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Abstract—In cognitive radio (CR) networks with multiple-
input multiple-output (MIMO) links, secondary users (SUs)
can exploit “spectrum holes” in the space domain to access
the spectrum allocated to a primary system. However, they
need to suppress the interference caused to primary users
(PUs), as the secondary system should be transparent to the
primary system. In this paper, we study the optimal secondary-
link beamforming pattern that balances between the SU’s
throughput and the interference it causes to PUs. In particular,
we aim to maximize the throughput of the SU, while keeping
the interference temperature at the primary receivers below a
certain threshold.

Unlike traditional MIMO systems, SUs may not have
the luxury of knowing the channel state information (CSI)
on the links to PUs. This presents a key challenge for a
secondary transmitter to steer interference away from pri-
mary receivers. In this paper, we consider three scenarios,
namely when the secondary transmitter has complete, par-
tial, or no knowledge about the channels to the primary
receivers. In particular, when complete CSI is not available,
the interference-temperature constraints are to be satisfied
with high probability, thus resulting in chance constraints that
are typically hard to deal with. Our contribution is fourfol d.
First, by analyzing the distributional characteristics of MIMO
channels, we propose a unified homogeneous quadratically
constrained quadratic program (QCQP) formulation that can
be applied to all three scenarios, in which different levelsof
CSI knowledge give rise to either deterministic or probabilistic
interference-temperature constraints. The homogeneous QCQP
formulation, though non-convex, is amenable to semidefinite
programming (SDP) relaxation methods. Secondly, we show
that the SDP relaxation admits no gap when the number
of primary links is no larger than two. A polynomial-time
algorithm is presented to compute the optimal solution to the
QCQP problem efficiently. Thirdly, we propose a randomized
polynomial-time algorithm for constructing a near-optimal
solution to the QCQP problem when there are more than
two primary links. Finally, we show that when the secondary
transmitter has no CSI on the links to primary receivers, the
optimal solution to the QCQP problem can be found by a
simple matrix eigenvalue-eigenvector computation, whichcan
be done much more efficiently than solving the QCQP directly.

Index Terms—Cognitive radio networks, MIMO, Semidefi-
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I. I NTRODUCTION

Cognitive radio (CR), which allows secondary users (SUs)
to opportunistically utilize the frequency spectrum originally
assigned to licensed primary users (PUs), is a promising
approach to alleviate spectrum scarcity [1]. In CR networks
with single-antenna nodes, SUs can transmit only when it
detects a spectrum hole in either time or frequency domain,
so as to avoid causing harmful interference to PUs [2], [3].
Such schemes, however, only work when the primary system
severely underutilizes the assigned spectrum. Otherwise,
the secondary system would not have adequate chances to
access the wireless channel.

Recent development in multiple-input multiple-output
(MIMO) antenna techniques opens up a new dimension,
namely space, for co-channel users to coexist without
causing severe interference to each other [4]. Indeed, in
CR networks where stations are equipped with multiple
antennae, SUs can transmit at the same time as the PUs
through space-domain signal processing. The nature of CR
networks gives rise to several challenging issues that do not
exist in traditional MIMO systems. First, SUs are solely
responsible for suppressing the interference they cause to
PU receivers, as the primary system should not be aware of
the existence of the secondary system. That is, we cannot
rely on the PUs to do receiver-side interference cancellation.
Secondly, SUs may not have the luxury of knowing the
channel state information (CSI) on the links to PUs, as the
primary system would not deliberately provide their channel
estimation to the secondary system. This imposes difficulty
on transmitter-side pre-interference cancellation at SU trans-
mitters. It is therefore necessary to revisit space-domain
signal processing in the context of MIMO CR networks. In
particular, SUs need to configure their beamforming patterns
in a way that balances between their own throughput and
the interference they cause to PUs.

Multi-antenna CR networks were recently studied in [5]–
[7]. Assuming that CSI on all links is perfectly known
to the SUs, [5] formulates the SU beamforming problem
as a non-convex optimization problem. A semi-distributed
algorithm is proposed to obtain a local optimal solution
to the problem. On the other hand, [7] assumes that the
PU can act as a scheduler for SU transmissions. Under
this idealistic assumption, an opportunistic orthogonaliza-
tion scheme is proposed. In [6], Zhang and Liang studied
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capacity-achieving transmit spatial spectrum for a single
SU, assuming that the SU has full CSI and there is no
interference from PUs to the SU. Insightful solution methods
are proposed to provide better intuition that may not be
obtainable from a numerical optimization perspective. The
issue of imperfect CSI estimation is considered in [8]–
[10] for multiple-input single-output (MISO) CR networks.
Therein, robust optimization problems are formulated to
ensure the service qualities for both SUs and PUs are
satisfactory in the worst case.

In this paper, we study the problem of optimal secondary-
link beamforming. Specifically, we aim to maximize the
throughput of the SU under the constraint that the inter-
ference to PU receivers is below a certain threshold. In
contrast to the previous work [5]–[7], we consider three
practical scenarios: (1) when the SU transmitter knows
both the channel matrices from it to PU receivers and the
beamforming patterns at PU receivers; (2) when the SU
transmitter does not know the beamformer at PU receivers;
(3) when the secondary transmitter knows neither the chan-
nel matrices to PU receivers nor the beamforming patterns
at PU receivers. Note that the deterministic interference-
temperature constraints could be too stringent if the SU
does not have full CSI (which is the case in the second and
third scenarios), as the SU will need to consider the worst-
case channel realization when configuring the beamformer.
Fortunately, many wireless applications can tolerate occa-
sional dips in the service quality. In order to have a more
efficient utilization of the spectrum, we can take advantage
of this opportunity and replace the deterministic constraints
by probabilistic interference constraints (also referredto
as chance constraints). Chance constraints, however, are
typically tougher to deal with than deterministic constraints.
The contribution of this paper is fourfold:

• We propose a unified homogeneous quadratically con-
strained quadratic program (QCQP) formulation that
can be applied to all three scenarios mentioned above.
In particular, the homogeneous QCQP formulation
can accommodate both deterministic and probabilistic
interference-temperature constraints.

• The QCQP formulation, though non-convex, is
amenable to semidefinite programming (SDP) relax-
ation methods. We show that the SDP relaxation admits
no gap with the true optimal solution when the number
of PUs is no larger than two. A polynomial-time
algorithm is presented to compute the optimal solution
efficiently.

• When there are more than two PUs, we propose a ran-
domized polynomial-time algorithm that can produce a
provably near-optimal solution. Numerical results show
that the solution produced by our algorithm almost
achieves the optimal value.

• In the third scenario where the SU transmitter knows
neither the channel matrices nor the beamformer at
PU receivers, we show that the optimal solution can
be obtained very efficiently through a simple matrix

eigenvalue-eigenvector computation. That is, there is
no need to solve the QCQP problem in this case.

We should emphasize that the incomplete CSI here is not
to be confused with that in [8]–[10], where it is assumed that
the SU knows the CSI on all links, except that there may be
uncertainty in the channel estimation. Robust optimization
techniques are employed in these papers to deal with the
worst-case channel realization. The case where only channel
statistics is known to the SU transmitter is also studied in
[10]. This is similar to a special case of the third scenario
considered in our paper, when the receivers have only one
antenna.

The rest of this paper is organized as follows. The system
model is described in Section II. In Section III, we formulate
the SU beamforming problem as a series of homogeneous
QCQP problems for different scenarios. The SDP relaxations
of these homogeneous QCQP problems are then introduced
in Section IV. In Section V, a polynomial-time algorithm for
finding an optimal solution to the QCQP problem when the
number of primary users is no larger than two is presented.
In Section VI, we propose a randomized polynomial-time
algorithm to find a near-optimal beamforming solution when
there are more than two PUs. In Section VII, the perfor-
mance of the proposed schemes is evaluated via simulations.
Finally, the paper is concluded in Section VIII.

II. SYSTEM MODEL

A. System Setup

In this paper, we consider a CR network in which a
secondary user intends to share the spectrum with a primary
system consisting ofK primary links. We shall discuss
the possibility of extending the proposed approach to a
multiple-secondary-link scenario in Section VIII. In the
sequel, we use the subscriptS to denote the secondary
link and the subscriptk to denote thekth primary link.
Let MS (or NS) and Mk (or Nk) denote the number of
transmit (or receive) antennae of the secondary and primary
links, respectively. We useHS,S ∈ CNS×MS to denote
the channel matrix from the secondary transmitter to the
secondary receiver, andHk,S ∈ C

Nk×MS , HS,k ∈ C
NS×Mk

and Hk,j ∈ CNk×Mj to denote the channel matrices
from the secondary transmitter to thekth primary receiver,
from thekth primary transmitter to the secondary receiver,
and from thejth primary transmitter to thekth primary
receiver, respectively. We assume a Rayleigh fading and rich
scattering environment, so that the entries of the channel
matrices are independently and identically distributed (i.i.d.)
complex Gaussian random variables with zero mean and unit
variance. As pointed out in [11], [12], in an interference-
limited environment, each active link should only transmit
one data stream at a time to avoid excessive interference
to other links. In this case, we use scalarsxS and xk to
denote the transmitted signals by the secondary transmitter
and thekth primary transmitter, respectively. Without loss
of generality, suppose thatE[|xS |2] = 1 andE[|xk|2] = 1.
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Let tS and rS denote the beamforming vectors at the
secondary transmitter and receiver, respectively. Likewise,
let tk andrk be the beamforming vectors at thekth primary
transmitter and receiver. In particular, we have‖tS‖22 = PS

and‖tk‖22 = Pk, wherePS andPk are the transmit power
of the secondary and thekth primary links, respectively.
Without loss of generality, we normalize the receive beam-
forming vectors so that‖rS‖22 = 1 and ‖rk‖22 = 1. Then,
the received signal at the secondary receiver after receive
beamforming is

yS =
√
αS,Sr

H
S HS,StSxS+

K∑

k=1

√
αS,kr

H
S HS,ktkxk+rHS nS ,

where αS,S and αS,k denote the path losses from the
secondary transmitter to the secondary receiver and from the
kth primary transmitter to the secondary receiver, respec-
tively, andnS ∼ CN (0, N0I) denotes a circular complex
additive Gaussian noise vector at the secondary receiver. As
such, the signal to interference and noise ratio (SINR) on
the secondary link is given by

γS =
αS,S

∣∣rHS HS,StS
∣∣2

∑K
k=1 αS,k

∣∣rHS HS,ktk
∣∣2 + ‖rS‖22N0

=
αS,S

∣∣rHS HS,StS
∣∣2

∑K
k=1 αS,k

∣∣rHS HS,ktk
∣∣2 +N0

. (1)

The secondary link’s transmission causes an interfer-
ence signal

√
αk,Sr

H
k Hk,StSxS at the output of thekth

primary receiver, resulting in an interference power of
αk,S

∣∣rHk Hk,StS
∣∣2, whereαk,S is the path loss from the

secondary transmitter to thekth primary receiver.
Before leaving this subsection, we emphasize that channel

matrices on different links are independent. Furthermore,the
beamforming vectorstk and rk are solely determined by
the channels between the nodes in the primary system, as
the secondary system is transparent to the primary system.
Therefore,tk and rk are independent ofHk,S , HS,S, and
HS,k.

B. Objective and Assumptions

In this paper, we aim to find for the secondary link the
optimal beamforming vectorstS andrS so that the SINR on
the secondary link is maximized, while the interference to
primary link k is below a tolerable thresholdǫk. Mathemat-
ically, this can be formulated as the following optimization
problem:

max
tS ,rS

γS (2a)

s.t. αk,S

∣∣rHk Hk,StS
∣∣2 ≤ ǫk ∀k = 1, . . . ,K,(2b)

‖tS‖22 ≤ PS,max, (2c)

wherePS,max is the maximum transmission power of the
secondary link. Throughout this paper, we assume that
the path lossesαS,S, αS,k, αk,S , and αk,j do not vary
significantly within the time period of interest, and hence

are known to all stations. It is also reasonable to assume
that the secondary user knows its own channelHS,S at
both transmitter and receiver sides. Moreover, the secondary
receiver can estimateHS,ktk for all k by overhearing the
transmission of primary transmitters.

In practice, however, the secondary transmitter may not
know the CSI on the links between primary receivers,
because primary receivers would not purposely provide CSI
to the secondary system. In this paper, we are interested in
the following three different scenarios:
Scenario 1: The secondary transmitter has perfect knowl-
edge of the vectorHH

k,Srk.
This scenario corresponds to a time division duplex

(TDD) system in which channels are reciprocal and the
primary receivers use the same beamforming vectors for
both reception and transmission. In this case, the secondary
transmitter can estimateHH

k,Srk by overhearing the trans-
mission of primary receivers.
Scenario 2: The secondary transmitter knowsHk,S but not
rk.

This scenario corresponds to a TDD system in which
primary receivers do not use the beamforming vectorrk
for transmission.
Scenario 3: The secondary transmitter has no knowledge
aboutHk,S andrk.

This scenario corresponds to the case where the secondary
link has no way to estimate the channel from the primary
receiver.

Note that in both Scenarios 2 and 3, constraints (2b) are
no longer well defined. Indeed, for any giventS , the value of
the left-hand-side is uncertain to the secondary transmitter,
as the realizations ofrk and/orHk,S are unknown. There-
fore, a revision is necessary. One way is to guarantee that the
constraints are always satisfied regardless of the realizations
of rk andHk,S . Then, (2b) can be replaced by

max αk,S

∣∣rHk Hk,StS
∣∣2 ≤ ǫk ∀k = 1, . . . ,K, (3)

where the maximization is taken overrk for Scenario 2, and
over rk andHk,S for Scenario 3.

Besides the worst-case guarantee, in practical applica-
tions, we may allow the interference to exceed a certain
thresholdǫk with a small outage probabilityδk. In this case,
(2b) can be replaced by

Pr
{
αk,S

∣∣rHk Hk,StS
∣∣2 ≤ ǫk

}
≥ 1−δk ∀k = 1, . . . ,K,

(4)
where the probability is taken overrk for Scenario 2, and
overrk andHk,S for Scenario 3. Note that (4) is equivalent
to (3) whenδk = 0 for all k.

C. Distribution ofrk

In this subsection, we discuss the probability distribution
of the beamforming vectorrk at PU receivers. The results
will be useful later when we address the chance constraints
in (4).
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As mentioned,rk is solely determined by the channels
between primary nodes. Consider the matrix

Ĥ =
[√

αk,1Hk,1t1, . . . ,
√
αk,kHk,ktk,

. . . ,
√
αk,KHk,KtK

]

:=
[
ĥ1, . . . , ĥk, . . . , ĥK

]
,

whereαk,j is the path loss from thejth PU transmitter to
the kth PU receiver, and̂h1, . . . , ĥK are the columns of
Ĥ, which are independent of each other. LetĤ(−k) be the
Nk × (K − 1) matrix obtained by deleting thekth column
of Ĥ. Then, in general, the vectorrk takes the form

rk = βkWkĥk, (5)

whereβk = 1
||Wkĥk||2

is a normalization factor that ensures

‖rk‖22 = 1, andWk is a random Hermitian matrix that is
independent of̂hk. In particular, we haveWk = I for the
matched-filter (MF) receiver,

Wk = I− Ĥ(−k)(Ĥ
H
(−k)Ĥ(−k))

−1ĤH
(−k) (6)

for the zero-forcing (ZF) receiver, and

Wk = (Ĥ(−k)Ĥ
H
(−k) +N0I)

−1 (7)

for the minimum-mean-squared-error (MMSE) receiver. Be-
fore proceeding, let us state a definition and introduce two
assumptions.

Definition 1. A random vectorx is called a normalized
complex Gaussian vector ifx = z

‖z‖2
, wherez ∼ CN (0, I).

In particular, ‖x‖2 = 1. A normalized complex Gaussian
vector is an isotropically distributed unit vector1.

Assumption 1. The kth column of Ĥ, i.e., ĥk, has the
same distribution asαx, wherex is a normalized complex
Gaussian vector, andα is a scaling factor.

Assumption 1 is valid for most practical MIMO systems.
Consider the singular value decomposition (SVD) ofHk,k =
UΛVH , whereU andV are unitary matrices containing
the left and right singular vectors, respectively, andΛ is a
diagonal matrix containing the singular values. It is known
that the columns ofU and V have the same distribution
as a normalized complex Gaussian vector [13]. In the case
of single-user precoding, it is optimal to settk to be
proportional tov1, the right singular vector corresponding
to the maximum singular valueλ1 [14]. As a result,̂hk is
proportional toλ1u1, whereu1 is the left singular vector
corresponding to the maximum singular value. Hence, As-
sumption 1 is valid. It can also be shown that the assumption
is valid when linear multiuser precoding is deployed.

Assumption 2. The entries of̂H(−k) are independent com-
plex Gaussian random variables.

Assumption 2 is in general valid. Indeed, it is obvious that

1A unit vector is said to be isotropically distributed if it isequally likely
to point in any direction in the complex space. In other words, the vector
is uniformly distributed on a complex unit sphere.

the columns ofĤ(−k) are independent, as they are related
to channel matrices on different links. Moreover, for a given
tj , we haveĥj ∼ CN (0, αk,j ||tj ||22I), thus implying that
ĥj has independent entries. Being the transmit precoding
vector of thejth primary link, tj is typically a function of
Hj,j and is independent ofHk,j . This justifies the validity
of Assumption 2.

By Assumption 2, we can writêH(−k) asĤ(−k) = H̃A,
where

A = diag(
√
αk,1‖t1‖2, . . . ,√αk,k−1‖tk−1‖2,√

αk,k+1‖tk+1‖2, . . . ,√αk,K‖tK‖2),

andH̃ is anNk×(K−1) matrix with independent standard
complex Gaussian entries. Let̃H = ŨΛ̃ṼH be the SVD of
H̃. It is known thatŨ and Ṽ are isotropically distributed
unitary matrices2, and thatŨ, Ṽ, Λ̃ are independent [13].

Proposition 1. rk has the same distribution as a normalized
complex Gaussian vector as long as the random Hermitian
matrix Wk is a unitarily invariant matrix3

Proof: Being a unitarily invariant matrix,Wk can be
decomposed asWk = SDSH , whereS is an isotropically
distributed unitary matrix independent of the diagonal matrix
D [15]. Thus,rk = SDSH ĥk

||SDSH ĥk||22
. Since the distribution of̂hk

is rotationally invariant and̂hk is independent ofS, SH ĥk

has the same distribution aŝhk. It follows that rk has the
same distribution as

SDĥk

||SDĥk||22
= S

Dĥk

||Dĥk||22
.

Upon conditioning on̂hk andD, Dĥk

||Dĥk||22
is a deterministic

unit vector. Since multiplying any deterministic unit vector
by an isotropically distributed unitary matrix results in an
isotropically distributed unit vector [15], the unit vector rk
is isotropically distributed for the given̂hk andD. Since
this holds for any realizations of̂hk andD, it follows that
rk is isotropically distributed, and therefore has the same
distribution as a normalized complex Gaussian vector.

Corollary 1. rk has the same distribution as a normalized
complex Gaussian Gaussian vector when a MF, ZF, or
MMSE receiver is deployed.

Proof: To prove Corollary 1, all we need is to show that
Wk is unitarily invariant for MF, ZF, and MMSE receivers.
As this is trivial in the MF case, whereWk = I, we will
focus on the cases with ZF and MMSE receivers in the
following.

For ZF receivers, substitutinĝH(−k) = H̃A to (6),
we haveWk = I − ŨΛ̃(Λ̃HΛ̃)−1Λ̃HŨH = Ũ(I −
Λ̃(Λ̃HΛ̃)−1Λ̃H)ŨH . SinceŨ is an isotropically distributed

2A unitary matrix is said to be isotropically distributed if its probability
density is unchanged when premultiplied by a deterministicunitary matrix.

3A random Hermitian matrixW is called unitarily invariant if the joint
distribution of its entries equals that ofGWGH for any unitary matrix
G independent ofW.
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unitary matrix, it has the same distribution asGŨ for any
unitary matrixG that is independent of̃U. Therefore,Wk

is unitarily invariant.
In the case of MMSE, (7) can be written asWk =

Ũ(T +N0I)
−1ŨH , whereT = Λ̃ṼHA2ṼΛ̃ is a Hermi-

tian matrix. SinceŨ is an isotropically distributed unitary
matrix, Wk is unitarily invariant.

III. O PTIMAL BEAMFORMING AS HOMOGENEOUS

QCQP

In this section, we show that the optimal SU beamforming
problems that arise in the three scenarios discussed in
Section II can all be formulated as quadratically constrained
quadratic programming (QCQP) problems. To begin, let us
simplify Problem (2) by exploiting the properties of its
optimal receive beamforming solutionr∗S . Observe that the
variablerS appears only in the objective function of Problem
(2). Thus, for any giventS , the optimalrS that maximizes
γS is simply an MMSE receiver [16] given by

r∗S(tS) = βSΦ
−1HS,StS , (8)

where Φ =
∑K

k=1 αS,kHS,ktkt
H
k HH

S,k + N0I, and
βS = 1

||Φ−1HS,StS ||2 is a normalization factor that ensures
||r∗S(tS)||22 = 1.

Upon substitutingr∗S(tS) into γS (see (1)), we obtain
γS = αS,St

H
S HH

S,SΦ
−1HS,StS = tHS AtS , whereA =

αS,SH
H
S,SΦ

−1HS,S. In particular, we can eliminate the
variable rS from Problem (2) and replace the objective
function with the quadratic formtHS AtS .

A. Homogeneous QCQP Formulation in Scenario 1

Now, recall that the secondary transmitter has perfect
knowledge ofHH

k,Srk in Scenario 1. With the optimalrS
given in (8), Problem (2) becomes

max
tS

tHS AtS (9a)

s.t. tHS Q1
ktS ≤ 1 ∀k = 1, . . . ,K, (9b)

tHS tS ≤ PS,max, (9c)

whereQ1
k =

αk,S

ǫk
HH

k,Srkr
H
k Hk,S are Hermitian positive

semidefinite matrices. Problem (9) is a homogeneous QCQP,
where both the objective function and inequality constraints
are quadratic without linear terms.

In subsequent subsections, we will show that similar ho-
mogeneous QCQP problems can be formulated for Scenarios
2 and 3, withQ1

k in (9b) replaced by some suitable matrices
Q2

k andQ3
k, respectively.

B. Homogeneous QCQP Formulation in Scenario 2

In Scenario 2, the realization ofrk is not known to the
secondary transmitter. In order to have a more efficient

utilization of the spectrum, we can exploit the distribution
of rk and consider the probabilistic interference constraints

Pr
rk

{∣∣rHk Hk,StS
∣∣2 ≤ ǫk

αk,S

}
≥ 1− δk ∀k = 1, . . . ,K.

(10)
To tackle the constraints in (10), we need the following
lemma:

Lemma1. Let r ∈ Cn be a normalized complex Gaussian
vector, i.e.,r = z

‖z‖2
, wherez ∼ CN (0, I) is a standard

complex Gaussian vector. Letu ∈ Cn be an arbitrary vector,
and letζ > 0, δ ∈ (0, 1) be arbitrary scalars. Then, we have

Pr
r

{
|rHu|2 ≤ ζ

}
≥ 1− δ ⇐⇒ ‖u‖22 ≤

ζ

1− δ
1

n−1

.

Proof: Since the distribution ofr is rotationally invari-
ant, we may assume without loss of generality thatu =[
‖u‖2, 0, . . . , 0

]T
. Then, we have

Pr
r

{∣∣rHu
∣∣2 ≤ ζ

}
= Pr

{
‖u‖22 ·

∣∣[r]1
∣∣2 ≤ ζ

}

= Pr

{
(‖u‖22 − ζ)

∣∣[z]1
∣∣2 ≤ ζ

n∑

i=2

∣∣[z]i
∣∣2
}
,

where [·]i denotes theith entry of a vector. Note that∑n
i=2

∣∣[z]i
∣∣2 has the same distribution as12χ

2
2(n−1), where

χ2
d is the standard real chi-square random variable withd

degrees of freedom. Moreover, it is independent of
∣∣[z]1

∣∣2,
which has the same distribution as12χ

2
2. Hence, we have

Pr
r

{∣∣rHu
∣∣2 ≤ ζ

}
= Pr

{
(‖u‖22 − ζ)χ2

2 ≤ ζχ2
2(n−1)

}

= Pr

{
χ2
2(n−1)/2(n− 1)

χ2
2/2

≥ ‖u‖22 − ζ

ζ(n− 1)

}
.

Now, let

Iα(a, b) =

a+b−1∑

j=a

(a+ b− 1)!

j!(a+ b− 1− j)!
αj(1− α)a+b−1−j

(11)
be the regularized incomplete beta function. It is known that
the random variable

F2(n−1),2 =
χ2
2(n−1)/2(n− 1)

χ2
2/2

follows the so-calledF -distribution with (2(n − 1), 2) de-
grees of freedom, whose cumulative distribution function
(CDF) is given byPr{F2(n−1),2 ≤ x} = I 2(n−1)x

2(n−1)x+2

(n −
1, 1). Upon working out the summation in (11), we obtain

Pr{F2(n−1),2 ≤ x} =

(
(n− 1)x

(n− 1)x+ 1

)n−1

.
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Thus, we conclude that

Pr
r

{∣∣rHu
∣∣2 ≤ ζ

}
≥ 1− δ

⇐⇒ Pr

{
F2(n−1),2 ≤ ‖u‖22 − ζ

ζ(n− 1)

}
≤ δ

⇐⇒
(‖u‖22/ζ − 1

‖u‖22/ζ

)n−1

≤ δ

⇐⇒ ‖u‖22 ≤
ζ

1− δ
1

n−1

,

which completes the proof. �

By Lemma 1, we can rewrite the chance constraints (10)
as

‖Hk,StS‖22 ≤ 1

1− δ
1

Nk−1

k

ǫk
αk,S

∀k = 1, . . . ,K,

which of course are equivalent to

tHS Q2
ktS ≤ 1 ∀k = 1, . . . ,K, (12)

where

Q2
k =

1− δ
1/(Nk−1)
k

ǫk
αk,SH

H
k,SHk,S .

In particular, the optimal beamforming vectortS in Scenario
2 can be found by solving the QCQP problem (9a), (12) and
(9c).

As mentioned earlier, whenδk = 0, the chance constraints
(10) are equivalent to the worst-case constraints (3). In this
case, we haveQ2

k =
αk,S

ǫk
HH

k,SHk,S .

C. Homogeneous QCQP Formulation and Closed-Form So-
lution in Scenario 3

1) Homogeneous QCQP: In Scenario 3, bothrk and
Hk,S are unknown to the secondary transmitter. Similar to
Scenario 2, we consider the following probabilistic interfer-
ence constraints:

Pr
rk,Hk,S

{∣∣rHk Hk,StS
∣∣2 ≤ ǫk

αk,S

}
≥ 1−δk ∀k = 1, . . . ,K.

(13)
Since rk and Hk,S are independent, upon conditioning
on rk, we see thatrHk Hk,StS is a complex Gaussian
random variable with mean 0 and variance‖tS‖22. Note
that the conditional distribution ofrHk Hk,StS is inde-
pendent ofrk. It follows that unconditionally, we have
rHk Hk,StS ∼ CN (0, ‖tS‖22). In particular, the random
variable |rHk Hk,StS |2 follows an exponential distribution
with parameter 1

‖tS‖2
2
. Note that this result holds as long

asrk is a unit-length vector, regardless of its distribution.
Since

Pr
rk,Hk,S

{∣∣rHk Hk,StS
∣∣2 ≤ ǫk

αk,S

}
= 1−exp

(
− ǫk
αk,S‖tS‖22

)
,

it follows that the chance constraints in (13) can be written
as

‖tS‖22 ≤
ǫk

αk,S log 1
δk

∀k = 1, . . . ,K, (14)

or equivalently,

tHS Q3
ktS ≤ 1 ∀k = 1, . . . ,K, (15)

whereQ3
k =

αk,S

ǫk
log 1

δk
I. Thus, the optimal beamforming

vectortS in Scenario 3 can be found by solving the QCQP
problem (9a), (15) and (9c).

We would like to emphasize that if the worst-case in-
terference temperature constraints (3) are to be satisfied in
Scenario 3, i.e.,δk = 0, then the only feasible solution is
tS = 0. That is, the secondary transmitter can never transmit
under the overly stringent constraints. On the other hand, by
allowing a small outage probabilityδk, the secondary link
can transmit on the same spectrum of the primary system.

2) Closed-Form Solution: Here, we show that the op-
timal tS in Scenario 3 can be found very efficiently by a
simple eigenvalue-eigenvector computation. Indeed, observe
that the constraints (14) and (9c) can be combined to yield
the single constraint

‖tS‖22 ≤ λ ≡ min

{
ǫ1

α1,S log 1
δ1

, . . . ,
ǫK

αK,S log 1
δK

, PS,max

}
.

Thus, the optimal beamforming problem in Scenario 3,
which is given by

max
tS

tHS AtS

s.t. ‖tS‖22 ≤ λ,
(16)

is reduced to the problem of finding the largest eigenvalue of
A and its associated eigenvector. Specifically, letv be the
eigenvector ofA corresponding to the largest eigenvalue.
Then, the optimal solution to (16) is simplyt∗S =

√
λv.

Note that there is no need to solve any QCQP in this case.

IV. SDP RELAXATION

We have shown in the last section that the optimal beam-
forming solution can be efficiently obtained by a simple
eigenvalue-eigenvector computation in Scenario 3. However,
to obtain the optimal solutions for Scenarios 1 and 2,
homogeneous QCQP problems of the following form have
to be solved:

max
tS

tHS AtS (17a)

s.t. tHS QktS ≤ 1 ∀k = 1, . . . ,K, (17b)

tHS tS ≤ PS,max. (17c)

Here, Qk is equal toQ1
k and Q2

k in Scenarios 1 and
2, respectively. Unfortunately, since Problem (17) involves
maximizinga convex function over an intersection ofK+1
ellipsoids, it is NP-hard in general [17]. In this section, we
show how Problem (17) can be tackled using semidefinite
programming (SDP) relaxation methods.

To begin, observe thattHS QtS = tr(QX) for any matrix
Q, where X = tSt

H
S is a rank one Hermitian positive

semidefinite matrix. Thus, by relaxing the rank constraint
rank(X) = 1, we obtain the following SDP relaxation of



7

Problem (17):

max
X�0

tr(AX) (18a)

s.t. tr(QkX) ≤ 1 ∀k = 1, . . . ,K, (18b)

tr(X) ≤ PS,max. (18c)

The dual of (18) is given by

min
y1,...,yK ,yK+1

K∑

k=1

yk + PS,maxyK+1, (19a)

s.t.
K∑

k=1

ykQk + yK+1I−A � 0, (19b)

yk ≥ 0 ∀k = 1, . . . ,K + 1.(19c)

It is known that SDP problems are convex and can be solved
in polynomial time using standard interior-point methods
[18]. Moreover, if we can find a rank-one optimal solution
to (18), then we can extract from it an optimal solution
to the original QCQP problem (17). In this case, there
is no gap between the optimal value of (17) and that of
(18), and Problems (17) and (18) are equivalent. Of course,
the SDP relaxation (18) is in general not equivalent to
the QCQP problem (17), as we have discarded the rank
constraint rank(X) = 1. In the next two sections, we
will discuss how to recover a rank-one solution from an
optimal solution to (18). Before proceeding, however, let us
introduce the following lemma, which will be useful for our
later discussions.

Lemma2. Both (18) and its dual (19) satisfy the Slater
condition, i.e., they are strictly feasible.

We omit the proof here due to page limit.

Remark 1. Since both (18) and (19) are strictly fea-
sible, a pair of primal and dual feasible solutions
(X∗; (y∗1 , . . . , y

∗
K+1)) to (18) and (19) is optimal if and only

if the following complementary conditions hold:

tr

(
X∗
(

K∑

k=1

y∗kQk + yK+1I−A

))
= 0, (20a)

y∗k (tr(QkX
∗)− 1) = 0 ∀k = 1, . . . ,K,(20b)

y∗K+1 (tr(X
∗)− PS,max) = 0. (20c)

V. OPTIMAL RANK -ONE SOLUTION WHEN K ≤ 2

As it turns out, when there are no more than two primary
links (i.e., whenK ≤ 2), there is no gap between the
optimal value of the SDP relaxation (18) and that of the
original QCQP problem (17). Moreover, a rank-one optimal
solution to (18), and hence an optimal solution to (17),
can be found in polynomial time. Specifically, we have
the following proposition, which follows directly from the
results of Huang et al. [19], [20]:

Proposition 2. The homogeneous QCQP problem(17) can
be solved exactly in polynomial time when the number of
primary links K is at most 2. In particular, an optimal

solution to (17) can be constructed from an optimal solution
of (18) in polynomial time.

Proposition 2 establishes the existence of polynomial-time
algorithms for constructing optimal solutions to (17) when
K ≤ 2. In subsections V-A and V-B, we describe two such
algorithms—one for the case whereK = 1, and the other
for the case whereK = 2. Both of them are based on the
following decomposition theorem of Huang et al. [19], [20]:

Theorem 1. Suppose thatZ is a Hermitian positive semidef-
inite matrix of rank R, andA andB are two given Hermitian
matrices. Then, there is a rank-one decomposition ofZ,
namely,Z =

∑R
r=1 zrz

H
r , such thatzHr Azr = tr(AZ)

R and
zHr Bzr = tr(BZ)

R for all r = 1, 2, . . . , R. Moreover, such a
decomposition can be found in polynomial time.

We refer the interested readers to [20] for the proof. To be
self-contained, the algorithm for computing the decomposi-
tion guaranteed by Theorem 1, which runs in polynomial
time, is given in Algorithm 1.

A. Optimal Rank-One Solution whenK = 1

WhenK = 1, there are two quadratic constraints in (17),
namely,tHS Q1tS ≤ 1 and tHS tS ≤ PS,max. Let X∗ be an
arbitrary optimal solution to (18), which can be obtained in
polynomial time by standard interior-point algorithms. We
now show how to construct a rank-one solution to (18) from
X∗. By Theorem 1, we can find a rank-one decomposition
X∗ =

∑R
r=1 trt

H
r such that

tHr Q1tr =
tr(Q1X

∗)

R
and tHr tr =

tr(X∗)

R
∀r = 1, . . . , R, (21)

whereR is the rank ofX∗. Now, choose an arbitrarytr,
say t1, and lett̂ =

√
Rt1. From (21) and the fact thatX∗

is a feasible for (18), we have

t̂HQ1t̂ = tr(Q1t̂t̂
H) = tr(Q1X

∗) ≤ 1

and t̂H t̂ = tr(̂tt̂H) = tr(X∗) ≤ PS,max. (22)

Thus, we conclude from (22) thatt̂t̂H is a rank-one feasible
solution to (18).

Now, from the complementary conditions in (20), we have

tr (X∗ (y∗1Q1 + y∗2I−A))

=

R∑

r=1

tr
(
trt

H
r (y∗1Q1 + y∗2I−A)

)
= 0.

Since y∗1Q1 + y∗2I − A � 0 by (19b), we have
tr
(
trt

H
r (y∗1Q1 + y∗2I−A)

)
= 0 for r = 1, . . . , R.

This implies that tr
(̂
t̂tH (y∗1Q1 + y∗2I−A)

)
= 0. In

a similar fashion, sincetr(Q1 t̂̂t
H) = tr(Q1X

∗) and
tr(̂tt̂H) = tr(X∗), we have y∗1

(
tr(Q1t̂t̂

H)− 1
)

= 0
and y∗2

(
tr(̂tt̂H)− PS,max

)
= 0. This, together with the

feasibility conditions in (22), leads to the conclusion that
the rank-one matrix̂tt̂H is an optimal solution to (18), and
t̂ is an optimal solution to (17).
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Algorithm 1 Algorithm for computing the decomposition
guaranteed by Theorem 1
Input: Hermitian matricesA andB, and Hermitian positive

semidefinite matrixZ with R = rank(Z).
Output: Z =

∑R
r=1 zrz

H
r , a rank-one decomposition of

Z such thatzHr Azr = tr(AZ)
R , zHr Bzr = tr(BZ)

R , for
r = 1, . . . , R.

1: Compute an arbitrary rank-one decomposition
p1,p2, . . . ,pR such thatZ =

∑R
r=1 prp

H
r using,

for example, Cholesky factorization.
2: Let r = 1.
3: repeat
4: if (pH

r Apr − tr(AZ)
R )(pH

j Apj − tr(AZ)
R ) ≥ 0 for all

j = r + 1, . . . , R then
5: qr := pr.
6: else
7: Let l ∈ r + 1, . . . , R be such that(pH

r Apr −
tr(AZ)

R )(pH
l Apl − tr(AZ)

R ) < 0.
8: Determineγ such that(pr+γpl)

HA(pr+γpl) =
tr(AZ)

R (1 + γ2).
9: qr := pr+γpl√

1+γ2
, and setpl :=

−γpr+pl√
1+γ2

10: end if
11: if r = R − 1 then
12: qR := pl.
13: end if
14: r := r + 1.
15: until r = R − 1 {Comment: We have now found a

decompositionZ =
∑R

r=1 qrq
H
r such thatqH

r Aqr =
tr(AZ)

R .}
16: Let r = 1.
17: repeat
18: if (qH

r Bqr − tr(BZ)
R )(qH

j Bqj − tr(BZ)
R ) ≥ 0 for all

j = r + 1, . . . , R then
19: zr := qr.
20: else
21: Let l ∈ r + 1, . . . , R be such that(qH

r Aqr −
tr(BZ)

R )(qH
l Bql − tr(BZ)

R ) < 0.
22: Compute the argumentsα1 := arg(qH

r Aql) and
α2 := arg(qH

r Bql) and the modulusγ0 =
|qH

r Bql|, and determineγ such that
(
qH
r Bqr −

tr(BZ)
R

)
γ2+2γ0 sin(α2−α1)γ+qH

l Bql− tr(BZ)
R =

0.
23: Setw = γei(α1+π/2).
24: zr := wqr+ql√

1+γ2
, and setql :=

−qr+w̄ql√
1+γ2

25: end if
26: if r = R − 1 then
27: zR := ql.
28: end if
29: until r = R− 1

Note that t̂ can be computed in polynomial time, as
both X∗ and the decompositionX∗ =

∑R
r=1 trt

H
r can be

computed in polynomial time.

B. Optimal Rank-One Solution whenK = 2

When K = 2, there are three quadratic constraints in
(17), namely,tHS Q1tS ≤ 1, tHS Q2tS ≤ 1 and tHS tS ≤
PS,max. In the following, we show how to construct a rank-
one solution from an arbitrary optimal solutionX∗ to (18)
in two different cases.

1) At least one constraint in (18) is non-binding
at optimality: Without loss of generality, suppose that
tr(Q1X

∗) < 1 is the non-binding constraint, while
tr(Q2X

∗) ≤ 1 andtr(X∗) ≤ PS,max can be either binding
or non-binding. Due to the complementary conditions (20b),
we must havey∗1 = 0. Now, construct, via Theorem 1,
a rank-one decompositionX∗ =

∑R
r=1 trt

H
r such that

tHr Q2tr = tr(Q2X
∗)

R and tHr tr = tr(X∗)
R for r = 1, . . . , R.

Since tr(Q1X
∗) =

∑R
r=1 t

H
r Q1tr, there must exist an

r ∈ {1, . . . , R} such thattHr Q1tr ≤ tr(Q1X
∗)

R . Without
loss of generality, assume thatr = 1 and let t̂ =

√
Rt1.

By the same argument as in the preceding subsection, the
following feasible conditions and complementary conditions
hold:

tr(Q2t̂t̂
H) ≤ 1, tr(̂tt̂H) ≤ PS,max,

tr
(
t̂̂tH (y∗1Q1 + y∗2Q2 + y∗3I−A)

)
= 0,

y∗2
(
tr(Q2 t̂̂t

H)− 1
)
= 0, y∗3

(
tr(̂tt̂H)− PS,max

)
= 0.

Moreover, we havetr(Q1 t̂̂t
H) = R · tr(Q1t1t

H
1 ) ≤

tr(Q1X
∗) ≤ 1 andy∗1

(
tr(Q1t̂t̂

H)− 1
)
= 0 sincey∗1 = 0.

Hence,̂tt̂H is an optimal rank-one solution to (18) andt̂ is
an optimal solution to (17).

2) All constraints in (18) are binding at optimality:
When all constraints are binding, we havetr(Q1X

∗) =
tr(Q2X

∗) = 1 and tr(X∗) = PS,max. Then, we have
tr((Q1 − Q2)X

∗) = tr((Q2 − 1
PS,max

I)X∗) = 0. In
this case, we construct, again via Theorem 1, a rank-one
decompositionX∗ =

∑R
r=1 trt

H
r such that

tHr (Q1 −Q2) tr =
tr ((Q1 −Q2)X

∗)

R
= 0 (23)

and

tHr

(
Q2 −

1

PS,max
I

)
tr =

tr
((

Q2 − 1
PS,max

I
)
X∗
)

R
= 0

(24)
for r = 1, . . . , R. Sincetr(Q1X

∗) = 1, there must exist an
r ∈ {1, . . . , R}, sayr = 1, such thattr(Q1t1t1

H) = s > 0.
Let t̂ = t1√

s
, and consequently we havetr(Q1t̂t̂

H) = 1.

This, together with (23) and (24), leads totr(Q2t̂t̂
H) = 1

and tr(̂tt̂H) = PS,max. Hence,̂tt̂H is a feasible solution,
and the complementary conditions in (20b) are satisfied.
Furthermore, since(y∗1Q1 + y∗2Q2 + y∗3I−A) � 0, we see
that tr

(
t̂t̂H (y∗1Q1 + y∗2Q2 + y∗3I−A)

)
= 0. Hence, we

conclude that̂tt̂H is an optimal rank-one solution to (18),
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and t̂ is an optimal solution to the QCQP problem (17).
Moreover,̂t can be computed in polynomial time.

VI. RANK -ONE SOLUTION WHEN K ≥ 3

WhenK ≥ 3, there may not exist any rank-one optimal
solution to the SDP (18). Moreover, the QCQP problem (17)
is NP-hard in general, and hence it is unlikely that we can
extract, in polynomial time, an optimal solution to it from
an optimal solution to the SDP (18). However, as we shall
see, we can generate a provably near-optimal solution to the
QCQP problem (17) from an optimal solution to the SDP
(18) using a very simple randomized procedure.

To begin, letX∗ be an optimal solution to the SDP
(18). DefineQK+1 = 1

PS,max
I, so that constraint (9c) is

equivalent totHS QK+1tS ≤ 1. Consider the randomized
procedure outlined in Algorithm 2 for generating a feasible
solution to (17) fromX∗. Algorithm 2 can be viewed as
a generalization of the procedure developed by Nemirovski
et al. [17] for handlingreal homogeneous QCQP problems.
Our goal now is to show that Algorithm 2 indeed returns a
feasible solution to (17). In fact, we will prove in Theorem 2
that the solution returned by Algorithm 2 is not only feasible
to (17), but is also likely to be a good one, in the sense that it
has an objective value that is close to the optimal value of the
QCQP problem (17). We note that such a phenomenon can
also be observed from our simulations, as will be explained
in the next section.

Algorithm 2 Generate a feasible solution to (17) from an
optimal solutionX∗ to (18)
Input: An optimal solutionX∗ to the SDP (18).
Output: A feasible solutiont to (17).

1: DecomposeX∗ = ∆H∆, where∆ ∈ CMS×MS . Let
Ã = ∆A∆H and Q̃k = ∆Qk∆

H , where k =
1, . . . ,K + 1. It can be shown thattr(Ã) = tr(AX∗)
and tr(Q̃k) = tr(QkX

∗) ≤ 1.
2: Find an unitary matrixU that diagonalizes̃A, i.e.,Â =

UHÃU is a diagonal matrix. Set̂Qk = UHQ̃kU.
3: Let ξ be an MS × 1 random vector whose entries

are independently and uniformly distributed on the unit
circle in the complex plane. In other words, we have
[ξ]i = ejθi , whereθi is uniformly distributed between
0 and2π.

4: Returnt = 1√
maxk ξHQ̂kξ,

∆HUξ as the solution.

Before we introduce and prove Theorem 2, let us note the
following facts:

Fact 1. [19] There exists an optimal solution to Problem
(18) with rankR ≤

√
K + 1, whereK+1 is the number of

quadratic constraints. Moreover, such an optimal solution
can be found in polynomial time.

Fact 2. We have rank(Q̂k) = rank(Q̃k) ≤ µ :=
min{

√
K + 1,MS} for k = 1, . . .K + 1. In particular, we

can decomposêQk as Q̂k =
∑µ

j=1 f
kj(fkj)H for some

fkj ∈ CMS .

In order to study the quality of the solution returned by
Algorithm 2, we need the following lemmata:

Lemma3. Let α > 0 be given. Consider the events

Akj =
{
ξHfkj(fkj)Hξ > α‖fkj‖22

}
, A =

K⋃

k=1

µ⋃

j=1

Akj ,

wherefkj is obtained from the rank-one decomposition of
Q̂k (see Fact 2). Then, we have

Pr

{
max

1≤k≤K+1
ξHQ̂kξ > α

}
≤ Pr{A}.

Proof: If A does not take place, then we have
ξHfkj(fkj)Hξ ≤ α‖fkj‖22 for all k = 1, . . . ,K + 1 and
j = 1, . . . , µ. This implies that

ξHQ̂kξ =

µ∑

j=1

ξHfkj(fkj)Hξ ≤ α

µ∑

j=1

‖fkj‖22

∀k = 1, . . . ,K + 1. (25)

Note that
∑µ

j=1 ‖fkj‖22 = tr(Q̂k) = tr(Q̃k) ≤ 1. Hence,

(25) implies thatmax1≤k≤K+1 ξ
HQ̂kξ ≤ α whenA does

not take place. This completes the proof. �

Lemma4. (Hoeffding’s Inequality, Complex Version) Let
X1, . . . , Xn be independent complex-valued random vari-
ables withEXi = 0 and |Xi| ≤ ai for i = 1, . . . , n. Then,
for anyβ > 0, we have

Pr

{∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ > β

}
≤ 4 exp

(
− β2

4‖a‖22

)
,

where ‖a‖2 denotes theℓ2-norm of the vectora =
[a1, . . . , an]

T .

Proof: Let XR
i and XI

i be the real and imaginary parts
of Xi, respectively. Then, we haveEXR

i = EXI
i = 0,

|XR
i | ≤ ai and |XI

i | ≤ ai for i = 1, . . . , n, and

Pr

{∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ > β

}

≤ Pr

{∣∣∣∣∣

n∑

i=1

XR
i

∣∣∣∣∣ >
β√
2

}
+ Pr

{∣∣∣∣∣

n∑

i=1

XI
i

∣∣∣∣∣ >
β√
2

}
.

The desired result then follows from an application of the
real version of the Hoeffding inequality [21]. �

We are now ready to present Theorem 2. It extends
Nemirovski et al’s result in [17], which is concerned with
real homogeneous QCQP problems, to the case ofcomplex
homogeneous QCQP problems.

Theorem 2. The vectort returned by Algorithm 2 is well
defined and is a feasible solution to Problem(17). Moreover,
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for anyα > 0, we have

Pr

{
tHAt ≥ 1

α
tr(AX∗)

}
≥ 1− 4(K + 1)µ exp

(
−α

4

)
,

(26)
whereµ = min{

√
K + 1,MS}. In particular, with proba-

bility at least1− 4(K +1)µ exp
(
−α

4

)
, the objective value

of the solution returned by Algorithm 2 is at least1
α times

the optimal value of the QCQP problem (17).

Proof: We first prove that t is well defined, i.e.,
max1≤k≤K+1 ξ

HQ̂kξ > 0. To see this, note thatξHQ̂kξ =
ξHUH∆Qk∆

HUξ = t̃HQk t̃, where t̃ = ∆HUξ. Since
QK+1 ≻ 0, it follows thatmax1≤k≤K+1 t̃

HQk t̃, and hence
max1≤k≤K+1 ξ

HQ̂kξ, must be strictly larger than zero.
Now, observe that

tHQkt =
1

maxk ξHQ̂kξ
ξHUH∆Qk∆

HUξ

=
1

maxk ξHQ̂kξ
ξHQ̂kξ ≤ 1

for k = 1, . . . ,K +1. It follows thatt is a feasible solution
to (17).

Next, we compute

tHAt =
1

maxk ξHQ̂kξ
ξHÂξ

=
1

maxk ξHQ̂kξ
tr(Â) =

1

maxk ξHQ̂kξ
tr(AX∗),

where the second equality is due to the fact thatÂ is a
diagonal matrix and|[ξ]i|2 = 1 for i = 1, . . . ,MS. Hence,
to prove the bound in (26), it suffices to show that

Pr

{
max

1≤k≤K+1
ξHQ̂kξ > α

}
< 4(K + 1)µ exp

(
−α

4

)
.

(27)
Now, by Lemma 3, we havePr

{
maxk ξ

HQ̂kξ > α
}

=

Pr{A} ≤ ∑k,j Pr{Akj}. Moreover, sinceE{[ξ]i[fkj ]i} =

0 and |[ξ]i[fkj ]i| = |[fkj ]i| for i = 1, . . . ,MS , we have

Pr{Akj} = Pr{|ξHfkj | > √
α‖fkj‖2}

= Pr

{∣∣∣∣∣

MS∑

i=1

[ξ]i[f
kj ]i

∣∣∣∣∣ >
√
α‖fkj‖2

}
< 4 exp

(
−α

4

)

by Lemma 4. This establishes (27) and hence the bound in
(26).

Finally, the last statement in the theorem follows from the
observation thattr(AX∗) is an upper bound on the optimal
value of the QCQP problem (17), as (18) is a relaxation of
(17). This completes the proof of Theorem 2. �

Before leaving this section, we emphasize that the optimal
beamforming vectort∗S can always be found efficiently in
Scenario 3 through a matrix eigenvalue-eigenvector com-
putation, regardless of the number of primary links. In
Scenarios 1 and 2, however, the optimal solution can be
obtained in polynomial time only whenK is no larger than
two. Otherwise, we can only find an approximate solution
in polynomial time via Algorithm 2. Fortunately, as we will

show in the next section, the approximate solution is nearly
optimal most of the time.

VII. N UMERICAL SIMULATIONS

In this section, the performance of the proposed algo-
rithms are evaluated through simulations. Throughout this
section, we assume that all stations are equipped with 4 an-
tennae. The wireless fading channel is Rayleigh distributed,
and path loss exponent equals 4. The length of the secondary
link is 10 meters, andPS,max is chosen in such a way that
the average SNR received by each antenna at the secondary
receiver is 10dB, if there is no interference. We also assume
that all primary users transmit at powerPS,max. Likewise,
the transmit beamforming vectortk of primary userk are set
to be the dominant right singular vector ofHk,k. Meanwhile,
the primary receivers use MMSE beamforming vectors, as
given in Subsection II-C. Unless otherwise stated,δk is set
to 1% for all k in Scenarios 2 and 3. Each point in the
figures is an average of 50000 independent simulation runs.

A. K = 2

We first investigate a network with one secondary link and
two primary links. The primary links are placed such that
the distances between the secondary transmitter and the two
primary receivers are 15 and 13 meters, respectively, while
the distances between the secondary receiver and the two
primary transmitters are 12.4 and 12.7 meters. As discussed
in previous sections, the optimal beamforming solutiont∗S
can be found in polynomial time in this case.

In Fig. 1, the optimal SINRγ∗
S = (t∗S)

HAt∗S (in dB
scale) is plotted againstǫk, when ǫk

N0
varies from 0 to 10

dB for all k. It is not surprising to see thatγ∗
S increases with

the increase of the tolerable interferenceǫk at the primary
receivers. Meanwhile, the more channel information at the
secondary transmitter, the higher the SINR at the secondary
receiver, especially whenǫk is low. Noticeably, the SINR
gap between the three scenarios narrows whenǫk increases.
This is because when the primary users can tolerate higher
interference levels, the secondary user can spend less effort
in eliminating interference to the primary users. Hence, the
advantage of knowingHk,S andrk becomes less obvious.

Fig. 2 illustrates the tradeoff between the optimal SINR
γ∗
S of the secondary link and the outage probabilityδk of

the primary links. It is not surprising that in both Scenarios
2 and 3, the secondary link can achieve a higher SINR when
the primary links can tolerate a higher outage probability.

B. K = 4

We now simulate a network with one secondary link and
four primary links. The distance between the secondary
transmitter and the four primary receivers are 20, 18, 15
and 13 meters, while that between the secondary receiver
and the four primary transmitters are 16, 14, 12.4 and
13.2 meters, respectively. With four primary links, only
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Fig. 1. SINR at the secondary receiver vs.ǫk/N0 whenK = 2.
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Fig. 2. Tradeoff between SINR and outage probabilityδk whenǫk/N0 =

5dB andK = 2.

approximate solutions can be obtained in polynomial time
in Scenarios 1 and 2, as discussed in Section VI.

In Fig. 3, the randomized algorithm in Algorithm 2 is
carried out to obtain the beamforming vector in Scenarios
1 and 2. The optimal beamforming vector in Scenario 3
is obtained through an eigenvalue-eigenvector computation.
For comparison, we also plot the optimal value of the SDP
relaxation (18), which is an upper bound on the maximum
achievable SINR. As the figure shows, the randomized
algorithm performs very close to the optimum. The achieved
SINR almost overlaps with the upper bound of the optimal
SINR. Meanwhile, similar conclusions drawn from Fig. 1
also apply here.

The tradeoff betweenγ∗
S andδk in the four primary link

case is illustrated in Fig. 4. Recall that in Scenario 3, the
only feasible solution whenδk = 0 is tS = 0. Fortunately,
the achievable SINR in Scenario 3 increases rapidly withδk
as long asδk > 0, as shown in both Fig. 1 and 3.
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Fig. 3. SINR at the secondary receiver vs.ǫk/N0 whenK = 4.

10
−4

10
−3

10
−2

10
−1

4

5

6

7

8

9

10

11

12

13

14

δ
k

S
IN

R
 a

t t
he

 s
ec

on
da

ry
 r

ec
ei

ve
r 

(d
B

)

 

 

Scenario 2
Scenario 3

Fig. 4. Tradeoff between SINR and outage probabilityδk whenǫk/N0 =

5dB andK = 4.

C. A Grid Network with 9 Primary Links

In this subsection, we consider a network with 9 primary
links arranged in a 70-by-40 meter grid as shown in Fig. 5.
The lengths of all link are equal to 10 meters. The secondary
link is randomly placed in the area. In Fig. 6, SINR at the
secondary receiver is plotted againstǫk

N0
. Each point in the

curve is an average of 20000 independent secondary-link
placements.

Again, the figure shows that Algorithm 2 performs very
close to the optimum. The achieved SINR almost overlaps
with the upper bound of its optimal value. With full CSI,
Scenario 1 can achieve a much higher SINR than Scenarios
2 and 3, especially whenǫk is small. The better performance,
however, comes at a price. In practical systems where full
CSI is not available, one has to resort to the schemes
developed for Scenarios 2 and 3 to achieve the maximum
SINR.
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Fig. 6. SINR at the secondary receiver vs.ǫk/N0 whenK = 9.

VIII. C ONCLUSIONS ANDDISCUSSIONS

In this paper, we considered optimal secondary-link
beamforming in MIMO CR networks when the secondary
transmitter has complete, partial, or no channel knowledge
on the links to primary receivers. We proposed a unified
homogeneous QCQP formulation for all three scenarios with
either deterministic or probabilistic interference-temperature
constraints. In Scenario 3, the QCQP problem reduces to a
matrix eigenvalue-eigenvector computation problem, which
can be solved very efficiently. For Scenarios 1 and 2, we
approached the QCQP problem by SDP relaxation. Notably,
the SDP relaxation admits no gap with the true optimal
value when there are no more than two primary links. In this
case, the optimal beamforming solution can be computed in
polynomial time. When the number of primary users exceeds
two, we proposed a randomized polynomial-time algorithm
that can construct a provably near-optimal solution to the
QCQP problem from an optimal solution to the SDP.

The reader may notice that there is a gap between the
theoretical performance of the randomized polynomial-time

algorithm (Algorithm 2) as established in Section VI and
its practical performance as demonstrated in Section VII.
This can be attributed to the fact that the main theoretical
result in Section VI, namely Theorem 2, only provides
a worst-caseguarantee on the performance of Algorithm
2. In other words, the guarantee is valid regardless of
the distribution of the input data. However, in the setting
of MIMO CR networks, the input data follow a specific
probability distribution, and the worst-case instance maynot
arise too frequently. It would be interesting to see whether
one can obtain better theoretical guarantees by performing
a probabilistic analysisof the performance of Algorithm 2
(see [22] and the references therein for related work).

So far, we have considered one secondary link only.
However, the proposed schemes can be easily extended to
a multiple-secondary-link system with the aid of medium-
access-control (MAC). Suppose that there is a narrowband
busy-tone channel in addition to the data-transmission chan-
nel. When a secondary link wishes to transmit a packet,
it first senses the channel to see whether there is another
secondary link transmitting. If not, it sends a short busy
tone on the busy-tone channel to reserve the airtime. Other
secondary links, upon hearing the busy tone, will keep silent
during the airtime reserved by the transmitting link. Having
successfully reserved the airtime, the link will then startto
transmit its data packet on the data-transmission channel.
In case more than one secondary transmitter sends busy
tones at the same time, a collision has occurred on the
busy-tone channel and the secondary transmitters will each
wait for a random time period before attempting again. By
doing so, it is guaranteed that there is only one secondary
link transmitting data packets at a time, and the proposed
optimal beamforming methods can be applied. For practical
implementation, we can adopt the random-access protocols
in IEEE 802.11 wireless local area networks (WLANs), such
as RTS/CTS DCF, to coordinate the contention on the busy-
tone channel.

Note that multiple secondary links can also coexist with-
out the aid of a MAC protocol by properly configuring their
beamforming vectors, preferably in a distributed manner.
In this case, secondary links interfere with each other, and
thus the optimal beamforming problem becomes much more
challenging. We will address this problem in our future
research.
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