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Abstract—We consider large-scale wireless sensor networks e ..
with n nodes, out of whichk are in possession,d.g.,have sensed
or collected in some other way)k information packets. In the o, Q.
scenarios in which network nodes are vulnerable because dbr .
example, limited energy or a hostile environment, it is desable
to disseminate the acquired information throughout the netvork «
so that each of then nodes stores one (possibly coded) packet
so that the original & source packets can be recovered, locally
and in a computationally simple way from any k(14 ¢) nodes for ¢
some smalle > 0. We develop decentralized Fountain codes based,
algorithms to solve this problem. Unlike all previously deloped
schemes, our algorithms are truly distributed, that is, nodks do Fig. 1. A sensor network has 25 sensors (big dots) monitaaimgrea and
not know n, k or connectivity in the network, except in their own 225 storage nodes (small dots). A good distributed storégmitam should

neighborhoods, and they do not maintain any routing tables. enable us to recover the original 25 source packets from &mynddes (e.g.,
the set of nodes within any one of the three illustrated Girctegions).

I. INTRODUCTION

Wireless sensor networks consist of small devices (sensorshountain codes have also been considered because they
with limited resources (e.g., low CPU power, small bandtjdt &€ rateless and because of their coding efficiency and low
limited battery and memory). They are mainly used to monitGPMPIexity. In [9] Dimakisel al. proposed a decentralized
and detect objects, fires, temperatures, floods, and otrer Fm_qplem_entatlon of Fountain codes using fast random walks to
nomena [1], often in challenging environments where humgp.?s_emmate source dat‘_?‘ to the _storage nodes and geogrgphlc
involvement is limited. Consequently, data acquired byseen routlng over a grld_, Wh'cr reqU|resdevery|nqde to kPOV_V Its
may have short lifetime, and any processing of such ddgfation. In [10], Linet al. proposed a solution employing
within the network should have low complexity and poWerrandom walks with stops, and used the Metropolis algorithm
consumption [1] to specify transition probabilities of the random walks.

Consider a wireless sensor network witisensors, where ~ In another line of work, Kamrzt al. in [11] proposed
sensors collect(sense) independent information. Beazfitbe @ novel technique called growth coding to increase data
network vulnerability and/or inaccessibility, it is destile to Persistence in wireless sensor networks, that is, the amoun
disseminate the acquired information throughout the ne¢woPf information that can be recovered at any storage node at
so that each of the: nodes stores one (possibly codedgny time period whenever there is a failure in some other
packet and the originak source packets can be recoverefodes. In [12], Linet al. described how to differentiate
in a computationally simple way from ariy(1 -+ ¢) of nodes data persistence using random linear codes. Network coding
for some smalle > 0. Two such scenarios are of particulahas also been considered for distributed storage in various
practical interest: to have the information acquired by tHeetworks scenarios [13]-[17].

k sensors recoverable (1) locally from any neighborhoodAll previous work assumes some access to global informa-
containingk(1+e¢) nodes or (2) from the ladt(1+-¢) surviving tion, for example, the total numbers of nodes and sources,
nodes. Fig[1l illustrates such an example. which, for large-scale wireless sensor networks, may not be

Many algorithms have been proposed to solve related déasily obtained or updated by each individual sensor. By
tributed storage problems using coding with either ceizieal contrast, the algorithms proposed in this paper require no
or mostly decentralized control. Reed-Solomon based seherglobal information. For example, in [10], the knowledge of
have been proposed in [2]-[5] and Low-Density Parity Chedke total number of sensorsand the number of sourcésis
codes based schemes in [6]-[8], and references therein. required to calculate the number of random walks that each

source has to initiate, and the probability of trapping datta
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buffer, which may not be practical in real sensor networks. or theRobust Solitomistribution, which is defined as follows:
In this paper, we propose two new algorithms to soMeet R = ¢ In(k/8)v'k, Wherec, is a suitable constant and
the distributed storage problem for large-scale wireless s 0 < § < 1. Define

sor networks: LT-Codes based distributed storage (LTCDS) R/dk d=1,....k/R—1
algorithm and Raptor Codes based distributed storage (RCDS (d) = Rln(é/d)/k: d— k’/R ’ ’ 3)
algorithm. Both algorithms employ simple random walks. 0 ’ d:k/R’Jrl ok

Unlike all previously developed schemes, both LTCDS and _ S
RCDS algorithms are truly distributed. That is, except forhe Robust Soliton distribution is given by

their own neighborhoods, sensors do not need to know any 7(d) + Q(d)
global information, e.g., the total number of sensersthe Qr(d) = = o L2,k (4
number of sourceg, or routing tables. Moreover, in both it (T(l) + I(Z))

algorithms, instead of waiting until all the necessary seur Raptor codes are concatenated codes whose inner codes are
packets have been collected to perform encoding, eachrsei§o and outer codes are traditional erasure correcting codes
makes decisions and performs encoding upon each recepfitrey have linear encoding and decoding complexity [21].
of a source packet. This mechanism significantly reduces thdf each node in the network ends up storing an LT or Raptor
node’s storage requirements. code output block corresponding to thesource blocks, then
The remainder of this paper is organized as follows. ltne thek source blocks can be recovered in a computationally
Sec.[dl, we introduce the network and coding model. Isimple way from any:(1+ ¢) of nodes for some smadl> 0,
Sec.[IIl, we present the LTCDS algorithm and provide itR20], [21]. For different goals, different distributiofs may be
performance analysis. In SeC IV, we present the RCOS interest. Our storage algorithm can take &hws its input.
algorithm. In Sed_V/, we present simulation results for @asi
performance measures of the proposed algorithms I1l. LT C ODESBASED ALGORITHMS

[I. NETWORK AND CODING MODELS A. Algorithm Design

We model a wireless sensor network consistinguafodes ~ The goal of our storage algorithm is to have each of the
as a random geometric graph [18], [19], as follows: The nodesnodes store an LT code output block corresponding to
are distributed uniformly at random on the plane and all hate & input (source) blocks without involvement of a central
communication radii of 1. Thus, two nodes are neighbors aggthority. To achieve this goal, a node in a network would
can communicate iff their distance is at mastAmong then  have to store, with probabilitf2(d), a binary sum (XOR)
nodes, there ark source nodes (uniformly and independentlpf d randomly and independently chosen source packets. Our
picked from then) that have independent information to bénain idea to approach this goal in a decentralized way is to
disseminated throughout the network for storage. A similét) disseminate thé source packets throughout the network
model was considered in [10]. Our algorithms and resuly & simple random walks and (2) XOR a packet “walking”
apply for many network topologies, e.g., regular grids df [3through a node with a probability/k whered is chosen at

We assume that no node has knowledge about the locatitie node randomly according fo.
of other nodes and no routing table is maintained; thus theTo ensure that each of thle random walks at least once
algorithm proposed in [3] cannot be applied. Moreover, wésits each network node, we will let the random walks last
assume that no node has any global information, e.g., tisager than the network (graph) cover time [22], [23].
total number of nodes, the total number of sources or Definition 1: (Cover TimelGiven a grapha, let T,oper (v)
the maximal number of neighbors in the network. Hence, tiige the expected length of a simple random walk that starts at
algorithms proposed in [10] cannot be applied. We assurmnedewu and visits every node itz at least once. Theover
that each node knows its neighbors. Vétu) denote the set time of G is defined byTt,yer (G) = maxuea Teover ().
of neighbors ofu. We will refer to the number of neighbors Lemma 2 (Avin and Ercal [24]):Given a random geomet-
of u as thenode degreef «, and denote it by:(u) = |A(u)|. ric graphG with » nodes, if it is a connected graph with high
The mean degre®f a graphG is then given by probability, then

o= |17| Z p(w). (1) Teover(G) = O(nlogn). (5)

ued In addition, the probability that a random walk a@r will

_For k source blocks{zy, ..., 2} and a probability dis- yequire more time thaffl,...(G) to visit every node ofG
tribution  over the set{1,...,k}, a Fountain code with s (1 /nlogn) [22]. Therefore, we can virtually ensure that
parametersk, ©2) is a potentially limitless stream of outputy random walk visits each network node by requiring that it
blocks{y1, y2, ... } [20], [21]. Each output block is generatednakesc,n logn steps for some’; > 0. To implement this
by XORing d randomly and independently chosen sourGgquirement for thé: random walks, we set a counter for each

blocks, whered is drawn from€(d). _ source packet and increment it after each transmissiorh Eac
LT (Luby Transform) codes [20], [21] are Fountain codegme a node receives a packet whose counter is smaller than
that employ either thédeal Solitondistribution Cinlogn, it accepts the packet for storage with probability

Qu(d) = 1/k, d=1, @ d/k (whered is chosen at the node according®), and then,
R =\ 1/[dd-1)), d=2,3,...,k, regardless of the acceptance decision, it forwards thegback
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to one of its randomly chosen neighbors. Packets older tharDefinition 7: (LTCDS Algorithm)

Cinlogn are discarded. with system parametexs;,Cy > 0 and (2
Note that the above procedure requires the knowledge ofjpitialization Phase

and k at each node. To devise a fully decentralized storaggch source node s = 1,...,k

algorithm, we note that each node can observe (1) how oftenl) attaches a header to its data containing its ID and a
it receives a packets and (2) how often it receives a packets life-countere(z,) set to zero, and then

from each source. Naturally, one expects that these number§) sends its packet to a randomly selected neighbor.
depend on the network connectivity(¢:) for all u), the size £5ch nodes sets its storage, — 0
w = 0.

of the graphn, and the number of different random walks

used to obtain local estimates of global parameters.
The following definitions and claims either come from [22],
[23], [25], or can be easily derived based on the resultether

Definition 3: (Inter-Visit Time)For a random walk on a
graph, theinter-visit timeof nodeu, T;si:(u), is the amount
of time between any two consecutive visits of the walkuto

Lemma 4:For a node: with node degreg(u) in a random
geometric graph, the mean inter-visit time is

E[Tvisit (u)] = ﬁn/u(u), (6)

wherep is the mean degree of the graph given By (1).
Lemmal4d impliesn = u(u)E[Tyisit(u)]/m. While nodeu

can easily measurB[T,;s;:(u)], the mean degreg is a piece

of global information and may be hard to obtain. Thus we

make a further approximation and let the estimatenoly

nodeu be

n(u) = E[Tvisit (u)] (7)

Note that to estimate, it is enough to consider only one
of the k£ random walks. Now to estimate, we also need to
consider thek walks jointly without distinguishing between
packets originating from different sources.

Definition 5: (Inter-Packet Time)For multiple random
walks on a graph, thimter-packet timeof nodew, Tpacker (),
is the amount of time between any two consecutive visits by
any of the walks tou.

Lemma 6:For a node: with node degre@(u) in a random
geometric graph with: simple random walks, the mean inter-
packet time is

E[Tvisit (u)] _ ﬁn
k ~ kp(u)’ (®)

wherer is the mean degree of the graph given By (1).
Proof: For a given node, each of thek random walks has
expected inter-visit tim%. We now view this process from
another perspective: we assume therekamedes{v,, ..., v}
uniformly distributed in the network and an agent from node
u following a simple random walk. Then the expected inter-
visit time for this agent to visit any particular;, is the same

E[Tpacket (u)] =

as % However, the expected inter-visit time for any two
nodesv; andv; is %,FZ , Which gives [(8). O

Based on Lemmds 4 and 6, that is equatighs (6) ghd (8), we
3) When a node receives a packet before the current round,

see that each node can estimaté as
ff(u) = E[Tvisit (u)]/E[Tpacket (u)] )

We are now ready to state the entire storage algorithm:

. . : Inference Phase(at all nodesu)
We next describe this dependence and show how it can bei) Supposer

s(u), IS the first source packet that visits
and denote byij(z)l the time whene,(,), makes itsj-th
visit to u. Concurrentlyu maintains a record of visiting
times for all packetsr,,, “walking” through it. Let

tiJ(L . be the time when source packey,), makes its
J-th visit to u. After z,), visits u C> times, where

Csy > 0 is system parametet; stops this monitoring
and recoding procedure. Denote bft:) the number of
source packets that have visited at least once until that
time.

Let J(s(u);) be the number of visits of source packet
Ty(u), 10 u and let

1 J(s(u)i)—1 (41) )
Tow), _— E t —tY
s(u)q J(s(u)l) 1 = ( s(u)i S(U)'L)
1 (J(s(wi) _ 4(1)
= — (¢ —t . (10
J(s(u);) —1 ( s(u)i S(U)i) (10)

Then, the average inter-visit time for nodes

_ 1
Tvisi u) = — TS w)ge (11)
) = 173 ; (w)
oo (D) _ (J(s(u)q))
Let Jin = ﬁ?jﬂ{tsw)i} andJ,qz = Isr(l%)f{tS(u)i }.
Then the inter-packet time is
= Jmam - Jmln
T acke (u) = — < (12)
P ' Zs(u)l J(S(U)Z)
andu can estimate: andk as
= 2 T’Uisi
f(u) = Tyisie(u) and k(u) = ﬂ (13)
Tpacket(u)

3) In this phase, the counte(z,,) of each source packet

c(xs,) is incremented by one after each transmission.

Encoding and Storage Phaséat all nodesu)
1) Nodew drawsd.(u) from {1,...,k(u)} according to

Q

2) Upon reciving packet, if ¢(x) < Cinlogn, nodeu

« putsz into its forward queue and increments).
« with probability d.(u)/k, acceptse for storage and
updates its storage variabjg to y;" as

(14)

If ¢(z) < Cinlogn, = is removed from circulation.

y?f =Y, DTy,

it forwards its head-of-line (HOL) packet to a randomly
chosen neighbor.

4) Encoding phase ends and storage phase begins when

each node has seen ft$u) source packets.
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B. Performance Analysis

Parametersk, 1) determine the error rate performance and
encoding/decoding complexity of the corresponding Faanta
code. With input(k,Q2), the LTCDS algorithm produces

a distributed Fountain code with parametéts()’'), where
Q' # Q. We next compute)’ when the input distributior2
is the Robust Soliton[{4), and discuss the performance
complexity of the corresponding Fountain code.

Recall that node: drawsd,.(u) according tof), and accepts
a passing source packet with probability(w)/k. Therefore,
the number of packets that accepts, givenl.(u), is Bino-
mially distributed with parametet.(u)/k, and the number of
packets that, accepts takes valuewith probability Q' (i):

Pr(d.(u) = i|d:(u))Q(de(u))

(1) (S (1) o,

A simple way to achieve) = Q would be to let each:
store each distinct passing source packet until it colladts
k, and then randomly choose exactly(u)

k
D@y = ]

de(u)=1

de(u)=1

large buffers, which is usually not practical, especiallyen

k is large. Therefore, we assume that nodes have Iimngg
memory and let them make their decision upon each receptiﬂn

B> (1—-e2)"L, we have

Pr{Ny < (1 - a)K'(1-Q(0)} <
K'Y (0)(1—(0))
a?K2(1 - (0))

o(3).

for any o > 0, where Ny denotes the number of nodes that

afre encoded packets. Therefore, we haVél —e=2) > K

nodes that store encoded packets with a high probability for
sufficiently largen andk.

We next show that the originat source packets can be
recovered based off = k+(9(\/Elog2(k:/6)) stored packets
with probability 1 — ¢, by an argument very similar to the one
in [20]. When a source packet is decoded (e.g., from stored
packets with degree one), we say that all the other encoded
packets that contain this source packet are covered. In the
decoding process, call the set of covered encoded packatts th
have not been fully decoded (all the contained source psicket
are decoded) as the ripple. The main idea of the proof is to
show the ripple size variation is very similar to a randomkyal
and the probability that the ripple size deviates from itame
in k steps by®(vk) is small [20].

It can be shown that the expected number of stored packets
of degree one i9'R for some constant’ > 0. Employing a

: i ; packets, Where Chernoff bound argument, we can show that with probability
d.(u) is drawn according t&, This approach would require

at leastl —4/3, the initial ripple size due to degree one packets
is at leastdR/2 for a suitable constart > 0. Then by the
me argument used in the proof for Theorem 17 in [20],
can be shown that without contribution efk/R) in £,

Our approach, as the following theorem shows, results liﬁle ripple does not disappear fér— k — 1 R and the

a Fountain code with comparable efficiency and the sa

complexity as the one determined by the Robust or Id
Soliton distributions.

coding process is successful urRilstored packets remain
decoded with probability at least— §/3.
Further, like Proposition 15 in [20], we can show that using

Theorem 8:Suppose the LTCDS algorithm uses the Robugf,y the contribution ofr(k/R) in ©, the lastR blocks can
Soliton distribution[(#) for2. Then, thek source packets canpa Gecoded with probability — §/3 when betweer2R and

be recovered from ani’ = SK nodes with probabilith —  p stored packets remain undecoded . This implies that the

for sufficiently largek, where3 > (1 — e 2)"! and K =
k+ O(VElog?(k/d))
whenQ)’ = ). The decoding complexity i©(k log(k/J)).

(K would be sufficient for recovery Finally

decoding process completes successfully with probaliity.
the decoding complexity is the average degfee
of a stored packet:

Proof: The probability that a node stores no information is

k k k
d
/ _ —d
Q0 =) <1 - E) Qd) <Y e "Q(d)
d=1 d=1
k k
< de ™+ (d)e
d=1 d=1
_%_1 R 4 Rln(%) —k/R - Qs (d)e—?
= Ee + % e +Z I( )6
d=1 d=1
R il el Rln(B)e 1 P2
B D D ek ey T SR b oy
d=1 d=2
lnk)Q) 5
<O(—L) +e2 15
("% 49

Therefore, for sufficiently large, Q'(0) < e~2. Consequently,

if we randomly takek’ = K nodes from the network, where

(V&) (-2) o)

i=1 Lld=1
o HIGNCHNEE
_d:d 2&21) <%>i<1_%)k” o)
- k dQ(d) = O(log k/6) (16)

d=1

where the last equality is due to Theorem 13 in [20]. O

From the calculation of2’(0), with the Robust or Ideal
Soliton distribution, we also have

1
2e2’

Q'(0) > 17)
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Remark:One interesting implication of (15) and {17) is that 2) Each of the remainingg — k& nodes chooses to serve
in order to achieve the same performance as that of origihal L as a parity node with probabilitym — k)/(n — k).

codes, more thafil — e=2/2) 'K ~ 1.07K nodes, but less These parity nodes and the original source nodes are
than (1 — e=2)"'K ~ 1.15K nodes are required to recover pre-coding output nodes. Each pre-coding output node
the originalk source packets. w generate a random numbefw) according to the

Another main performance metric is the transmission cost  following distribution:
of the algorithm, which is characterized by the total nundfer

s K\ (E[b\* E[b)\ "¢
transmissions (the total number of stepstafindom walks). Pr(a(w) = d) = ( ) ( [ ]) <1 _E ]> 7
Theorem 9:The total number of transmissions of the d m m
LTCDS algorithm is©(kn logn). where E[b] = 3, bPLopc(b).

Proof: In the interference phase of the LTCDS algorithm, the 3)
total number of transmissions is upper boundéd for some
constantC’ > 0. That is because each node needs to receive
the first visit source packet faf; times, and by LemmBl 4, 4)
the mean inter-visit time iM(n). In the encoding phase,

in order to guarantee that each source packet visits all the
nodes, the number of steps of each of theandom walks is
required to be®(nlogn). Since there aré source packets,
the total number of transmissions algorithnmtigkn logn). O

Each node that has packets in its forward queue before
the current round sends its HOL packet to one of its
randomly chosen neighbors.

When a nodeu receives a packet with c(z) <
Csnlog(n), u puts the packet into its forward queue
and increments the counter.

) Each pre-coding output node accepts the first(w)
copies of differenta(w) source packet with counters
c(x) > Csnlog(n), and updatesv’s pre-coding result

: . . each time as
Note that the algorithm proposed in [10] has similar order

+ _ —
of total number transmissions. If geometric information is Yw = Y O - (18)
available, as in [9], the complexity can be reduced, e.g., If a copy of z is accepted, it will not be forwarded
O(k+/nlogn) for the algorithm proposed in [9]. any more, andv will not accept any other copy af;; .

When the nodev completes:(w) updatesy,, becomes
IV. RAPTOR CODESBASED ALGORITHMS its pre-coding packet.
Recall that Raptor codes are concatenated codes whose
inner codes are LT and outer codes (pre-codes) are tradi-
tional erasure correcting codes. For the pre-codes will use
is randomized LDPC codes with inputs andm outputs e evaluate the performance of LTCDS and RCDS algo-
(m > k). Assumen andk are known or have been estimatedithms by smula‘gon. Our main performance metric is the
at every node. To perform the LDPC coding fbrsources Successful decoding probability vs. the query ratio.
in a distributed manner, we again use simple random walks.Definition 11: The query ratios is the ratio between the
Each source node first generatesopies of its own source Number of queried nodés and the number of sourcés
packet, wheré follows some distributionP, ppc defining the n=h/k. (19)
LDPC precode. (See [21] for the design of randomized LDPC
codes for Raptor codes.) Thesecopies are then sent into Definition 12: (successful decodin@je say that decoding
the network by random walks. Each of the remaining k& is successfuif it results in recovery ofall k source packets.
nodes in the network chooses to serve as a parity node wittFor a query ratio), we evaluate®; by simulation as follows:
probability (m — k)/(n — k). We refer to the parity nodesLet h = nk denote the number of queried nodes. We select
together with the original (Systematic) source nodes as thgiformly at random)10% of the (Z) possible subsets of
pre-coding output nodes. All pre-coding output nodes accegize h of the n network nodes, and try to decode tle
a source packet copy with the same probability; consequentlource packets from each subset. Then the fraction of times
the b copies of a given source packet get distributed uniformtyte decoding is successful measures Bur
among all pre-coding output nodes. In this way, we have  Fig.[2 shows the decoding performance of LTCDS algorithm
pre-coding output nodes, each of which contains an XOR ofsth known n and k. For ©, we chose the Ideal Soliton
random number of source packets. The detailed descripfiondistribution [2). The network is deployed id = [0, 5]? with
the pre-coding algorithm is given below. After obtainingth  density \ = %0, and the system paramet€; = 3. From the
pre-coding outputs, to obtain Raptor codes based distibusimulation results, we can see that when the query ratio is
storage, we apply the LTCDS algorithm with thesenodes above 2, the successful decoding probabilityis about99%.
as new sources and an approprigites discussed in [21].  Whenn increases but/n andyn remain constant?; increases
Definition 10: (Pre-coding Algorithm) whenn > 1.5 and decreases when< 1.5. This is because
1) Each source node,s = 1,...,k draws a random when there are more nodes, it is more likely that each node
numberb(s) according to the distribution of predefinedhas the Ideal Soliton distribution.
LDPC codes, generatéés) copies of its source packet In Fig.[3, we fixn to 1.4 and 1.7 and&/n = 0.1. From the
xs with its ID and a countet(z) with an initial value results, it can be seen that asncreasespP; increases until it
of zero in the packet header, and sends each of thenréaches a plateau, which is the successful decoding piipabi
one of its randomly chosen neighbors. of LT codes.

V. PERFORMANCEEVALUATION
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Fig. 3. Performance of LTCDS with different knowm and k£ and fixed
number of queried nodes for two cases: &) 1.4; (b) n = 1.7. Fig. 5. Performance of LTCDS algorithm with large number ofles and
sources for (a) knowm=500 andk = 50; (b) knownn=1000 andk = 100;
(c) unknownn=500 andk = 50; (d) unknownn=1000 andk = 100.
We compare the decoding performance of LTCDS with
known and unknown values of and k in Fig.[4 and Fig[b. R
The network is deployed ind = [0,5]2, and the system constant, which indicates that aftén logn steps, almost all
parameter is set a8 = 10. To guarantee each node to obtai§OU'Ce packets visit each node at least once.
accurate estimates of and k, we setC, large enough as Furthermore, to investigate how the system parameter
Cy = 50. The decoding performance of the LTCDS algorithrffects the decoding performance of the LTCDS algorithm,
with unknownn and % is a little bit worse than that of the We fix 7 andCy, and varyCs. From Fig.[7, we can see that
LTCDS algorithm with knownn and k wheny is small, and whenC5 is small, the performance of the LTCDS algorithm is
almost the same whenis large. Such difference between th&/€ry poor. This is due to the inaccurate estimate# ahd»
two algorithms becomes marginal when the number of nod@¥ €ach node. Whe6 is large, for example, whe@ > 30,
and sources increase as shown in Fig. 5. the performance is almost the same. o
An interesting observation in Fill 2, FIg. 4 and Hiy. 5 is that Fig. [8 and Fig[B show the histograms of the estimation
the probability of successful decoding is almost zero umél results forn and &, based on equations (13). As expected,
query aboutl.1% nodes. This is due to the nodes that store e estimates of are more accurate and concentrated than the
information in the network. As we pointed out in the RemarRstimates ofu.
after the proof of Theoreifnl 8, for Robust Soliton distribatio
more thanl.07k but less tharl.15k nodes are needed to query
to achieve the same performance of LT codes. Similar results
also h_OId fo_r Ideal Soliton distribution. [1] C. Raghavendra, K. Sivalingam, and T. Znéttiireless Sensor Networks
To investigate how the system parametér affects the Kluwer Academic Publishers, Norwell, MA, USA, 2004.

decoding performance of the LTCDS algorithm with knownl2] H. Weatherspoon and J. D. Kubiatowics, “Erasure codisgeplication:
a quantitive comparision,” irProc. of 1st International Workshop on

n and k, we fix n and varyC;. The simulation resuI'Fs are Peer-to-Peer Systems (IPTPS '02), Springer LNCS, Caméyitl,
shown in Fig.[6. WhenC; > 3, P, keeps almost like a USA,, pp. 328-337, March 78 2002.

REFERENCES



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, APPEAR IN 2010

Fig.

0.9

s

0.8r

0.7

0.61

0.5f

0.4f

0.31

Successful Decoding Probability P

0.2r R
—&- n=500, k=50
=% n=1000, k=100 R

0 . . . .
2 3 4

System Parameter C1

0.1f

6. Performance of LTCDS algorithm with different syst@arameter

C1 for two cases: (ap = 500 andk = 50, (b) n = 1000 and k& = 100.

Fig.

0.9¢

s

0.8

0.7r

0.6

0.5¢

0.4r

0.3

-

n=100, k=10, n=1.5
- n=100, k=10, n=2.0 1

Successful Decoding Probability P

0.2
-0~ n=200, k=20, n=1.5

01 n=200, k=20, N=2.0

20 30 40
System Parameter C2

50

60

7. Performance of LTCDS algorithm with different syst@arameter

Cs for (a) n = 100, & = 10, n = 1.5; (b) n = 100, k = 10, n = 2.0; (c)
n = 200, k = 20, n = 1.5; (d) n = 200, k = 20, n = 2.0.

(3]

(4

(5]

Number of nodes

Fig.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Whkiaus
access to distributed data in large-scale sensor netwbr&agh decen-

400

100

Number of nodes

Fig. 9.

350
300
250
200

150

Number of nodes

100

50

150

500 1000
Estimation of n

@)

1500 2000 2500

50 100
Estimation of k
(b)

Histograms for estimates of (a) andk (b) in LTCDS algorithm

with n = 1000 and k = 100.

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

tralized erasure codes,” iroc. of 4th IEEE Symposium on Information [15]

Processing in Sensor Networks (IPSN '05), Los Angeles, C34 U
pp. 111-117, April 2005.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Déedized
erasure codes for distributed networked storatfeZE Tran. Informa-
tion Theory vol. 52, pp. 2809-2816, 2006.

M. Pitkanen, R. Moussa, M. Swany, and T. Niemi, “Erasuogles for
increasing the availability of grid data storage,’Rroc. of the Advanced
International Conference on Telecommunications and fratonal Con-
ference on Internet and Web Applications and Services (AGIW ),
pp. 185— 185, 2006.

30

120,

100

Number of nodes

100 400 500 0 10 30 40

20
Estimation of k
(b)

Histograms for estimates of (a) andk (b) in LTCDS algorithm

200 300
Estimation of n

@

8.

with n = 200 and &k = 20.

[16]

[17]

(18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]

C. Huang and L. Xu, “Star: An efficient coding scheme forrecting
triple storage node failures,” iRroc. 4th Usenix conference on file and
storage technologies (FAST '05), San Francisco, CA, U3A 15-15,
2005.

J. S. Plank, “Erasure codes for storage applicatioms(Tutorial)Proc.
4th Usenix conference on file and storage technologies (FBST San
Francisco, CA, USA2005.

J. S. Plank and M. G. Thomason, “An exploration of nonraptotic
low-density, parity check erasure codes for wide-areaag®rapplica-
tions,” Parallel Processing Lettersvol. 17, pp. 103-123, March 2007.
A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, ‘fibsted foun-
tain codes for networked storage,” Rroc. of 31st IEEE International
Conference on Acoustics, Speech, and Signal ProcessidgS@e’'06),
Toulouse, FranceMay, 2006.

Y. Lin, B. Liang, and B. Li, “Data persistence in largeade sensor
networks with decentralized fountain codes,”Rmoc. of IEEE INFO-
COM'07, Anchorage, AK, USAp. 1658-1666, May, 2007.

A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Gitowodes:
Maximizing sensor network data persistence,”Aroc. of ACM Sig-
com’06, Pisa, Italy September, 2006.

Y. Lin, B. Li, , and B. Liang, “Differentiated data pestence with
priority random linear code,” ifProc. of 27th International Conference
on Distributed Computing Systems (ICDCS'0Fronto, Canada, June,
2007.

A. Jiang, “Network coding for joint storage and transsion with min-
imum cost,” inProc. of IEEE International Symposium on Information
Theory (ISIT '06), Seattle, WA, USAp. 1359-1363, July, 2006.

D. Wang, Q. Zhang, and J. Liu, “Partial network codingoery and
application for continuous sensor data collection,”Aroc. |IEEE 14th
international workshop on quality of service (IWQp3D06.

S. Acedanski, S. Deb, M. Médard, and R. Koetter, “Howod@ois
random linear coding based distributed networked storage?Proc.
2nd Workshop on Network Coding (NetCod'05), Pisa, Italgril, 2005.

A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ranaidran,
“Network coding for distributed storage systems,” Rroc. of IEEE
INFOCOM’'07, Anchorage, AK, USAp. 2000-2008, May, 2007.

D. Munaretto, J. Widmer, M. Rossi, and M. Zorzi, “Netkocoding
strategies for data persistence in static and mobile seretarorks,” in
Proc. of International Workshop on Wireless Networks: Camication,
Cooperation and Competition (WCN3'Q7)imassol, Cyprus, April
2007.

E. N. Gilbert, “Random plane networks). Soc. Indust. Appl. Math.
vol. 9, pp. 533-543, 1961.

M. PenroseRandom Geometric Graph&lew York: Oxford University
Press, 2003.

M. Luby, “LT codes,” in43rd Symposium on Foundations of Computer
Science (FOCS 2002Yancouver, Canada, Nov., 2002.

A. Shokrollahi, “Raptor codesJEEE Tran. Information Theorwol. 52,
pp. 2551-2567, 2006.

D. Aldous and J. Fill, Reversible Markov Chains
Random Walks on Graphs Preprint,  available
http://statwww.berkeley.edu/users/aldous/RWG/baok:h2002.

S. Ross Stochastic Processe®ew York: Wiley, second ed., 1995.
C. Avin and G. Ercal, “On the cover time of random georneegraphs,”
in Proc. 32nd International Colloquium of Automata, Languaged
Programming (ICALP’05), Lisboa, Portugapp. 677-689, July, 2005.
R. Motwani and P. RaghavarRandomized Algorithms Cambridge
University Press, 1995.

and
at


http://statwww.berkeley.edu/users/aldous/RWG/book.html

	Introduction
	Network and Coding Models
	LT Codes Based Algorithms
	Algorithm Design
	Performance Analysis

	Raptor Codes Based Algorithms
	Performance Evaluation
	References

