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Good Concatenated Code Ensembles for the Binary
Erasure Channel
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Abstract—In this work, we give good concatenated code
ensembles for the binary erasure channel (BEC). In particular,
we consider repeat multiple-accumulate (RMA) code ensembles
formed by the serial concatenation of a repetition code with
multiple accumulators, and the hybrid concatenated code (HCC)
ensembles recently introduced by Kolleret al. (5th Int. Symp.
on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting
of an outer multiple parallel concatenated code serially concate-
nated with an inner accumulator. We introduce stopping sets
for iterative constituent code oriented decoding using maximum
a posteriori erasure correction in the constituent codes. We
then analyze the asymptotic stopping set distribution for RMA
and HCC ensembles and show that their stopping distance
hmin, defined as the size of the smallest nonempty stopping set,
asymptotically grows linearly with the block length. Thus, these
code ensembles aregood for the BEC. It is shown that for RMA
code ensembles, contrary to the asymptotic minimum distance
dmin, whose growth rate coefficient increases with the number of
accumulate codes, thehmin growth rate coefficient diminishes
with the number of accumulators. We also consider random
puncturing of RMA code ensembles and show that for sufficiently
high code rates, the asymptotichmin does not grow linearly
with the block length, contrary to the asymptotic dmin, whose
growth rate coefficient approaches the Gilbert-Varshamov bound
as the rate increases. Finally, we give iterative decoding thresholds
for the different code ensembles to compare the convergence
properties.

Index Terms—Asymptotic stopping set distribution, binary
erasure channel, EXIT charts, hybrid concatenated codes, repeat
accumulate codes, spectral shape function, stopping set, uniform
interleaver.

I. I NTRODUCTION

Turbo codes introduced by Berrouet al. in [1], and Gal-
lager’s low-density parity-check (LDPC) codes [2], rediscov-
ered by MacKay in [3], are considered among the most
powerful error-correction schemes of today due to their low
decoding complexity and near-capacity performance on a wide
variety of channels. Recently, serially concatenated codes,
such as very simple repeat accumulate (RA) codes, and hybrid
concatenated codes (HCCs), i.e., mixed parallel and serial
structures combining the features of the two concatenations
[4–13], have also attracted some attention, since they yield
better minimum distances than turbo codes.

For repeat multiple-accumulate (RMA) codes, Pfister and
Siegel [5] showed that the minimum distancedmin increases
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as the number of accumulators increase. In the limit of
infinitely many accumulators, it was shown in [5] that thedmin

approaches the Gilbert-Varshamov bound (GVB). Recently,
Kliewer et al. [10] and Fagnani and Ravazzi [11, 12] showed
independently that RMA code ensembles are asymptotically
good, in the sense that their typicaldmin asymptotically grows
linearly with the block length. A method for the calculation
of a lower bound on the growth rate coefficient was also
given in [10]. The same principle was applied in [8, 9] to
HCC structures. In this work, when we speak about HCCs we
mean the HCC structures from [8], even if this is not explicitly
stated.

In iterative decoding for the binary erasure channel (BEC),
stopping set distributions play an analogous role to that of
the distance spectra in maximum-likelihood (ML) decoding.
Stopping sets for iterative belief-propagation (BP) decoding
of LDPC codes were introduced by Diet al. in [14]. In [15],
Rosnes and Ytrehus adapted the concept of stopping sets to
turbo decoding and introduced turbo stopping sets. Also, an
exact condition for decoding failure on the BEC was stated as
follows. Apply turbo decoding until the transmitted codeword
has been recovered, or the decoder fails to progress further.
Then the set of erased positions that remain when the decoder
stops is equal to the unique maximum-size turbo stopping set
which is also a subset of the (initial) set of erased positions.
The stopping set concept has also been adapted to iterative
row-column decoding of product codes in a recent paper [16].

In this work, we adapt the concept of stopping sets to
iterative constituent code oriented decoding using maximum a
posteriori (MAP) erasure correction in the constituent codes
of RMA codes and HCCs. We then give expressions for their
average stopping set distributions and analyze their asymptotic
behavior. We show that both RMA and HCC ensembles,
consisting of an outer multiple parallel concatenated code
(MPCC) serially concatenated with an inner accumulator [8],
exhibit an asymptotic stopping distancehmin, defined as the
size of the smallest nonempty stopping set [17], that grows
linearly with the block length. Therefore, these code ensembles
aregood for the BEC. For RMA code ensembles, contrary to
the asymptoticdmin, whose growth rate coefficient increases
with the number of accumulate codes, the asymptotichmin

growth rate coefficient diminishes with the number of accu-
mulators. We also consider random puncturing of the RMA
code ensemble and show that for sufficiently high code rates,
the asymptotichmin does not grow linearly with the block
length, contrary to the asymptoticdmin, whose growth rate
coefficient approaches the GVB as the rate increases [10].

The reminder of this paper is organized as follows. The
encoder structures of RMA codes and the HCCs from [8] are

http://arxiv.org/abs/0904.2482v1


2

PSfrag replacements

C0 C1 CL
K
w qw

NNN
hh1

π1 πL

Fig. 1. Encoder structure for RMA codes.

described in Section II. In Section III, we describe iterative
constituent code oriented decoding using MAP erasure cor-
rection in the constituent codes of concatenated codes and
introduce stopping sets for this particular iterative decoding
algorithm. We further give some of the basic properties and
show that these stopping sets characterize exactly the perfor-
mance of iterative constituent code oriented decoding on the
BEC. Section IV discusses stopping set enumerators for RMA
and HCC ensembles. Also, a factor graph interpretation is
given. Section V introduces the asymptotic stopping set size
spectral shape function. In Sections VI and VII a stopping
distance analysis is performed for RMA code ensembles
and HCC ensembles, respectively. Convergence properties are
studied in Section VIII, where an extrinsic information transfer
(EXIT) charts analysis is performed. Conclusions are givenin
Section IX.

II. ENCODER STRUCTURES

The encoder structure of RMA codes is depicted in Fig. 1.
It is the serial concatenation of a repetition codeC0 of rate
R0 = 1/q with the cascade ofL ≥ 1 identical rate-1, memory-
one, accumulatorsCl, l = 1, . . . , L, with generator polynomi-
als g(D) = 1/(1 +D), through interleaversπ1, . . . , πL. The
overall nominal code rate (avoiding termination) is denoted by
R = K/N = 1/q, whereK andN denote the input and the
output block length, respectively. Higher rates may be obtained
by puncturing the output of the most inner accumulatorCL.

We also consider the HCC ensembles introduced in [8]
consisting of an outer MPCC withq parallel branchesCl,
l = 1, . . . , q, serially concatenated with an inner accumulator,
denoted byCq+1. Four different encoder structures, depicted
in Fig. 2, are considered. For type-1 and type-2 codes, all the
code bits from the outer MPCC enter the inner accumulator,
while for type-3 and type-4 codes onlyq − 1 of the q
parallel branches enter the inner accumulator. The nominal
code rate is denoted byR = K/N . For type-1, type-3, and
type-4 HCCs the code rate isR = 1/q, while for type-
2 HCCs R = 1/(q1 + q2) = 1/q, where q1 denotes the
number of feedforward branches andq2 denotes the number
of recursive branches. The outer MPCC of type-2 and type-
3 HCCs generalizes theR = 1/4 MPCC introduced in [18],
which incorporates a feedforward branch (g(D) = 1+D) since
it yields better convergence behavior than a MPCC with only
recursive branches. Note also that in the type-4 HCC encoder
C1 performs an identity mapping, i.e., the HCC is systematic.
In [8], the asymptotic and finite-lengthdmin properties of these
four encoders were studied in detail forq = 4. Furthermore,
iterative decoding thresholds on the additive white Gaussian
noise (AWGN) channel were estimated using EXIT charts. In
terms ofdmin properties, type-1 codes are the best and type-4
codes the worst, while in terms of iterative decoding thresholds
on the AWGN channel the ranking is opposite [8].

III. I TERATIVE CONSTITUENT CODE ORIENTED

DECODING AND STOPPINGSETS

In this paper, we consider stopping sets for iterative de-
coding of concatenated codes. Thus, we assume that the
concatenated codes in Figs. 1 and 2 are decoded iteratively
in a constituent code oriented fashion using MAP constituent
decoders over the BEC. By iterative constituent code oriented
decoding we mean a decoding strategy that iterates between
the constituent decoders, i.e., the turbo-decoding principle
applied to more general concatenated codes. MAP decoding
of the constituent codes can be implemented efficiently on a
trellis representation of the constituent code [15, 19]. The aim
of trellis-based iterative constituent code oriented decoding on
the BEC is to find a set of paths through each constituent
code trellis that is consistent with the received sequence.
The decoding starts with a set of all paths and iteratively
eliminates those that are inconsistent. This iterative process
continues until either there is only one possible path left in
each constituent trellis (successful decoding), or there is no
change from one iteration step to the next [15]. The complexity
of iterative constituent code oriented decoding of concatenated
codes is linear in the block lengthN when the number of
constituent code activations is independent ofN .

As an alternative to trellis-based decoding, decoding of
the constituent codes could be based, e.g., on a factor graph
representation, but this will not necessarily be MAP erasure
correction. Note that if the factor graph is constructed based
on all codewords of the dual code, or if the factor graph does
not contain any cycles, then thepeeling decoderof Luby et
al. [20] implements MAP erasure correction in the constituent
codes [21, 22]. Indeed, for the stopping set analysis carried out
in this paper, we do not require to make any assumption on
the decoding algorithm used at each constituent decoder. The
key point is that decoding is performed in a constituent code
oriented fashion, and that the constituent decoders perform
MAP decoding. However, we prefer to refer to trellis-based
decoding, since the trellis representation of the constituent
encoders is very useful for the derivation of the stopping set
enumerators and the subsequent asymptotic analysis. This will
become apparent in the following sections.

A. Stopping Sets for RMA Codes

We will now give the formal definition of a stopping set
for RMA codes, adapted from the definition in [15] for turbo
stopping sets. The generalization to the HCC ensembles of
Fig. 2 and to the case with puncturing is straightforward. In
the following stopping set definition, we need the concept of
support set of a binary vector and of a binary linear code.
The support setχ(x) of a binary vectorx = (x1, . . . , xN ) (of
lengthN ) is the set of nonzero coordinates. As an example,
with x = (0, 1, 1, 0, 1), χ(x) = {2, 3, 5}. The support set
χ(C) of a binary linear codeC is the union of the support
sets of each codeword inC. Also, we need the concept of a
subcode. A subcodeC̃ of a binary linear codeC is a subspace
of C. Finally, an interleaver will be regarded as a mapping
from the set of coordinates of its input sequence to the set of
coordinates of its output sequence.
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Fig. 2. Encoder structures for HCCs.

Definition 1: LetCRMA denote a given RMA code with in-
terleaversπ1, . . . , πL. A setS = S(π1, . . . , πL) ⊆ {1, . . . , N}
of the coordinates of the output sequence (or codeword) is a
stopping set if and only if there existL + 1 linear subcodes
Ĉl ⊆ Cl ⊆ {0, 1}N , l = 0, . . . , L, with support setsχ(Ĉl)
such that

χ(ĈL) = S andπl(χ(Ĉl−1)) = χ(Ĉl), l = 1, . . . , L.

The sizeof a stopping setS is its cardinality.
Note that in Definition 1 we used the fact that the mapping

between the input support set and the output support set is
an identity mapping for rateR = 1 encoders. For general
R < 1 encoders this is not true. Also, note that Definition 1
does not exclude the empty set. Thus, the empty set is
formally a stopping set of size zero. The size of the smallest
nonempty stopping set is called thestopping distance[17] and
is denoted byhmin. We emphasize the fact that the concept of
stopping sets for RMA codes, as defined above, is conceptually
different from the traditional concept of stopping sets used
in connection with iterative BP decoding of LDPC codes,
but it reduces to the traditional concept of stopping sets for
Tanner graphs when the constituent codes are single parity-
check codes. Indeed, the RMA code could be decoded using
iterative BP decoding on a Tanner graph representing the entire
code [23]. On the other hand, the concept of stopping sets from
Definition 1 is related to iterative constituent code oriented
decoding. In general, the concept of stopping sets can be
defined forany iterative decoding algorithm when it operates
on the BEC and should not be used without having a specific
iterative decoding algorithm in mind.

In general, the erasure probability after iterative BP decod-
ing of a concatenated code using its factor graph is greater than
or equal to the erasure probability after iterative constituent
code oriented decoding using MAP erasure correction in the
constituent codes for any channel erasure pattern. Here, with
the factor graph of a general concatenated code we mean a
factor graph constructed from arbitrary Tanner graphs of each

constituent code. The Tanner graphs of the constituent codes
are interconnected through the interleavers. An example of
such a factor graph is given in Fig. 4 for a repeat accumulate-
accumulate (RAA) code withq = 3. The interested reader is
referred to [15] for further details. For the special case ofRMA
codes and HCCs with accumulate constituent encoders, it turns
out that iterative BP decoding on the overall factor graph is
equivalent to iterative constituent code oriented decoding. This
is because the factor graph of an accumulator (depicted in
Fig. 4) does not contain cycles [24, p. 583]. Thus, iterative
BP decoding of a constituent accumulator (using a factor
graph) is equivalent to MAP erasure correction. Actually, this
result holds for any accumulator with generator polynomial
1/(1 + Dt), t ≥ 1. However, we stress that the traditional
definition of stopping sets (on an overall factor graph) is only
appropriate when the constituent encoders are accumulators,
but not for general concatenated codes, i.e., when other con-
volutional codes are used as constituent codes. This is one of
the reasons why we have introduced iterative constituent code
oriented decoding and the corresponding general definitionof
stopping sets in Definition 1. Indeed, an asymptotic stopping
distance analysis of the concatenated codes analyzed here
using, e.g., 4-state or 8-state convolutional encoders could be
carried out using the approach in [25] to compute asymptotic
input-output weight distributions of convolutional encoders,
generalized to the stopping set case.

In summary, the stopping set enumerators and the analysis
in the following sections are general and do not only apply
to iterative constituent code oriented decoding; iterative BP
decoding on the overall factor graph of RMA codes and the
HCCs of Fig. 2 leads to the same stopping set enumerators as
iterative constituent code oriented decoding.

The following lemma can easily be proved.

Lemma 1:Let C denote a RMA code (or a HCC). Then,
the support set of any codeword inC is a stopping set.

Theorem 1:Let C denote a RMA code (or a HCC) that
we use to transmit information over the BEC. The received
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vectors are decoded iteratively using constituent code oriented
decoding using MAP erasure correction in the constituent
codes until either the codeword has been recovered, or the
decoder fails to progress further. Then the set of erased
positions that remain when the decoder stops is equal to the
unique maximum-size stopping set that is contained in the
(initial) set of erased positions.

Proof: The proof uses the same basic ideas as the proof
of Theorem 1 in [15], and is omitted for brevity.

From Theorem 1 it arises that an important parameter
for code performance is the stopping distancehmin. In the
following sections we address the asymptotic behavior ofhmin

for RMA and HCC ensembles.

IV. SUPPORTSETS AND STOPPINGSET ENUMERATORS

Let C denote an(N,K) binary linear code. Partition all the
subcodes ofC of dimensiond, d = 0, . . . ,K, into equivalence
classes based on their support sets. In particular, all subcodes
within a specific subcode class are required to have the same
support set, but the subcodes may have different dimensions.
We define thesubcode input-output support size enumerating
function (SIOSEF) [15] ofC as

AC(W,H) =

K∑

w=0

N∑

h=0

aCw,hW
wHh

whereW andH are dummy variables, andaCw,h is the number
of subcode classes ofC of input support set sizew andoutput
support set sizeh. In the rest of the paper, with a slight abuse
of notation, we will refer interchangeably to bothAC(W,H)
andaCw,h as the SIOSEF of a codeC.

A. Stopping Set Enumerators for RMA and HCC Ensembles

Let s̄Cw,h be the ensemble-averageinput-output stopping set
size enumerating function(IOSSEF) of the code ensembleC
with input and output block lengthK andN , respectively,
denoting the average number of stopping sets of input sizew
and output sizeh over C. Also, denote bȳsCh =

∑K
w=0 s̄

C
w,h

the ensemble-averagestopping set size enumerating function
(SSEF) of the code ensembleC, giving the average number of
stopping sets of sizeh over C.

Using the concept of uniform interleaver [26], the IOSSEF
of a RMA code ensembleCRMA can be obtained from the
SISOEFs of the constituent encoders. Indeed, the contribution
of the SISOEFs of the constituent encoders to the IOSSEF of
a RMA code ensemble is, through Definition 1, analogous to
the role played by the weight spectra of constituent encoders
in the weight spectrum of a concatenated code ensemble. The
ensemble-average IOSSEF ofCRMA can then be written as
[15, 26]

s̄CRMA

w,h =

N∑

h1=0

· · ·

N∑

hL−1=0

aC0
w,qwa

C1

qw,h1
(
N
qw

)

[
L−1∏

l=2

aCl

hl−1,hl
(
N
hl−1

)

]
aCL

hL−1,h
(
N

hL−1

)

=
N∑

h1=0

· · ·
N∑

hL−1=0

s̄CRMA

w,h1,...,hL−1,h

(1)

0/0

1/1

0/1

1/1 1/0

0 0

1 1

s i s oa/b

Fig. 3. Extended trellis module of the rate-1 recursive convolutional encoder
with generator polynomialg(D) = 1/(1 + D). The edge labels have the
format input/output.

where s̄CRMA

w,h1,...,hL−1,h
is called the conditional support size

enumerating function ofCRMA.
Now, consider the(N,K) HCC ensemblesCHCC of Fig. 2.

Assuming trellis termination, thelth constituent code is a
binary linear code with input block lengthKl and output block
lengthNl. Except forC1, which is directly connected to the
input, every code is preceded by an interleaver. Furthermore,
we assume that the codeCq+1 is directly connected to the
channel. Partition the set{1, 2, . . . , q} into two disjoint subsets
Q and its complement̄Q such thatQ contains the indices of all
codes directly connected to the channel. The ensemble-average
IOSSEF ofCHCC can be written as [8, 15]

s̄CHCC

w,h =

N1∑

h1=0

· · ·

Nq∑

hq=0

aC1

w,h1
a
Cq+1
P

l∈Q̄ hl,h−
P

l∈Q hl
(

Kq+1
P

l∈Q̄
hl

)

q
∏

l=2

aCl

w,hl
(
Kl

w

)

=

N1∑

h1=0

· · ·

Nq∑

hq=0

s̄CHCC

w,h1,...,hq,h

(2)

where s̄CHCC

w,h1,...,hq,h
is called the conditional support size

enumerating function ofCHCC.
The evaluation of (1) and (2) requires the computation of

the SIOSEFs of the constituent encoders. In the following,
we give closed-form expressions for the SIOSEFs of rate-1,
memory-one, encoders, and repeat codes. They will be used
later to derive the asymptotic expressions for the stoppingset
distributions in Sections VI and VII.

B. SIOSEFs for Memory-One Encoders and the Repetition
Code

Theorem 2:The SIOSEF for rate-1, memory-one, convolu-
tional encoders with generator polynomialsg(D) = 1/(1+D)
andg(D) = 1+D that are terminated to the zero state at the
end of the trellis and with input and output block lengthN
can be given in closed form as

a
1

1+D

w,h = a1+Dh,w =

⌊w
2 ⌋∑

d=1

(
N − h

d

)(
h− 1

d− 1

)(
h− d

w − 2d

)

(3)

for positive input sizesw. Also, a
1

1+D

0,0 = a1+D0,0 = 1.
Proof: Let CN denote the binary linear code obtained by

terminating (to the zero state) the rate-1 recursive convolu-
tional encoder with generator polynomialg(D) = 1/(1 +D)
and with input and output block length ofN . In Fig. 3,
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the extendedtrellis module [15], denoted byText, of the
encoder is depicted. We call the trellis module in Fig. 3 the
extended trellis module because it extends (and comprises)
the trellis module of the code to represent all support vectors
of subcodes. Each edge between two trellis states is labeled
with a binary paira/b, where a denotes the input support
vector bit andb denotes the output support vector bit. The
overall transition between two statessi andso is denoted by
(si, a/b, so). Note thatText is identical to the trellis module of
the original code, except that it has an extra edge (with label
1/1) from state one to state one. The paths of lengthN starting
from the zero state and ending in the zero state in anN -
fold concatenation ofText give all possible support vectors of
subcodes ofCN [15]. Also, theN -fold concatenation ofText
does not contain duplicates, i.e., there are no two paths with
the same input/output label sequence. From [27], we know
that the number of paths in anN -fold concatenation ofText
corresponding to codewords, i.e., paths that do not containthe
(1, 1/1, 1) transition, of even input weightw ≥ 2 (there are
no codewords of odd input weight) and output weighth is

(
N − h

w/2

)(
h− 1

w/2− 1

)

.

These codewords consist ofw/2 error events with a total
of h − w/2 transitions from state one to state one. Now,
the number of paths in the extended trellis, i.e., theN -fold
concatenation ofText, consisting ofd error events with a total
output weight ofh and total input weight ofw ≥ 2 is

(
N − h

d

)(
h− 1

d− 1

)(
h− d

w − 2d

)

since the transition(1, 1/1, 1) does not increase the output
weight (b is 1 for both edges between state one and state
one), but only the input weight. The result for the encoder
g(D) = 1/(1 + D) follows by summing over all possible

values ofd. Furthermore,a
1

1+D

0,0 = 1, since the empty set is
the support set of the trivial subcode containing only the all-
zero codeword. The SIOSEF for the feedforward encoder with
generator polynomialg(D) = 1 +D is obtained in a similar
manner.

Note that the formula in (3) generalizes the closed-form
expression for the input-output weight enumerating function
for rate-1, memory-one, convolutional encoders from [27].

Theorem 3:The SIOSEF for the(Kq,K) repetition code
C0 with input block lengthK obtained by concatenating
togetherK successive codewords of a(q, 1) repetition code
can be given in closed form as

aC0
w,qw =

(
K

w

)

. (4)

Proof: Consider the(q, 1) repetition codeC. This code
consists of two codewords, the all-zero codeword and the all-
one codeword. Obviously,AC(W,H) = 1 + WHq. With
an input block length ofK, we get (1 + WHq)K =
∑K

w=0

(
K
w

)
WwHqw, from which it follows thataC0

w,qw =
(
K
w

)
.

Fig. 4. Factor graph representation of a RAA code withq = 3.

(0,0,0) (1,0,1) (1,1,0) (0,1,1) (1,1,1)

Fig. 5. Factor graph representation of an extended trellis section of an
accumulate code.

C. A Factor Graph Interpretation

In this section, we consider an equivalent factor graph
representation of the accumulate code to better clarify the
computation of the SIOSEF and its connection with stopping
sets of a concatenated code. The factor graph of a RAA code
with q = 3 is depicted in Fig. 4. Consider a single section of
the factor graph corresponding to one of the two accumulate
codes, marked with a dashed box, and transmission over the
BEC. We have the relationuk = xk−1 + xk, whereuk is the
information symbol, andxk−1 andxk are the code symbols
of sectionk. The decoder will fail in recovering an erased
symbol at sectionk if and only if two or more symbols
at sectionk are erased. Four possible triplets(uk, xk−1, xk)
are possible, namely(1, 0, 1), (1, 1, 0), (0, 1, 1), and(1, 1, 1),
where1 means that the symbol is erased. Their factor graph
representation is given in Fig. 5, where a black circle means
that the symbol is erased(1) and an empty circle means
that the symbol is not erased(0). Clearly, to enumerate the
stopping setsof an accumulate code of lengthN we must
consider all valid combinations (of lengthN ) of the sections
in Fig. 5 plus the one corresponding to the triplet(0, 0, 0) (no
erasures). Note that we do not need to consider the triplets
with a single one, since in this case the erasure would be
recovered, yielding to(0, 0, 0). To simplify this computation,
the five factor graph sections of Fig. 5 can be equivalently
represented in a more compact form byText in Fig. 3, which
gives a trellis representation of all possible support vectors of
subcodes of an accumulate codeC. The five triplets(0, 0, 0),
(1, 0, 1), (1, 1, 0), (0, 1, 1), and(1, 1, 1) of Fig. 5 correspond
to transitions(0, 0/0, 0), (0, 1/1, 1), (1, 1/0, 0), (1, 0/1, 1),
and (1, 1/1, 1), respectively, inText. The enumeration of all
stopping sets, or all support sets of subcodes, of the accumulate

code, given bya
1

1+D

w,h , can then be computed usingText as
shown in the previous subsection. Please note that here, for
better understanding, we used the concept ofstopping sets
applied to an accumulate code. Formally speaking, stopping
sets, as defined in Section III-A, apply only to iterative decod-
ing of concatenated codes. When referring to the constituent
codes (with the associated MAP decoding algorithm) it is more
appropriate to use the concept of support sets discussed in



6

Section III-A.
Finally, the IOSSEF of RMA and HCC ensembles can be

obtained by properly combining the SIOSEFs of the con-
stituent encoders through (1) and (2), respectively.

V. FINITE-LENGTH AND ASYMPTOTIC ANALYSIS OF

STOPPINGSETS

A. Finite-Length Analysis of Stopping Sets

The ensemble-average SSEF̄sCh of a concatenated code
ensembleC can be used to bound itshmin in the finite-length
regime, similarly to the case of thedmin [2, 5]. In particular,
the following bound holds.

Lemma 2:The probability that a code chosen randomly
from the ensembleC with ensemble-average SSEF̄sCh has
stopping distancehmin < ~ is upper-bounded as

Pr(hmin < ~) ≤

~−1∑

h=1

s̄Ch. (5)

Proof: The bound follows from the application of the
union bound and the Markov inequality [5].
Lemma 2 can be used to obtain a probabilistic lower bound on
the stopping distance of a code ensemble. In particular, if we
setPr(hmin < ~) = ε, whereε is any positive value between
0 and 1, we would expect that at least a fraction1 − ε of
the codes in the ensemble have a stopping distancehmin of at
least~.

B. Asymptotic Analysis of Stopping Sets

We define the asymptotic stopping set size spectral shape
function as [2]

rs(ρ) = lim
N−→∞

sup
1

N
ln s̄C⌊ρN⌋ (6)

wheresup(·) denotes the supremum of its argument,ρ = h
N

is the normalized stopping set size, andN is the block length.
From (6), the SSEF can be expressed ass̄Ch ∼ eNrs(ρ) when
N −→ ∞. Therefore, if there exists some abscissaρ0 > 0
such thatsupρ≤ρ∗ rs(ρ) < 0 ∀ρ∗ < ρ0, and rs(ρ) > 0
for some ρ > ρ0, then it can be shown (using Lemma 2
for example) that, with high probability, the stopping distance
of most codes in the ensemble grows linearly with the block
lengthN , with growth rate coefficient of at leastρ0. On the
other hand, ifrs(ρ) is strictly zero in the range(0, ρ0), it
cannot be proved directly whetherhmin grows linearly with
the block length or not.

In [11, 12], it was shown that the spectral shape function of
RMA codes, for the codeword case, exhibits this behavior,
i.e., it is zero in the range(0, ρ0) and positive for some
ρ > ρ0, whereρ means here the normalized output weight.
By combining the asymptotic spectral shapes with the use of
bounding techniques, Fagnani and Ravazzi were able to prove
in [11, Theorem 11] that the minimum distance of RMA codes
indeed grows linearly with the block length with growth rate
coefficient of at leastρ0. In Sections VI and VII we show that
the stopping set size spectral shape function of RMA and HCC
ensembles exhibits a similar behavior. We shall then extend

Theorem 11 in [11] to prove that RMA codes and HCCs are
also good for the BEC.

We remark that in the rest of the paper, with a slight
abuse of language, we sometimes refer toρ0 as the exact
value of the asymptotic growth rate coefficient. However, we
emphasize that, strictly speaking,ρ0 is only a lower bound on
the asymptotic growth rate coefficient.

VI. STOPPINGDISTANCE ANALYSIS FOR RMA CODES

In this section, we analyze the asymptotic stopping distance
properties of RMA code ensembles. We first show that the
hmin of RA code ensembles cannot grow linearly with the
block length. Then, we consider the ensemble of RMA codes
obtained from the concatenation of a repeat code with the
cascade ofL > 1 accumulators and show that the asymptotic
hmin grows linearly with the block length.

A. RA Codes

We consider thehmin of code ensembles formed by the
concatenation of aR0 = 1/q repetition code with a single
inner accumulator (L = 1) with generator polynomialg(D) =
1/(1 +D) through a uniform interleaver [26] (see Fig. 1). In
particular, we prove the following theorem.

Theorem 4:The stopping distancehCRA

min of a RA code
ensembleCRA with repetition factorq ≥ 3 satisfies

lim
N−→∞

Pr
(

hCRA

min ≤ N
q−2
3q+2−ǫ

)

= 0

whereǫ is any positive constant.
Proof: Using (1), (3), and (4), the ensemble-average

IOSSEF s̄CRA

w,h with w > 0 of a RA code ensemble can be
written as

s̄CRA

w,h =

(
K
w

)∑⌊ qw

2 ⌋
d=1

(
N−h
d

)(
h−1
d−1

)(
h−d
qw−2d

)

(
N
qw

) .

Using Stirling’s approximation
(
n
k

)
≤

(
ne
k

)k
and the fact that

∏l
i=0(N − i) ≥ N l+1

ϕN (l) , with ϕλ(l) = exp
(
l(l+1)
2λ

)

[10], s̄CRA

w,h

can be bounded as

s̄CRA

w,h ≤ Nw−⌈ qw

2 ⌉hqw+⌊ qw

2 ⌋−3

×
(qw)!eqw+w−1ϕN (qw − 1)

qwww

⌊ qw

2 ⌋
∑

d=1

(qw − 2d)2d−qw

dd(d− 1)d−1

︸ ︷︷ ︸

g(w,N)

.

(7)

The total average number of nonempty stopping sets of size
h ≤ ~ can now be obtained from̄sCRA

w,h≤~
=

∑
~

h=1 s̄
CRA

w,h . Using
(7), we get

s̄CRA

w,h≤~
≤ Nw−⌈ qw

2 ⌉
~
qw+⌊ qw

2 ⌋g(w,N). (8)

Let s̄CRA

h≤~
=

∑K
w=1 s̄

CRA

w,h≤~
=

∑2~/q
w=1 s̄

CRA

w,h≤~
, where we used

the fact thatw ≤ 2~/q. This follows from the binomial
coefficient

(
h−d
qw−2d

)
, from which it follows thatqw ≤ h+ d ≤

h+ ⌊qw/2⌋, which implies thatw ≤ 2h/q ≤ 2~/q. Also, we
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assume that~ can be expressed in terms of the block length
N as~ = Nν , with 0 < ν < 1. From (8), it follows that

s̄CRA

h≤~
≤

2

q
max

1≤w≤2~/q
Nw−⌈ qw

2 ⌉
~
qw+⌊ qw

2 ⌋+1g(w,N)

=
2

q
N1−⌈ q

2⌉~q+⌊
q

2⌋+1g(1, N)

for large enoughN . We chooseν such that

lim
N−→∞

N1−⌈ q

2⌉~q+⌊
q

2⌋+1g(1, N) = 0

which implies that

1−
⌈q

2

⌉

+ ν
(

q +
⌊q

2

⌋

+ 1
)

< 0 (9)

since g(1, N) approaches a constant whenN approaches
infinity. The evaluation of (9) leads toν < q−2

3q+2 , and we can

express the stopping set size~ asN
q−2
3q+2−ǫ for any positive

constantǫ. Since (see Lemma 2 in Section V-A)

Pr
(

hCRA

min ≤ ~

)

≤ s̄CRA

h≤~

the theorem follows.
We remark that we can improve the lower bound of(q −

2)/(3q + 2) from Theorem 4 using a much more convoluted
approach. In particular, the lower bound can be tightened to
(q − 2)/(3q) for all q ≥ 3 using a similar technique as in
the proof of Theorem 1 in [10]. However, in the stopping set
case, the summation overd in (7) needs to be upper-bounded
by

⌊
qw
2

⌋
times the maximum element found by taking the

derivative with respect tod. Further details are omitted for
brevity.

Corollary 1: In the ensemble of RA codes with repetition
factor q ≥ 3 almost all codes have stopping distance lower-
bounded forN −→ ∞ by

hCRA

min > N
q−2
3q+2−ǫ

whereǫ is any positive constant.
An upper bound for the stopping distance is given by the

following theorem.
Theorem 5:The stopping distancehCRA

min of anycode in the
RA code ensemble with repetition factorq ≥ 3 is upper-
bounded forN −→ ∞ by

hCRA

min ≤ O
(

N
q−1
q

)

.

Proof: The proof given in [28] fordmin of RA code
ensembles still holds for the stopping distance.

As a consequence of Theorems 4 and 5, the stopping
distance of almost all codes in the RA code ensemble with
q ≥ 3 grows withN asO(Nν), where(q − 2)/(3q + 2) ≤
ν ≤ (q−1)/q, i.e., the RA code ensemble isbad for the BEC.

B. RMA Codes

In the following, we consider the ensemble of codes formed
by a rateR0 = 1/q repetition code followed by the cascade of
L accumulators, and show that the ensembles with parameters
L ≥ 3 and q ≥ 2, and L = 2 and q ≥ 3 are good for
the BEC, in the sense that, asymptotically, their typicalhmin

grows linearly with the block length. In particular, we needto
prove that̄sCRMA

h≤~
tends to zero asN −→ ∞ for all ~ < ρ0N ,

for some valueρ0 between0 and1. To prove this, we follow
similar arguments to the ones used in [10] and [11, 12] for the
asymptoticdmin.

Using (3) and (4) in (1), the conditional support size
enumerating function (withw > 0) of RMA code ensembles
can be written as

s̄CRMA

w,h1,...,hL−1,h
=

(
K
w

)∑⌊ qw

2 ⌋
d1=1

(
N−h1

d1

)(
h1−1
d1−1

)(
h1−d1
qw−2d1

)

(
N
qw

)

×

L−1∏

l=2

∑
j

hl−1
2

k

dl=1

(
N−hl

dl

)(
hl−1
dl−1

)(
hl−dl

hl−1−2dl

)

(
N
hl−1

)

×

∑
j

hL−1
2

k

dL=1

(
N−h
dL

)(
h−1
dL−1

)(
h−dL

hL−1−2dL

)

(
N

hL−1

)

=

⌊ qw

2 ⌋
∑

d1=1

⌊h1
2 ⌋∑

d2=1

· · ·

j

hL−1
2

k

∑

dL=1

s̄CRMA

w,h1,...,hL−1,d1,...,dL,h
.

(10)

Without loss of generality, we can write

w = αNa, hi = βiN
bi , i = 1, . . . , L− 1,

h = ρN c, anddi = γiN
ei , i = 1, . . . , L

(11)

where0 ≤ a ≤ b1 ≤ b2 ≤ · · · ≤ bL−1 ≤ c ≤ 1, 0 ≤ e1 ≤ a ≤
1, and0 ≤ ei ≤ bi−1 ≤ 1, i = 2, . . . , L. These inequalities
can be derived from the binomial coefficients in the expression
in (10) combined with the fact that for a binomial coefficient
(
n
k

)
, n ≥ k ≥ 0. Also, α, β1, . . . , βL−1, γ1, . . . , γL, andρ are

positive constants. We must consider two cases: 1) at least
one of the quantitiesw, h1, . . . , hL−1, d1, . . . , dL, or h is of
ordero(N), and 2) all quantitiesw, h1, . . . , hL−1, d1, . . . , dL,
and h can be expressed as fractions of the block lengthN ,
i.e., a = b1 = · · · = bL−1 = d1 = · · · = dL = c = 1.
The following lemma addresses the first case for RAA code
ensembles.

Lemma 3: In the ensemble of RAA codes with block length
N andq ≥ 3, in the case where at least one of the quantities
w, h1, d1, d2, or h is of ordero(N), N5s̄CRAA

w,h1,d1,d2,h
−→ 0

asN −→ ∞ for all values ofh, 1 ≤ h < N/2.
Proof: See Appendix A.

Lemma 3 can be generalized to the case of RMA codes
with L ≥ 3 (with or without puncturing) and to the HCC
ensembles in Section VII. The proofs are omitted for brevity.
As a consequence of Lemma 3, the contribution of the first
case tōsCRMA

h≤~
tends to zero asN −→ ∞, and we can assume

that w, h1, . . . , hL−1, d1, . . . , dL, andh are all linear in the
block length.

We now address the second case by deriving an expression
for the stopping set size spectral shape function in (6) for
RMA code ensembles. Using Stirling’s approximation for the
binomial coefficient

(
n
k

) n→∞
−→ enH(k/n) where H(·) is the

binary entropy function with natural logarithms, and the fact
thatw, h1, . . . , hL−1, d1, . . . , dL, andh are all assumed to be
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TABLE I
ASYMPTOTIChmin GROWTH RATE COEFFICIENTS FORRMA CODE ENSEMBLES.

q = 2 q = 3 q = 4 q = 5 q = 6

ρ0 (hmin) (L = 2) N/A 0.0929 0.1289 0.1505 0.1647
ρ0 (dmin) (L = 2) [10] N/A 0.1323 0.1911 0.2286 0.2549
ρ0 (hmin) (L = 3) 0.0681 0.1037 0.1194 0.1279 0.1331
ρ0 (dmin) (L = 3) [10] 0.1034 0.1731 0.2143 0.2428 0.2643
ρ0 (hmin) (L = 4) 0.0549 0.0716 0.0784 0.0817 0.0835
GVB 0.1100 0.1740 0.2145 0.2430 0.2644

of the same order as the block lengthN , (10) can be written
as

s̄CRMA

w,h1,...,hL−1,h

=

⌊ qw

2 ⌋
∑

d1=1

· · ·

j

hL−1
2

k

∑

dL=1

exp{f(α, β1, . . . , βL−1, γ1, . . . , γL, ρ)N

+ o(N)}
(12)

whenN −→ ∞. In (12), α = w
K is the normalized input

stopping set size,ρ = h
N is the normalized output stopping

set size,βl = hl

N is the normalized output support set size of
constituent codeCl, γl =

dl
N , and the functionf(·) is given

by

f(β0, β1, . . . , βL−1, γ1, . . . , γL, ρ)

=
H(β0)

q
−

L∑

l=1

H (βl−1) +
L∑

l=1

(1− βl)H

(
γl

1− βl

)

+

L∑

l=1

βlH

(
γl
βl

)

+

L∑

l=1

(βl − γl)H

(
βl−1 − 2γl
βl − γl

)

(13)

where for conciseness we definedβ0 = α andβL = ρ. Finally,
the stopping set size spectral shape function for RMA code
ensembles can be written as [6]

rCRMA
s (ρ) = sup

0<β0,...,βL−1≤1
0<γ1,...,γL≤1

f(β0, β1, . . . , βL−1, γ1, . . . , γL, ρ)

(14)
In deriving (14) from (12), we used the fact thatmax∗(x, y) ,
ln (exp(x) + exp(y)) is approximately equal tomax(x, y)
whenx andy are large and distinct. Similar comments apply
when more than two variables are involved.

From (13) and (14) it can easily be verified that the
asymptotic stopping set size spectral shape functions of RMA
code ensembles satisfy the recursive relation

r
CRMA(L)
s (ρ) = sup

0<u≤1

[

r
CRMA(L−1)
s (u) + ψ(u, ρ)

]

wherer
CRMA(l)
s , l = L − 1, L, is the asymptotic stopping set

size spectral shape function withl accumulators,r
CRMA(0)
s is

defined to be the asymptotic stopping set size spectral shape
function of a repeat code, and

ψ(u, ρ)

= sup
max(0,u−ρ)≤γ≤min(ρ,1−ρ,u/2)

[

−H(u) + ρH

(
γ

ρ

)

+ (1− ρ)H

(
γ

1− ρ

)

+ (ρ− γ)H

(
u− 2γ

ρ− γ

)]

.

(15)
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Fig. 6. Asymptotic stopping set size spectral shape function for the RAA
code ensemble withq = 2, 3, 4, 5, and6.

To analyze the asymptotic stopping distance behavior of
RMA code ensembles, we must solve the optimization prob-
lem in (13)-(14). Note that in (14) we did not include the
constraints on the relationship of the variables involved in the
functionf(·), due to lack of space. However, these constraints
must be considered in the optimization. The constraints on the
involved variables can be derived by looking at the arguments
of the binary entropy functions in the expression for the
function f(·) in (13). In general, the argument of the binary
entropy function should be between0 and1. The maximization
of the functionf(·) is addressed in Appendix B. The numerical
evaluation of (13)-(14) is shown in Fig. 6 for RAA code
ensembles withq = 2, 3, 4, 5, and 6. We observe that the
stopping set size spectral shape function for the rateR = 1/2
RAA code ensemble is strictly positive, meaning that the
ensemble is bad for the BEC. For3 ≤ q ≤ 6, the function
rCRMA
s (ρ) is zero in the range(0, ρ0) and positive for some

values ρ > ρ0. In this case, we cannot conclude directly
whetherhmin grows linearly with the block length or not.
However, we can prove the following theorem, extending the
results in [11, 12] to the stopping distance case.

Theorem 6:Defineρ0 = max{ρ∗ ∈ [0, 1/2) : rCRMA
s (ρ) =

0 ∀ρ ≤ ρ∗}. Assuming thatlimu−→0
ψ(u,ρ)
u < 0 ∀ρ < ρ0,

then∀ρ∗ > 0

lim
N−→∞

Pr (hmin ≤ (ρ0 − ρ∗)N) = 0

for L ≥ 3 andq ≥ 2, andL = 2 andq ≥ 3. Thus, if ρ0 > 0
and rCRMA

s (ρ) ≥ 0 ∀ρ (see Lemma 4 in Appendix B), then
almost all codes in the ensemble have asymptotic stopping
distance growing linearly withN with growth rate coefficient
of at leastρ0.

Proof: See Appendix C.
We remark that it can be verified that the assumption in

Theorem 6 always holds for the numerical values ofρ0 that
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TABLE II
ASYMPTOTIChmin GROWTH RATE COEFFICIENTS FOR PUNCTUREDRMA CODE ENSEMBLES WITHq = 3 AND NOMINAL CODE RATE R′ = 1/(λq).

R′ 1/3 0.35 0.37 0.38 2/5 5/12 0.43 4/9 1/2 0.54 0.55
λ 1 20/21 100/111 50/57 5/6 4/5 100/129 3/4 2/3 50/81 20/33

ρ0 (L = 2) 0.0929 0.0911 0.0885 0.0868 0.0820 0.0746 0.0673 0.0585 0.0240 0.0028 N/A
ρ0 (L = 3) 0.1037 0.0866 0.0632 0.0514 0.0289 0.0124 0.0015 N/A N/A N/A N/A
ρ0 (L = 4) 0.0716 0.0426 0.0113 N/A N/A N/A N/A N/A N/A N/A N/A

we have found. From Lemma 3, Theorem 6, and the numerical
evaluation ofrCRAA

s (ρ) in Fig. 6, it results that for RMA codes
the typicalhmin asymptotically grows linearly with the block
length with growth rate of at leastρ0. The exact values ofρ0
are given in Table I. For comparison purposes we also give
the asymptotic growth rate coefficient of thedmin computed
in [10]. As expected, the asymptotic growth rate coefficient of
hmin is smaller than fordmin.

We can now prove the following theorem.
Theorem 7:The typicalhmin of RMA code ensembles for

L ≥ 3 andq ≥ 2 grows linearly with block length.
Proof: Note that if we serially concatenate any encoder

whosehmin grows linearly with the block length with growth
rate coefficient of at leastρ0 with an accumulate code through
a uniform interleaver, the resulting concatenated code en-
semble will exhibit ahmin growing linearly with the block
length with growth rate coefficient of at least⌈ρ0/2⌉. This
follows from the fact that the output support set sizeh of
an accumulate code is lower bounded by

⌈
w
2

⌉
in (3). In more

detail, due to the binomial coefficient
(
h−d
w−2d

)
, h−d ≥ w−2d,

from which it follows thatw ≤ h + d ≤ h + ⌊w/2⌋, which
implies thath ≥

⌈
w
2

⌉
. Since we know that the RAA code

ensemble exhibits a typicalhmin that grows linearly with the
block length, the theorem is proved forq ≥ 3. For q = 2,
it can be shown that the functionrCRAAA

s (ρ) for the repeat
triple-accumulate (RAAA) code ensemble is zero in the range
(0, ρ0), with ρ0 > 0, and positive for someρ > ρ0. Therefore,
by repeating the argument forq ≥ 3, the theorem is also
proved forq = 2.

In Table I, we also report the asymptotic growth rate
coefficient ρ0 for RAAA and repeat quadruple-accumulate
(RAAAA) code ensembles. Interestingly, from Table I it
follows that, contrary to the asymptoticdmin growth rate
coefficient, which increases with the number of accumulators
and tends to approach the GVB [10–12], the asymptotic
growth rate coefficient ofhmin decreases with the number of
accumulators concatenated in series. An intuitive explanation
to this behavior can be formulated as follows. From Fig. 3,
it follows that there is a many-to-one mapping from input
sequences to output sequences in anN -fold concatenation of
Text, in the sense that for a given output sequence there are
many input sequences that can produce it. This is not the case
for the basic trellis module, i.e., forText in Fig. 3 without
the transition(1, 1/1, 1), where the mapping is one-to-one.
In a concatenation ofL trellises based on the basic trellis
module, there is still a one-to-one mapping between input
sequences and output sequences. However, in a concatenation
of L trellises based onText, there will be an increasing set
(in L) of input sequences that map to a particular output
sequence. This phenomenon can be easily understood by
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Fig. 7. Probabilistic lower bound on the stopping distancehmin versus block
lengthN for RMA codes withq = 4 andL = 2, 3, and4.

considering the probabilistic bound (5) onhmin for the finite-
length regime. Since the set of input sequences that map
to a particular output sequence increases withL, the terms
s̄CRMA

h =
∑K

w=1 s̄
CRMA

w,h in the right hand side of (5) will also
increase. Consequently,hmin will decrease. Our conjecture is
that the same phenomenon applies to the asymptotichmin

growth rate coefficient. From these results, it is apparent that
serially concatenated codes with more than three encoding
stages are not well suited for the BEC.

In Fig. 7, we plot the probabilistic lower bound onhmin

from Lemma 2 for RMA codes withq = 4, L = 2, 3, and
4, and codeword lengthN up to 1000 bits. The bounds were
obtained by settingε = 0.5 in (5), i.e., at least half of the codes
in the ensemble have stopping distance at least equal to the
value indicated by the curves. The results are in agreement
with the asymptotichmin growth rates in Table I. The best
growth rate is obtained forL = 2, while increasing the number
of accumulate codes decreases the growth rate.

C. RMA Codes with Random Puncturing

In this section, we consider high rate RMA code ensem-
bles obtained by puncturing the output of the most inner
accumulatorCL. We assume that code bits at the output
of CL are punctured randomly, since otherwise we cannot
guarantee asymptotic linear growth rate forhmin. Denote byλ
(0 ≤ λ ≤ 1) the puncturing permeability rate, i.e., the fraction
of bits surviving after puncturing, and byR′ = R/λ = 1/(λq)
the nominal code rate of the punctured RMA code.

The SIOSEF of a randomly punctured codeCpunct. with
input support set sizew, output support set sizeh before
puncturing, and output support set sizeh′ after puncturing
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TABLE III
ASYMPTOTIChmin GROWTH RATE COEFFICIENTS FOR PUNCTUREDRMA CODE ENSEMBLES WITHq = 4 AND NOMINAL CODE RATE R′ = 1/(λq).

R′ 1/4 0.28 0.29 3/10 5/16 0.33 1/3 11/30 2/5 0.41 0.42 0.43
λ 1 25/28 25/29 5/6 4/5 25/33 3/4 15/22 5/8 25/41 25/42 25/43

ρ0 (L = 2) 0.1289 0.1192 0.1142 0.1077 0.0977 0.0819 0.0788 0.0474 0.0188 0.0112 0.0045 N/A
ρ0 (L = 3) 0.1194 0.0694 0.0528 0.0373 0.0198 0.0004 N/A N/A N/A N/A N/A N/A
ρ0 (L = 4) 0.0784 0.0112 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

is given by [10]

aC
punct.

w,h′ =

N∑

h=h′

aCw,h

(
h
h′

)(
N−h
λN−h′

)

(
N
λN

) . (16)

Using Stirling’s approximation in (16) and a generalization
of Lemma 3, and coupling it with (13) and (14), the stopping
set size spectral shape function of a punctured RMA code
ensemble is given by

r
Cpunct.
RMA

s (ρ′) =
1

λ
sup

0<β0,...,βL≤1
0<γ1,...,γL≤1

H(β0)

q
−

L∑

l=1

H (βl−1)

+

L∑

l=1

(1− βl)H

(
γl

1− βl

)

+

L∑

l=1

βlH

(
γl
βl

)

+

L∑

l=1

(βl − γl)H

(
βl−1 − 2γl
βl − γl

)

+ βLH

(
λρ′

βL

)

+ (1− βL)H

(
λ(1 − ρ′)

1− βL

)

−H(λ)

where ρ′ = h′

λN is the normalized stopping set size after
puncturing.

The values ofρ0 corresponding tor
Cpunct.
RMA

s (ρ′) are given
in Tables II and III forL = 2, 3, and 4 mother RMA code
ensembles withq = 3 and4, respectively, for several nominal
code ratesR′. Asymptotic linear growth can be guaranteed for
some ratesR′ > 1/q. However, it is interesting to note that the
asymptotic stopping set size spectral shape function is strictly
positive with heavy puncturing of the mother code ensemble,
which implies that the asymptotic linear growth rate property
breaks down with heavy puncturing. For instance, forL = 2
andq = 3, the punctured ensemble remains good for the BEC
up to rateR′ = 0.54, but for heavier puncturing this property
is lost. This phenomenon is more significant for punctured
RMA code ensembles with a larger number of accumulators
and for largerq. For theL = 3 and q = 3 punctured RMA
code ensemble, the asymptotic linear growth rate property
is lost betweenR′ = 0.43 and R′ = 4/9. In Fig. 7, we
plot the probabilistic lower bound onhmin from Lemma 2
for puncturedq = 4 RMA code ensembles withλ = 3/4
and L = 2 and 3. The results are in agreement with the
asymptotic analysis; forL = 2 and permeability rateλ = 3/4
linear growth rate is guaranteed. However, when applying the
same puncturing to theL = 3 RMA code ensemble, the
asymptotic stopping set size spectral shape function becomes
strictly positive, and the linear growth rate property breaks
down. Note that these results are in contrast with the results
in [10], where it was observed that the asymptotic normalized
dmin gets closer to the GVB for higher rates with random
puncturing.

VII. STOPPINGDISTANCE ANALYSIS FOR HCCS

In this section, we address the behavior ofhmin for HCC
ensembles in the form of Fig. 2. For brevity, we only give the
conditional support size enumerating function (withw > 0)
and the stopping set size spectral shape function for type-1
and type-4 HCC ensembles.

A. Type-1 HCC

We consider the type-1 HCC ensemble in Fig. 2. Letq be
the number of accumulators of the outer MPCC and letq+1 be
the index denoting the inner accumulator. For convenience,we
definehp = h1+· · ·+hq, the input support set size of the inner
accumulatorCq+1. Since none of the parallel branches of the
outer MPCC are connected to the channel, the setQ is empty.
Using (2) and (3), the conditional support size enumerating
function (withw > 0) for the type-1 HCC ensemble can now
be written as

s̄Ct1

w,h1,...,hq,h
=

∏q
l=1

∑⌊w
2 ⌋

dl=1

(
K−hl

dl

)(
hl−1
dl−1

)(
hl−dl
w−2dl

)

(
K
w

)q−1

×

∑
j

hp

2

k

dq+1=1

(
N−h
dq+1

)(
h−1

dq+1−1

)(
h−dq+1

hp−2dq+1

)

(
N
hp

) .

Now, let α = w
K , ρ = h

N , βl = hl

K , and γl = dl
K , where

l = 1, . . . , q. We also denote the normalized input support set
size of the inner accumulator byβp =

hp

N and defineδ =
dq+1

N . Using Stirling’s approximation and a generalization of
Lemma 3, we get

rCt1
s (ρ) = sup

0<α,β1,...,βq≤1
0<δ,γ1,...,γq≤1

1

q

q
∑

l=1

(1− βl)H

(
γl

1− βl

)

+
1

q

q
∑

l=1

βlH

(
γl
βl

)

+
1

q

q
∑

l=1

(βl − γl)H

(
α− 2γl
βl − γl

)

+ (1− ρ)H

(
δ

1− ρ

)

+ ρH

(
δ

ρ

)

+ (ρ− δ)H

(
βp − 2δ

ρ− δ

)

−
q − 1

q
H (α)−H (βp) .

(17)

The numerical evaluation of (17) (the details are omitted
due to lack of space) is given in Fig. 8 forq = 4. We remark
that the optimization is harder than for thedmin case, since
the objective function involves more variables. We observe
that rCt1

s (ρ) is strictly zero in the range(0, ρ0 = 0.1289)
and positive for someρ > ρ0. From these results and
the generalizations of Lemma 3 and Theorem 6 to HCC
ensembles,ρ0 = 0.1289 is a lower bound on the asymptotic
hmin growth rate coefficient of the ensemble. It is worth
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mentioning that the supremum is obtained forβ1 = · · · = βq
andγ1 = · · · = γq, i.e., when all the accumulators of the outer
MPCC contribute equally to the stopping set size. Therefore,
we can setβ1 = · · · = βq = βp andγ1 = · · · = γq in (17),
and the expression for the stopping set size spectral shape
function becomes equal to (13) (withL = 2) for RAA code
ensembles. Indeed, the type-1 HCC ensemble and the RAA
code ensemble are identical in both asymptotichmin growth
rate and convergence threshold (see Section VIII below).

B. Type-4 HCC

We consider the type-4 HCC ensemble formed by an outer
MPCC with q constituent encoders followed by an accumu-
lator. The first encoder (the systematic branch) performs an
identity mapping and is sent straight through the channel
(thereforeQ = {1} in (2)). Denote the input support set size
of the inner accumulator byhp = h2 + · · · + hq. Also, let
M = (q − 1)K = q−1

q N . Using (2) and (3), the conditional
support size enumerating function (withw > 0) of the type-4
HCC ensemble can be written as

s̄Ct4

w,h2,...,hq,h
=

∏q
l=2

∑⌊w
2 ⌋

dl=1

(
K−hl

dl

)(
hl−1
dl−1

)(
hl−dl
w−2dl

)

(
K
w

)q−2

×

∑
j

hp

2

k

dq+1=1

(
M−h+w
dq+1

)(
h−w−1
dq+1−1

)(
h−w−dq+1

hp−2dq+1

)

(
M
hp

) .

Again, we defineα = w
K , ρ = h

N , βl = hl

K , and
γl =

dl
K , wherel = 2, . . . , q. Also, define the normalized size

βp =
hp

M andδ = dq+1

M . Using Stirling’s approximation and a
generalization of Lemma 3, the stopping set size spectral shape
function of the type-4 HCC ensemble can now be written as

rCt4
s (ρ) = sup

0<α,β2,...,βq≤1
0<δ,γ2,...,γq≤1

1

q

q
∑

l=2

(1− βl)H

(
γl

1− βl

)

+
1

q

q
∑

l=2

βlH

(
γl
βl

)

+
1

q

q
∑

l=2

(βl − γl)H

(
α− 2γl
βl − γl

)

+

(
q − 1 + α

q
− ρ

)

H

(
(q − 1)δ

q − 1− qρ+ α

)

+

(

ρ−
α

q

)

H

(
(q − 1)δ

qρ− α

)

+

(

ρ−
α+ (q − 1)δ

q

)

H

(
(q − 1)(βp − 2δ)

qρ− α− (q − 1)δ

)

−
q − 2

q
H (α)−

q − 1

q
H (βp) .

The stopping set size spectral shape functions for type-
2 and type-3 HCCs can be obtained in a similar manner.
The stopping set size spectral shape functions for the type-2,
type-3, and type-4 HCC ensembles are also plotted in Fig. 8
for q = 4 (q1 = 1 for the type-2 HCC ensemble). The
largest asymptotichmin growth rate (ρ0 = 0.1289) is obtained
for the type-1 HCC ensemble. If one of the accumulators
of the outer MPCC is replaced by a feedforward branch
(type-2 HCC ensemble), the asymptotichmin growth rate is
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Fig. 8. Asymptotic stopping set size spectral shape function for the rate-1/4
HCC ensembles depicted in Fig. 2.

TABLE IV
ASYMPTOTIChmin GROWTH RATE COEFFICIENTS FORHCC ENSEMBLES.

ρ0 q = 3 q = 4 q = 5 q = 6

Type-1 0.0929 0.1289 0.1505 0.1647
Type-2 0.0716 0.1207 0.1462 0.1623
Type-3 N/A 0.0886 0.1266 0.1494
Type-4 N/A 0.0829 0.1199 0.1430

decreased toρ0 = 0.1207. The asymptotichmin growth rate
is further decreased toρ0 = 0.0886 if the feedforward branch
does not enter the inner accumulator. Finally, the smallest
asymptotichmin growth rate (ρ0 = 0.0829) is obtained for
the fully systematic type-4 HCC ensemble. As a comparison,
the asymptotic growth rate coefficient of thedmin computed in
[8] is 0.1911, 0.1793, 0.1350, and 0.1179 for type-1, type-2,
type-3, and type-4 HCCs, respectively. The same behavior is
observed for other values ofq. The coefficientsρ0 for the four
HCC ensembles withq = 3, 4, 5, and6 are given in Table IV.

VIII. EXIT CHARTS ANALYSIS

In the previous sections, we have shown that RMA and
HCC ensembles are good for the BEC. In this section, we
address iterative constituent code oriented decoding of RMA
codes and HCCs on the BEC by using EXIT charts analysis
[29] to estimate their convergence thresholds. In particular, we
follow the definitions of the EXIT functions in [30].

Denote byu = (u1, . . . , uK) the sequence of information
symbols which is mapped to the sequence of code symbols
x = (x1, . . . , xN ) by an (N,K) codeC. As required for
the EXIT charts analysis, we assume thatN −→ ∞. The
information symbols are transmitted over a BEC, called the
information-symbola priori channel, with erasure probability
pau . For information symbolui, the received symbol is
denoted byyui

, and the correspondinga priori L-value (or
log-likelihood ratio) byLCa (ui). Also, letI(ui;LCa (ui)) be the
mutual information (MI) betweenui andLCa (ui). The average
a priori MI for the information symbols is

ICa,u =
1

K

K∑

i=1

I
(
ui;L

C
a (ui)

)
= 1− pau .

Similarly, the code symbols are transmitted over a BEC,
called the code-symbola priori channel, with erasure proba-
bility pax . For code symbolxi, the received symbol is denoted
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by yxi
, and the correspondinga priori L-value by LCa (xi).

Also, let I(xi;LCa (xi)) be the MI betweenxi and LCa (xi).
The averagea priori MI for the code symbols is

ICa,x =
1

N

N∑

i=1

I
(
xi;L

C
a (xi)

)
= 1− pax .

The a priori L-values LCa (ui) and LCa (xi) are given to
an a posteriori probability (APP) decoder, which computes
the extrinsic L-valuesLCe (ui) and LCe (xi) for information
symbols and code symbols, respectively. The average extrinsic
MI for information and code symbols are

ICe,u =
1

K

K∑

i=1

I
(
ui;L

C
e (ui)

)

and

ICe,x =
1

N

N∑

i=1

I
(
xi;L

C
e (xi)

)

respectively. The input-output behavior of an APP decoder
is then completely characterized by two EXIT functionsTu
andTx which specify the evolution of the extrinsic MIs as a
function of thea priori MIs. In particular, we can writeICe,u =
Tu(I

C
a,u, I

C
a,x) andICe,x = Tx(I

C
a,u, I

C
a,x). A nice property of the

BEC is that the EXIT functions for the repeat code and for
convolutional encoders can be given in closed form as shown
in [30] and [31].

In a concatenated coding scheme consisting ofP constituent
encoders, decoding proceeds by alternating between the cor-
respondingP constituent decoders. The iterative decoding
process can then be tracked using a multi-dimensional EXIT
chart [32]. Alternatively, the EXIT functions of the constituent
decoders can be properly combined and projected into a
two-dimensional chart [33]. For instance, convergence of the
RMA and HCC ensembles can be visualized using a two-
dimensional EXIT chart reporting in a single figure the EXIT
function of the outer code (the concatenation of a repeat code
and L − 1 accumulators for the RMA code ensemble, and
the MPCC in the case of HCCs) and the EXIT function of
the inner accumulator. Consider as an example the type-1 and
type-2 HCCs of Fig. 2. As defined above, letLCl

a (uli) and
LCl
a (xli) (resp.LCl

e (uli) and LCl
e (xli)) be thea priori (resp.

extrinsic) L-values for the information and code symbols of
constituent encoderCl, respectively. Also, letICl

a,ul and ICl

a,xl

(resp.ICl

e,ul and ICl

e,xl ) be the corresponding MIs. The EXIT
functions for the constituent decoders of the MPCC (i.e.,
l = 1, . . . , q) can be expressed as

ICl

e,ul = TCl
u

(

⊞
q
i=1,i6=lI

Ci

e,ui , I
Cl

a,xl

)

ICl

e,xl = TCl
x

(

⊞
q
i=1,i6=lI

Ci

e,ui , I
Cl

a,xl

)

whereI1 ⊞ . . . ⊞ In = 1 − (1 − I1) · · · (1 − In) [34]. Note
that ICl

a,xl = ICMPCC

a,xMPCC = 1 − pa,xMPCC . The EXIT function

of the outer MPCCICMPCC

e,xMPCC can be computed for all values

0 ≤ ICMPCC

a,xMPCC ≤ 1 by activating all q decoders of the

MPCC until ICl

e,ul and ICl

e,xl converge to a fixed value, and

setting ICMPCC

e,xMPCC = 1
q

∑q
l=1 I

Cl

e,xl . Finally, the EXIT chart

TABLE V
CONVERGENCE THRESHOLDS FORRMA AND HCC ENSEMBLES.

q = 3 q = 4 q = 5 q = 6

Type-1/RAA 0.4965 0.5422 0.5719 0.5935
Type-2 0.5058 0.5543 0.5847 0.6062
Type-3 0.5624 0.6008 0.6252 0.6429
Type-4 0.6007 0.6373 0.6582 0.6730
RAAA 0.3259 0.3531 0.3718 0.3860

RAAAA 0.1957 0.2105 0.2209 0.2290

of the HCC is obtained by reporting in a single plot the
functionsICMPCC

e,xMPCC(0, I
CMPCC

a,xMPCC) andICq+1

e,uq+1 (I
Cq+1

a,uq+1 , I
Cq+1

a,xq+1),

where ICMPCC

a,xMPCC = I
Cq+1

e,uq+1 and ICq+1

a,xq+1 = 1 − pch, where
pch is the erasure probability of the communication channel.
The EXIT charts for RMA code ensembles and type-3 and
type-4 HCCs can be obtained using a similar procedure. The
convergence thresholds, i.e., the largest values of the channel
erasure probabilitypch such that there is an open tunnel in the
EXIT charts, for RMA and HCC ensembles forq = 3, . . . , 6
are given in Table V. From Tables V and IV the presence of a
tradeoff between asymptotichmin growth rate and convergence
threshold for HCC ensembles can be observed. In fact, the
hierarchy arising from Table IV is completely reversed in
Table V. The type-1 code ensemble is the best one in terms of
asymptotichmin growth rate. However, it has the worst con-
vergence among the four considered HCCs. The convergence
threshold can be significantly improved if one of the parallel
branches of the outer MPCC is sent straight through the
channel, at the expense of a smaller asymptotichmin growth
rate coefficient. The best convergence is achieved by the fully
systematic type-4 ensemble. On the other hand, RAAA and
RAAAA code ensembles show very poor thresholds, which
make them impractical.

From the EXIT charts analysis and the asymptotic analysis
in Sections VI and VII, it arises that double serially concate-
nated code ensembles and HCC ensembles are good ensembles
for the BEC, since they provide both high asymptotichmin

growth rates and good convergence behavior, while adding
more encoding stages in RMA codes penalizes both the
asymptotichmin growth rate and the convergence threshold.

IX. CONCLUSION

In this paper, we extended the results of [10] and [11, 12],
where RMA code ensembles were proved to be asymptotically
good, in the sense that their typicaldmin asymptotically grows
linearly with the block length, to show that these ensembles
are also good for the BEC, i.e., their typicalhmin also
grows linearly with the block length. However, contrary to the
asymptoticdmin, whose growth rate coefficient increases with
the number of accumulators, the growth rate ofhmin decreases
with the number of encoding stages. Therefore, double serially
concatenated codes seem to be good for the BEC, while adding
more encoding stages degrades performance. Furthermore, we
considered random puncturing of the RMA code ensemble to
achieve higher rates and showed that the asymptotic stopping
set size spectral shape function is strictly positive for high
rates, which implies that the asymptotic linear growth rate
property ofhmin is lost when the rate is high. In particular, for
each RMA code ensemble, i.e., for each pairL andq, there is
a particular code rate for which the linear growth rate property
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breaks down. This phenomenon becomes more significant for
larger values ofL andq.

We also considered the HCC ensembles recently discussed
in [8], and showed that they also exhibit an asymptotichmin

linear growth. A fundamental tradeoff between asymptotic
hmin growth rate and convergence threshold was observed for
these ensembles. In that sense, HCC ensembles offer more
degrees of freedom for code construction than RMA code
ensembles and therefore they allow for constructing codes
with a better tradeoff between asymptotichmin growth rate
and iterative convergence properties.

APPENDIX A
PROOF OFLEMMA 3

From (11) withL = 2 we can write

w = αNa, h1 = β1N
b1 , h = ρN c,

d1 = γ1N
e1 , andd2 = γ2N

e2

where0 ≤ a ≤ b1 ≤ c ≤ 1, 0 ≤ e1 ≤ a ≤ 1, and0 ≤ e2 ≤
b1 ≤ 1, anda, b1, c, e1, ande2 are not all equal to one. Also,
α, β1, γ1, γ2, andρ are positive constants. Now,
(
K

w

)(
N−h1

d1

)(
h1−1
d1−1

)(
h1−d1
qw−2d1

)

(
N
qw

) ≤

(
N

qαNa

)αNa

×

(
N − β1N

b1

γ1Ne1

)γ1N
e1 (

β1N
b1

γ1Ne1

)γ1N
e1 (

N

qαNa

)−qαNa

×

(
β1N

b1 − γ1N
e1

qαNa − 2γ1Ne1

)qαNa−2γ1N
e1

exp (o(Na lnN))

(18)

and
(
N−h
d2

)(
h−1
d2−1

)(
h−d2
h1−2d2

)

(
N
h1

) ≤

(
N − ρN c

γ2Ne2

)γ2N
e2

×

(
ρN c

γ2Ne2

)γ2N
e2 (

ρN c − γ2N
e2

β1N b1 − 2γ2Ne2

)β1N
b1−2γ2N

e2

×

(
N

β1N b1

)−β1N
b1

exp
(
o(N b1 lnN)

)

(19)

where we have used the inequalities
(
N

l

)l
1

ϕN (l − 1)
≤

(
N

l

)

≤

(
N

l

)l

ϕl(l − 1)

from [10] to bound the binomial coefficients of the left hand
sides of (18) and (19). The rest of the proof is similar to the
proof of Lemma 1 in [10], where five cases are considered.
Here, we will only consider the first two cases in [10, Eq.
(43)] and [10, Eq. (44)] due to lack of space. The other three
cases can be proved in a similar fashion.

• Assume0 ≤ a = b1 ≤ c < 1 ([10, Eq. (43)]) or0 ≤ a =
b1 < c ≤ 1 ([10, Eq. (44)]). In both cases,a = b1 < 1.
Defineγ∗1 = γ1 if a = e1 and0 otherwise. In both cases,
γ∗1 ≤ qα

2 , since the summation indexd1 in (10) is upper-
bounded by

⌊
qw
2

⌋
, from which it follows thatγ1 is upper-

bounded byqα2 whena = e1. From (18), it follows that

asN −→ ∞, the right hand side of (18) approaches

exp ((1− a)(α − qα+ γ∗1)N
a lnN + o(Na lnN))

≤ exp
(

(1− a)α
(

1−
q

2

)

Na lnN + o(Na lnN)
)

−→ 0 asN → ∞

since we have assumed thatq ≥ 3. Define γ∗2 = γ2 if
e2 = b1 (= a) and0 otherwise. In both cases,γ∗2 ≤ β1

2 ,
since the summation indexd2 in (10) is upper-bounded
by

⌊
h1

2

⌋
, from which it follows thatγ2 is upper-bounded

by β1

2 whene2 = b1 (= a). From (19), and whenc < 1,
it follows that asN −→ ∞, the right hand side of (19)
approaches

exp ((1− c)(γ∗2 − β1)N
a lnN + o(Na lnN))

≤ exp

(

−(1− c)
β1
2
Na lnN + o(Na lnN)

)

−→ 0 asN −→ ∞.

From (19), and whenc = 1, it follows that asN −→ ∞,
the right hand side of (19) approachesexp (o(Na lnN)),
and the result of Lemma 3 is proved for the special cases
of 0 ≤ a = b1 ≤ c < 1 and0 ≤ a = b1 < c ≤ 1.

APPENDIX B
MAXIMIZATION OF THE FUNCTION f(·) FOR RMA CODE

ENSEMBLES

We consider the maximization of the function
f(β0, β1, . . . , βL−1, γ1, . . . , γL, ρ) in (13). A maximum
can occur on the boundary or in the region0 < βl, γl ≤ 1 ∀l.
The following lemma holds.

Lemma 4:The asymptotic stopping set size spectral shape
function of the RMA code ensemble is non-negative, i.e.,

rCRMA
s (ρ) ≥ 0, ∀ρ ∈ [0, 1].

Proof: The values ofγl in (14) can be chosen such that
rCRMA
s (ρ) reduces to the spectral shape function of the code

ensemble. Then, we can use [11, Proposition 12], and the result
follows.

We consider first the case where the maximum occurs in
the region0 < βl, γl ≤ 1 ∀l. In this case the maximum is
attained at the point where all partial derivatives∂f∂βl

and ∂f
∂γl

equal zero. Setting∂f∂β0
= ∂f

∂γl
= ∂f

∂βl
= 0 gives

γ1 =

(

1 +
(

1−β0

β0

) q−1
q

)

β0 − β1
(

1 + 2
(

1−β0

β0

) q−1
q

) = A(β0)−B(β0)β1

(20)

βl =
(1− γl)(βl−1 − 2γl)

2 − γ2l (γl − βl−1)

γ2l + (βl−1 − 2γl)2
, l = 1, . . . , L

(21)

γl+1 =

β2
l (βl − βl+1)(1 − βl − γl) + βl(1− βl)

2(βl + γl − βl−1)

β2
l (1− βl − γl) + 2(1− βl)2(βl + γl − βl−1)

= C(0)(βl−1, βl, γl)−D(0)(βl−1, βl, γl)βl+1,

l = 1, . . . , L− 1. (22)
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To determine a solution to the above set of equations, we
choose the following strategy. First treatβ0 as a free pa-
rameter and computeA(β0) and B(β0). Then, setγ1 =
A(β0)−B(β0)β1 in (21) to obtainβ1 by solving the resulting
third order equation.γ1 can now be obtained using (20).
We are now in the position to computeC(0)(β0, β1, γ1) and
D(0)(β0, β1, γ1) in (22) and combine (22) and (21) to obtain
the values forγ2 andβ2. Finally, the values forγl andβl with
l > 2 can be obtained by using (22) and (21) recursively.

We must also consider the following boundary conditions
when they apply.

• The boundary conditionγl = 1 − βl and the condition
∂f
∂βl

+ ∂f
∂γl

· ∂γl∂βl
= 0 result in

γl+1 =
(βl − βl+1)β

2
l + βl(βl−1 − 2(1− βl))

2

β2
l + 2(βl−1 − 2(1− βl))2

= C(1)(βl−1, βl)−D(1)(βl−1, βl)βl+1.

(23)

• The boundary conditionγl = βl and the condition∂f∂βl
+

∂f
∂γl

· ∂γl∂βl
= 0 result in

γl+1 =
(1− 2βl)

2(βl − βl+1) + βl(1− βl)
2

(1 − 2βl)2 + 2(1− βl)2

= C(2)(βl−1, βl)−D(2)(βl−1, βl)βl+1.

(24)

• The boundary conditionγl = βl−1−βl and the condition
∂f
∂βl

+ ∂f
∂γl

· ∂γl∂βl
= 0 result in

γl+1 =

β2
l (βl − βl+1)(βl−1 − βl)

2 + βl(2βl − βl−1)
2(1− βl)

2

β2
l (βl−1 − βl)2 + 2(2βl − βl−1)2(1− βl)2

= C(3)(βl−1, βl)−D(3)(βl−1, βl)βl+1.

• The boundary conditionγl =
βl−1

2 and the condition
∂f
∂βl

+ ∂f
∂γl

· ∂γl∂βl
= 0 result in

γl+1 =

β2
l (βl − βl+1)(1− βl −

βl−1

2 ) + βl(1− βl)
2(βl −

βl−1

2 )

β2
l (1− βl −

βl−1

2 ) + 2(1− βl)2(βl −
βl−1

2 )

= C(0)(βl−1, βl, γl)−D(0)(βl−1, βl, γl)βl+1.

Note that for each boundary condition,l can vary between1
andL for the first condition and between1 andL− 1 for the
second condition. For instance, when the boundary condition
γl = 1−βl, l = 1, . . . , L, is applied, then we substitute the two
equations in (21) and (22) withγl = 1− βl and the equation
in (23). Similarly, when the boundary conditionγl = βl,
l = 1, . . . , L, is applied, then we substitute the two equations
in (21) and (22) withγl = βl and the equation in (24).
In general, all possible combinations must be checked, i.e.,
applying one of the four boundary conditions or no boundary
condition at all when computing the pair(βl, γl), l = 1, . . . , L,
whereβL = ρ. Using the procedure described above, we can
compute the asymptotichmin growth rate coefficientρ0 for
RMA code ensembles with different values ofq andL, where
ρ0 has been defined in Theorem 6.

APPENDIX C
PROOF OFTHEOREM 6

The proof of Theorem 6 follows closely the proof of Theo-
rem 11 in [11], which is inspired by asymptotic techniques
devised in [35]. The proof of [11, Theorem 11] relies on
Lemmas 26 and 27 in [11]. We start by proving [11, Lemma
26] for the stopping set case, which is stated below in our
notation for convenience. The lemma is proven by induction
on L following the same arguments as in the proof for the
codeword case outlined in [12].

Lemma 5:Let {hN}N∈N be a sequence of integers such
that for any arbitraryη > 0

lim
N−→∞

hN
Nη

= 0 and lim
N−→∞

lnhN
hN

= 0.

Then,
hN∑

h=1

s̄CRMA

h = O
(

N1−
PL

i=1⌈
q

2i
⌉+η

)

whereL is the number of accumulators.
Proof: We prove the lemma by induction on the number

of accumulatorsL. Consider first the case ofL = 1. We have

hN∑

h=1

s̄CRA

h =

2hN/q∑

w=1

(
N/q

w

) hN∑

h=1

∑⌊ qw

2 ⌋
d=1

(
N−h
d

)(
h−1
d−1

)(
h−d
qw−2d

)

(
N
qw

)

≤

2hN/q∑

w=1

Nw−⌈ qw

2 ⌉g(w,N)

hN∑

h=1

hqw+⌊ qw

2 ⌋−3

where (see (7))

g(w,N)

=
(qw)!eqw+w−1ϕN (qw − 1)

qwww

⌊ qw

2 ⌋
∑

d=1

(qw − 2d)2d−qw

dd(d− 1)d−1
.

Note that the upper bound of2hN/q in the summation overw
is due to the binomial

(
h−d
qw−2d

)
. In more detail,h−d ≥ qw−2d,

from which it follows thatqw ≤ h+ d ≤ h+ ⌊qw/2⌋, which
implies thatw ≤ 2h/q. Now, it follows that

hN∑

h=1

s̄CRA

h ≤

2hN/q∑

w=1

Nw−⌈ qw

2 ⌉g(w,N)h
qw+⌊ qw

2 ⌋−2

N

≤
2hN
q

max
1≤w≤2hN/q

Nw−⌈ qw

2 ⌉g(w,N)h
qw+⌊ qw

2 ⌋−2

N

≤
2

q
N1−⌈ q

2⌉+ηg(1, N)h
q+⌊ q

2⌋−1

N

= O
(

N1−⌈q/2⌉+η
)

for large enoughN and for all η > 0. Note that for large

enoughN , Nw−⌈ qw

2 ⌉ dominatesg(w,N)h
qw+⌊ qw

2 ⌋−2

N , due
to the conditions onhN stated in the lemma. Now, assume
that the statement of the lemma is true for the case ofL− 1.
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We get

hN∑

h=1

s̄
CRMA(L)

h

=

2hN∑

w=⌈ q

2L−1 ⌉

s̄
CRMA(L−1)
w

hN∑

h=1

⌊w
2 ⌋∑

d=1

(
N−h
d

)(
h−1
d−1

)(
h−d
w−2d

)

(
N
w

)

≤

2hN∑

w=⌈ q

2L−1 ⌉

s̄
CRMA(L−1)
w N−⌈w

2 ⌉g′(w,N)

hN∑

h=1

hw+⌊w
2 ⌋−3

where

g′(w,N) = (w)!ew−1ϕN (w − 1)

⌊w
2 ⌋∑

d=1

(w − 2d)2d−w

dd(d− 1)d−1

and CRMA(l) denotes the RMA code ensemble withl, l =
L−1, L, accumulators. Note that the lower bound of

⌈
q/2L−1

⌉

in the summation overw is due to the fact that the output size
h of an accumulator is at least⌈w/2⌉, wherew is the input
size. This is due to the binomial

(
h−d
w−2d

)
and the upper bound

of ⌊w/2⌋ in the summation overd. It follows that

hN∑

h=1

s̄
CRMA(L)

h

≤

2hN∑

w=⌈ q

2L−1 ⌉

s̄
CRMA(L−1)
w N−⌈w

2 ⌉g′(w,N)h
w+⌊w

2 ⌋−2

N

≤ O
(

N1−
PL−1

i=1 ⌈
q

2i
⌉+η

)

× max
⌈ q

2L−1 ⌉≤w≤2hN

N−⌈w
2 ⌉g′(w,N)h

w+⌊w
2 ⌋−2

N

= O
(

N1−
P

L
i=1⌈

q

2i
⌉+η

)

for large enoughN and for all η > 0. Above, we used the
induction hypothesis in the second inequality. Also, note that

for large enoughN , N−⌈w
2 ⌉ dominatesg′(w,N)h

w+⌊w
2 ⌋−2

N ,
due to the conditions onhN stated in the lemma.

We can also extend [11, Lemma 27] to the stopping set
case. For convenience, we state this lemma below.

Lemma 6:Let rCRMA
s (ρ;N) denote theN th stopping set

size spectral shape function of the RMA code ensemble,
defined asrCRMA

s (ρ;N) = sup 1
N ln s̄CRMA

⌊ρN⌋ . Then,

rCRMA
s (ρ;N) ≤

2L ln(N + 1)

N
+ rCRMA

s (ρ).

Proof: The proof of the lemma relies on the function
ψ(u, ρ), defined in (15). In particular, the proof of the lemma
is by induction onL, following the same arguments as in the
proof for the codeword case outlined in [12], and is therefore
omitted for brevity.

The final part of the proof of [11, Theorem 11] is also
very general, and it can easily be extended to the stopping set
case. In fact, the rest of the proof only relies on the following
properties ofψ(u, ρ).

• ψ(u, ρ) is continuous;
• ψ(u, ρ), for fixed u, is strictly increasing inρ < 1/2;

•
ψ(u,ρ)
u , for fixed ρ, is decreasing inu; and

• limu−→0
ψ(u,ρ)
u < 0 ∀ρ < ρ0.

The first three properties follow from (15), while the fourth
property holds by assumption. Finally, by using Lemmas 5
and 6 and the properties above, Theorem 6 is proved following
the same arguments as in the proof of [11, Theorem 28].
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