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Diversity Embedded Streaming Erasure Codes
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Abstract—Streaming erasure codes encode a source stream tothat the parity check symbols in these constructions ireralv
guarantee that each source symbol is recovered within a fixed careful combination of source symbols. In particular, @md

delay at the receiver over a burst-erasure channel. This pagr ; At : ;
introduces diversity embedded streaming erasure codes (DE-SCo), I(;r(l)er? ;tcgt;r;li)r;n;téoglsa,'{ir%(;pl)%lg;l};rlrjr']sae: Clen €.g., network cgdin

that provide a flexible tradeoff between the channel quality -
and receiver delay. When the channel conditions are good, ¢h ~ The SCo framework however requires that the valueof

source stream is recovered with a low delay, whereas when theandT" be known apriori. In practice this forces a conservative
channel conditions are poor the source stream is still recared, design i.e., we design the code for the worst c&sthereby
albeit with a larger delay. Information theoretic analysis of the incurring a higher overhead (or a larger delay) even when the
underlying burst-erasure broadcast channel reveals that B- h i lativel d. M th is oft fiditibi
SCo achieve the minimum possible delay for the weaker user, C annet s relatively good. orgover ereis oiten a ) i .
without sacrificing the performance of the stronger user. Ou in the allowable delay. Techniques such as adaptive media
constructions are explicit, incur polynomial time encodirg and  playback [11] have been designed to tune the play-out rate as
decoding complexity and outperform random linear codes ove g function of the received buffer size to deal with a tempprar
bursty erasure channels. increase in delay. Hence it is not desirable to have taIfix
Index Terms—Low Delay, Streaming Erasure Correction during the design stage either.
C‘f)des’ Burst hErasure ?ha“geh Brgaddcaét O?hannel, l[\letyvork We introduce a class of streaming codes that do not commit
Information  Theory, Delay Constrained Coding, Application o 1o a specific delay. Instead they realize a delay that
Layer Error Correction o . . .
depends on the channel conditions. At an information th&ore
. INTRODUCTION level, our setup extends the point-to-point link[in [1] to alm

ORWARD error correction codes designed for streami -

r%gast model — there is one source stream and two receivers.
sources require that (a) the channel input stream e channel for each receiver introduces an erasure-bfirst o

produced sequentially from the source stream (b) the decofi'9th Bi and each receiver can tolerate a delayZoffor
sequentially reconstruct the source stream as it obsehees t= 1 2- We investigate diversity embedded streaming erasure
channel output. In contrast, traditional error correctimtes ¢0des (DE-SCo). These codes modify a single user SCo such
such as maximum distance separable (MDS) codes map bloki@ the resulting code can support a second user, whose
of data to a codeword and the decoder waits until the entf8annel introduces a larger erasure-burst, without seiofi
codeword is received before the source data can be reprdud@® performance of the first user. Our construction embeds
Rateless codes such as the digital fountain codes are radiideN€W Parity checks in an SCo code in a manner such that (a)
suited for streaming sources. First they require that thizeen N0 interference is caused to the stronger (and low delay) use
source data be available before the output stream is repfd (0) the weaker user can use some of the parity checks of
duced. Secondly they provide no guarantees on the sequerifl§ Stronger user as side information to recover part of the
reconstruction of the source stream. Nevertheless these A§UTce Symbols. DE-SCo constructions outperform baseline
been a significant interest in adapting such constructions FChemes that simply concatenate the single user SCo for the

streaming applications see e.d.1[13].1[14].1[15].][16]7]i1 two users. A.n informatio_n. theoretic converse establishas t
[18]. DE-SCo achieves the minimum possible delay for the weaker

In [1, Chapter 8] a class of systematic time-invariant cofeceiver without sacrificing the performance of the strange

volutional codesstreaming erasure codes (SCo) are proposed USer- Finall_y all our code_z cqnstructions can be encoded and
for the burst erasure channel. The encoder observes a seffigoded with a polynomial time complexity il and B.

infinite source stream and maps it to a coded output strean]n recent works, [[5], [[6], [[7] study the low-delay codes
of rate R. The channel considered is a burst-erasure chanidih feedback, the compression of streaming sources isestud
__ starting at an arbitrary time, it introduces an erasunsstou’n [10] while a comparison of block and streaming codes for
of maximum lengthB. The decoder is required to reconstrudPW delay systems is provided ial[9].

each source symbol with a maximum delByA fundamental

relationship betweenR?, B and T is established and SCo Il. SYSTEM MODEL

codes are constructed that achieve this tradeoff. We ergghas The transmitter encodes a stream of source symbols
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——»| Encoder »oltl),
x[t]=f(s[0], ..., s[t]) Burst =B, Z—PM—»

Fig. 1. The source strear{s[ 1} is causally mapped into an output stream

{x[¢]}. Both the receivers observe these symbols via their chanfédle

channel introduces an erasure-burst of length and each receiver tolerates

a delay ofT;, fori =1, 2.

A. Construction

The construction in[J1] is described in three steps.

1) Create(T,T — B) Burst Erasure Block Code (BEBC)
The construction begins with a systematic generator
matrix G for a (T',7 — B) Burst Erasure Block Code
(BEBC) over a finite fieldFg, without regard to de-
coding delay. The code must also correct “end-around”
bursts. Recall that anyn’,k’) cyclic code corrects
burst erasures of length’ — k’. Since the matrixG

The channel of receiverintroduces an erasure-burst of length is systematic we can express it in the form

B; i.e., the channel output at receiveat timet is given by

_ [~ teljjit+Bi—1]
wlt] = { z[t] otherwise (2)

for ¢ = 1,2 and for somej; > 0. Furthermore, usei

T-B B
G = (T'-B) [ I H ] (5)
whereI denotes the identity matrix anH is a (T —

B) x B matrix.
2) CreatgB+1T,T) Low-Delay Burst Erasure Block Code

tolerates a delay df}, i.e., there exists a sequence of decoding ~ (LD-BEBC)

functionsvi¢(.) and~s(.) such that

8i[t] = vie (y[O], wil1], - . ., wa[t + Ti]), i=12, (3

and P(Si[t] 75 §l[t]) =0, Vi>0.

The LD-BEBC code maps a vector @f information
symbolsb € F{, to a systematic codeworde F,*” as
follows. We first splitb into two sub-vectors of lengths

B andT — B
B T-B

The source stream is an i.i.d. sequence and we assume that b= [ u n ], (6)

each symbol is sampled from a distributign(-) over the

and the resulting codeworddis

finite field ]Fg. The rate of the multicast code is defined as
ratio of the entropy of the source symbol to the (marginal) c= [u n] . Inxs O0px(r-B) Ipxn

entropy of each channel symbol i.&k, = H(s)/H(x). An

optimal multicast streaming erasure code (MU-SCo) achieves

the maximum rate for a given choice @B;, T;). Of particular
interest is the following subclass.

Or—ByxB Lir—Byx(r—B) H
(7)
:[u n u—l—n-H}:[b r} (8)

where we have use](6) and introduaeet u +n - H

Definition 1 (Diversity Embedded Streaming Erasure Codes  t0 denote the parity check symbolsdrin the last step.

(DE-SCo)) Consider the multicast model in Fig. [ where the
channels of the two receivers introduce an erasure burst of
lengths By and B, respectively with B; < By. A DE-SCo
isarate R = lelBl MU-SCo construction that achieves a
delay 77 at receiver 1 and supports receiver 2 with delay 75.
An optimal DE-SCo minimizes the delay T at receiver 2 for
given values of By, 71 and Bs.

The codeword: has the property that it is able to correct
any erasure burst of lengtB with a delay of at-most
T symbols. If we expresb = (by,...,br_1) then, for
any erasure-burst of lengtB, by is recovered at time
T, by at time (T + 1) andbp_, at time (T + B — 1).
The remaining symbolég ..., by, are all recovered
at the end of the block.

The information symbols in vectar = (b, ...,bp_1)
Note that our model only considers a single erasure burst  are referred to asrgent symbols whereas the symbols in
on each channel. As is the case with (single user) SCo, vectorn = (bg,...,br_1) are referred to as non-urgent
our constructions correct multiple erasure-bursts sépdra symbols.

sufficiently apart. Also we only consider the erasure chinne 3) Diagonal Interleaving

model. It naturally arises when these codes are implemémted The final step is to construct a streaming code (SCo)
application layer multimedia encoding. More general clenn from the LD-BEBC code in step 2. Recall that the
models can be transformed into an erasure model by applying sCo specified a mapping between the symbdts of

an appropriate inner codgl[1, Chapter 7].

the incoming source stream to the symbolg of the
channel input stream. This mapping is of the form

[1l. BACKGROUND: STREAMING CODES(SCO) soft]
Streaming burst-erasure codes developed]in [1] &hd [2] are solf] .
. . . . t] = . ]FT t] = ST—l[ ] ]FTJrB
single user codes for the model in the previous section. They slt] = : ey, zlt] = + SR
. polt]
correct an erasure burst of lengbhwith a delay ofl" symbols sr—1[t]

and achieve the largest possible rate

— T>B
—J T+B =
¢ { 0 otherwise. @)

_pB—.l [t]]
9

1Al addition in this paper is defined ovéltg or its extension field.



i.e., we split each source symbgt] € ]FZ2 into 7" equal STOLSE25[41.. X[OLX[2X[4]....

sized sub-symbols ovef, and then append parity | ®Dsco

check sub-symbols ovéf,. Thus we have that[t] € Source Stream Output Stream
FngB. The parity check sub-symbolg|[t], ..., pp—1[t] stz DM Mo o2
are constructed through a diagonal interleaving tec

nique described below. sinsirssi o LB iiaaiais)...

An information vectorb; in (8) is constructed by

CO”eCtmg sub-symbols along the diagonal of the SUQ'Ig. 2. A vertical interleaving approach to construct2a3, 27") SCo code
streams I.e., from a (B, T) SCo code.

bt:(So[t],sl[t—l—1],...,ST_1[t+T—1]). (10)

The resulting channel input stream is illustrated in Talfle.

Cmme that the rate of this code /5 as it introduces two
arity check sub-symbols for each three source sub-symbols
t can be easily verified that this code corrects a burst egasu

of length 2 with a worst-case time delay.

The corresponding codeword, = (b;,r;) is then

constructed according t@l(7). The resulting parity che
sub-symbols inc[t] are then appended diagonally to th
source stream to produce the channel input stream i.

(po[t+T1,...,pp-1[t+T+B~-1]) = (ro[t],...,rp-1[t])
(11) IV. SCo PROPERTIES
Notice that the operations ihl(9)._{10) ahd](11) construct |n this section we describe some additional properties of

a codeword diagonally across the incoming source sug€o codes that will be useful in the DE-SCo construction.
streams as illustrated in Tab[é. I. dagonal codeword

is of the form A. Vertical Interleaving for (B, aT") SCo
di= (solt],...,s7—1[t+T —1],polt +T], (12) Supposex > 2 is an integer and we need to construct a
. pB_lt+T+ B—1)). SCo code with paramete(s.3, oT"). The scheme described

in section[II-A requires us to split each source symbol into
The SCo code is a time-invariant convolutionah7 sub-symbols. However we can take advantage of the
code [12]. The inputs to the convolutional code argwultiplicity factor o and simply construct théaB, oT) SCo
source symbols € F7,, while the outputs are channelcode from the(B,T) SCo code via vertical interleaving of
symbolsx € F/,*”. We emphasize that the actuabtepa.
transmitted symbol is given if](9). The diagonal code- Fig.[2 illustrates this approach for constructing2a3, 27"
word (I2) above simply maps the LD-BEBC to a SCaSCo from a(B,T') SCo. We split the incoming source stream
into two disjoint sub-streams; one consisting of source-sym
B. Decoding of SCo Codes bols at even time slots and the other consist_ing of symbols at
i ) . odd time slots. We apply @3,7') SCo on the first sub stream
The structure of the diagonal codewoidl(12) is also impogs produce channel symbols at even time slots. Likewise we
tant in decoding. Suppose that symbols), ..., z[t + B —1] apply a(B,T) SCo on the second sub stream to produce
are erased. It can be read_ily verified that there are no Mignnel symbols at odd time slots. Since a burst of length
than B erasures in each diagonal codewdndt } (c.f. (12)). 95 introducesB erasures on either sub-streams, each of the
Since each codeword is @ + B,T) LD-BEBC, it recovers (p 71 code suffices to recover from these erasures. Further
each erased symbol with a delay of no more tfiasymbols. each erased symbol is recovered with a delay’agymbols
This in turn implies that all erased symbols are recovered. o, jts individual sub stream, which corresponds to an oleral
delay of 27 symbols.
C. Example: (2,3) SCo Code More generally we split each source symbol ifffosub-

Suppose we wish to construct a code capable of correct%mbms' The information vectds, is modified from [ID) as

any symbol burst erasure of length= 2 with delayT = 3. b = (so[t], s1[t + ... ,sp_1[t + (T — 1)a]). (16)

A LD-BEBC for these parameters is . .
@ P ! The resulting codeword[t] of the LD-BEBC is then mapped

c = (bo, b1, b2, by + ba, b1 + ba). (13) to adiagonal codeword by introducing a step-size of in (12)

ie.,
To construct the SCo code, we divide the source symbols into
T = 3 sub-symbols. The diagonal codewoEd1(12) is of the d, = (sq[t], s1[t + o, ..., sp_1[t + (T — 1)a],

5.

form polt +Tal,....pp_a[t + (T + B —1)a]). (17)

dy=(so[t], s1[t+1], s2[t+2], so[t]+s2[t+2], s1[t+1]+s2[t+2)  Agin the case of = 2, the decoding proceeds by splitting the
(14)  source stream inta sub-streams and applying the decoder for
(B,T) SCo on each of the sub-streams. This guarantees that
[t] = [so[t], s1[t], s2[t], solt — 3] + sa[t — 1], s1[t — 3] + st — 2]]T ~each symbol is recovered with a delay®@f’ on the original
(15) stream.

and the channel input(¢) is given by



soli — 1] soli] soli + 1] soli + 2] soli + 3] soli + 4]
s1i —1] s1[4] s1i+ 1] s1[i + 2] s1li+ 3] s1[i + 4]
sali — 1] sali] sali + 1] sali + 2] s2[i + 3] sali + 4]
soli — 4] +sali—2] | soli—3]+sali—1] | soli—2 +s2li] | [soli =1 +seli+1]] | soli]+sali+2] | soli+ 1]+ soli+3]
s1[i — 4] + s2[i — 3] | s1[i — 3] + s2[i — 2] | s1[i — 2]+ s2[i — 1] s1[i — 1] + s2[1] ‘sl[i]—l—sg[i—i-l} s1i+ 1] + s2[i + 2]
TABLE |

A (2,3) SNGLE USERSCo CODE CONSTRUCTION IS GIVEN WHERE EACH SOURCE SYMBOS[.] IS DIVIDED INTO THREE SUB-SYMBOLSsg|.], s1[.] AND
s2[.] AND A (5,3) LD-BEBC CODE IS THEN APPLIED ACROSS THE DIAGONAL TO GENERATE TWO PARY CHECK SUB-SYMBOLS GENERATING A RATE
3/5 CODE. EACH COLUMN CORRESPONDS TO ONE CHANNEL SYMBOL

B. Memory in Channel Input Stream {«[t]} D. Off-Diagonal Interleaving

While the definition of SCo allows the channel input symbol The constructions in sectign [l}A involve interleavingag
«[t] to depend on an arbitrary number of source symbols, tHee main diagonal of the source stream (d.L1(L2},(10)). An
construction limits the memory of symbolt] to previous7 analogous construction of théB,T’) code along the off

symbols i.e., diagonal results in
olt] = f(slt]. st — 1., s[t — ). (18) be = (solt), salt = 1), st = (T = 1)) (21)
dt = (ST_l[t — (T — 1), ceey Sl[t — 1], So[t],
Furthermore a closer look a_lt the parity check sub-symbdls (9 Polt +1],...,p5_1[t + B]]) (22)
of z[t] reveals that the parity checks|t],...,pp—_1[t] con- _ _
structed from the LD-BEBC in[{8) have the form and the parity checks; are given by
Dilt] = sr—j1[t =T+ hj(sr—p-1[t —j —T + B], (23)

pj[t] Sj[t j] hj(SB[t J—1 B]""’ST—l[t J 1])’ . .
t—j7—1 =0,...,B-1
j=0,...,B—1, (19) 780[ J ])’ J ’ ’ ’

_ o o when applied along the opposite diagonal. Finally off-diaaj
whereh;(-) denotes a linear combination arising from the LDinterleaving also satisfies Propl. 1 provided with apprdpria

BEBC code [(B) when applied along the main diagonal.  modifications in the definitions of urgent and non-urgentsub
symbols
C. Urgent and Non-Urgent Sub-Symbols sUIt] = (sp_1lt], ..., sr_Blt]),
In the construction of LD-BEBC codes we split the infor- sV[t] = (sp—p-1lt], - -, so[t]). (24)
mation vectorb into urgent and non-urgent sub-symbdls (6).
The mapping of source sub-symbols to information ve¢tdy (10 V. EXAMPLE

then implies that the sub-symbolg, ..., s, are the urgent e first highlight our results via a numerical example:
sub-symbols in the source stream whereas the sub-symt{(g% Ti) = (1,2) and (Bs,T») = (2,4). Single user SCo

5B, .-, 571 are the non-urgent sub-symbols. We will denotgonstructions fromi1]/]2] for both users are illustratedTa-
these by ble[(a) andT)(b) respectively. In each case, the sourcetsy
U s[é] is split into two sub-symbolgsy[i],s;1[¢]) and the channel
S [t] = (So[t],...,sB_l[t]),

symbolx[i] is obtained by concatenating the source synsfiol
sM[t] = (sglt], ..., sT—1[t]). (20)  with a parity check symbaqi]. In the (1, 2) SCo construction,
arity check symbop![i] = s1[i — 1] + so[i — 2] is generated
)?combining the source sub-symbols diagonally across the
ource stream as illustrated with the rectangular boxes. Fo

The urgent and non-urgent sub-symbols are combined int(g
parity check sub-symbol as illustrated [n(19). The follogi s

observation is useful in the construction of DE-SCo. the (B, T) = (2, 4), the choicep!'[i] = s1[i — 2] + sofi — 4] is
Proposition 1. Suppose that the sequence of channel symbols ~ Similar to the(1,2) SCo, except that an interleaving of step of
x[i—B],...,z[i—1] are erased by the burst-erasure channel. size2 is applied before the parity checks are produced. Note
Then that both these codes are single user codes and do not adapt

to channel conditions.

In Table[Il(a) we illustrate a construction that achieves a
rate 2/3 and (B;,71) = (1,2) and still enables user 2 to
recover the entire stream with a delayof = 6. It is obtained
by shifting the parity checks of the SCo code in Tdhle Ii(b) to
the right by two symbols and combining with the parity checks

The proof follows via[(IB),[{19) and will be omitted due tcof the SCo code in Tablelll(a) i.eq[i] = p'[i] + p"[i — 2].
space constraints. Note that parity check symbolg''[-] do not interfere with

1) All sub-symbolsins™[i—B],...,s"V[i—1] are obtained
from the parity checks p[i],...,p[i + T — B — 1].

2) The sub-symbols in sY[j] for i — B < j < i are
recovered at time j + T from parity check p[j + 7]
and the previously recovered non-urgent sub-symbols.



(a) SCo Construction fo(B,T') = (1, 2)

S0 [Z — 1] S0 M S0 [2 + 1] S0 [2 + 2] S0 [Z + 3} S0 [2 + 4]

Sl[i — 1] Slm Sl[i + 1] Sl[i + 2] Sl[i + 3} Sl[i + 4]
soli — 3] +s1[i—2] | soli —2) +s1[i — 1] ‘so[i—1]+s1[i}‘ soli] +s1[i+1] | sofi+1]+s1[i+2 | soli+ 2] +s1[i +3]

(b) SCo Construction fofB,T) = (2,4)

S0 [2 — 1} S0 M S0 [2 + 1] S0 [2 + 2] S0 [2 + 3] S0 [2 + 4}
Sl[i— 1} Slm 81[i+ 1] 81[i+2] 81[i+3] 81[7;-!-4}

soli — 5] +s1[i —3] | solt —4] +s1[i —2] | solt — 3] +s1[t — 1] | so[i — 2] + s1[7] solt — 1] 4+ s1[i + 1] soli] + s1[i + 2]

TABLE I
SINGLE USERSCO CONSTRUCTIONS ARE SHOWN IN THE UPPER TWO FIGUREBIOTE THAT THE (1,2) SCO CODE RECOVERS A SINGLE ERASURE WITH A
DELAY T' = 2 BUT CANNOT RECOVER FROMB = 2. THE (2,4) SCO CODE RECOVERS FROMB = 2 WITH A DELAY OF 7' = 4 BUT DOES NOT INCUR A
SMALLER DELAY WHEN B = 1.

(a) IA-SCo Code Construction fqtB1,T1) = (1,2) and (B2, T2) = (2,6)

soli — 1] soli] soli + 1] soli + 2] soli + 3] soli + 4]
Sl[i— 1} Sl[i] Sl[i—‘rl} Sl[i+2] 81[i+3} 81[i+4}
So[i—3]+sl[i—2] So[i—Q}—‘rsl[i—l} So[i—l}—‘rsl[i] Som—‘rsl[i—i-l} So[i+1]+sl[i+2} So[i+2]+sl[i+3]
+ + + + + +
So[i—7]+sl[i—5] So[i—6}+81[i—4} So[i—5]+sl[i—3] So[i—4}+81[i—2} So[i—3]+sl[i—1} So[i—?]—‘,—sl[i]
(b) DE-SCo Code Construction f@B1,71) = (1,2) and (B2, T») = (2,5)
soli — 1] soli] soli + 1] soli + 2] soli + 3] soli + 4]
Sl[i— 1} Sl[i] 81[7;-!-1} 81[i+2} 81[i+3] 81[i+4}
soli — 3] +s1[t —2] | solt —2] +s1[i —1] soli — 1] + s1]7] soli] + s1[i + 1] soli+ 1]+ s1[i +2] | solt+ 2]+ s1[i + 3]
+ + + + + +
s1[i — 6] +so[t — 5] | si[t — 5] +so[i —4] | si[t —4] +so[t —3] | s1[t — 3]+ so[t —2] | s1[i — 2] + so[t — 1] s1i — 1] + soli]
TABLE Il

RATE 2/3 CODE CONSTRUCTIONS THAT SATISFY USER WITH (B1,71) = (1,2) AND USER2 WITH By = 2.

the parity checks of user i.e., whens|i| is erased, receiver thus yieldingZ> = 5 symbols.

1 can recoverp!'[i + 1] and p'[i + 2] from ¢[i + 1] and In the remainder of this paper we generalize the above
qli+2] respectively by canceling{![-] that combine with these construction to arbitrary values ¢8B;,T;).

symbols. It then recovers|i|. Likewise if s[i] and s[i — 1]

are erased, then receiverrecoversp!![i + 1],..., p![i + 4] VI. CONSTRUCTION OFDE-SCo

from ¢[i + 3], ..., ¢[i + 6] respectively by canceling out the

interferingp![-], thus yieldingT5 — 6. In this section we describe the DE-SCo construction. We

rely on several properties of the single user SCo explained i

While the interference avoidance strategy illustratedvaboSectiortl-

naturally generalizes to arbitrary values 8f and T, it iS Theorem 1. Let (B,,T1) = (B,T) and suppose B, = aB
sub-optimal. Tabld.l1(b) shows the DE-SCo constructioatt where « is any integer that exceeds 1. The minimum possible
achieves the minimum possible delay @ = 5. In this delay for any code of rate R = HLB is

construction we first construct the parity chegk¥i] = s;[i—

2] + soli — 1] by combining the source sub-symbols along the T3 = oT + B, (25)
opposite diagonal of thél,2) SCo code in Tablglll(a). Note : : : :

that (1) = (s[i], pi]) iseals)o a single usefl, 2) SCo code. and is achieved by the optimal DE-SCo construction.

We then shift the parity check stream to the rightby B — 3 A Converse

symbols and combine witpt[i] i.e., q[i] = p'[i] +p"[i —3]. In We first establish converse to theorEn 1. Consider any code
the resulting code, receiveris still able to cancel the effect that achieves (B, T), (Bs,T2)} with T, < T3. The rate of

of p'![] as before and achievig = 2. Furthermore at receiver this code is strictly less thaf = TJFLB.

2 if s[i] ands[i — 1] are erased, then observe that receer To establish this we separately consider the case When
obtainssg[:] andsg[i —1] from g[i+2] andq[i+3] respectively B < T, < oT + B and the case whef, < T + B. Let us

ands; [z — 1] and s [z] from ¢[i 4+ 4] andg[i + 5] respectively, assume the first case.
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Fig. 4. One period illustration of the Periodic Erasure Glarfor 7o <
T + B. White circles resemble unerased symbols. Black and Gnajesi
resemble erased symbols to be recovered uSingndCs respectively.

t=0,...,aB —1 is identical to a burst erasure channel with

B erasures between time= (o« — 1)B,...,aB — 1. The
decoder of user 1 applied to this channel recovers the source
symbols by timeaB — 1 + T < Tp,, which follows since

T, > T + B. Thus all the erased channel symbols in the first
period are recovered by tim&, . Since the channel introduces
periodic bursts, the same argument can be repeated acloss al
periods. Since the length of each periodds— 1) B + 7> and
containsaB erasures,thus the capacity is upper bounded by
1— mj%n which is less thamk? = NLB if Ty < Ty.

For the other case witll, < 7'+ B shown in Fig[4, the
same argument applies except that the periodic channel has a
period of " + aB symbols. Each period consists of a burst
erasure of lengtlvB from time¢ =0,1,...,aB—1 followed
by a period of non-erasures foe= aB, ..., Tp, £ aB+T—1.

The decoder of user 2 recovers the— 1)B erasures at time
t=20,1,...,(a—1)B — 1 with a delay of7» (i.e., by time
Tp,) asT, < T + B. Furthermore, the decoder of user 1
recovers theB erasures at tim¢ = (o« — 1)B,...,aB — 1
with a delay ofT" symbols (i.e., by timexB + T — 1 = Tp,).
Now, the length of each period 8B + T with T" available
symbols, the rate is== strictly smaller thank asa > 1
and the converse follows.

B. Code Construction

For achievability of7} in (25) we construct the following
code:

« Construction of C;: Let C; be the single use(B,T)
SCo obtained by splitting each source symial into T
sub-symbolgsy|i], . .., sr—1[¢]) and producingB parity
check sub-symbolg! = (p{[i],...,p5_,[i]) ateach time
by combining the source sub-symbols along the main

diagonal.
In other words, a(T + B,T) LD-BEBC code is ap-
plied along the diagonah! = (so[d], s1[d], ..., sr—1[i +

T — 1]) constructing the diagonal codeword!
(sofi], .-y sr—a[i+T —1],pbli +T),...,p5 i +T +
B — 1]) where, from[(ID),

As shown in Fig.[B, construct a periodic burst-erasure

channel in which every period ofa — 1)B + T» symbols

consists of a sequence @B erasures followed by a sequence
of non-erased symbols. Consider one period of the proposed

periodic erasure channel with a burst erasure of length
from timet =0,1,...,aB — 1 followed by a period of non-
erasures fot = aB,...,Tp, £ (o —1)B + T — 1. For time

t = 0,...,7p, the channel behaves identically to a burst-

erasure channel with B erasures. The firgu— 1) B erasures
at timet = 0,1, ..
decoder of user 2 with a delay @k i.e., by time7p, and
hence the channel symbalf0], ..., z[(a—1)B — 1] can also
be recovered vid{1).

It remains to show that the symbols at time= (« —
1)B,...,aB — 1 are also recovered by tim&p,. Note
that since the channel symboig0],...,z[(a — 1)B — 1]

have been recovered, the resulting channel between times codewordd!' = (sr_1[i — (T —1)],...,s

.,(a — 1)B — 1 can be recovered using

prli] = Ap(soli =T —k],...,sp_1[i — 1 —k])
= 'Ak(bi—T—k)
:Sk[i—T]-i—hk(SB[i—k—T—l—B],...,
ST_1[i—k—1]), kZO,...,B—l. (26)

Construction of C: Let C; be a((a — 1)B, (o — 1)T)

SCo also obtained by splitting each source symbol into

T sub-symbolgsg[i], ..., sr—1[i]) and then constructing

a total of B parity checksp''[i] = (pi'[i],...,p% [i])

by combining the source sub-symbols along the opposite

diagonal and with an interleaving step of size: (a«—1).

In other words, a(T' + B,T) LD-BEBC code is ap-

plied along the diagonab!! = (sp_1[i — (T —

)], sp—ali —€(T —2)],...,soli]) to construct a diagonal

O[i]vpg)l [Z +



a,...
pi[i] = Br(soli — € — kl),...,sp_1[i — (T — k)
= Bk(b?_g_u)
= ST—k—l[i — éT] + hk(ST—B—l[i — é(k + T — B)],
st —l(k+1)]), k=0,...,B—1, (27)
Combination of Parity Checks of C; and C,: Introduce
a shift A = T+ B in the streanp'![-] and combine with (3)

the parity check streapf[-] i.e., q[i] = p'[i]+p'[i — A].
The output symbol at time is x[i] = (s[i], q[i])

, P8, [i + ¢B]) where

Throughout our discussion we refer to the non-urgent and
urgent symbols of cod€,. The set of urgent symbols and
non-urgent symbols are as stated[in] (24). Also note thagesinc
there areB parity check sub-symbols for evefy source sub-
symbols it follows that the rate of the code g .

C. Example

Fig.[3 illustrates the DE-SC§(2,5), (4,12)} construction.

(4)

Each column represents one time-index betweef 9] shown
in the top row of the table. We assume that a burst-erasure
occurs between timp-4, —1] for user 2. Each source symbol

is split into five sub-symbolgal.],b[.],c[.],d].],e[.]),

each

occupying one row. The first — B = 3 of which, a[.],b[.], ¢[.]

are non-urgent sub-symbols and the rekt], e[.]) are urgent.
The next two rows denote the parity check sub-symbols. The p[3], ¢[4] and p[4] respectively.
parity checks foiC;, generated by diagonat, (c.f. (I9)) are (5)

markedp[.] andg[.] and are given by,
pli] = afi — 5] + c[i — 3] + e[i — 1]
qlt] =0b[i — 5]+ d[i — 3] + et — 2]. (28)

The shaded two top rows show the parity chegksandz|.],
generated by the diagonb}! for C, (c.f. (21)),

yli] = eli — 5] + c[i — 3] + ali — 1]

2[i] = d[i — 5] + bli — 3] + ali — 2]. (29)

These parity checks are then shifted By B = 7 slots and
combined with the corresponding parity check€pfs shown
in Fig.[.

We illustrate the decoding steps for user 2 as follows.

(1)

(2)

Recover{p'![t — A]};>7:

By construction of’; all the parity checkp![t] fort > 5

do not involve the erased sub-symbols. In particular the
parity checks marked by[.] and¢[.] att > 5 do not
involve source sub-symbols befote= 0 (c.f. (28)) and
hence these can be canceled to recover the parity checks
y[.] andz[.] for ¢ > 5.

Upper-left triangle:

The parity checks in step (1) enable us to
recover the non-urgent erased sub-symbols in
b'l, = (e[=7],d[—6], c[—5], b[—4],a[-3]) and
b, = (e[-8],d[-T7],c[-6],b]—5],a[—4]) which are

a[—4], a[-3] and b[—4] i.e., the upper-left triangle sub-
symbols. We use the corresponding diagonal codewords,
de3 (8[—7], d[_6]a C[_5]a b[_4]a a[_3]a y[_2]a Z[_l])

to recover a[-3] and b[-4] from the parity (6)

checks y[-2] and z[-1] and d_4 =
(e[~8],d[~T],c[~6],b[~5], a[4],y[-3].2[~2]) o
recovera[—4] from the parity check[—2]. We note that
a[—4] is recovered fronz[—2] at ¢ = 5 and not from
y[—3] which appears at = 4 and is not recovered in
step (1). More generally, as we note later, the parity
checks ati + 7" and later suffice to recover symbols in
this step.

Recoverp![t] for 0 <t < T —1:

The sub-symbols recovered in step (2) suffice to recover
all parity checksp![t] for 0 < t < 4. Note that
the relevant interfering parity checks fropt'[-] in this
interval isy[—3] = e[—8] 4 ¢[—6] +a[—4]. Since the only
erased sub-symbal—4] is already recovered in step (2),
these parity checks can be canceled. More generally as
we show later, for the general case, our construction
guarantees that the interfering parity chegk§:] in the
interval0 < ¢t <T —1 only involve erased symbols from
the upper left triangle, which are decoded in step (2).
Upper-right triangle:

Since the diagonalb! , = (a[—2],b[—1], c[0], d[1], e[2])

and b, = (a[-1],b[0],¢[1],d[2],e[3]) involve two or
fewer erasures, we can now recover these sub-symbols
using parity checks of cod@, recovered in the previous
step. In particular, the upper-right triangle source sub-
symbolsa[—2], b[—1] anda[—1] can be recovered from

Recover non-urgent sub-symbols recursively:

The remaining non-urgent sub-symbols need to
be recovered in a recursive manner. Note that
bl, = (a[-3],b[-2],¢[-1],d[0],e[l]) has three

erased sub-symbols. However, the first sub-symbol
a[-3] also belongs tob!!; and has already been

recovered in step (2). The remaining two sub-
symbols, b[—-2] and ¢[-1], can be recovered by

the two available parity checks of cod€; in

dI—3 = (a[—3],b[—2],c[—l],d[O],e[l],p[?],q[?)]),
i.e., from p[2] and ¢[3]. Similarly b, =
(e[—6],d[—5], c[—4],b[-3],a[—2]) also has three
erasures, but the upper-most sub-symbaol—2]

also belongs tob', which has been recovered
in step (4). Hence the remaining erased sub-
symbols in b',, ¢[-4] and b[-3], can be
recovered using the parity checkg—1] and z[0] in
d", = (e[6],d[~5], c[~4], b[-3], a[ 2], y[ 1], 2[0]).

At this stage it only remains to recover the two remaining
non-urgent sub-symbolg—3] andc[—4] by timet = 7.
These are recovered in the next step of the recursion.
Note that the symbolg[—2] and d[—1] are the only
remaining erased symbols on the diagobal and are
recovered from parity checkg[l] and ¢[2]. Likewise,
c[-3] and d[—4] are the only remaining erase symbols
on the diagonab!!, and can be recovered using the
parity checkg[0] andz[1]. Sincec[—3] is the non-urgent
symbol, from Prop[]l it is recovered befaile-4] using
only y[0]. Thus bothc[—3] and ¢[—4] are recovered by
t="T.

Recover urgent sub-symbols:



A=T+B=7

2[2]
y[1] ¥ l
t 3 2 -1 0 1 2 3 4 5 6 7 8 9
al-1] a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]
S]\L‘:J“_':yj[’“glf:lts b[-4] b[0] b[1] b2] b[3] b[4] bi5] bl6] b[7] bI8] b[9]
c[-4] c[-3] c[1] c[2] c[3] cl4] c[5] c[6] c[7] c[8] c[9]
Urgent di-4] di-31 d[-2] 2] d3] df4] d[s] d6] a[7] d[s] a[9]
Sub-symbols| = ¢[-4) el-3] e[-2] e[-1] e2] e[3] e[4] e[5] e[6] el7] e[8] e[9]
Parity Cheek | PIF4IFYI-11] | pI-31+y[-101 | pl-21+y[-9] | pI-11+y[-8] | pl0]+y[-7] pI21+yl-5] | pl3l+y[-4] | pl4l+y[-3] | pISItyl-2] | pl6l+yl-1] | pl7I+y[0] | pI8I+y[T]l | pI91+y(2]
Subsymbols ¥ g1 41+2]-11] | q[-31+21-10] | ql-21+21-9] | ql-11+2I-8] | al01+z-7] | ql1}+2l-6] q(3]+z[-4] | q[4]+z[-3] | qISI+z[-2] | ql6l+zI-1] | ql7]+z[0] ql8]+z[1] | ql9]+z[2]
Use parity checks of C, Use parity checks of C,
Recovery of urgent
Erased
sub-symbols
Recovery of non-urgent sub-symbols

Fig. 5. A{(2,5) — (4,12)} DE-SCo code construction is given in the above figure. Théypeheck sub-symbolg[t] andg[t] of a (2,5) SCo across the
main diagonal is added to anothg, 5) SCo parity check sub-symbolst] and y[t] but applied across the opposite diagonal and shifted’by B = 7
(i.e., the two parity check checks at time instardre p[t] + z[t — 7] and q[t] + y[t — 7]).

After recovering all non-urgent sub-symbols in the pre-
vious steps, we can directly recover the urgent ones

(i.e., the bottom two rows) using parity chegsS [t] for
8 <t <11.

We now study the general case.

D. Decoding at User 1

Suppose that the symbols at time B, ...,i—1 are erased
by the channel of uset. User 1 first recovers parity checks
p'[i],...,p[i+T—1] fromq]i,...,q[i+T—1] by canceling
the parity checkp!![-] that combine withp'[-] in this period.
Indeed at time + 7 — 1 the interfering parity check ip'[i +
T — A — 1] = p''[i — B — 1], which clearly depends on the
(non-erased) source sub-symbols before time3. All parity

®3)

checksp!!'[]] before this time are also non-interfering. The

erased source symbols can be recovered idp, . .., p'[i +

T — 1] by virtue of codeC;.

E. Decoding at User 2

Suppose that the symbols at timés- aB,...,i — 1 are

erased for receiver 2. Léf 2 i — aB + T5. We use parity
checks at time < ¢ < 7 —1 to recover{sV[r]}'_},__ . inthe
first five steps where™|[r] = (so[7],...,s7_p_1[7]) denote
the set ofnon-urgent sub-symbols focC,. In the last step, we
use parity checks at time > 7 to recover the set ofion-
urgent sub-symbols folCa, sV [r] = (s7_g[7],...,s7_1[7])
(1) Recover{p'[t — Al}i>it7:

Fort > i+T, the decoder recovers parity chgak[t—A]

from q[t] by canceling the parity checkg![t] which

depend only on (non-erased) source symbols at time

or later as via[(7l9) the memory ify is limited to previ-

(4)

ousT symbols. Consequently the parity check symbols
{p'[t]}s>i+r depend only on source sub-symbols after

time i. Hence these parity checks can be canceled.

(2) Upper-left triangle:

In this step, the decoder recovers the non-urgent sub-

,bIl o | using the parity check

T-1
.- Clearly these vectors are

symbols inbl . ...
symbols {p'I[t — A]

affected by at mos{a — 1)B erasures between times

i —aB,...,i — B — 1. Furthermore, the corresponding
parity checks{p"[t — Al};>ivr = {p"[t]};>i—p have
been recovered in step (1). By constructircan recover
the erased source sub-symbols in the stated diagonal
vectors. Furthermore by applying Pr@p. 1, the non-urgent
sub-symbols are recovered from the fifst— 1)(7T'— B)
parity check columns. Taking into account the shift of
A =T+ B, it follows that all the non-urgent source sub-
symbols are recovered by time T+ (a—1)(T—B)—1 =

T -1

Recoverp![t] for i <t <i+T —1:

We consider the last column of parity checkg; + 7" —

1] = plli + T — 1] + p"[i — B — 1]. From [2T), for

., B —1 we have,

g Ly

peli— B —1] = Bi(bil p_(a—1)(kr1)-1)
= STfkfl[i —B—-1-— (Oé — 1)T]
+ hk(8T7571[7; —B—-1-— (a — 1)(T— B+ k‘)]7
st —B—1—(k+1)(a—1))).

Thus the only urgent sub-symbols involved i'[i —

B —1] are attimet =i — B—1— (o — 1)T, which are
unerased. Moreover, the non-urgent sub-symbols involved
are those ofbj! )., , which have already
been recovered in step (2). Thus, it follows that we
can reconstrucp'![i — B — 1]. A similar argument can

be used to show that we can recover all the columns
p'[i — B—1T],...,p"[i — B — 1], cancel their effect on
qlil,...,qli+T —1] and recovep![i],...,p'[i + T —1].
Upper-right triangle:

In this step, the decoder recovers the non-urgent sub-
symbols in b!_,,... bl _p using the parity checks
p'[i],...,p[i + T — 1]. Step (4) follows in a similar
way to step (2). The diagonal vectot§ g,...,b!
spanning the upper-right triangle of the erased source
sub-symbols are affected by a burst erasure of lerigjth
between times — B, ...,i — 1. Furthermore, the corre-
sponding parity checkép'[t]}i<:<i+r recovered earlier
are capable of recovering the erased source sub-symbols
in these diagonal vectors by at most time 7T —1 < 7.



(5) Recover non-urgent sub-symbols recursively: Note that the sub-symbolssg[],...,sk[.] above,

For eachk € {1,...,T — B — 1} recursively recover the also belong to vectors b£—3+(k+1)(a—1)—1v
remaining non-urgent sub-symbols as follows: b£73+(a71)7k71 which are recovered in Ind. by step

(Ind. 1) Recover the non-urgent sub-symbols in numberk +1— (a—1) < k+ 1. Since the remaining
bl  , using the non-urgent sub-symbols in erased symbols span the intenjal— aB,i — B) the

3

{bi}<it(k-1)(a—1)-p—1 and parity checksp'[ parity checks{p'![-]};>;_p recovered in step (3) can be
betweerni <t <i+T. used to recover these erased symbols.

(Ind. 2) Recover the non-urgent sub-symbols in It only remains to show that the non-urgent symbols
b?—B-ﬁ-(k—l)(a—l)’""b?—B-Hc(a—l)—l using in the diagon_a_lbII are all recovered before timg.
{bg}jzifo(kfl) and the parity checksp'[] From Proposition[]J1 all the non-urgent sub-symbols
betweeni + T <t < T. are recovered using the firgtv — 1)(T — B) columns

of the parity checks{p'[]};>;_p. Since these parity
checks are shifted by’ + B, the fall in the interval
i+T,....,i+T+(a—1)(T—-B)—1=T —1. Thus
only the parity checks before tim& are required to
recover the non-urgent source sub-symbols.

Once this recursion terminates, all the non-urgent sub-
symbols{s™[r]}:_} . are recovered by timg — 1.

We establish the claim of the recursion using induction.
Consider the case wheh = 1. According to Ind.1

the non-urgent sub-symbo{®!'};<; 51 are available

1
(from step 1). To recoveb; p_,, note that the only This completes the claim in the Ind. 1 and Ind. 2. We

erased sub-symbol in this vector before time B is finally show that all the non-urgent erased source sub-
soli—B—1] which has already been recoveredif ;_;. symbols are recovered & = 7' — B — 1. Because of

Hence the parity checks ¢f at the timesg, ..., i+7—1 the recovery along the diagonals, it suffices to show that
suffice to recover the remaining sub-symbols. According the lower left most non-urgent sub-symbol in the region

i—B,...,i —1ie., sp_p_1[i — B] Is an element of
b!_;_, =bl_,., which is clear from the definition of
bl ati — T +1 as,

to Ind. 2 the non-urgent sub-symbols i{bﬁ-}jzi,B
have been recovered in step (4). Furthermore in vectors
bi' 5,...,bi' 5., the only erased sub-symbols after
timei—B—1aresg[i— B|,...,s0[i — B+«a—2], which

are available from{bﬁ-}jzi_B. Thus the parity checks
p'![] can be used to recover the remaining non-urgent
sub-symbols in these vectors.

Next suppose the statement holds for some k. We
establish that the statement holds fee £+ 1. In Ind. 1

b1 =(soli—T+1],...,s7-p_1[i — B),...,sr_1[i]).

Similarly, we need to show thabj' 5, \ ; =

b?—B-Q—(T—B—l)(a—l)—l contains the lower right most
non-urgent sub-symbol in the region aB,...,i—B—1

i.e.,sy—p_1[i — B —1]. This too immediately follows by

the vector of interest is, applying the definition ob!! at timei — B+ (T — B —
. . 1)(a—1)—1 as,
b%—B—(k-H) =(soli — B—(k+1)],....;sx[i — B —1], ..., I )
sr—1[i = B —k+ (T —2)]). b pi(r—B-1)a-1)-1 = (so[i— B+ (T = B—=1)(a —1) — 1],
. . cvsr_pali—B—1],...,s7_1[i — aB —1]).
The erased elements in the intervalaB, ...,i— B—1 sr—p-li U:oysroafi—aB —1))

ares;jli —B—k+j—1] for j = 0,...,k. Note that
sjli — B —k+ j — 1] is precisely thej—th sub-symbol
in the diagonal vectob;' 5 . . ,. Furthermore the
diagonals of interesb;' 5, ,....bjl 5. (. ), &l
ready visited in Ind2 in the k-th recursion. Hence the
remaining sub-symbols are recovered using the parity
checks ofC;.

For Ind. 2, the first vector of interest at stép+ 1 is

(6) Recover urgent sub-symbols:

Finally, the decoder recovers urgent sub-symbols

sY[r] = (sr_B[7],...,s7_1|7]) fori —aB <7 < i at

time t = 7 + Ty using the parity check symbots'![]

and the previously decoded non-urgent sub-symbols.

We establish this claim as follows. After recovering all

the non-urgent source sub-symbdgis¥[7]}:2 -, we

can directly apply the construction 6% to recover the

b ket = (s0li = B+ k(a — 1), .., ug?ent _su_b—symbol$sU[T*]}i;1i7aB using parity checks
skli— B, spaali— B — (a—1)], ). p[-] within a delay ofT3.

Note that the sub-symbolso[.],..., sx[] above, also  Note on Computational Complexity. We note that a DE-
belong to vectorsb; . ,_y,---»bi_ gy, and are sco encoder and decoder are of a polynomial complexity as
recovered in Indl by thek—th step. Since the remainingthe DE-SCo constructions are built upon a linear convohatio
erased symbols span the interfiat aB,i— B) the parity code with finite memory. Specifically, going through the
checks{p"[-]}:>i-5 recovered in step (3) can be usedteps (1)-(4) of the DE-SCo decoder, we can conclude that
to recover these erased symbols. . since every erased sub-symbol is processed at-most ormce, th
Likewise, the last vector of interest at step+ 1 is complexity of any step is no more thanBT'. In step (5) we

11 _ . use a recursive decoder that terminateg'in3 — 1 recursions.
bizpr(ernya-p-1 = (Soli = B+ (k4 Da —1) 1], Also each step has at-mosBT and thus the complexity is
ooy 8kt — B4 (a—1) = 1], 841t — B —1],...). polynomial ina, B andT.
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VII. GENERAL VALUES OF « e Ind. 1 Recover the non-urgent sub-symbols in

1 I ; _
In this section, we show that DE-SCo codes bi—B—(k—l)b—l""’bifokb using the non-urgent

{(B.T),(aB,aT + B)} can be constructed for any  Sub-symbols in{bj'};<i\(—1)@—t)-p—1 and parity

non-integer value ofv such thatB, = «B is an integer. For checksp'[] betweeni <t <+ T.
anya = 2 > 1, leta = & wherea andb are integers and  + Ind- 211 Recover the Hon-urgent sub-symbols
2 is in the simplest form. n b By k—1)(a—b) Pis Brk(a—b)—1 using
{bl},;>i—B—k—1) and the parity checkp''[-] between
. i+T<t<T.
A. DE-SCo Construction Once this recursion terminates, all the non-urgent subbgysn
We introduce suitable modifications to the constructiofs™|7]}i—1 are recovered by timg — 1. The proof of

given in the previous section. Clearly singeis in simplest thjs recursion is also similar to the previous section anitl wi
form B must be an integer multiple df i.e., By = % € N.  pe omitted.

We first consider the case whéhnis also an integer multiple  Finally the assumption thaf is a multiple ofb (i.e. a7 is
of bie., Ty = £ € N. The case whefl" is not an integer an integer) can be relaxed through a source pseudo-expansio

multiple, can be dealt with by a suitable source expansisn, gproach as follows:

outlined at the end of the section. « Split each source symbol intonT sub-symbols
o Let C; be the single use(B,T) = (bBy,bTy) SCo soli], - -, snr—1[i] Wwheren is the smallest integer such
obtained by splitting each source symbfl into T, sub- thatnaT is an integer.
symbols (soli], ..., sm,—-1[¢]]) and producingB, parity « Construct an expanded source sequegicesuch that
check sub-symbolp' = (pgli,...,p%,_,[i]) at each $lni + r] = (sprlils...,ser1yr-1[i]) where r €
time by combining the source sub-symbols along the {0,....n—1}.
main diagonal with an interleaving step of sizée., « We apply a DESCo code with parameté(s.B, nT') —

(naB,n(aT + B))} to 3[.] using the earlier construction.
Notice that since the channel introduces a totaBpfrasures
o LetCobea((a—1)B,(a—1)T) = ((a—b) By, (a—b)Ty) on the original input there will benB; erasures on the
SCo also obtained by splitting the source symbols #fito expanded stream. These will be decoded with a delayTof
sub-symbols(so[i], ..., st,—1[i]) and then constructing on the expanded stream, which can be easily verified to incur
a total of By parity checksp' = (pf![i],....p}} _,[i]) a delay ofT1 and[T>] on the original stream for user 1 and
by combining the source sub-symbols along the opposRgespectively.
diagonal and with an interleaving step of size- (a —)
ie., VIIl. N UMERICAL RESULTS

Ior- . . To examine fundamental performance, we compare between
Pili] = Br(soli ==kl ... sy [i=To—kt]). (B81) 0 proposed DE-SCo codes and sequential random linear
« Introduce a shiftA = T+ B = b(Ty + By) in the stream codes (RLC) numerically and discuss advantages and disad-
p''[] and combine with the parity check streani-] i.e., vantages of the proposed codes. The encoder for DE-SCo
qli] = p'[i] + p"[i — A]. The output symbol at timeis codes is the one discussed in secfion VI-B. For RLC, at each
x[i] = (s[i], qli]). time stept a new source symbal[t] over an alphabe§ is
revealed to the transmitter and encoded into a channel dymbo
x[t] through a random mapping(.) as follows,

p[i] = Aw(soli — bTo — kb, ..., s, _1]i —b—kb]) (30)

B. Decoding

The decoding steps is analogous to the case when zft] = fe(s[0], ..., s[t]), (32)
integer. We sketch the main steps. As before the decoding, f, : St — X.
is done along the diagonal vectds$= (soli], . .., sz, —1[i + In our simulations, we do not construct an explicit function
(To — 1)b]), bi' = (soli], ..., s7y—1[i— (To— 1)4). f:(-) but instead assume that the decoder succeeds with

Decoding at User 1: For the first user, the same argumerttigh probability whenever thimstantaneous information debt
applies as in previous section i.e., a shiftof= b(To +By) in  becomes non-positive. Intuitively, the information debta
p''[-] guarantees that user 1 can cancel the interfering parnityhning sum of the gap between information transmitted over
checks to recover thp![-] stream of interest. the channel and the information acquired by the receiver.
Decoding at User 2: We verify that steps in sectidn VIIE We refer the reader td [1, Chapter 9], [19] for details. Our
continue to apply. A little examination shows that thaimulated decoder keeps track of the erasure pattern and
claims (1)—(4) as well as the proofs in the previous casetrieves the current segment of source symbols as soon as
follow immediately as they hold for an arbitrary interleagi the information debt is non-positive. While every symbol in
step forC, and do not rely on the interleaving step@fbeing this setup is ultimately decoded, any symbols that incudayde
1. The induction step needs to be modified to reflect that thieat exceeds the maximum delay, are declared to be lost.
interleaving step size af; is b > 1. In our simulations we divide the coded data stream into
For eachk € {1,...,T — B — 1} recursively recover the segments of 2000 symbols each and generate one burst erasure
remaining non-urgent sub-symbols as follows: in each segment. Each symbol occupies one millisecond. The
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burst erasure length is uniformly distributed betwé®B,,,...] of T.
symbols and a symbol is declared to be lost if it is not Next we see that DE-SCo always outperforms RLC for user
recovered by its deadline. We plot the average loss prababill. This can be explained as follows. A raie DE-SCo can
for a stream ofl0° segments for both; (1) DE-SCo code withrecover completely from an erasure burst of lendth or
burst-delay parametef§B,T), (aB,aT + B)} for « = 2 smaller for user 1. It fails to recover the erased symbolkéf t
and (2) sequential RLC of the same rate for the two usershorst length exceedB;. The RLC only recovers completely
Fig.[8 and Fig[l7 respectively as a function of the maximufirom an erasure burst of lengfiil — R)T;]. It provides partial
erasure burst length. recovery for burst erasures up to lendth and fails to recover
We make a few remarks on the numerical results. We segy source symbols when the erasure length excBed$hus
that if the maximum size of erasure burst is less than a atitidhe performance of DE-SCo always dominates RLC for user
threshold for each scheme then the loss probability is Z&o. 1 as illustrated in Fig.]6.
the DES-Co construction this threshold equ@js For RLC at For user 2, the delay is given b, = g—le + B;. DE-
rate R it can be easily verified that if the burst-length exceed3Co can correct all erasures up to lengbh and fail to
[(1— R)T7, the first symbol will not be decoded with a delayrecover any symbols if the erasure length is beyBadWhile



threshold for perfect recovery faRLC' is [(1 — R)T;| < B,
interestingly it allows for partial recovery for burst lehg up
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B2 . . .
tog = Bg—i—ﬁl. This threshold is obtained as follows. Suppos@g] z. Li, A. Khisti and B. Girod, “Forward error correctiorof low-delay

an erasure of length occurs at timg = 0,1, ...
total information debt at this point iSR. If the information
debt becomes non-positive after subsequent non-erasediy)
channel symbols then we must have tifR < v(1 — R).
SubstitutingR = L
is the maximum allowable delay for user 2, we recover the
desired threshold. Sincé > B, there is a range of erasure
burst lengths where the RLC code can recover a partial subidat
of source sub-symbols whereas DE-SCo fails to recover any
source sub-symbols. This explains why DE-SCo does not
outperform random network coding in the high loss reginﬂ-}“]
for user 2.
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IX. CONCLUSION
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that do not commit apriori to a given delay, but rather achiev
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these codes as well as the associated decoding algorithm.
Numerical simulations suggest that these codes outperfc
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the burst-erasure nature of the channel.

A number of interesting future directions remain to b
explored. The general problem of designing codes that are «
timal for any feasible paif (B;,T1), (B2, T2)} remains open.
We expect to report some recent progress along this lindein t
near future. While our construction can be naturally exéehd
to more than two users the optimality remains to be seen. Our
initial simulation results indicate that the performane@ng of
the proposed code constructions are limited to burst-ezasu
channels. Designing codes with similar properties for more
general channels remains an interesting future direction.
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