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Analysis and Design of Punctured Rate-1/2 Turbo
Codes Exhibiting Low Error Floors
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and Rolando A. Carrasco

Abstract—The objective of this paper is two-fold. Initially,
we present an analytic technique to rapidly evaluate an appro-
ximation to the union bound on the bit error probability of
turbo codes. This technique exploits the most significant terms
of the union bound, which can be calculated straightforwardly
by considering the properties of the constituent convolutional
encoders. Subsequently, we use the bound approximation to
demonstrate that specific punctured rate-1/2 turbo codes can
achieve a lower error floor than that of their rate-1/3 parent
codes. In particular, we propose pseudo-random puncturing as
a means of improving the bandwidth efficiency of a turbo code
and simultaneously lowering its error floor.

Index Terms—Turbo codes, Puncturing, Transfer function,
Performance evaluation, Error floor.

I. INTRODUCTION

IN CERTAIN applications, such as satellite communica-
tions, link reliability is of prime importance and, conse-

quently, low rate codes are often used. However, bandwidth
occupancy is of much greater importance in wireless commu-
nications and so high rate codes are preferred. A high rate
binary convolutional code can be obtained by periodic elimi-
nation, known as puncturing, of particular code bits from the
output of a parent low rate convolutional encoder. Extensive
analysis on punctured convolutional codes has shown that their
performance is always inferior to the performance of their low
rate parent codes (e.g. see [1], [2]).
The performance of punctured parallel concatenated con-

volutional codes (PCCCs), also known as punctured turbo
codes, has also been investigated. Design considerations have
been derived by semi-analytical [3]–[6] and simulation-based
approaches [7]–[9], while upper bounds on the bit error proba-
bility (BEP) were evaluated in [5], [10]. Punctured turbo codes
are usually classified as systematic (S), partially systematic
(PS) or nonsystematic (NS) depending on whether all, some
or none of their systematic bits are transmitted [8]. Recent
papers [8]–[10] have demonstrated that partially systematic
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PCCCs yield lower error floors than systematic PCCCs of the
same rate.
The average performance of a PCCC can be evaluated using

the union bound on its BEP, which coincides with the error
floor of the PCCC for high Eb/N0 values [11]. Calculation
of the bound requires knowledge of the transfer function of
the PCCC under investigation. However, computation of the
transfer function becomes intensive as the interleaver size
increases, especially in the case of punctured PCCCs [10].
The motivation for this paper is to propose a framework
to rapidly evaluate an accurate approximation to the union
bound, which will aid in the analysis and design of punctured
PCCCs operating in the error floor region. The proposed
framework also enables us to investigate whether particular
punctured PCCCs achieve a lower error floor, and thus a better
performance at high Eb/N0 values, than that of their parent
codes.
More specifically, in Section II we introduce definitions for

the case of rate-1/3 PCCCs, whilst in Section III we provide
expressions for the computation of the union bound. In Section
IV we explain that, for large interleaver sizes, only particular
dominant terms of the union bound need to be considered to
closely approximate the overall union bound. We also study
the properties of the constituent encoders and demonstrate
that the dominant terms can be expressed as functions of the
corresponding code characteristics. In Section V we use the
bound approximation to derive criteria for the performance
evaluation of turbo codes. Based on these criteria, we compare
specific PCCC configurations and we demonstrate that pseudo-
random puncturing can be used to obtain rate-1/2 PCCCs that
exhibit a lower error floor than that of their parent rate-1/3
PCCCs. The paper concludes in Section VI with a summary
of the main contributions.

II. BINARY TURBO CODES: DEFINITIONS AND NOTATION

A rate-1/3 binary turbo code is the parallel concatenation
of two rate-1/2 recursive systematic convolutional (RSC)
encoders separated by an interleaver of size N [12]. The
information bits are input to the upper constituent encoder,
while an interleaved version of the information bits are input
to the lower encoder. The output of the rate-1/3 turbo encoder
consists of the systematic bits of the upper RSC encoder,
which are identical to the input information bits, the parity
check bits of the upper RSC encoder and the parity check bits
of the lower RSC encoder.
Rates higher than 1/3 can be obtained by periodic elimina-

tion of specific code bits from the output of a rate-1/3 turbo
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encoder. Row vectors PU1, PZ1 and PZ2, which determine
the bits that will be eliminated from the systematic and the two
parity check outputs of the encoder, compose the puncturing
pattern P, which is repeated periodically every M time steps:

P =

⎡
⎣PU1

PZ1

PZ2

⎤
⎦ =

⎡
⎣p1,1 p1,2 . . . p1,M

p2,1 p2,2 . . . p2,M

p3,1 p3,2 . . . p3,M

⎤
⎦ , (1)

where pi,m ∈ {0, 1}, with i = 1, 2, 3 and m = 1, . . . , M . For
pi,m =0, the corresponding output bit is punctured, otherwise
it is transmitted.
Throughout this paper we use the notation WwUuZz to

describe the weight properties of a code sequence of a system-
atic encoder, either convolutional or turbo. The code sequence,
which has been generated by an information sequence of
Hamming weight w and length N , comprises a systematic
sequence and a parity check sequence having weights u and
z, respectively; W , U and Z are indeterminate variables. If
the output of the encoder is not punctured, then w=u.
We consider a turbo encoder that accepts input sequences of

length N , or equivalently uses an interleaver of size N , and
we denote as P the corresponding turbo code. The transfer
function BP(W, U, Z) of P enumerates all code sequences
that correspond to trellis paths of length N , which start from
the zero state, can re-visit it more than once and can remain
at it for an indefinite period of time. Tail-bits, appended to
each input sequence, and a double terminating interleaver [13]
ensure that trellis paths return to the zero state. A generic form
for the transfer function is

BP(W, U, Z) =
∑

w,u,z

BP
w,u,zW

wUuZz, (2)

where BP
w,u,z denotes the number of code sequences having

weights w, u and z. The transfer function can be re-written as
a sum of conditional weight enumerating functions (CWEFs),
each of which provides all code sequences generated by input
information sequences of a particular weight w. More specifi-
cally, the transfer function BP(W, U, Z) can be computed by
taking the CWEF for a particular value of w, defined as [11]

BP
w (U, Z) =

∑
u,z

BP
w,u,zU

uZz, (3)

and summing over all possible values of w, i.e.,

BP(W, U, Z) =
∑
w

BP
w (U, Z)Ww. (4)

III. CONVENTIONAL PERFORMANCE EVALUATION

Computation of the CWEF of a turbo code P from the
CWEFs of its constituent RSC codes, C1 and C2, is exceed-
ingly complex since it depends on the permutation scheme
employed by the interleaver. However, by adopting the proba-
bilistic concept of uniform interleaving of sizeN , it is possible
to calculate the CWEF of the turbo code from [11]

BP
w (U, Z) =

BC1
w (U, Z) · BC2

w (U =1, Z)(
N

w

) , (5)

where BC1
w (U, Z) and BC2

w (U, Z) are the CWEFs of the
constituent RSC codes. Note that the systematic output se-
quence of the lower constituent encoder is not transmitted,
so it is eliminated by setting U =1 in BC2

w (U, Z). We shall
assume throughout the paper, when punctured turbo codes are
considered, C1 and C2 denote the constituent RSC codes after
puncturing. Methods for the transfer function calculation of
RSC codes have been described in [10], [11] and [14].
The bit error probability (BEP) Pb of a PCCC employing

maximum-likelihood (ML) soft decision decoding on an addi-
tive white Gaussian noise (AWGN) channel, is upper bounded
as follows

Pb ≤ P u
b =

∑
w

P (w), (6)

where P u
b is the union bound on the BEP. The sum runs over

all possible values of information weight w, with P (w) being
the contribution to the union bound of only those erroneously
decoded code sequences which correspond to information
sequences of a specific weight w. The contribution P (w) is
given by [11]

P (w) =
∑

d

w

N
BP

w,dQ

⎛
⎝

√
2RP · Eb

N0
· d

⎞
⎠ , (7)

where N is the interleaver size, RP is the code rate of the
turbo code P , Eb is the energy per information bit, N0 is the
noise spectral density and BP

w,d denotes the number of code
sequences having overall weight d, which were generated by
input information sequences of weight w. Taking into account
that a code sequence comprises a systematic sequence of
weight u and a parity check sequence of weight z, its overall
weight is u + z=d. Hence, coefficients BP

w,d for a particular
value of d can be derived from the coefficients BP

w,u,z of the
transfer function, using

BP
w,d =

∑
u,z

u+z=d

BP
w,u,z. (8)

It is important to note that the union bound on the BEP of a
PCCC using a uniform interleaver of size N coincides with the
average of the union bounds obtainable from the whole class
of deterministic interleavers of size N [11]. For small values
of N , the union bound can be loose compared with the exact
BEP of turbo codes using deterministic interleavers. However,
for N ≥1000, deterministic interleaver designs do not perform
as well as randomly generated interleavers [15], which in turn
perform similarly to uniform interleavers. Improved bounds,
tighter than the union bound at low Eb/N0 values, have also
been presented in [16]. For our work, we have elected to use
the much simpler union bound argument because it provides
a good indication of the performance of a PCCC in the error
floor region, when N is large.

IV. RAPID PERFORMANCE EVALUATION

Computation of the transfer function and, consequently, the
union bound on the BEP of a punctured turbo code becomes
highly intensive as the interleaver size N and the puncturing
period M increase [10]. In this section we revisit the structure
of the constituent RSC encoders in order to develop a rapid
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Fig. 1. Block diagram of a rate-1/2 constituent RSC encoder.

method to calculate the most significant terms of the transfer
function of a punctured turbo code, which can then be used to
obtain a close approximation to the union bound for medium
to low BEP values.

A. A Union Bound Approximation

Benedetto et al. [17] and Chatzigeorgiou et al. [18] in-
vestigated the performance of nonpunctured rate-1/3 turbo
codes and punctured rate-1/2 turbo codes, respectively. It was
observed that code sequences having the minimum possible
information weight wmin are the main contributors to the bit
error performance, as the size N of the uniform interleaver
increases. Owing to the structure of the constituent RSC en-
coders, the minimum information weight of an input sequence
to a PCCC is equal to two, i.e., wmin=2.
Consequently, for large interleaver sizes, it follows that

P (2) is the dominant contribution to the union bound P u
b on

the average BEP, so that

P u
b ≈ P (2), (9)

where P (2) assumes the form

P (2) =
∑

d

2
N

BP
2,dQ

⎛
⎝

√
2RP · Eb

N0
· d

⎞
⎠ , (10)

based on (7). The coefficients BP
2,d can be derived from (8),

provided that the transfer function BP(W, U, Z) of the turbo
code is known. However, the CWEF for w = 2, denoted as
BP

2 (U, Z) and referred to as the dominant CWEF, is sufficient
to extract the same necessary information. The expression for
BP

2 (U, Z) is derived from (5) for w=2.
This indicates that to compute the union bound approxima-

tion for a turbo code that uses a long interleaver, it suffices
to calculate the dominant CWEFs of the constituent convo-
lutional codes, rather than their complete transfer functions.
In the following subsections we analyze the structure of the
RSC encoder and devise a simple method to compute the less
computationally demanding dominant CWEF.

B. Nonpunctured Constituent Codes

We consider a constituent rate-1/2 RSC code C, where C
can be either C1 or C2. The respective encoder consists of
ν memory elements in the form of registers, r1, r2, . . . , rν ,
as shown in Fig. 1. The memory state of the encoder can

0

1

2(v-1)

2

2v-1

...
...

1/1 0/0

1/1 1/1

0/0

1 L+1... ...

Time Step, t

State
st

kL+1kLL0

zcore

u(k =1), z(k =1)

u(k), z(k )

...
0 /yt

...
0 /yt

z z

Fig. 2. Trellis diagram for information weight-2 code sequences. The dashed
line corresponds to the path generated when the rate-1/2 RSC encoder was
operating as a pseudo-random number generator. A pair xt/yz

t next to a
branch originating from a state at time step t, corresponds to the input bit xt

and the output parity check bit yz
t generated at the end of the state transition.

be expressed in decimal form as s =
∑ν

i=1 ri2ν−i. Based
on the design considerations presented in [17], the feedback
generator polynomial GR is taken to be primitive, whilst the
feedforward generator polynomial GF is taken to be monic;
the degree of both GR and GF is ν. Initially, the encoder is
in the zero memory state, i.e., ri =0 for all i.
We denote as xt the input to the RSC encoder at time step

t and yu
t , y

z
t the systematic and parity check bits, respectively,

generated by the encoder. Note that yu
t = xt for every value

of t. For convenience, we assume that at time step t=0, the
first nonzero bit x0 =1 is input to the encoder. Based on the
block diagram in Fig. 1, we observe that the input to the first
register becomes r0 = 1 and the parity check bit yz

0 = 1 is
produced. At the end of the time step, the content of each
register is shifted to the successive register and the memory
state changes from s0 =0 at t=0 to s1 =2ν−1 at t=1, as is
illustrated in the trellis diagram of Fig. 2.
The dominant CWEF of the RSC code, namely BC

2 (U, Z),
only considers weight-2 input sequences, which correspond
to paths in the trellis diagram that diverge from the zero
state and re-merge with it only once after a number of
time steps. It is important to note that as long as a trail of
zeroes follows the first nonzero input bit, the value of r0

depends solely on the feedback generator vector GR and the
bits stored in the registers, hence the RSC encoder behaves
like a pseudo-random number generator. According to [19],
pseudo-random number generators using primitive generator
polynomials periodically revisit all distinct states, except the
zero state. Hence the period of the polynomial, denoted as L,
is given by [19]

L = 2ν − 1. (11)

The part of the path of an information weight-2 code sequence
which was generated when the RSC encoder was operating as
a pseudo-random number generator, is depicted by a dashed
line in the trellis diagram shown in Fig. 2.
Due to the memory state periodicity, the initial state of the

pseudo-random number generator, s1 =2ν−1, is also repeated
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every L time steps, i.e., skL+1 = s1, where k is a positive
integer that satisfies the condition kL+1≤ N ; therefore the
value of k can range from 1 to �(N − 1)/L�, where the floor
function �ξ� gives the largest integer that does not exceed ξ.
When the encoder is in state skL+1 = 2ν−1, the first register
is set, i.e., r1 = 1, while all other registers are clear, i.e.,
r2 = . . . = rν = 0. Bearing in mind that the input bit is zero,
the bits stored in the registers at the immediately preceding
time step should have been r1 = . . . = rν−1 = 0 and rν = 1.
Consequently, the state previous to skL+1 = 2ν−1 is always
skL =1. Note that during the state transition, the logical value
of both r0 and rν is “1”, thus the generated parity check bit
is yz

kL = 0 according to the schematic in Fig. 1. The state
transition from 1 to 2ν−1 as well as the associated input and
output bits are depicted in Fig. 2.
The RSC encoder stops behaving like a pseudo-random

number generator only when the second nonzero bit of the
weight-2 information sequence is input to the encoder forcing
a return to the zero state. To achieve this, the second nonzero
bit can be input to the encoder only when a particular state
st, that precedes the zero state st+1 =0, is reached. Based on
the block diagram in Fig. 1, we observe that when xt =1, the
state of the encoder goes to zero only if the preceding state
is st =1. Only then is the logical “1”, stored in rν , canceled
out with the input bit, giving r0 =0 and, consequently, forcing
the encoder to return to the zero state. We demonstrated in the
previous paragraph that skL =1. Therefore, when the second
nonzero bit xkL =1 is input to the encoder, the parity check
bit yz

kL = 1 is generated while the memory state changes to
skL+1 =0, as is illustrated in Fig. 2.
Based on the trellis structure of an RSC code, it is straight-

forward to identify the properties of code sequences, generated
by weight-2 information sequences, in order to compute the
dominant CWEF, namely BC

2 (U, Z). We observe in Fig. 2
that the part of the trellis path which was generated while
the RSC encoder was operating as a pseudo-random number
generator can be obtained by the alternate succession of a
path starting from state 2ν−1 and ending in state 1, and a
branch connecting states 1 and 2ν−1. The parity check stream
generated during the sequence of transitions from state 2ν−1 to
state 1 has a constant weight, which we denote as zcore, whilst
the parity check bit yz

kL generated during the transition from
state 1 to state 2ν−1 is zero, as we have previously explained.
Consequently, as we can deduce from Fig. 2, the trail of zeroes
between the two nonzero information bits in the weight-2
input sequence causes the encoder to generate a stream of
parity check bits having weight kzcore. However, we have
also previously demonstrated that each of the two nonzero
information bits causes the encoder to output a nonzero parity
check bit. Therefore, the overall weight of the parity check
sequence generated by a weight-2 information sequence is
given by

z(k) = kzcore + 2. (12)

The weight of the systematic sequence is identical to the
weight of the information sequence, since we are considering
a nonpunctured code, hence

u(k) = 2. (13)

If the weight-2 information sequence has total length N , the
corresponding trellis path will also have length N . Depending
on the positions of the two nonzero bits in the information
sequence, the trellis path could diverge from the all-zero path
at any time step and re-merge with it kL+1 time steps later1.
In particular, we find that there are

Bk = N−(kL+1)+1 = N − kL (14)

possible time steps, thus there are Bk code sequences of the
form W 2Uu(k)Zz(k). The dominant CWEF, BC

2 (U, Z), is the
sum of all code sequences having weights u(k) and z(k), over
all valid values of k, hence

BC
2 (U, Z) =

∑
k

BkUu(k)Zz(k)

=
�(N−1)/L�∑

k=1

(N − kL)U2Zkzcore+2.

(15)

C. Punctured Constituent Codes

Let PU =[p1,1 p1,2 . . . p1,M ] and PZ =[p2,1 p2,2 . . . p2,M ]
be the row vectors used to puncture the systematic output and
the parity check output, respectively, of a constituent rate-1/2
RSC encoder. Note that vectors PU and PZ are circularly
repeated every M time steps, in such a way that p1,m+jM =
p1,m and p2,m+jM = p2,m, where m = 1, . . . , M and j is
a positive integer. In order to compute the dominant CWEF,
BC

2 (U, Z), of the punctured RSC encoder, we need to express
the weights of its two output sequences as functions of the
puncturing elements, p1,m and p2,m, and the output bits, yu

t

and yz
t , of the parent rate-1/2 RSC encoder.

In particular, we note that if the m-th puncturing elements
are active at time step t, the systematic and parity check
weights of the output bits of the punctured RSC encoder
will be yu

t · p1,m and yz
t · p2,m, respectively. Although input

sequences with information weight w = 2 generate paths of
length kL+1≤N , as we have previously shown, we will first
consider paths of length L+1, i.e., k=1, for simplicity. The
systematic weight u(k=1, m) of a code sequence, whose path
diverges from the zero state when p1,m is active, is given by

u(k=1, m) =
L∑

t=0

(yu
t · p1,m+t) , (16)

which reduces to

u(k=1, m) = p1,m + p1,m+L, (17)

since yu
t =xt and the two only nonzero information bits occur

at the very beginning and at the very end of the path, i.e.,
xt =1 for t=0 and t=L, otherwise xt =0.
Similarly, the weight z(k = 1, m) of the parity check

sequence, whose path diverges from the zero state when p2,m

is active, assumes the form

z(k=1, m) =
L∑

t=0

(yz
t · p2,m+t) . (18)

1The problem of enumerating all possible time steps at which a path can
diverge from the all-zero path of length N and re-merge with it kL+1 time
steps later is identical to the problem of enumerating all possible ways that
kL+1 balls of the same color can be placed successively in N slots.
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Fig. 3. Trellis diagram for the parity check weight calculation of a punctured
RSC code (k=1).

Although zcore has a fixed value when a nonpunctured code
is considered, a puncturing pattern of period M creates M
variants of zcore, denoted as z1

core, . . ., zm
core, . . ., zM

core, where
index m indicates that the m-th column of the puncturing
pattern is active at time step t = 1, when the RSC encoder
starts behaving as a pseudo-random number generator. Conse-
quently, the weight z(k=1, m) of the parity check sequence
can be written as

z(k=1, m) = p2,m + zm+1
core + p2,m+L, (19)

since the parity check bits yz
0 and yz

L are nonzero, as illustrated
in Fig. 3. In order to calculate z(k=1, m) for every value of
m, we first need to derive the M variants of zcore by applying
the M circularly shifted versions of the puncturing vector PZ

to the corresponding output parity check bits of the parent
rate-1/2 RSC encoder, i.e,

zm
core =

L−1∑
t=1

(yz
t · p2,m+t−1) . (20)

If we extend our analysis to code sequences associated with
paths of length kL+1, we observe that the systematic weight
u(k, m) still depends on the puncturing elements which are
active at the very beginning and the very end of the input
sequence, hence

u(k, m) = p1,m + p1,m+kL, (21)

for k = 1, . . . , �(N −1)/L� and m = 1, . . . , M . In order to
compute the parity check weight z(k, m) of a sequence that
corresponds to a path of length kL+1, we need to consider the
weights of the k consecutive parity check streams comprising
the parity check output sequence. Therefore, z(k, m) can be
expressed as

z(k, m) = p2,m +
k−1∑
t=0

zm+tL+1
core + p2,m+kL. (22)

In the previous subsection we demonstrated that a weight-2
information sequence of length N , which forces the encoder
to return to the zero state, generates one of a total of N−kL
possible code sequences. When a puncturing pattern of period
M is used to increase the rate of the code, the N−kL code
sequences of the form W 2U2Zz(k) are mapped to N −kL
punctured code sequences of the form W 2Uu(k,m)Zz(k,m).
Consequently, if Bk,m denotes the number of punctured code
sequences whose trellis paths diverge from the all-zero path
when the m-th column of the puncturing pattern is active, the
sum of Bk,m over all values of m should give

M∑
m=1

Bk,m = N−kL. (23)

Owing to the puncturing periodM , the N−kL punctured code
sequences can be divided intoM subsets; for a given k, them-
th subset comprises code sequences having the same weights
u(k, m) and z(k, m). Thus, the number of code sequences
Bk,m in the m-th subset is (N−kL)/M , if M exactly divides
N−kL. In general, we find that

Bk,m =

{ ⌊
N−kL

M

⌋
, if ((N−kL)modM)<m⌊

N−kL
M

⌋
+ 1, otherwise,

(24)

where (ξ1 mod ξ2) denotes the remainder of division of ξ1 by
ξ2.
Therefore, the dominant CWEF, BC

2 (U, Z), of a punctured
RSC code can be computed using

BC
2 (U, Z) =

�(N−1)/L�∑
k=1

M∑
m=1

Bk,mUu(k,m)Zz(k,m), (25)

where quantities u(k, m), z(k, m) andBk,m have been defined
in (21), (22) and (24), respectively.

D. Numerical Results

Given the two constituent RSC codes C1 and C2 of a turbo
code P , we can use (15) or (25), depending on whether
puncturing is applied or not, to calculate BC1

2 (U, Z) and
BC2

2 (U, Z). Consequently, the dominant CWEF, BP
2 (U, Z), of

the turbo code can be obtained from (5) under the assumption
that a uniform interleaver of size N is used. Knowledge of the
dominant CWEF of P allows us to compute the probability
P (2), which is a good approximation to the union bound P u

b

when long interleavers are used.
In Fig. 4, we compare the union bound P u

b with its ap-
proximation P (2), for various turbo code configurations. In
all cases, the parent code is the rate-1/3 PCCC(1,5/7,5/7).
As expected, P (2) deviates from P u

b when interleavers of
size N = 100 are considered. However, for N = 1000, the
approximation closely matches the union bound at low to
medium Eb/N0 values, while for N =10000, P (2) is a good
bound approximation over a wider range of Eb/N0 values. If
we compare Fig. 4(a) with Fig. 4(b), we also note the effect of
puncturing the systematic bits; for the same interleaver size,
P (2) is closer to P u

b when all systematic bits are transmit-
ted. In the complete absence of systematic information, the
closeness of P (2) to the union bound deteriorates, particularly
at high Eb/N0 values; nevertheless, P (2) becomes the most
significant contribution over all Eb/N0 values as N →∞ [18].
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(a) Rate-1/2 S-PCCC(1,5/7,5/7)
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(b) Rate-1/2 NS-PCCC(1,5/7,5/7)

Fig. 4. Exact union bounds and their approximation for punctured rate-1/2
systematic (S-PCCC) and nonsystematic (NS-PCCC) turbo codes employing
an interleaver of size 100, 1000 or 10000.

V. PSEUDO-RANDOM PUNCTURING

So far, we have introduced a rapid method to compute the
dominant CWEFs of the constituent RSC codes of a PCCC,
which can be used to obtain an accurate bound approximation
on its BEP, or equivalently, to gain insight into its performance
in the error floor region. Therefore, we can compute bound
approximations for turbo codes of a given rate (higher than
1/3) which are obtainable by puncturing a parent rate-1/3
PCCC using various patterns of a specific period. We can
then identify optimal puncturing patterns, i.e., patterns that
minimize the BEP predicted by the proposed union bound
approximation.
As an example, Fig. 5 shows bound approximations for

three punctured PCCCs, one from each class (i.e., S, PS and
NS). The corresponding puncturing patterns are presented in
Table I. For comparison, the bound approximation for the
parent rate-1/3 PCCC(1,5/7,5/7) has also been plotted. We
observe that the parent rate-1/3 PCCC performs better than
the rate-1/2 S-PCCC but both PS and NS codes exhibit lower
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Fig. 5. Bound approximations for the rate-1/3 PCCC(1,5/7,5/7) and various
rate-1/2 child configurations. The size of the interleaver is 10,000.

TABLE I
PUNCTURING PATTERNS FOR THE RATE-1/2 PCCC CONFIGURATIONS IN

FIG. 5. THE PARENT CODE IS PCCC(1,5/7,5/7).

S-PCCC PRP-PCCC PS-PCCC NS-PCCC⎡
⎣1 1

1 0

0 1

⎤
⎦

⎡
⎣1 0 0

0 1 1

1 1 1

⎤
⎦

⎡
⎣0 0 1 0

1 1 0 1

1 1 1 1

⎤
⎦

⎡
⎣0

1

1

⎤
⎦

bound approximations than that of their parent code. Even
though the NS scheme achieves the lowest bound approxi-
mation, it has been demonstrated that very long interleavers
(N = 106) and an impractical number of decoding iterations
are required to drive the BEP performance of NS-PCCCs into
the error floor region [20]. On the other hand, the performance
of iteratively decoded PS-PCCCs converges to low BEPs for
practical interleaver sizes (N ≈ 1000) after 8 iterations [20];
nevertheless, PS-PCCCs yielding low BEPs can be found only
by means of an exhaustive search, for a given parent code.
Consequently, it is important to conceive alternative methods
to construct good punctured PCCCs.
In this section, we introduce a special case of a rate-

1/2 PS-PCCC, which we call a pseudo-randomly punctured
PCCC (PRP-PCCC) [18]. The bound approximation and the
puncturing pattern of a PRP-PCCC for the above example are
also presented in Fig. 5 and Table I, respectively. We will
use performance criteria to demonstrate that a rate-1/2 PRP-
PCCC, which (contrary to good PS-PCCCs) can be obtained
in a straightforward manner from a parent turbo code, will
always exhibit a lower error floor than that of its parent rate-
1/3 PCCC.

A. Criteria for Performance Comparison

We will now use the union bound approximation as the basis
to compare by analysis the performance of turbo codes. In
particular, if P and P ′ are two PCCCs using long interleavers
of identical size, we say that P yields a lower error floor
than that of P ′ when their bound approximations, PP(2) and
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PP′
(2), respectively, satisfy PP(2) < PP′

(2). This condition
can also be expressed using (10) as follows

∑
d

BP
2,dQ

⎛
⎝
√

2RPEb

N0
d

⎞
⎠<

∑
d

BP′
2,dQ

⎛
⎝
√

2RP′Eb

N0
d

⎞
⎠. (26)

It was demonstrated in [17] and [21] that the effective free
distance, def, which conveys the minimum weight of a code
sequence for a weight-2 input information sequence, has a
major impact on the performance of a turbo code in the
error floor region. Consequently, if dPef and dP

′
ef denote the

effective free distances of P and P ′ respectively, condition
(26) collapses to

BP
2,defQ

⎛
⎝

√
2RPEb

N0
dPef

⎞
⎠ < BP′

2,defQ

⎛
⎝

√
2RP′Eb

N0
dP′
ef

⎞
⎠,

(27)
which only considers the first nonzero, that is the most
significant, term of each sum.
Function Q(ξ) is a monotonically decreasing function of

ξ, where ξ is a real number. Therefore, if ξ1 and ξ2 are real
numbers, with ξ1 > ξ2, we deduce that Q(ξ1) < Q(ξ2), and
vice versa. Consequently, inequality (27) holds true if

RPdPef > RP′
dP

′
ef , (28)

BP
2,def ≤ BP′

2,def . (29)

Note that when the code rates are equal, the effective free
distance of a turbo code plays a role similar to that of the
free distance of a convolutional code, since (28) simplifies to
dPef > dP

′
ef .

Hence, if our objective is to obtain turbo codes of any rate
yielding low error floors, the product of the code rate and
the effective free distance should be maximized, whilst the
multiplicity of information weight-2 code sequences should be
minimized. However, it is important to note that puncturing
influences the convergence behavior of a turbo code [20]; thus
we also need to investigate whether the performance of the
suboptimal iterative decoder eventually converges to the error
floor region at high Eb/N0 values, using analysis tools such
as EXIT charts [22].

B. Rate-1/3 PCCCs

Criteria (28) and (29) require knowledge of the effective
free distance def and the coefficient B2,def of each PCCC. In
the remainder of the paper, we use the abbreviation “Par” to
denote a rate-1/3 parent PCCC. Its effective free distance dParef
can be expressed as the sum of the minimum weight dC1

min of
the code sequence generated by the upper constituent encoder,
and the minimum weight zC2

min of the parity check sequence
generated by the lower constituent encoder, when a sequence
of information weight w=2 is input to the PCCC, i.e.,

dParef = dC1
min + zC2

min

= min
k

(
uC1(k) + zC1(k)

)
+ min

k

(
zC2(k)

)
.

(30)

The parent turbo code is taken to be symmetric, thus zC1(k)=
zC2(k)=z(k). Furthermore, a weight-2 information sequence

generates an identical weight-2 systematic sequence, hence
uC1(k)=2 for every value of k. Consequently, we can write

dParef = 2 + 2 min
k

(z(k))

= 2 + 2z(k=1)
= 6 + 2zcore,

(31)

since z(k = 1) = zcore + 2. However, when the generator
polynomials of the constituent RSC code are selected such
that GR 
=GF and GR is primitive, it can be shown that zcore
achieves its maximum value [17], [19], that is zcore = 2ν−1,
thus

dParef = 6 + 2ν . (32)

The number BPar
2,def

of code sequences having weight dParef
can be associated with the number BC1

2,dmin
of code sequences

having weight dC1
min and the number BC2

2,zmin
of parity check

sequences having weight zC2
min, if we elaborate on (5). In

particular, we obtain

BPar
2,def =

BC1
2,dmin

· BC2
2,zmin(

N

2

) , (33)

if a uniform interleaver of size N is assumed, where BC1
2,dmin

and BC2
2,zmin

return the same value since they both consider the
same trellis paths of minimum weight z(k = 1). Based on
(14), we find that for k = 1 the number of trellis paths, or
equivalently the number of code sequences, having minimum
parity check weight is

BC1
2,dmin

= BC2
2,zmin

= N − L, (34)

where L = 2ν − 1 is the period of the primitive feedback
generator polynomial. In the convenient case when the size
N of the interleaver is an integer multiple of the period L,
i.e., N =μL, coefficient BPar

2,def
assumes the form

BPar
2,def =

2L(μ − 1)2

μ(μL − 1)
. (35)

C. Pseudo-randomly Punctured Rate-1/2 PCCCs

In the case of rate-1/2 PS-PCCCs, the effective free distance
and the multiplicity of code sequences having information
weight w = 2 can only be derived using the semi-analytical
expressions (21), (22) and (24). Here, we demonstrate that it is
possible to express the above quantities in a more analytically
tractable form, if we properly design the puncturing pattern.
Let us consider again a rate-1/3 PCCC that uses primitive

feedback generator polynomials of period L. As previously
explained in Section IV-B, an input sequence 1, 0, . . . , 0 of
length L+1 will cause the upper constituent RSC encoder to
generate a parity check sequence of the form 1, yz

1 , . . . , y
z
L.

If a puncturing pattern P of period M = L, which has the
following structure

P =

⎡
⎣PU1

PZ1

PZ2

⎤
⎦ =

⎡
⎣1 − yz

L 1 − yz
1 . . . 1 − yz

L−1

yz
L yz

1 . . . yz
L−1

1 1 . . . 1

⎤
⎦ , (36)
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is used to reduce the rate of the PCCC from 1/3 to 1/2, we
refer to this type of PS-PCCC as a pseudo-randomly punctured
PCCC [18]. For an example case of PRP-PCCC, see Table I.
Let us now consider the upper constituent punctured RSC

code C′
1; we observe that (21) and (22) can be further reduced

if we take into account that M =L and p1,m = 1 − p2,m. In
particular,

uC′
1(k, m) = 2p1,m = 2 − 2p2,m, (37)

zC
′
1(k, m) = kzm+1

core + 2p2,m, (38)

respectively. Note that pj,m+kM = pj,m for j = 1, 2 and
zm+tM
core =zm

core, due to the periodicity of the puncturing pattern.
Consequently, the minimum weight dC

′
1
min of the code sequence

generated by the upper constituent encoder is given by

d
C′
1
min = min

k,m

(
uC′

1(k, m) + zC
′
1(k, m)

)
= min

k,m

(
kzm+1

core + 2
)
.

(39)

Exploiting the properties of pseudo-random sequences [19],
[23], we can show that

zm+1
core =

{
2ν−1, if m = 1
2ν−2, if 2 ≤ m ≤ M.

(40)

A detailed proof is presented in the Appendix. Thus, we can
rewrite (39) as follows

d
C′
1
min = 2 + 2ν−2. (41)

The parity check sequence of the lower constituent code
C′
2 is not punctured, since p3,m = 1 for every value of m.

Therefore, the minimum weight z
C′
2
min can be obtained using

the expressions for nonpunctured RSC codes, i.e.,

z
C′
2
min = min

k

(
zC

′
2(k)

)
= zcore + 2
= 2 + 2ν−1.

(42)

In a similar fashion to rate-1/3 PCCCs, the effective free
distance dPRPef of the rate-1/2 PRP-PCCC can be expressed as

dPRPef = d
C′
1
min + z

C′
2
min

= 4 + 3(2ν−2).
(43)

In order to facilitate our analysis, we now assume that the
interleaver size N is an integer multiple of the puncturing
period M , i.e., N =μM , where μ is a positive integer. Based
on (24), we find that for k=1, (μ−1) code sequences can be
generated for each value of m ∈ [1, M ]. We observe however,
that zm+1

core =2ν−2 only when m ∈ [2, M ]; since m can assume
(M−1) integer values in the range between 2 and M , there
are (M −1) code sequences per puncturing period M that
achieve a weight equal to d

C′
1
min. Consequently, we deduce that

the total number of minimum-weight code sequences obtained
at the output of the upper constituent encoder during the N
time steps of the coding process, assumes the value

B
C′
1

2,d′
min

= (μ − 1)(M − 1)

= (μ − 1)(L − 1),
(44)

since M and L are equal quantities and can be used inter-
changeably.
The lower constituent RSC encoder of the rate-1/2 PPR-

PCCC generates exactly the same number of sequences having
minimum parity check weight as that of the rate-1/3 PCCC,
since the parity check output of both constituent codes is not
punctured. Therefore, we obtain

B
C′
2

2,z′
min

= N − L. (45)

The coefficient BPRP
2,def

of a rate-1/2 PRP-PCCC can be

expressed as a function of B
C′
1

2,d′
min
and B

C′
2

2,z′
min
, in a similar

manner to (33). Consequently, using (44), (45) and taking into
account that N =μM and M =L, we find that

BPRP
2,def =

2(L − 1)(μ − 1)2

μ(μL − 1)
. (46)

D. Analytical and Numerical Results

We are now in the position to explore whether a rate-1/2
PRP-PCCC exhibits a lower bound approximation than that
of its rate-1/3 parent PCCC. We observe that dPRPef can be
expressed in terms of dParef , if we subtract (32) from (43)

dPRPef = dParef − (2 + 2ν−2). (47)

Coefficient BPRP
2,def

can also be represented in terms of BPar
2,def

,
if we divide (46) by (35)

BPRP
2,def =

(
L − 1

L

)
BPar

2,def . (48)

According to (28) and (29), if both conditions

1
2
dPRPef >

1
3
dParef , (49)

BPRP
2,def ≤ BPar

2,def (50)

are satisfied, a rate-1/2 PRP-PCCC yields a lower bound
approximation than that of its rate-1/3 parent code. We deduce
from (48) that BPRP

2,def
is always less than BPar

2,def
, thus the second

condition holds true. If we combine (47) with (49), the first
condition assumes the following form

3
(
dParef − (2 + 2ν−2)

)
> 2dParef , (51)

which collapses to

dParef > 6 + 3(2ν−2). (52)

Nevertheless, we have shown in (32) that the effective free
distance of the parent PCCC is given by dParef =6 + 2ν , which
can be rewritten as dParef = 6 + 4(2ν−2). Therefore, dParef is
always greater than 6 + 3(2ν−2), and hence, both conditions
are satisfied. The outcome of this investigation reveals that
rate-1/2 PRP-PCCCs using long interleavers are expected to
always yield a lower bound approximation and, presumably,
a lower error floor than that of their rate-1/3 parent codes.
Fig. 6 compares bound approximations to simulation re-

sults for punctured rate-1/2 PCCCs and their parent rate-1/3
PCCC(1,5/7,5/7), over the AWGN channel. The component
decoders employ the conventional exact log-MAP algorithm
[24]. A moderate interleaver size of N = 1000 has been
chosen, so as to allow the performance curves of the PCCCs
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Fig. 6. Comparison of bound approximations to simulation results. The
parent code is the rate-1/3 PCCC(1,5/7,5/7). The exact log-MAP algorithm is
applied over 8 iterations and an interleaver size of 1000 bits is used.

to approach the corresponding bound approximations at BEPs
in the region of 10−6. As expected [20], iterative decoding
of the rate-1/2 NS-PCCC hits an error floor, which is much
higher than that defined by the bound approximation. On
the other hand, transmission of all systematic bits helps
the iterative decoder converge to the error floor region at
low Eb/N0 ratios. However, the rate-1/2 S-PCCC exhibits a
higher error floor than that of its parent rate-1/3 PCCC. Most
importantly, however, Fig. 6 confirms that the performance
of the iteratively decoded rate-1/2 PRP-PCCC approaches the
bound approximation and, for Eb/N0 values greater than 2.5
dB, the BEP of the rate-1/2 PRP-PCCC is indeed lower than
that of the parent rate-1/3 PCCC. Hence, a rate-1/2 turbo code
obtained by using pseudo-random puncturing, outperforms its
own parent rate-1/3 PCCC, when they both operate in the error
floor region.

VI. CONCLUSIONS

In this paper we introduce a rapid method, which exploits
the properties of constituent RSC encoders, to obtain their
dominant CWEFs, which only consider code sequences having
information weight equal to two. This is in contrast to their
transfer functions, which enumerate all code sequences having
nonzero information weight. Using the dominant CWEFs,
we are able to obtain union bound approximations that are
accurate when long interleavers are employed and, hence, can
give us insight into the performance of turbo codes operating
in the error floor region. We exploit this technique to establish
that pseudo-randomly punctured rate-1/2 PCCCs, which form
a subset of partially systematic PCCCs, not only approach
the error floor region for an increasing number of iterations
but always yield a lower error floor than that of their rate-1/3
parent codes. Consequently, pseudo-random puncturing can be
used to reduce the rate of a PCCC from 1/3 to 1/2 and at the
same time achieve a coding gain at low bit error probabilities.
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APPENDIX
CALCULATION OF zCORE IN PSEUDO-RANDOMLY

PUNCTURED CONVOLUTIONAL CODES

Let yz
t be the parity check bit generated at time step t by

an RSC encoder using a primitive feedback polynomial of
degree ν and period L=2ν−1. If yz

1 , . . . , yz
L is a sequence of

parity check bits, the autocorrelation function of the equivalent
bipolar sequence (2yz

1−1), . . . , (2yz
L−1) is given by

φ(i) =
L∑

t=1

(2yz
t − 1)(2yz

t+i − 1), (53)

where i is a non-negative integer with 0 ≤ i < L. In the event
that the binary parity check sequence is a pseudo-noise (PN)
sequence, i.e., it is generated when the RSC encoder operates
as a pseudo-random number generator, the autocorrelation
function φ(i) reduces to [19], [23]

φ(i) =
{

2ν − 1, if i = 0
−1, if 1 ≤ i < L.

(54)

If we expand (53), we obtain

φ(i) = 4
L∑

t=1

yz
t yz

t+i − 2
L∑

t=1

yz
t − 2

L∑
t=1

yz
t+i + L

= 4
L∑

t=1

yz
t yz

t+i − 2ν − 1,

(55)

where
L∑

t=1

yz
t+i = 2ν−1 (56)

for 0 ≤ i < L, since there are 2ν−1 nonzero bits in a PN
sequence of length L=2ν−1 [19]. Combining (54) and (55),
we find that

L∑
t=1

(yz
t · yz

t+i) =
{

2ν−1, if i = 0
2ν−2, if 1 ≤ i < L.

(57)

We have demonstrated in par. 4 of Section IV-B that yz
L =0,

subsequently yz
L · yz

L+i = 0. From this observation, we can
deduce that the weight of the generated sequence remains
unchanged if we take the sum of only the first L−1 terms.
If pseudo-random puncturing is used to increase the rate of
the RSC encoder, the elements of the puncturing vector for
the parity check output satisfy p2,m+1 =yz

m with m ∈ [1, M ]
where M = L, as we described in Section V. Consequently,
if we replace yz

t+i in (57) with its equivalent, p2,t+i+1, and
substitute (i+1) with m, we obtain

L−1∑
t=1

(yz
t · p2,m+t) =

{
2ν−1, if m = 1
2ν−2, if 2 ≤ m ≤ M.

(58)

Note that the quantity on the left hand side of (58) corresponds
to zm+1

core , according to (20).
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