
L accumulators, and show that the ensembles with parameteiroomial coefficient(}) "=3 " (*/) where H(:) is the
L >3 andg > 2, andL = 2 andg > 3 are good for binary entropy function with natural logarithms, and thetfa
the BEC, in the sense that, asymptotically, their typicgl, thatw, hy,...,hy_1,d1,...,dr, andh are all assumed to be



TABLE |
ASYMPTOTIChAy,in GROWTH RATE COEFFICIENTS FORRMA CODE ENSEMBLES.

qg=2 g=3 g=4 g=>5 qg==6
po (hmin) (L = 2) N/A 0.0929 0.1289 0.1505 0.1647
po (dmin) (L = 2) [10] N/A 0.1323 0.1911 0.2286 0.2549
p0 (hmin) (L = 3) 0.0681 0.1037 0.1194 0.1279 0.1331
po (dmin) (L = 3) [10] 0.1034 0.1731 0.2143 0.2428 0.2643
po (hmin) (L = 4) 0.0549 0.0716 0.0784 0.0817 0.0835
GVB 0.1100 0.1740 0.2145 0.2430 0.2644
) 0.14 7 7
of the same order as the block length (10) can be written —X— RAA / /O v/ /D
as 0.124{—o— R’AA X 7 //
—v— R'AA X/ /a v S
ECRI\/IA 0.10H—0— R°AA I/ - /D //
w,hi,..., hr_1,h —o— R°AA } O/ / o o
w hp_1 0.08 < /S
2 / / f
= Z eXp{f( Bla "aBL—lalyla"w’yLap)N ;‘_”0.06 /X /O /V D/
di=1 dp=1 0.04 A 2 Pl
& o A= <>/
+ O(N)} 0025 B / X a4
(12) .02 4 p0=0.0929/a po =0.1289 % )” /o
0.00 = ‘ Y- /0
when-N — 0. In (12),. a= ¢ is the normalized inpgt 0 00=0.1505 Lo =0.1647
stopping set sizep = % is the normalized output stopping ~ 0.0s 01 0.15 0.2 0.25

set size,8; = % is the normalized output support set size of P
constituent code”;, v, = %' and the functionf(-) is given Fig. 6. Asymptotic stopping set size spectral shape funcliz the RAA
by code ensemble with = 2, 3,4, 5, and6.
f(BOaBla .. 'aBL—h’yla e 7’7L7p)
) L L o To analyze the asymptotic stopping distance behavior of
- ZH (Bi-1) + Z 1-6)H 1- 5 RMA code ensembles, we must solve the optimization prob-
=1

lem in (13)-(14). Note that in (14) we did not include the
constraints on the relationship of the variables involvethie
function f(-), due to lack of space. However, these constraints
must be considered in the optimization. The constraintdien t

=1
13
. ] ) (13) involved variables can be derived by looking at the argusent
where for conciseness we definégd= « ands. = p. Finally, o the binary entropy functions in the expression for the

the stopping set size spectral shape function for RMA Co%ctmnf() in (13). In general, the argument of the binary
ensembles can be written as [6] entropy function should be betwe@mnd1. The maximization

L
" _ Bi-1—2m
+;ﬂlH <51> +Z(ﬁl W)H( Br—m )

rCRMA (p) = sup f(Bo,B1s---,Br—1,7,---,7L,p) Ofthe functionf(-) is addressed in Appendix B. The numerical
I = evaluation of (13)-(14) is shown in Fig. 6 for RAA code
<7Y1,--,7L<1 .
(14) ensembles withy = 2,3,4,5, and 6. We observe that the

In deriving (14) from (12), we used the fact thatx*(z,y) £ stopping set size spectral shape function for the fate 1/2

In (exp(z) 4+ exp(y)) is approximately equal tanax(z,y) RAA code ensemble is strictly positive, meaning that the

whenz andy are large and distinct. Similar comments applgnsemble is bad for the BEC. FOr< ¢ < 6, the function

when more than two variables are involved. r{mia(p) s zero in the rang€0, po) and positive for some
From (13) and (14) it can easily be verified that thwaluesp > po. In this case, we cannot conclude directly

asymptotic stopping set size spectral shape functions ohRMvhether h.,,;, grows linearly with the block length or not.

code ensembles satisfy the recursive relation However, we can prove the following theorem, extending the
Chna(L1) results in [11,12] to the stopping distance case.

[Ts (w) + ¥ (u, p) Theorem 6:Define py = max{p* € [0,1/2) : rSama(p) =

0 Vp < p*}. Assuming thaflim, o w(“ £ < O Vp < po,

= L —1,L, is the asymptotic stopping setthenVp* >0

RMA(0) g

C
Te RMA (L) (p) — Sup
O<u<l

RMA (1)
)

wherers
size spectral shape function Withaccumulatorsrsc
defined to be the asymptotic stopping set size spectral shape
function of a repeat code, and for L >3 andqg>2,andL =2 andg > 3. Thus, ifpy > 0
W(u, p) and rSrua (p) > O_Vp (see Lemma 4 in Appendix _B), then_
almost all codes in the ensemble have asymptotic stopping
= sup {—H(u) + pH <1) distance growing linearly wittV with growth rate coefficient
max(0,u—p)<y<min(p,1—p,u/2) p of at leastp,.
Y u—2y
+-om (715) + o-m (52|

lim Pr(hmin < (po — p*)N) =0

N —o00

Proof: See Appendix C. [ ]
We remark that it can be verified that the assumption in
(15) Theorem 6 always holds for the numerical valuespgfthat




TABLE Il
ASYMPTOTICh i GROWTH RATE COEFFICIENTS FOR PUNCTUREIRMA CODE ENSEMBLES WITHg = 3 AND NOMINAL CODE RATE R’ = 1/(Aq).

i 1/3 0.35 0.37 0.38 2/5 5/12 0.43 4/9 12 0.54 0.55
A 1 20/21 100/111 50/57 5/6 4/5 100/129 3/4 2/3 50/81 20/33

po (L=2) 0.0929 0.0911 0.0885 0.0868 0.0820  0.0746 0.0673 0.05850240. 0.0028 N/A
po (L =3) 0.1037 0.0866 0.0632 0.0514 0.0289 0.0124 0.0015 N/A N/A~ AN/ N/A
po (L=4) 0.0716 0.0426 0.0113 N/A N/A N/A N/A N/A N/A N/A N/A

we have found. From Lemma 3, Theorem 6, and the numericat’ —v— R'PA
evaluation ofrCr44 (p) in Fig. 6, it results that for RMA codes —0— R*AAA /V
the typicalhmin asymptotically grows linearly with the block 120}|—g— r*AaaA P
length with growth rate of at leagy. The exact values g, —xi— RAA. \=3/4 /v s
are given in Table |. For comparison purposes we also give gp}|—2— R'AAA. A=3/4 /)7,/
the asymptotic growth rate coefficient of tig,;, computed £ /V - " P
in [10]. As expected, the asymptotic growth rate coefficient of o N~ -l
hmin iS smaller than ford,i,. /V'/ =

We can now prove the following theorem. /8 g Mﬁw

Theorem 7:The 'typiC:-TlIhmi,[1 of RMA code ensembles for ¥ F ﬂ;,m’"
L >3 andq > 2 grows linearly with block length. MEW

Proof: Note that if we serially concatenate any encoder %5 100" 200 300 400 500 €00 300 800 900 1000

whoseh,i, grows linearly with the block length with growth Block Length (N)

rate coefficient of at leagty with an accumulate code throughrig. 7. Probabilistic lower bound on the stopping distahgg,, versus block
a uniform interleaver, the resulting concatenated code égngthV for RMA codes withg = 4 and L = 2,3, and4.

semble will exhibit ah,,;, growing linearly with the block
length with growth rate coefficient of at leagp/2]. This
follows from the fact that the output support set sizeof
an accumulate code is lower bounded[ly| in (3). In more
detail, due to the binomial coefficieqf" %), h—d > w—2d,
from which it follows thatw < h +d < h + |w/2], which
implies thath > [%]. Since we know that the RAA code

2
ensemble exhibits a typical,;, that grows linearly with the

considering the probabilistic bound (5) ég,;, for the finite-
length regime. Since the set of input sequences that map
to a particular output sequence increases withthe terms
sgrva = 3o | 5Smia in the right hand side of (5) will also
increase. Consequently,,;,, will decrease. Our conjecture is
that the same phenomenon applies to the asymptofic
growth rate coefficient. From these results, it is appareat t

itt)lcc):(;:] Igzggr]]’of/cr? :E;tozﬁg] ffnggcgffA:?rz) ?&Tﬁg r: Z,at serially concatenated codes with more than three encoding
(p P stages are not well suited for the BEC.

triple-accumulate (RAAA) code ensemble is zero in the rangeIn Fig. 7. we plot the probabilistic lower bound dn,
0, po), with pg > 0, and positive for some > py. Therefore, © . in
(0, po) po P p=>ro from Lemma 2 for RMA codes withy = 4, L = 2,3, and

by repeating the argument far > 3, the theorem is also ]
p)r/ovez forqg: 9 g o= 4, and codeword lengtiV up to 1000 bits. The bounds were
' obtained by setting = 0.5 in (5), i.e., at least half of the codes

coler]ﬁi;iz?wlt(a g f(\;\:eRaIso rsggrtretheeatasirgg:ﬁt're g::?:VL\Jltmhulr:tteﬁ" the ensemble have stopping distance at least equal to the
Po peat g P .Value indicated by the curves. The results are in agreement
(RAAAA) code ensembles. Interestingly, from Table | i

follows that, contrary to the asymptofid,y, growth rate TW|th the asymptotich,,;, growth rates in Table I. The best

coefficient, which increases with the number of accumusato rowth rate is obtained faf, = 2, while increasing the number
’ f accumulate codes decreases the growth rate.

and tends to approach the GVB [10-12], the asymptotic

growth rate coefficient oh,,;, decreases with the number of

accumulators concatenated in series. An intuitive expiana

to this behavior can be formulated as follows. From Fig. &. RMA Codes with Random Puncturing

it follows that there is a many-to-one mapping from input

sequences to output sequences inNafiold concatenation of  In this section, we consider high rate RMA code ensem-

Text, In the sense that for a given output sequence there s obtained by puncturing the output of the most inner

many input sequences that can produce it. This is not the casééumulatorC,. We assume that code bits at the output

for the basic trellis module, i.e., fofey; in Fig. 3 without ©0f Cr are punctured randomly, since otherwise we cannot

the transition(1,1/1,1), where the mapping is one-to-oneguarantee asymptotic linear growth rate fQfi,. Denote byA

In a concatenation of. trellises based on the basic trellis(0 < A < 1) the puncturing permeability rate, i.e., the fraction

module, there is still a one-to-one mapping between inp@t bits surviving after puncturing, and by’ = R/ = 1/(\q)

sequences and output sequences. However, in a concatendfie hominal code rate of the punctured RMA code.

of L trellises based of.,:, there will be an increasing set The SIOSEF of a randomly punctured cod&"t- with

(in L) of input sequences that map to a particular outpirtput support set sizev, output support set sizé before

sequence. This phenomenon can be easily understoodplowycturing, and output support set sizé after puncturing
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TABLE Il
ASYMPTOTICh i, GROWTH RATE COEFFICIENTS FOR PUNCTUREIRMA CODE ENSEMBLES WITHg = 4 AND NOMINAL CODE RATE R’ = 1/(\q).

R’ 1/4 0.28 0.29 3/10 5/16 0.33 13 11/30 2/5 0.41 0.42 0.43
A 1 25/28 25/29 5/6 4/5 25/33 3/4 15/22 5/8 25/41 25/42 25/43

po (L=2) 01289 0.1192 0.1142 0.1077 0.0977 0.0819 0.0788 0.04740188. 0.0112 0.0045 N/A
po (L=3) 01194 0.0694 0.0528 0.0373 0.0198 0.0004 N/A N/A N/A N/A AN/ N/A
po (L=4) 00784 0.0112 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

is given by [10] VII. STOPPINGDISTANCE ANALYSIS FORHCCs
N (h)( N—h ) In this section, we address the behaviorigf;,, for HCC
agp}‘l‘,‘““' - a$ h%_ (16) ensembles in the form of Fig. 2. For brevity, we only give the
" PP (iv) conditional support size enumerating function (with> 0)

and the stopping set size spectral shape function for type-1
Using Stirling’s approximation in (16) and a generalizatiognq type-4 HCC ensembles.

of Lemma 3, and coupling it with (13) and (14), the stopping
set size spectral shape function of a punctured RMA code

ensemble is given by A. Type-1 HCC
. We consider the type-1 HCC ensemble in Fig. 2. {die
cpunet. o1 H(B0) 3 the number of accumulators of the outer MPCC andet be
) =3 o<p e g Z (Bi-1) the index denoting the inner accumulator. For convenienee,
0<w 2YL<1 - defineh, = hi+- - -+hy, the input support set size of the inner
- - accumulatoiC, 1. Since none of the parallel branches of the
+ Z 1—B)H (1 ﬁl) + ZBzH (ﬂz) outer MPCC are connected to the channel, thesit empty.
=1 Using (2) and (3), the conditional support size enumerating
L N .
Bi—1 — 2% )\p function (withw > 0) for the type-1 HCC ensemble can now
+ Z Br—m H< B — +6LH 3, ) be written as
=1 \_“’J
A1 - p) e, 52 (thl)(hlfl)(hlfdl)
2\ P _C, I=12.d;=1\ 4 di—1) \w—2d
+ - s (=) ey e - Lt |
where p/ = % is the normalized stopping set size after L%PJ h_1 h—dgin
puncturing. qu+1:1( q+1)( dgt1— 1)( hyp 2dq+1)
punct
The values ofpy corresponding targRMA (p') are given ( )
in Tables Il and Il forL = 2,3, and4 mother RMA code Iy

— L
ensembles witly = 3 and4, respectively, for several nominal Now, leta = g, p = N’ B = #, andy, = 2, where

code ratef?’. Asymptotic linear growth can be guaranteed folr 1,...,q. We also denote the norma}lllpzed |nput §upport set
some rate®’ > 1/q. However, it is interesting to note that the Size of the inner accumulator by, = 7 and deﬁqe& =
asymptotic stopping set size spectral shape functioniigtr “4L. Using stirling's approximation and a generalization of
positive with heavy puncturing of the mother code ensemble€mma 3, we get

which implies that the asymptotic linear growth rate proper

breaks down with heavy puncturing. For instance, foe 2 €0 (p) = Z (1 i )

andq = 3, the punctured ensemble remains good for the BEC %<<f§ 535:;1 4 — A

up to rateR’ = 0.54, but for heavier puncturing this property q

is lost. This phenomenon is more significant for punctured 4+ = ZﬂlH (W) lz <O‘ - 271)
RMA code ensembles with a larger number of accumulators B 4= Br—m
and for largerg. For theL = 3 andq¢ = 3 punctured RMA 5 5

code ensemble, the asymptotic linear growth rate property +(1-pH (m) + pH (;)

is lost betweenR’ = 0.43 and R' = 4/9. In Fig. 7, we 3, — 26 1

plot the probabilistic lower bound oh,,;, from Lemma 2 (p—19) ( ; 3 ) 4 . H (o) —H(B,) .

for puncturedg = 4 RMA code ensembles with = 3/4 (17)
and L = 2 and 3. The results are in agreement with the

asymptotic analysis; foE = 2 and permeability rate. = 3/4 The numerical evaluation of (17) (the details are omitted
linear growth rate is guaranteed. However, when applyirg tldue to lack of space) is given in Fig. 8 for= 4. We remark
same puncturing to thd = 3 RMA code ensemble, the that the optimization is harder than for tllg;, case, since
asymptotic stopping set size spectral shape function besorthe objective function involves more variables. We observe
strictly positive, and the linear growth rate property tkea that r$t (p) is strictly zero in the rangé0,p, = 0.1289)
down. Note that these results are in contrast with the esulind positive for somep > po. From these results and
in [10], where it was observed that the asymptotic normdlizéhe generalizations of Lemma 3 and Theorem 6 to HCC
dmin gets closer to the GVB for higher rates with randorensemblesp, = 0.1289 is a lower bound on the asymptotic
puncturing. hmin growth rate coefficient of the ensemble. It is worth
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mentioning that the supremum is obtained fyr=--- = g, von

andy; = --- = g, i.e., when all the accumulators of the oute +iype—§
. . . —— e-

MPCC contribute equally to the stopping set size. Therefol 0035 o qypc
—— Type-4|

we can sefs; = --- =, = B, andy; = --- = 7, in (17), 003l
and the expression for the stopping set size spectral shi
function becomes equal to (13) (with = 2) for RAA code

ensembles. Indeed, the type-1 HCC ensemble and the R &, oo
code ensemble are identical in both asymptatig,, growth )
rate and convergence threshold (see Section VIII below).

0.025 -

0.015 -

0.01F

B. Type-4 HCC 0005} l
We consider the type-4 HCC ensemble formed by an out 0 o o on  m om o o
MPCC with ¢ constituent encoders followed by an accumt P

lator. The first encoder (the systematic branch) performs Big. 8. Asymptotic stopping set size spectral shape fundiio the rate-1/4
identity mapping and is sent straight through the chanrldfC ensembles depicted in Fig. 2.

_ ; ; ; TABLE IV
(therefqreQ B {1} in (2)). Denote the input support set SlzeASYMPTOTIChmin GROWTH RATE COEFFICIENTS FORHCC ENSEMBLES.
of the inner accumulator by, = ho 4 --- + hy. Also, let

=3 =4 =5 =6
M=(q-1K = %N' Using (2) and (3), the conditional Tyl;)oe—l ?).0929 qo.1289 q0.1505 - 0.1647
support size enumerating function (with > 0) of the type-4 Type-2 0.0716 0.1207 0.1462 0.1623
HCC ensemble can be written as %Egj A 00000 91200 PPN
o T Z,glijl Gz (m) decreased tg, = 0.1207. The asymptotich,,;, growth rate
Sw,ha.shgh = (K)qf‘z is further decreased ta, = 0.0886 if the feedforward branch
. w does not enter the inner accumulator. Finally, the smallest
Z[TPJ (M—h—ﬁ-w) (h—w—l)(hfwfdlﬁl) asymptotich,i, growth rate po = 0.0829) is obtained for
g Zdar1=1 1 donr Stan UV 2 L the fully systematic type-4 HCC ensemble. As a comparison,
(h'p) the asymptotic growth rate coefficient of thg;, computed in
. ) e o o [8] is 0.1911, 0.1793, 0.1350, and 0.1179 for type-1, type-2
Aggln, we definea = %, p = §, A = F, and e 3 and type-4 HCCs, respectively. The same behavior is
"= %p wherel = 2,...,¢. Also, define the normalized sizeqpseryed for other values gf The coefficients, for the four

d . T . .
Bp = 77 andé = =fi=. Using Stirling’s approximation and a HCC ensembles witlh = 3,4, 5, and6 are given in Table IV.
generalization of Lemma 3, the stopping set size spectagesh

function of the type-4 HCC ensemble can now be written as
1 VIIl. EXIT CHARTS ANALYSIS
& (p) = sup - Z(l — B)H (1 %[3 ) In the previous sections, we have shown that RMA and
Seyia ] 1= - HCC ensembles are good for the BEC. In this section, we
address iterative constituent code oriented decoding oARM

q q
4 EZ@H <ﬂ) 4 EZ(@ —yH <O‘ - 271) codes and HCCs on the BEC by using EXIT charts analysis
q =2

— B — B = [29] to estimate their convergence thresholds. In padicuve
¢—1l+a (q—1)8 follow the definitions of the EXIT functions in [30].
+ (7 - ) (m) Denote byu = (u1,...,ux) the sequence of information
o (q—1)3 symbols which is mapped to the sequence of code symbols
+ ( - E) (m) x = (z1,...,zn) by an (N, K) code C. As required for

the EXIT charts analysis, we assume thét — oo. The
+ (p _atle- 1)5) H ( (g~ 1)(Bp —29) ) information symbols are transmitted over a BEC, called the
q gp—a—(q—1)8 information-symbohk priori channel, with erasure probability
_ L?H(a)_gﬂw) pa,. For information symbolu;, the received symbol is
q q P denoted byy,,, and the corresponding priori L-value (or

The stopping set size spectral shape functions for tyg@9-likelinood ratio) byL{ (u;). Also, letl (ug; L (u;)) be the
2 and type-3 HCCs can be obtained in a similar mann&putual information (MI) between; andLg(“i)' The average
The stopping set size spectral shape functions for the 2ype? Priori MI for the information symbols is
type-3, and type-4 HCC ensembles are also plotted in Fig. 8 1 K
for ¢ = 4 (¢1 = 1 for the type-2 HCC ensemble). The IC, = EZI(““LS (ui)) =1 = pa,.
largest asymptotié.,i, growth rate po = 0.1289) is obtained i=1
for the type-1 HCC ensemble. If one of the accumulators Similarly, the code symbols are transmitted over a BEC,
of the outer MPCC is replaced by a feedforward branatalled the code-symbal priori channel, with erasure proba-
(type-2 HCC ensemble), the asymptotig,;, growth rate is bility p,,. For code symbat;, the received symbol is denoted
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TABLE V

; - c
by y.,, and the corresponding priori L-value by L{ (x;). CONVERGENCE THRESHOLDS FORMA AND HCC ENSEMBLES
Also, let I(z;; LY (z;)) be the MI betweenr; and LS (z;). =3 =4 =5 =6

The averagea priori Ml for the code symbols is Type-1/RAA 0.4965 0.5422 0.5719 0.5935
Type-2 0.5058 0.5543 0.5847 0.6062
. 1 N . Type-3 0.5624 0.6008 0.6252 0.6429
¢ = — Z] 2 LS () =1 —p, . Type-4 0.6007 0.6373 0.6582 0.6730

“r N ( i La ( l)) Pas RAAA 0.3259 0.3531 0.3718 0.3860

i=1 RAAAA 0.1957 0.2105 0.2209 0.2290

The a priori L-values L¢ (u;) and LS (z;) are given to
an a posteriori probability (APP) decoder, which compute
the extrinsic L-valuesLS (u;) and LE (z;) for information o & p
symbols and code symbols, respectively. The average sitrinvhere I, 2586 = I, 70, and I, 701, = 1 — pen, Where

of the HCC is obtained by reporting in a single plot the
FunctionsIsee. (0, 19588, ) and 1501, (160, 100t ),

e,udt1 \ g yatly Tq patl

MI for information and code symbols are pen is the erasure probability of the communication channel.
X The EXIT charts for RMA code ensembles and type-3 and
7 _ 1 ZI (u-'LC (u_)) type-4 HCCs can be obtained using a similar procedure. The
e K — pe A convergence thresholds, i.e., the largest values of thengha
erasure probability., such that there is an open tunnel in the
and N EXIT charts, for RMA and HCC ensembles fgr=3,....6
IC, = 1 Z] (45 LS (1)) are given in Table V. From Tables V and IV the presence of a
' N ) tradeoff between asymptotig,;,, growth rate and convergence

respectively. The input-output behavior of an APP decodg}reShOId fof HCC ensembles can be observed. In fact, _the
is then completely characterized by two EXIT functiofig hierarchy arising from Table IV is _completely rev_ersed n

and T, which specify the evolution of the extrinsic Mls as gable V. The type-1 code ensemble is t.he best one in terms of
function of thea priori Mls. In particular, we can writéd®, = asymptotichmi, growth rate. However, it has the worst con-

T,(1S,, 1. ) andIC, = T,(IC,, IC.). A nice property of the vergence among the four considered HCCs. The convergence

BEC"{;’ tﬁgt the EXIT functil('j?\’s ?gr the repeat code and f preshold can be significantly improved if one of the patalle
nches of the outer MPCC is sent straight through the

convolutional encoders can be given in closed form as sho ﬁ"‘ _
in [30] and [31]. channel, at the expense of a smaller asymptiotig, growth

In a concatenated coding scheme consisting abnstituent rate coefficient. The best convergence is achieved by the ful

encoders, decoding proceeds by alternating between the fAr&at'C Jype-4 ents):emblcre]. On the othert:ancri], EAAAh:_;\nhd
responding P constituent decoders. The iterative decodin code ensembles show very poor thresholds, whic

process can then be tracked using a multi-dimensional EXI ke them impractical. . . .
chart [32]. Alternatively, the EXIT functions of the cortsint From the EXIT charts analysis and the asymptotic analysis

decoders can be properly combined and projected intoinaSections VI and VII, it arises that double serially comeat
two-dimensional chart [33]. For instance, convergencenef tnated code ens_embles and HC_:C ensemb_les are good _ensembles
RMA and HCC ensembles can be visualized using a thQr J\ZE BEC’ sm(;:e the(zjy provide both eru?]h z:_tsymp:lt_fugmdd_
dimensional EXIT chart reporting in a single figure the EXI®© ra ej_ and goo gonéi;ienc% N aworl,_ w 'E ah 'Eg
function of the outer code (the concatenation of a repeag¢ cogOre encoding stages In codes penalizes both the
and L — 1 accumulators for the RMA code ensemble, an@SymMptotichmin growth rate and the convergence threshold.

the MPCC in the case of HCCs) and the EXIT function of

the inner accumulator. Consider as an example the type-1 and IX. CONCLUSION

type-2 HCCs of Fig. 2. As defined above, I&f"(u{) and |n this paper, we extended the results of [10] and [11,12],
LS (a}) (resp. LS (uf) and LS (x})) be thea priori (resp. where RMA code ensembles were proved to be asymptotically
extrinsic) L-values for the information and code symbols Cﬁood, in the sense that their typicah, asymptotically grows
constituent encodef’;, respectively. Also, |ef§Lz and Iﬁ;z linearly with the block length, to show that these ensembles
(resp.IeC;l and IeC;l) be the corresponding Mls. The EXITare also good for the BEC, i.e., their typicél,;, also
functions for the constituent decoders of the MPCC (i.egrows linearly with the block length. However, contrary et

l=1,...,q) can be expressed as asymptoticd,,in, whose growth rate coefficient increases with
c , the number of accumulators, the growth ratégf,, decreases
19, =18 (B, , 1%, I : i i

eul u i=1iAl e,ut 1,z with the number of encoding stages. Therefore, doublelseria

1€, — 7€ (EE‘.Ll .#Ici Wi l) concatenated codes seem to be good for the BEC, while adding

more encoding stages degrades performance. Furthermere, w
wherel, B ... 81, =1—(1—1)---(1 —1,) [34]. Note considered random puncturing of the RMA code ensemble to
that Iflml = If?fﬁ%gc = 1 — pg avrce. The EXIT function achieve higher rates and showed that the asymptotic stgppin
| set size spectral shape function is strictly positive faghhi
rates, which implies that the asymptotic linear growth rate
" o i property ofh,;, is lost when the rate is high. In particular, for
MPCC until °, and I, converge to a fixed value, andgach RMA code ensemble, i.e., for each gaiandg, there is
setting I, Wiscc = %Z?;l If;z- Finally, the EXIT chart a particular code rate for which the linear growth rate prope

of the outer MPCC[E;&ESSC can be computed for all values
0 < Ifflﬁggc < 1 by activating all ¢ decoders of the
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breaks down. This phenomenon becomes more significant for as N — oo, the right hand side of (18) approaches

larger values ofL andgq. 1 *\ AT@ a

- —qa+)N*In N + o(N*In N
We also considered the HCC ensembles recently discussed exp (1= a)(a = ga Zl) " o(N*In )
in [8], and showed that they also exhibit an asymptatig, < exp ((1 —a)o (1 - 5) Neln N + o(N®1n N))

linear growth. A fundamental tradeoff between asymptotic
hmin growth rate and convergence threshold was observed for . _
these ensembles. In that sense, HCC ensembles offer more Since we have assumed that> 3. Define~; = 4, if
degrees of freedom for code construction than RMA code €2 = b1 (= a) and0 otherwise. In both cases; < 7,
ensembles and therefore they allow for constructing codes Sinceé the summation inde% in (10) is upper-bounded

—0asN —

with a better tradeoff between asymptotig,, growth rate by %%J from which it follows thatys is upper-bounded
and iterative convergence properties. by = wheney = by (= a). From (19), and whemr < 1,
it follows that asN — oo, the right hand side of (19)
APPENDIXA approaches
PROOF OFLEMMA 3 exp (1 —¢)(y53 — f1)N*In N + o(N®In N))

i

From (11) withZ = 2 we can write < exp (_(1 _ C)7Na In N + o(N®In N))

w:aNaa hIZBINbla h:cha

N .
dq :’}/1N€1, anddg :’}/QNez —0as 7

From (19), and whem = 1, it follows that asN — oo,

where0 <a <b <c<l0<e<a<l andl<e < the right hand side of (19) approaches (o(N®1n N)),
by <1, anda, by, ¢, e1, ande; are not all equal to one. Also, and the result of Lemma 3 is proved for the special cases
a, B1,7, 72, andp are positive constants. Now, of 0<a=b <c<land0<a=b <c<l1.
N—hy\ (h1—1\ ( h1—d; aN®
(K)( 0 )@y;)Qw—mJ . ( Afa> APPENDIX B
w (qw) qaN MAXIMIZATION OF THE FUNCTION f(-) FORRMA CODE
N — BNt Nl BLNb 1N N —qaN*® ENSEMBLES
X < 7 Net ) (,leel) <ana> We consider the maximization of the function
Nbl Net qaN*—2y; N1 f(ﬁOth"-7ﬁL—17711"'17L7p) in (13) A maximum
(ﬁl;%) exp (o(N*In N)) can occur on the boundary or in the regior: §;,v < 1 Vi.
qaN® =2y N The following lemma holds.
(18) Lemma 4:The asymptotic stopping set size spectral shape
and function of the RMA code ensemble is non-negative, i.e.,
(" ) (0 75s,) <N - pzvc) n2V g (p) 20, Wp € [0,1].
(~) YoV e Proof: The values ofy, in (14) can be chosen such that
IN© v N2 PN® — N2 81 NP1 2, N©2 rérua (p) reduces to the spectral shape.f_unction of the code
X ( ) <—) ensemble. Then, we can use [11, Proposition 12], and th# resu
Y2 Ve BiNb — 29 Ne2 follows. [ |
N —ANT b We consider first the case where the maximum occurs in
X (ﬂle) €xp (O(N ! mN)) the region0 < 3,7, < 1 VI. In this case the maximum is

(19) attained at the point where all partial derivativgs and 5%

M
where we have used the inequalities equal zero. Settm%?ﬁ_o oy = om0 gves

g—1

(gl_if_—l —'Tl - n = G%%q)%_m=M&%wal

from [10] to bound the binomial coefficients of the left hand <1 + 2 (1[—5050) ! )
sides of (18) and (19). The rest of the proof is similar to the (20)
proof of Lemma 1 in [10], where five cases are considered. ) )

Here, we will only consider the first two cases in [10, Eq. g, — (A=) (Bir = 23)° =7 — ﬁl—l)’ I=1,...,L

(43)] and [10, Eq. (44)] due to lack of space. The other three V24 (Bi-1 = 2m)?
cases can be proved in a similar fashion. (21)
e Assumel <a=b; <c<1([10, Eq. (43)]))or0 <a= Vi+1 =
by < ¢ <1 ([10, Eq. (44)]). In both cases, = by < 1. BZ(B — Bis1) (A — B —v) + Bi(1 = B)*(Bi+ v — Bi1)
Definev; = v if @ = e; and0 otherwise. In both cases, B2 =B —y)+20 - B)2Bi + v — Bir)

77 < &7, since the summation indek in (10) is upper- _ 0 10
bounded byl % |, from which it follows thaty, is upper- T Bi=1 B ) = DB, B ) B,
bounded byZ® whena = e;. From (18), it follows that I=1,....,L-1. (22
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APPENDIXC
PROOF OFTHEOREM 6

To determine a solution to the above set of equations, we
choose the following strategy. First tredt as a free pa-
rameter and computel(5;) and B(5,). Then, sety; =
A(Bo) — B(B0)B1 in (21) to obtains; by solving the resulting ~ The proof of Theorem 6 follows closely the proof of Theo-
third order equationsy; can now be obtained using (20).rem 11 in [11], which is inspired by asymptotic techniques
We are now in the position to compu@® (5o, 51,71) and devised in [35]. The proof of [11, Theorem 11] relies on
DO)(By, B1,71) in (22) and combine (22) and (21) to obtair-emmas 26 and 27 in [11]. We start by proving [11, Lemma
the values for, andpj,. Finally, the values for;, and; with  26] for the stopping set case, which is stated below in our
[ > 2 can be obtained by using (22) and (21) recursively. notation for convenience. The lemma is proven by induction

We must also consider the following boundary conditior@n L following the same arguments as in the proof for the
when they apply. codeword case outlined in [12].

. The boundary condition; — 1 — 3, and the condition  -emma S:Let {ix}nyen be a sequence of integers such
that for any arbitrary; > 0

L+ 2L S — 0 resultin
2 2 ) hn ) Inhyn
et = (B — ﬁl;l)ﬁl + Bi(Bi-1 —2(1 = ) im =0 and i — = 0.
B +2(Bi-1 —2(1 = f31))? (23)
=CW(Bi-1, ) — DV (Bi-1, B)Bis1. Then,

« The boundary condition,

= f3; and the conditiong% +

af @
ok agl =0 result in
(1 =28)%(B1 — Bip1) + Bi(1 — B)?
Vi+1 =

(1-2B)2 +2(1—B)?
=C@(B1_1,8) — DD (Bi—1, A1) Brs1-

. The boundary condition; = 8;_1 — 3; and the condition

Lo
am + aw oA = 0 result in

(24)

V+1 =
BB — Bry1)(Bir — Bi)? + Bi(26 —
BZ(Bi—1 — Bi)? + 2(26
=CO(B1,8) -

Bi—1)?(1 = By)?
— fi—1)?(1 = Br)?
DO (B1_1, B1)Brs1-

. The boundary conditiony, = ’312*1 and the condition

29— result in

A

Yi+1 =
BE(Br = Biyr) (1 — B —
8201 - B — ) + 201 = B)* (B —
=CO(B,_y, 51,%) — DO (B1, B, ) Brva-

Note that for each boundary conditiohcan vary between

5171

)+ Bi(1 = B2 (B — 2 B

511)

E *CRMA _

where L is the number of accumulators.

Proof: We prove the lemma by induction on the number
of accumulatord.. Consider first the case df = 1. We have

(lezf:J%}Jrn)

hn 2hn/q N hn ZL J h—1 qir}:d)
Z_fCLRA: Z (11{(1)2 d=1 ( zv(d 1)( 2d
h=1 w=1 h=1 (qw)
2hnN/q hn
< Z N g(w, N) Y peer ]2
h=1
where (see (7))
g(w, N)
L% ]

(qu)le? T =1y (quw — 1)

qw ww

(qw — 2d)%d—aw
dd(d —1)d-1

d=1

Note that the upper bound @ty /¢ in the summation ovew
is due to the binomial "~¢ ). In more detailh—d > qw—2d,
from which it follows thatqw <h+d<h+ [qw/2], which
implies thatw < 2h/q. Now, it follows that

and L for the first condition and betweenand L — 1 for the  awn 2hn/q or| %2 =

second condition. For instance, when the boundary comdmoz 5ora < Z Ne-[% g(w, N)hq 2

v =1-p,1=1,...,L,is applied, then we substitute the twor=1

equations in (21) and (22) witty, = 1 — 5; and the equation < 2hN w—[22] qu+| 5 | -2
. L o — N N)hy

in (23). Similarly, when the boundary condition = i, q 1gwng1%2{N/q *lg(w, N)
l=1,...,L, is applied, then we substitute the two equations 2 o+ 2]-1

in (21) and (22) withy, = B, and the equation in (24).
In general, all possible combinations must be checked, i.e.
applying one of the four boundary conditions or no boundary

condition at all when computing the pdjs;,v;),l =1, .

where8;, = p. Using the procedure described above we c4fr large enoughV and for all ;) > 0. Note

compute the asymptotit,,;, growth rate coefficienp, for
RMA code ensembles with different valuesqénd L, where
po has been defined in Theorem 6.

NI, MR

-0 (Nl—M/ﬂw“n)

IN

that for large

enoughN, N“~ [4] dominatesg(w, N)hqwﬂ sz’ due
to the conditions om stated in the lemma. Now, assume
that the statement of the lemma is true for the casé ofl.



. hmu_>0 w
The first three properties follow from (15), while the fourth
property holds by assumption. Finally, by using Lemmas 5
and 6 and the properties above, Theorem 6 is proved following
the same arguments as in the proof of [11, Theorem 28].

15

@, for fixed p, is decreasing in; and
vwe) 0 Vp < po.

ACKNOWLEDGMENT

The authors wish to thank Chiara Ravazzi, from Politecnico
di Torino, for helpful discussions. The authors also wish

to thank the anonymous reviewers and the Editor Rudiger

We get
hN
ZEZRMA(L)
h=1
2h hy %] (N—hy h=1\[ h—d
o ZN _CRMA(L-1) N (d )(d—l)(w—2d)
= Sw ~
UJ:’Vqu,l h=1 d=1 (w)
2hy h
< 3 sty T, m 3ol
w=[ 3] =
where
[%] 2d
/ _ w—1 (w_2d) v
g'(w,N) = (w)le wN(w—l);W

and Cruma() denotes the RMA code ensemble withl = [1]
L—1, L, accumulators. Note that the lower bound gf2-~!]

in the summation ovew is due to the fact that the output size
h of an accumulator is at Ieaétu/ﬂ, wherew is the input
size. This is due to the binomig)"~¢ ) and the upper bound
of |w/2] in the summation oved. It follows that

(2]
(3]

h
ZN ECRMA(L) [4]
h
h=1
2h N s [5]
< Z glcuRMA(L—l)N—I—%]g/(w’ N)h7~1$+|_7j_
w_|—2L*1‘| [6]
<o (ST
» e N mg,(w’mﬁﬂ%}z [7]
[srir [Sw<2hy

=0 (lezle [2%1“7)

for large enoughV and for alln > 0. Above, we used the
induction hypothesis in the second inequality. Also,wnchmt o]
for large enoughV, N-[#] dominate@’(w,N)h}f,ﬂﬂ_Q,
due to the conditions ohy stated in the lemma. m [0
We can also extend [11, Lemma 27] to the stopping set
case. For convenience, we state this lemma below.
Lemma 6:Let 77 (p; N') denote theNth stopping set [11]

size spectral shape function of the RMA code ensemble,

(8]

defined as™4 (p; N) = sup 5 In 5753 Then, [12]
2LIn(N +1 13
pémonn (ps Ny < VL vy "

N
Proof: The proof of the lemma relies on the function

¥(u, p), defined in (15). In particular, the proof of the lemméa*!
is by induction onL, following the same arguments as in the
proof for the codeword case outlined in [12], and is therefor
omitted for brevity. m 19

The final part of the proof of [11, Theorem 11] is also
very general, and it can easily be extended to the stopping Ké]
case. In fact, the rest of the proof only relies on the follogvi
properties ofy(u, p).

o ¥(u,p) is continuous;

o Y(u,p), for fixed u, is strictly increasing irp < 1/2;

[17]

Urbanke for suggestions that improved the quality of the
manuscript.
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