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Abstract—We consider large-scale wireless sensor networks
with n nodes, out of whichk are in possession, (e.g.,have sensed
or collected in some other way)k information packets. In the
scenarios in which network nodes are vulnerable because of,for
example, limited energy or a hostile environment, it is desirable
to disseminate the acquired information throughout the network
so that each of then nodes stores one (possibly coded) packet
so that the original k source packets can be recovered, locally
and in a computationally simple way from anyk(1+ǫ) nodes for
some smallǫ > 0. We develop decentralized Fountain codes based
algorithms to solve this problem. Unlike all previously developed
schemes, our algorithms are truly distributed, that is, nodes do
not know n, k or connectivity in the network, except in their own
neighborhoods, and they do not maintain any routing tables.

I. I NTRODUCTION

Wireless sensor networks consist of small devices (sensors)
with limited resources (e.g., low CPU power, small bandwidth,
limited battery and memory). They are mainly used to monitor
and detect objects, fires, temperatures, floods, and other phe-
nomena [1], often in challenging environments where human
involvement is limited. Consequently, data acquired by sensors
may have short lifetime, and any processing of such data
within the network should have low complexity and power
consumption [1].

Consider a wireless sensor network withn sensors, wherek
sensors collect(sense) independent information. Becauseof the
network vulnerability and/or inaccessibility, it is desirable to
disseminate the acquired information throughout the network
so that each of then nodes stores one (possibly coded)
packet and the originalk source packets can be recovered
in a computationally simple way from anyk(1 + ǫ) of nodes
for some smallǫ > 0. Two such scenarios are of particular
practical interest: to have the information acquired by the
k sensors recoverable (1) locally from any neighborhood
containingk(1+ǫ) nodes or (2) from the lastk(1+ǫ) surviving
nodes. Fig. 1 illustrates such an example.

Many algorithms have been proposed to solve related dis-
tributed storage problems using coding with either centralized
or mostly decentralized control. Reed-Solomon based schemes
have been proposed in [2]–[5] and Low-Density Parity Check
codes based schemes in [6]–[8], and references therein.
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Fig. 1. A sensor network has 25 sensors (big dots) monitoringan area and
225 storage nodes (small dots). A good distributed storage algorithm should
enable us to recover the original 25 source packets from any 25+ nodes (e.g.,
the set of nodes within any one of the three illustrated circular regions).

Fountain codes have also been considered because they
are rateless and because of their coding efficiency and low
complexity. In [9] Dimakisel al. proposed a decentralized
implementation of Fountain codes using fast random walks to
disseminate source data to the storage nodes and geographic
routing over a grid, which requires every node to know its
location. In [10], Lin et al. proposed a solution employing
random walks with stops, and used the Metropolis algorithm
to specify transition probabilities of the random walks.

In another line of work, Kamraet al. in [11] proposed
a novel technique called growth coding to increase data
persistence in wireless sensor networks, that is, the amount
of information that can be recovered at any storage node at
any time period whenever there is a failure in some other
nodes. In [12], Lin et al. described how to differentiate
data persistence using random linear codes. Network coding
has also been considered for distributed storage in various
networks scenarios [13]–[17].

All previous work assumes some access to global informa-
tion, for example, the total numbers of nodes and sources,
which, for large-scale wireless sensor networks, may not be
easily obtained or updated by each individual sensor. By
contrast, the algorithms proposed in this paper require no
global information. For example, in [10], the knowledge of
the total number of sensorsn and the number of sourcesk is
required to calculate the number of random walks that each
source has to initiate, and the probability of trapping dataat
each sensor. The knowledge of the maximum node degree (i.e.,
the maximum number of node neighbors) of the graph is also
required to perform the Metropolis algorithm. Furthermore, the
algorithms proposed in [10] request each sensor to perform
encoding only after receiving enough source packets. This
demands each sensor to maintain a large temporary memory

http://arxiv.org/abs/0904.4057v2
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buffer, which may not be practical in real sensor networks.
In this paper, we propose two new algorithms to solve

the distributed storage problem for large-scale wireless sen-
sor networks: LT-Codes based distributed storage (LTCDS)
algorithm and Raptor Codes based distributed storage (RCDS)
algorithm. Both algorithms employ simple random walks.
Unlike all previously developed schemes, both LTCDS and
RCDS algorithms are truly distributed. That is, except for
their own neighborhoods, sensors do not need to know any
global information, e.g., the total number of sensorsn, the
number of sourcesk, or routing tables. Moreover, in both
algorithms, instead of waiting until all the necessary source
packets have been collected to perform encoding, each sensor
makes decisions and performs encoding upon each reception
of a source packet. This mechanism significantly reduces the
node’s storage requirements.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the network and coding model. In
Sec. III, we present the LTCDS algorithm and provide its
performance analysis. In Sec. IV, we present the RCDS
algorithm. In Sec. V, we present simulation results for various
performance measures of the proposed algorithms

II. N ETWORK AND CODING MODELS

We model a wireless sensor network consisting ofn nodes
as a random geometric graph [18], [19], as follows: The nodes
are distributed uniformly at random on the plane and all have
communication radii of 1. Thus, two nodes are neighbors and
can communicate iff their distance is at most1. Among then
nodes, there arek source nodes (uniformly and independently
picked from then) that have independent information to be
disseminated throughout the network for storage. A similar
model was considered in [10]. Our algorithms and results
apply for many network topologies, e.g., regular grids of [3].

We assume that no node has knowledge about the locations
of other nodes and no routing table is maintained; thus the
algorithm proposed in [3] cannot be applied. Moreover, we
assume that no node has any global information, e.g., the
total number of nodesn, the total number of sourcesk, or
the maximal number of neighbors in the network. Hence, the
algorithms proposed in [10] cannot be applied. We assume
that each node knows its neighbors. LetN (u) denote the set
of neighbors ofu. We will refer to the number of neighbors
of u as thenode degreeof u, and denote it byµ(u) = |N (u)|.
The mean degreeof a graphG is then given by

µ =
1

|V |
∑

u∈G

µ(u). (1)

For k source blocks{x1, . . . , xk} and a probability dis-
tribution Ω over the set{1, . . . , k}, a Fountain code with
parameters(k,Ω) is a potentially limitless stream of output
blocks{y1, y2, . . . } [20], [21]. Each output block is generated
by XORing d randomly and independently chosen source
blocks, whered is drawn fromΩ(d).

LT (Luby Transform) codes [20], [21] are Fountain codes
that employ either theIdeal Solitondistribution

ΩI(d) =

{

1/k, d = 1,
1/[d(d− 1)], d = 2, 3, . . . , k,

(2)

or theRobust Solitondistribution, which is defined as follows:
Let R = c0 ln(k/δ)

√
k, wherec0 is a suitable constant and

0 < δ < 1. Define

τ(d) =







R/dk, d = 1, . . . , k/R− 1,
R ln(R/δ)/k, d = k/R,
0, d = k/R+ 1, . . . , k.

(3)

The Robust Soliton distribution is given by

ΩR(d) =
τ(d) + ΩI(d)

∑k
i=1

(

τ(i) + ΩI(i)
)
, d = 1, 2, . . . , k. (4)

Raptor codes are concatenated codes whose inner codes are
LT and outer codes are traditional erasure correcting codes.
They have linear encoding and decoding complexity [21].

If each node in the network ends up storing an LT or Raptor
code output block corresponding to thek source blocks, then
the thek source blocks can be recovered in a computationally
simple way from anyk(1+ ǫ) of nodes for some smallǫ > 0,
[20], [21]. For different goals, different distributionsΩ may be
of interest. Our storage algorithm can take anyΩ as its input.

III. LT C ODESBASED ALGORITHMS

A. Algorithm Design

The goal of our storage algorithm is to have each of the
n nodes store an LT code output block corresponding to
the k input (source) blocks without involvement of a central
authority. To achieve this goal, a node in a network would
have to store, with probabilityΩ(d), a binary sum (XOR)
of d randomly and independently chosen source packets. Our
main idea to approach this goal in a decentralized way is to
(1) disseminate thek source packets throughout the network
by k simple random walks and (2) XOR a packet “walking”
through a node with a probabilityd/k whered is chosen at
the node randomly according toΩ.

To ensure that each of thek random walks at least once
visits each network node, we will let the random walks last
longer than the network (graph) cover time [22], [23].

Definition 1: (Cover Time)Given a graphG, let Tcover(u)
be the expected length of a simple random walk that starts at
nodeu and visits every node inG at least once. Thecover
time of G is defined byTcover(G) = maxu∈G Tcover(u).

Lemma 2 (Avin and Ercal [24]):Given a random geomet-
ric graphG with n nodes, if it is a connected graph with high
probability, then

Tcover(G) = Θ(n logn). (5)

In addition, the probability that a random walk onG will
require more time thanTcover(G) to visit every node ofG
is O(1/n logn) [22]. Therefore, we can virtually ensure that
a random walk visits each network node by requiring that it
makesC1n logn steps for someC1 > 0. To implement this
requirement for thek random walks, we set a counter for each
source packet and increment it after each transmission. Each
time a node receives a packet whose counter is smaller than
C1n logn, it accepts the packet for storage with probability
d/k (whered is chosen at the node according toΩ), and then,
regardless of the acceptance decision, it forwards the packet
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to one of its randomly chosen neighbors. Packets older than
C1n logn are discarded.

Note that the above procedure requires the knowledge ofn
and k at each node. To devise a fully decentralized storage
algorithm, we note that each node can observe (1) how often
it receives a packets and (2) how often it receives a packets
from each source. Naturally, one expects that these numbers
depend on the network connectivity (µ(u) for all u), the size
of the graphn, and the number of different random walksk.
We next describe this dependence and show how it can be
used to obtain local estimates of global parameters.

The following definitions and claims either come from [22],
[23], [25], or can be easily derived based on the results therein.

Definition 3: (Inter-Visit Time)For a random walk on a
graph, theinter-visit timeof nodeu, Tvisit(u), is the amount
of time between any two consecutive visits of the walk tou.

Lemma 4:For a nodeu with node degreeµ(u) in a random
geometric graph, the mean inter-visit time is

E[Tvisit(u)] = µn/µ(u), (6)

whereµ is the mean degree of the graph given by (1).
Lemma 4 impliesn = µ(u)E[Tvisit(u)]/µ. While nodeu

can easily measureE[Tvisit(u)], the mean degreeµ is a piece
of global information and may be hard to obtain. Thus we
make a further approximation and let the estimate ofn by
nodeu be

n̂(u) = E[Tvisit(u)]. (7)

Note that to estimaten, it is enough to consider only one
of the k random walks. Now to estimatek, we also need to
consider thek walks jointly without distinguishing between
packets originating from different sources.

Definition 5: (Inter-Packet Time)For multiple random
walks on a graph, theinter-packet timeof nodeu, Tpacket(u),
is the amount of time between any two consecutive visits by
any of the walks tou.

Lemma 6:For a nodeu with node degreeµ(u) in a random
geometric graph withk simple random walks, the mean inter-
packet time is

E[Tpacket(u)] =
E[Tvisit(u)]

k
=

µn

kµ(u)
, (8)

whereµ is the mean degree of the graph given by (1).
Proof: For a given nodeu, each of thek random walks has
expected inter-visit timeµn

µ(u) . We now view this process from
another perspective: we assume there arek nodes{v1, . . . , vk}
uniformly distributed in the network and an agent from node
u following a simple random walk. Then the expected inter-
visit time for this agent to visit any particularvi is the same
as µn

µ(u) . However, the expected inter-visit time for any two

nodesvi andvj is 1
k

µn
µ(u) , which gives (8). �

Based on Lemmas 4 and 6, that is equations (6) and (8), we
see that each nodeu, can estimatek as

k̂(u) = E[Tvisit(u)]/E[Tpacket(u)]. (9)

We are now ready to state the entire storage algorithm:

Definition 7: (LTCDS Algorithm)
with system parametersC1, C2 > 0 andΩ

Initialization Phase
Each source nodes, s = 1, . . . , k

1) attaches a header to its dataxs, containing its ID and a
life-counterc(xs) set to zero, and then

2) sends its packet to a randomly selected neighbor.
Each nodeu sets its storageyu = 0.
Inference Phase(at all nodesu)

1) Supposexs(u)1 is the first source packet that visitsu,

and denote byt(j)s(u)1
the time whenxs(u)1 makes itsj-th

visit to u. Concurrently,u maintains a record of visiting
times for all packetsxs(u)i “walking” through it. Let

t
(j)
s(u)i

be the time when source packetxs(u)i makes its
j-th visit to u. After xs(u)1 visits u C2 times, where
C2 > 0 is system parameter,u stops this monitoring
and recoding procedure. Denote byk(u) the number of
source packets that have visited at least once until that
time.

2) Let J(s(u)i) be the number of visits of source packet
xs(u)i to u and let

Ts(u)i =
1

J(s(u)i)− 1

J(s(u)i)−1
∑

j=1

(

t
(j+1)
s(u)i

− t
(j)
s(u)i

)

=
1

J(s(u)i)− 1

(

t
(J(s(u)i))
s(u)i

− t
(1)
s(u)i

)

. (10)

Then, the average inter-visit time for nodeu is

T̄visit(u) =
1

k(u)

k(u)
∑

i=1

Ts(u)i . (11)

Let Jmin = min
s(u)i

{t(1)s(u)i
} andJmax = max

s(u)i
{t(J(s(u)i))s(u)i

}.

Then the inter-packet time is

T̄packet(u) =
Jmax − Jmin

∑

s(u)i
J(s(u)i)

, (12)

andu can estimaten andk as

n̂(u) = T̄visit(u) and k̂(u) =
T̄visit(u)

T̄packet(u)
. (13)

3) In this phase, the counterc(xsi ) of each source packet
c(xsi) is incremented by one after each transmission.

Encoding and Storage Phase(at all nodesu)
1) Nodeu drawsdc(u) from {1, . . . , k̂(u)} according to

Ω.
2) Upon reciving packetx, if c(x) < C1n̂ log n̂, nodeu

• putsx into its forward queue and incrementsc(x).
• with probabilitydc(u)/k̂, acceptsx for storage and

updates its storage variabley−u to y+u as

y+u = y−u ⊕ xs, (14)

If c(x) < C1n̂ log n̂, x is removed from circulation.
3) When a node receives a packet before the current round,

it forwards its head-of-line (HOL) packet to a randomly
chosen neighbor.

4) Encoding phase ends and storage phase begins when
each node has seen itsk̂(u) source packets.
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B. Performance Analysis

Parameters(k,Ω) determine the error rate performance and
encoding/decoding complexity of the corresponding Fountain
code. With input (k,Ω), the LTCDS algorithm produces
a distributed Fountain code with parameters(k,Ω′), where
Ω′ 6= Ω. We next computeΩ′ when the input distributionΩ
is the Robust Soliton (4), and discuss the performance and
complexity of the corresponding Fountain code.

Recall that nodeu drawsdc(u) according toΩ, and accepts
a passing source packet with probabilitydc(u)/k. Therefore,
the number of packets thatu accepts, givendc(u), is Bino-
mially distributed with parameterdc(u)/k, and the number of
packets thatu accepts takes valuei with probabilityΩ′(i):

Ω′(i) =

k
∑

dc(u)=1

Pr(d̃c(u) = i|dc(u))Ω(dc(u))

=

k
∑

dc(u)=1

(

k

i

)(

dc(u)

k

)i (

1− dc(u)

k

)k−i

Ω(dc(u)).

A simple way to achieveΩ′ = Ω would be to let eachu
store each distinct passing source packet until it collectsall
k, and then randomly choose exactlydc(u) packets, where
dc(u) is drawn according toΩ, This approach would require
large buffers, which is usually not practical, especially when
k is large. Therefore, we assume that nodes have limited
memory and let them make their decision upon each reception.
Our approach, as the following theorem shows, results in
a Fountain code with comparable efficiency and the same
complexity as the one determined by the Robust or Ideal
Soliton distributions.

Theorem 8:Suppose the LTCDS algorithm uses the Robust
Soliton distribution (4) forΩ. Then, thek source packets can
be recovered from anyK ′ = βK nodes with probability1−δ
for sufficiently largek, whereβ ≥ (1 − e−2)−1 and K =
k + O

(√
k log2(k/δ)

)

(K would be sufficient for recovery
whenΩ′ = Ω). The decoding complexity isO(k log(k/δ)).

Proof: The probability that a node stores no information is

Ω′(0) =

k
∑

d=1

(

1− d

k

)k

Ω(d) <

k
∑

d=1

e−dΩ(d)

<

k
∑

d=1

τ(d)e−d +

k
∑

d=1

ΩI(d)e
−d

=

k
R
−1

∑

d=1

R

kd
e−d +

R ln(Rδ )

k
e−k/R +

k
∑

d=1

ΩI(d)e
−d

<
R

k

k
R
−1

∑

d=1

e−1

d
+

R ln(Rδ )e
−

k
R

k
+

e−1

k
+

k
∑

d=2

e−2

d(d− 1)

< O
(

(ln k)2√
k

)

+ e−2. (15)

Therefore, for sufficiently largek, Ω′(0) < e−2. Consequently,
if we randomly takeK ′ = βK nodes from the network, where

β ≥ (1− e−2)−1, we have

Pr
{

N0 < (1− α)K ′
(

1− Ω′(0)
)}

≤
K ′Ω′(0)

(

1− Ω′(0)
)

α2K ′2
(

1− Ω′(0)
)2 = Θ

(

1

k

)

,

for any α > 0, whereN0 denotes the number of nodes that
store encoded packets. Therefore, we haveK ′(1− e−2) ≥ K
nodes that store encoded packets with a high probability for
sufficiently largen andk.

We next show that the originalk source packets can be
recovered based onK = k+O

(√
k log2(k/δ)

)

stored packets
with probability1− δ, by an argument very similar to the one
in [20]. When a source packet is decoded (e.g., from stored
packets with degree one), we say that all the other encoded
packets that contain this source packet are covered. In the
decoding process, call the set of covered encoded packets that
have not been fully decoded (all the contained source packets
are decoded) as the ripple. The main idea of the proof is to
show the ripple size variation is very similar to a random walk,
and the probability that the ripple size deviates from its mean
in k steps byΘ(

√
k) is small [20].

It can be shown that the expected number of stored packets
of degree one isθ′R for some constantθ′ > 0. Employing a
Chernoff bound argument, we can show that with probability
at least1−δ/3, the initial ripple size due to degree one packets
is at leastθR/2 for a suitable constantθ > 0. Then by the
same argument used in the proof for Theorem 17 in [20],
it can be shown that without contribution ofτ(k/R) in Ω,
the ripple does not disappear forL = k − 1, . . . , R and the
decoding process is successful untilR stored packets remain
undecoded with probability at least1− δ/3.

Further, like Proposition 15 in [20], we can show that using
only the contribution ofτ(k/R) in Ω, the lastR blocks can
be decoded with probability1 − δ/3 when between2R and
R stored packets remain undecoded . This implies that the
decoding process completes successfully with probability1−δ.

Finally, the decoding complexity is the average degreeD
of a stored packet:

D=

k
∑

i=1

i

[

k
∑

d=1

(

k

i

)(

d

k

)i (

1− d

k

)k−i

Ω(d)

]

=

k
∑

d=1

k

[

k
∑

i=1

(

k − 1

i− 1

)(

d

k

)i (

1− d

k

)k−i
]

Ω(d)

=

k
∑

d=1

d

[

k−1
∑

i=0

(

k − 1

i

)(

d

k

)i (

1− d

k

)k−1−i
]

Ω(d)

=

k
∑

d=1

dΩ(d) = O(log k/δ) (16)

where the last equality is due to Theorem 13 in [20]. �

From the calculation ofΩ′(0), with the Robust or Ideal
Soliton distribution, we also have

Ω′(0) >
1

2e2
. (17)
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Remark:One interesting implication of (15) and (17) is that
in order to achieve the same performance as that of original LT
codes, more than(1 − e−2/2)−1K ≈ 1.07K nodes, but less
than (1 − e−2)−1K ≈ 1.15K nodes are required to recover
the originalk source packets.

Another main performance metric is the transmission cost
of the algorithm, which is characterized by the total numberof
transmissions (the total number of steps ofk random walks).

Theorem 9:The total number of transmissions of the
LTCDS algorithm isΘ(kn logn).
Proof: In the interference phase of the LTCDS algorithm, the
total number of transmissions is upper boundedC′n for some
constantC′ > 0. That is because each node needs to receive
the first visit source packet forC2 times, and by Lemma 4,
the mean inter-visit time isΘ(n). In the encoding phase,
in order to guarantee that each source packet visits all the
nodes, the number of steps of each of thek random walks is
required to beΘ(n logn). Since there arek source packets,
the total number of transmissions algorithm isΘ(kn logn). �

Note that the algorithm proposed in [10] has similar order
of total number transmissions. If geometric information is
available, as in [9], the complexity can be reduced, e.g.,
Θ(k

√
n logn) for the algorithm proposed in [9].

IV. RAPTOR CODESBASED ALGORITHMS

Recall that Raptor codes are concatenated codes whose
inner codes are LT and outer codes (pre-codes) are tradi-
tional erasure correcting codes. For the pre-codes will use
is randomized LDPC codes withk inputs andm outputs
(m ≥ k). Assumen andk are known or have been estimated
at every node. To perform the LDPC coding fork sources
in a distributed manner, we again use simple random walks.
Each source node first generatesb copies of its own source
packet, whereb follows some distributionPLDPC defining the
LDPC precode. (See [21] for the design of randomized LDPC
codes for Raptor codes.) Theseb copies are then sent into
the network by random walks. Each of the remainingn − k
nodes in the network chooses to serve as a parity node with
probability (m − k)/(n − k). We refer to the parity nodes
together with the original (systematic) source nodes as the
pre-coding output nodes. All pre-coding output nodes accept
a source packet copy with the same probability; consequently,
theb copies of a given source packet get distributed uniformly
among all pre-coding output nodes. In this way, we havem
pre-coding output nodes, each of which contains an XOR of a
random number of source packets. The detailed description of
the pre-coding algorithm is given below. After obtaining them
pre-coding outputs, to obtain Raptor codes based distributed
storage, we apply the LTCDS algorithm with thesem nodes
as new sources and an appropriateΩ as discussed in [21].

Definition 10: (Pre-coding Algorithm)
1) Each source nodes, s = 1, . . . , k draws a random

numberb(s) according to the distribution of predefined
LDPC codes, generatesb(s) copies of its source packet
xs with its ID and a counterc(xs) with an initial value
of zero in the packet header, and sends each of them to
one of its randomly chosen neighbors.

2) Each of the remainingn − k nodes chooses to serve
as a parity node with probability(m− k)/(n− k).
These parity nodes and the original source nodes are
pre-coding output nodes. Each pre-coding output node
w generate a random numbera(w) according to the
following distribution:

Pr(a(w) = d) =

(

k

d

)(

E[b]

m

)d (

1− E[b]

m

)k−d

,

whereE[b] =
∑

b bPLDPC(b).
3) Each node that has packets in its forward queue before

the current round sends its HOL packet to one of its
randomly chosen neighbors.

4) When a nodeu receives a packetx with c(x) <
C3n log(n), u puts the packet into its forward queue
and increments the counter.

5) Each pre-coding output nodew accepts the firsta(w)
copies of differenta(w) source packet with counters
c(x) ≥ C3n log(n), and updatesw’s pre-coding result
each time as

y+w = y−w ⊕ x. (18)

If a copy of x is accepted, it will not be forwarded
any more, andw will not accept any other copy ofxsj .
When the nodew completesa(w) updates,yw becomes
its pre-coding packet.

V. PERFORMANCEEVALUATION

We evaluate the performance of LTCDS and RCDS algo-
rithms by simulation. Our main performance metric is the
successful decoding probability vs. the query ratio.

Definition 11: The query ratio η is the ratio between the
number of queried nodesh and the number of sourcesk:

η = h/k. (19)

Definition 12: (successful decoding)We say that decoding
is successfulif it results in recovery ofall k source packets.

For a query ratioη, we evaluatePs by simulation as follows:
Let h = ηk denote the number of queried nodes. We select
(uniformly at random)10% of the

(

n
h

)

possible subsets of
size h of the n network nodes, and try to decode thek
source packets from each subset. Then the fraction of times
the decoding is successful measures ourPs.

Fig. 2 shows the decoding performance of LTCDS algorithm
with known n and k. For Ω, we chose the Ideal Soliton
distribution (2). The network is deployed inA = [0, 5]2 with
densityλ = 40

9 , and the system parameterC1 = 3. From the
simulation results, we can see that when the query ratio is
above 2, the successful decoding probabilityPs is about99%.
Whenn increases butk/n andη remain constant,Ps increases
when η ≥ 1.5 and decreases whenη < 1.5. This is because
when there are more nodes, it is more likely that each node
has the Ideal Soliton distribution.

In Fig. 3, we fixη to 1.4 and 1.7 andk/n = 0.1. From the
results, it can be seen that asn increases,Ps increases until it
reaches a plateau, which is the successful decoding probability
of LT codes.
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Fig. 2. Performance of LTCDS with knownn andk for (a) n=200,k=20;
(b) n=500,k=50; and (c)n=1000,k=100.
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Fig. 3. Performance of LTCDS with different knownn and k and fixed
number of queried nodes for two cases: (a)η = 1.4; (b) η = 1.7.

We compare the decoding performance of LTCDS with
known and unknown values ofn andk in Fig. 4 and Fig. 5.
The network is deployed inA = [0, 5]2, and the system

parameter is set asC1 = 10. To guarantee each node to obtain
accurate estimates ofn and k, we setC2 large enough as
C2 = 50. The decoding performance of the LTCDS algorithm
with unknownn and k is a little bit worse than that of the
LTCDS algorithm with knownn andk whenη is small, and
almost the same whenη is large. Such difference between the
two algorithms becomes marginal when the number of nodes
and sources increase as shown in Fig. 5.

An interesting observation in Fig. 2, Fig. 4 and Fig. 5 is that
the probability of successful decoding is almost zero untilwe
query about1.1k nodes. This is due to the nodes that store no
information in the network. As we pointed out in the Remark
after the proof of Theorem 8, for Robust Soliton distribution,
more than1.07k but less than1.15k nodes are needed to query
to achieve the same performance of LT codes. Similar results
also hold for Ideal Soliton distribution.

To investigate how the system parameterC1 affects the
decoding performance of the LTCDS algorithm with known
n and k, we fix η and varyC1. The simulation results are
shown in Fig. 6. WhenC1 ≥ 3, Ps keeps almost like a
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Fig. 4. Performance of LTCDS algorithm with small number of nodes and
sources for (a) knownn=100 andk = 10; (b) known n=200 andk = 20;
(c) unknownn=100 andk = 10; (d) unknownn=200 andk = 20.
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Fig. 5. Performance of LTCDS algorithm with large number of nodes and
sources for (a) knownn=500 andk = 50; (b) knownn=1000 andk = 100;
(c) unknownn=500 andk = 50; (d) unknownn=1000 andk = 100.

constant, which indicates that after3n logn steps, almost all
source packets visit each node at least once.

Furthermore, to investigate how the system parameterC2

affects the decoding performance of the LTCDS algorithm,
we fix η andC1, and varyC2. From Fig. 7, we can see that
whenC2 is small, the performance of the LTCDS algorithm is
very poor. This is due to the inaccurate estimates ofk andn
by each node. WhenC2 is large, for example, whenC2 ≥ 30,
the performance is almost the same.

Fig. 8 and Fig. 9 show the histograms of the estimation
results forn and k, based on equations (13). As expected,
the estimates ofk are more accurate and concentrated than the
estimates ofn.
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