arxiv:1102.4599v1 [cs.Sl] 22 Feb 2011

Towards Unbiased BFS Sampling

Maciej Kurant Athina Markopoulou Patrick Thiran
EECS Dept EECS Dept School of Computer & Comm. Sciences
University of California, Irvine University of California, Irvine EPFL, Lausanne, Switzerland
maciej.kurant@gmail.com athina@uci.edu patrick.thiran@epfl.ch
]
Abstract—Breadth First Search (BFS) is a widely used ap- E?,’ <’f> RandomWak(RW) |
proach for sampling large unknown Internet topologies. ltsmain §8 (k) Graph traversal techniques:
advantage over random walks and other exploration techniges 273 o dues:
is that a BFS sample is a plausible graph on its own, and therefe = £ - DES st Fire
we can study its topological characteristics. However, it &s been  § 2 - Snowball / RDS
empirically observed that incomplete BFS is biased toward igh- §§
degree nodes, which may strongly affect the measurements. sz (k) Metropolis-Hastings Random Walk (MARW)
In this paper, we first analytically quantify the degree bias =
of BFS sampling. In particular, we calculate the node degree < .

distribution expected to be observed by BFS as a function ofhe 0 f fraction of sampled nodes 1
fraction f of covered nodes, in a random graphRG(py) with an ) i )

arbitrary degree distribution pj. We also show that, for RG(ps), Fig. 1. Overview of analytical results. We calculate the node degree
all commonly used graph traversal techniques (BFS, DFS, Fest distribution g, expected to be observed by BFS in a random grag(py.)

. . . with a given degree distributiopy, as a function of the fraction of sampled
Fire, Snowball Sampling, RDS) suffer from exactly the same ilas. nodesf. (In this plot, we show only its averag@yy).) We show RW and

Nex_t, based on our theoretical analysis, Wwe propose a pracdl  MyRwW as a reference(k) = (pg) is the real average node degree, and
BFS-bias correction procedure. It takes as input a collecte BFS (k2) is the real average squared node degreeObservations: (1) For
sample together with its fraction f. Even though RG(px) does a small sample size, BFS has the same bias as RW; with incgedisithe
not capture many graph properties common in real-life graphs bias decreases; a complete BFS=(1) is unbiased, as is MHRW (or uniform
(such as assortativity), our RG(px)-based correction technique sampling).  (2) All common graph traversal techniques (tf@not revisit
performs well on a broad range of Internet topologies and on the same node) lead to the same bias.  (3) The shape of the B#S cu
two large BFS samples of Facebook and Orkut networks. depends_ on the real node (_:iegree_d|str|_bupgnbut it is always monotonically

Finally, we consider and evaluate a family of alternative 9decreasing; we calculate it precisely in this paper. ~ (4) We aalculate
correction procedures, and demonstrate that, although the are the original distributiorp;, based on the sampleg. and f (not shown here).
unbiased for an arbitrary topology, their large variance makes
them far less effective than theRG(px)-based technique. . L . .

Index Terms—BFS, Breadth First Search, graph sampling, its variations([5.5], as well as the Metropolis-Hastingsi&am
estimation, bias correction, Internet topologies, OnlineSocial Walk (MHRW). They are used for sampling of nodes on the

Networks. Web [7], P2P network$ [8]5[10], OSNSs|[2)11] and large graphs
| INTRODUCTION in general[[1R2]. Random walks are well studied [4] and result
' in samples that have either no bias (MHRW) or a known bias
A large body of work in the networking community focuseg$r\w) that can be corrected fdr [13]J=[16]. In contrast to BFS,
on Internet topology measurements at various levels, et random walks collect a representative sample of nodesrrathe
the IP or AS connectivity, the Web (WWW), peer-to-peefhan of topology, and are therefonet the focus of the paper
(P2P) and online social networks (OSN). The size of theggwever, we use them as baseline for comparison.
networks and other restrictions make measuring the entirgn the second categongraph traversals each node is
graph impossible. For example, learning only the topolofly Qisited exactly once (if we let the process run until com-
Facebook social graph would require downloading more thaetion and if the graph is connected). These methods vary
2507'B of HTML data [2.3], which is most likely impractical. jn the order in which they visit the nodes; examples include
Instead, researchers typically collect and study a small bgFS Depth-First Search (DFS), Forest Fire (FF), Snowball
representative sample of the underlying graph. Sampling (SBS) and Respondent-Driven Sampling (BDS)
In this paper, we are particularly interested in samplingraph traversals, especially BFS, are very popular andlyide
networks that naturally allow to explore the neighbors of gsed for sampling Internet topologies.,g, in WWW [17]
given node (which is the case in WWW, P2P and OSNyr 0SNs [18]-[20]. [10] alone has about 380 citations as of
A number of graph exploration techniques use this basifacember 2010, many of which use its Orkut BFS sample.
operation for sampling. They can be roughly classified in tWphe main reason of this high popularity is that a BFS sam-
categories: (i) random walks, and (i) graph traversals.  ple is a plausible graph on its own. Consequently, we can

In the first categoryrandom walksnodes can be revisited. st dy its topological characteristios., shortest path lengths,
This category includes the classic Random Walk (RW) [4] and
IRDS is essentially SBS equipped with some bias correctiatauture
This paper is a revised and extended versiori_bf [1]. (omitted in Fig[1).
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clustering coefficients, community structure), which isig blocal graph properties (such as graph diameter), which tis ou

advantage of BFS over random walks. Of course, this approanhin direction for the future.

is correct only if the BFS sample is representative of th&@nt  oytline. The outline of the paper is as follows. Sectloh II

graph. At first sight it seems true.g, a BFS sample of a gjscusses related work. Sectibnl Ill presents BFS and other

lattice is a (smaller) lattice. graph traversal algorithms under study. We also briefly de-
Unfortunately, this intuition often fails. It was Observe%cribe random walks that are used as baseline for compar-

empirically that BFS introduces a bias towards high-degre@n throughout the paper. Sectibnl IV presents the random

nodes [[17.21}+[23]. We also confirmed this fact in a recegfaph RG(p,) model used in this paper. Sectibn V analyzes

measurement of FacebooK[2,3], where our BFS crawler foufk degree bias of BFS. SectibnlVI shows how to correct

the average node degrée4, while the real value is onl94.  for this bias. Sectiofi VIl evaluates our results in simolasi

This means that the average node degree is overestimatech by sampling real world networks. Section VIII introdsice

BFS by about 250%! This has a striking effect not only on thgnd evaluates alternative BFS-bias correction technidbes

node property statistics, but also on the topological roetri - tion [[X] gives some practical sampling recommendations, and
Despite the popularity of BFS on the one hand, and iection X concludes the paper.

bias on the other hand, we still know relatively little about

the statistical properties of node sequences returned (8, BF Il. RELATED WORK

The formal analysis is challenging because BFS, similarly BFS used in practiceBFS is widely used today for ex-

to every sampling without replacement, introduces compl@oring large networks, such as OSNs. [n][18], Ahn et al.

dependencies between the sampled nodes difficult to ddal wised BFS to sample Orkut and MySpace. [In| [19] &nd [27],

mathematically. Mislove et al. used BFS to crawl the social graph in four
opular OSNs: Flickr, LiveJournal, Orkut, and YouTube.][19
lone has about 380 citations as of December 2010, many of

for their biases, with the following main contributions. which use its highly bias_ed Orkut BFS sample. [20],_Wi|son

et al. measured the social graph and the user interactigigra

First, we focus on a random grapRG(px) with a given : ) .
(and arbitrary) degree distributign.. We calculate precisely of Facebook using seyeral BFSs, each BFS constrained in one
of the largest 22 regional Facebook networks. In our recent

the node degre_e distributiog e_xpected to be observed bywork [2[3], we have also crawled Facebook using various
BFS as a function of the fractiori of sampled nodes. We samplina techniques. including BES. RW and MHRW
illustrate this and related results in FIg. 1. To the bestwf o ping ques, 9 ' :

- . . . . BFS bias.It has been empirically observed that incom-
E?%ﬁlgdgaerhg}:i; the first analytical result describing kfias plete BFS and its variants introduce bias towards highekegr

nodes [[17] [[21L]4[28]. We confirmed this in Facebook [2,3],

Second, based on our theoretical analysis, we propos%vl%ch, in fact, inspired and motivated this paper. Analogou

practical BFS-bias correction prqcedure. It Fakes as IrmUtbias has been observed in the field of social science, for
collected BFS sample together with the fractiprof covered . :
sampling techniques closely related to BR®,., Snowball

B e e o 187 Samping and FOSTIS 4.5 (e SectGn o)

graph propegrtiez commoﬁ in real-life gragﬁs (such as a‘ﬁgor _Analyzing BFSTo the best of our knowledge, the sampling
. RG(p)-based tion techni ¢ ias of BFS has not been analyzed so [36] and [37] are
tivity), our (px)-based correction technique performs we closest related papers to our methodology. The original

on a broad range of Internet topologies, and on two large B : :
samples of Facebook and Orkut networks. We make its rea per by Kim [36] analyzes the size of the largest connected

. . . . mponentin classic Erdos-Rényi random graph by esdbnti
to-us_epyt hon implementation pUb“CIY aya|lab|e 4]'_ applying the configuration model with node degrees chosen
T.h'rd' we complement th_e above findings by Proposing gnm 4 poisson distribution. To match the stubs (or “clones”
family of alternative correction procedures that are usédih

X ; ) in [36]) uniformly at random in a tractable way, Kim proposes
for any arbitrary topology. Although seemingly attractitieey a “cut-off line” algorithm. He first assigns each stub a ramdo

are characterized by large variance, which makes themdar lf"ndex from [0, np], and next progressively scans this interval.

effective than thelG:(py)-based correction technique. Achlioptas et al. used this powerful idea [n[37] to study the
Scope. Our theoretical results hold strictly for the randonbias of traceroute sampling in random graphs with a given
graph modelRG(py). (However, we show that they applydegree distribution. The basic operation [in][37] is tracézo
relatively well to a broad range of real-life topologies.pW(i.e., “discover a path”) and is performed from a single node
also restrict our attention to static graphs with self-desdi un- to all other nodes in the graph. The union of the observed
weighted social links; dynamically varying graphd [8.8}2 paths forms a “BFS-tree”, which includes all nodes but nsisse
[30] and interaction graphs [31]—[B3] are out of the scope gbme edges(g, those between nodes at the same depth in the
this paper. tree). In contrast, the basic operation in the traversahou
Finally, our RG(py)-based bias-correction procedure is depresented in our paper is to discover all neighbors of a node,
signed for local graph properties, such as node statisfios. and it is applied to all nodes in increasing distance from
analytical results can potentially help the estimation ohn the origin. Another important difference is that [37] steslia

Contributions. Our work is a step towards understandin
the statistical characteristics of BFS samples and cangect



completed BFS-tree, whereas we study the sampling processsdom walks, which differ in fundamental aspects (sangplin
when it has visited only a fractiofi < 1 of nodes. Indeed, a with replacement vs without, sampling of nodes vs of topol-
completed BFS f(=1) is trivial in our case: it has no bias, asogy) from the BFS sampling addressed here.

all nodes are covered.

In the field of social science, a significant effort was put to
correct for the bias of BFS's close cousin - Snowball Sangplin Let G = (V, E) be a connected graph with the set of
(SBS) [34]. SBS together with a bias correction procedure ¥§rticesV, and a set of undirected edgés Initially, G is
called Respondent-Driven Sampling (RDS)I[35]. The Cu,t!-,emunknown, except for one (or some limited number of) seed
used correction techniqug [L5]16] assumes that nodes car'8ge(s). When sampling through graph exploration, we begin
revisited, which essentially approximates SBS by Randofhthe seed node, and we recursively visit (one, some ottsll) i
Walk (see SectioR VI-AL). In this paper, we formally showreighbors. We distinguish two main categories of explorati
that this approximation is valid if the fractiofi of sampled techniques: random walks and graph traversals.
nodes is relatively smaII._However, 38]_ points out, thg Random walks (baseline)
current RDS methodology is systematically biased for lafge L )
Consequently[[39] proposed an SBS bias correction methodq"’mdo_m walks aIIovv_ rewsmng the same ?Ode many times.
based on the random grag®G(py). This is essentially the We considét the following classic examples:
same basic starting idea as used in our original paper fellis 1) Random Walk (RW):In this classic sampling tech-
independently[J1]. However, the two papers fundamentalfjque [4], we start at some seed node. At every iteration, the
differ in the final solution: [[39] proposes a simulationid next-hop nodev is chosen uniformly at random among the
approach, whereas we solve the problem analytically. neighbors of the current node It is easy to see that RW

Another recent and related paper [S][40]. The authol¥roduces a linear bias towards nodes of high dedree [4].
propose and evaluate a heuristic approach to correct th€) Metropolis Hastings Random Walk (MHRWn this
degree bias in theth generation of SBS, based on thaechnique, as in RW, the next-hop nodéds chosen uniformly
values measured in the generatior- 1. In practice, this at random among the neighbors of the current nodelow-
generation-based scheme may be challenging to implemesvigr, with a probability that depends on the degrees ahdu,
because the number of nodes per generation may grow cld#dRW performs a self-loop instead of moving to. More
to exponential withi. Consequently, we are likely to face aspecifically, the probability>"!, of moving fromw to w is as
situation where collecting the next generation is prohiely  follows [50]: ’
expensive, while the current generation has much fewershode

Ill. GRAPH EXPLORATION TECHNIQUES

. i L .min(1, £2) if w is a neighbor ofu
than our sampling capabilities allow for. e min(l 1 . '
u pling capabilit W P = 1D L PR i w =, D
Probability Proportional to Size Without Replacement 0 otherwise

(PPSWOR).At a closer look, ourRG(py)-based approach ) .
reduces BFS (and other graph traversals) to a classic saffi€rek. is the degree of node. Essentially, MHRW reduces
pling design called Probability Proportional to Size Witho the tranS|_t|ons to hlgh—d_egree nodes and thus eliminates th
Replacement (PPSWOR) [41]=]48]. Unfortunately, to thet bedegree bias of RW. This property of MHRW was recently
of our knowledge, none of the existing results is directi§Ploited in various network sampling contexts [2.8.1,11
applicable to our problem. This is because, speaking in the Graph traversals

terms used later in this paper, the available results eitherI
(i) require the knowledge of;(f) (expected, not sampled)
as an input, (i) propose how to calculajg(f) for the first

n contrast, graph traversals never revisits the same node.
At the end of the process, and assuming that the graph is

two nodes only, or (iii) calculate,(f) as an average of manyconnected, all nodes are visited. However, when using graph

simulated traversals of the known graph (in contrast, wg Or@raversals for sampling, we terminate after having codéc

have one run on unknown graph) ]48]. In fact, this work cafiecion/ < 1 (usually f < 1) of graph nodes.

be naturally extended to address the problems with PPSWOR1) Breadth First Search (BFS)BFS is a classic graph
traversal algorithm that starts from the seed and progrelysi

explores all neighbors. At each new iteration the earligst e

) . ﬁ'lored but not-yet-visited node is selected next. Conseifyye
changes are: (i) a successful application of & (p;)-based BFS discovers first the nodes closest to the seed.
correction procedure to a wide range of large-scale réal-li

Internet topologies (Tab@lll, Figl 5, Figl 6(d), Section ), 2) Depth First Search (DFS)?I’his technique is similar to
(ii) bias correction procedures for arbitrary node projesrt BFS, except _th_at at each iteration we select the latest gaqblo
(Sectior[\), (iii) a complementary BFS-bias correctiontte but not-yet-visited node._ As a result, DFS explores first the
nique (Sectiof VIII), and (iv) a publicly available ready-ise nodes that are faraway (in the number of hops) from the seed.

pyt hon implementation of our approach. . _ o
Finall Id like t t that tw ther JSA We include random walks only as a useful baseline for coraparivith
Inally, we wou Ike 1o stress that our two other %raph traversalse(g, BFS). The analysis of random walks does not count as

submissions[]B.49] focus on sampling techniques based ®tontribution of this paper.

Previous version of this paperhis work is a revised and



kG: V. E) gre%‘?gecovf‘";gé';desv and edgest or “edges-to-be”. Next, all thesg, . k, = 2|E| stubs are
PE = ‘—é‘ > vev le,=k | degree distribution irG; randomly matched in pairs, until all stubs are exhausted (an
(k) = (pr) =X, kpr | average node degree @ |E| edges are created). In Fig. 2 (ignore the rectangular iaterv
9k expected sampled degree distribution [0,1] for now), we present four nodes with their stubs (left)
(ar) =2 kax expected sampled average node degree d le of thei d tchi iaht
e sampled degree distribution and an example of their random matching (right).
Dk estimated original degree distribution &

fraction of nodes covered by the sample
! Y P V. ANALYZING THE NODE DEGREEBIAS

TABLE | _ _ _
NOTATION SUMMARY. In this section, we study the node degree bias observed

when the graph exploration techniques of Secfioh Il are run
. . ~on the random grapRG(p,) of Section[IV. In particular,
where for every neighbar of the current node, we flip a coin, \ye 4re interested in the node degree distributiprexpected
with probability of succesp, to decide if we explore. FF y, pe gpserved in the raw sample. Typically, the observed
reduces to_ BFS fop=1. It is p055|_ble that _thls process dieSjistribution is different from the original oney # py., with

out before it covers all nodes. In this case, in order to mdke 'ﬁigher average valuéy,) > (pi) (i.e. average sampled and

comparable with other tgchniques, we revive the process fr%bserved node degree, respectively). Below, we defives
a random node already in the sample. Forest Fire is 'nSpVedé’function ofpx and, in the case of BFS, of the fraction of
the graph growing model of the same name proposed_in [séalmpled node.

and is used as a graph sampling techniqué_in [12].

4) Snowball Sampling (SBS) and Respondent-Driven San- .
pling (RDS): According to a classic definition by Good—'&? Random walks (baseline)
man [34], am-name Snowball Sampling is similar to BFS, but We begin by summarizing the relevant results known for
at every node, not all k,,, but exactlyn neighbors are chosenwalks, in particular for RW and MHRW. They will serve as a
randomly out of allk,, neighbors ofv. Thesen neighbors are reference point for our main analysis of graph traversdisvhe
scheduled to visit, but only if they have not been visitebef 1) Random Walk (RW)Random walks have been widely
Respondent-Driven Sampling (RDS$) [15/16,35] adopts SB%

to penetrate hidden populations (such as that of drug azjdic% udied, s_ed:_ﬂ4] for an excellent Survey. In any given cotaf_dec
in social surveys. In Sectioh]ll, we comment on currerﬁnd aperiodic graph, the probability of being at a particula

technigues to correct for SBS/RDS bias towards nodes %?de zwconvgrges at equilibrium to the stationary distribu

. tion 72 = . Therefore, the expected observed degree

higher degree. L 2l
distribution g} Is

3) Forest Fire (FF): FF is a randomized version of BFS

IV. GRAPH MODEL RG(p)

A basic, yet very importqnt property (_)f every graph i; its ¢ = wajw. Lig,=k} = ipk Vi =—5. @
node degree distributiopy, i.e., the fraction of nodes with v 2|E|
degree equal té&, for all & > 0f Depending on the network, ) ) )
the degree distribution can vary, ranging from constagrele Where(k) is the average node degree(in EQ-.[Z) is essentially
(in regular graphs), a distribution concentrated arounel tRiMilar to calculation in [[IB][16]. As this holds for any
average valuee(g, in Erdos-Rényi random graphs or in wellfixed (and connected and aperiodic) graph, it is als_o true for
balanced P2P networks), to heavily right-skewed distidinst all connected graphs generated by the configuration model_.
with k covering several decades (as this is the case in Wwigonsequently, the expected observed average node degree is
unstructured P2P, Internet at the IP and Autonomous System S 2 k2)
level, OSNs). We handle all these cases by assuming that we (V) = quzw = kN PR AU (3)
are givenany fixed node degree distributiop,. Other than & (k) (k)
that, the graplG is drawn uniformly at random from the set
of all graphs with degree distributign.. We denote this model Where(k?) is the average squared node degre€'itWe show
by RG(py). this value<<’“T>> in Fig.[d.
i BecaqtseRG(g)ak) m'”?:jcs a(;] ar‘?c!tr?_ry SOde degrge dl_strlE)u- 2) Metropolis Hastings Random Walk (MHRWj:is easy
lon py, 1t can be considered a Tirst-order approximation OIo show that the transition matri’ shown in Eq[(L)
real-life graphs. Of course, there are many graph prop;ert‘gads to a uniform stationary distrib&f%a‘x”: L [50], and
other thanp,, that are not captured bRG(py). However, we Vi '

show later that, with respect to the BFS sampling bi&G{py.) consequently:
approximates the real Internet topologies surprisingljf.we W 4)
We use a classic technique to generB&(p;,), called the % Pk
configuration mode[52]: each nodev is given k, “stubs” @) = D kg™ = > kpe = (k). (5)
k k

3As we definep;, as a ‘fraction’, not the ‘probability’ p;, determines the . .
degree sequence in the graph, and vice versa. In Fig.[, we show that MHRW estimates the true mean.



B. Graph traversals (Main Result) exponentially with the number of nodd¥’|, making the

In both RW and MHRW the nodes can be revisited. sroblem untractable. Therefore, we adopt an alternative co
the state of the system at iteratian- 1 depends only on s_tructi.on ofC_J - by iteratively s_electin@ on-the-fly {.e, every
iteration i, which makes it possible to analyze with MarkoJime line 4 is executed), uniformly at random from all still
Chain techniques. In contrast, graph traversals do nawdtlo Unmatched stubs. By the principle of deferred decision, [53
node revisits, which introduces crucial dependencies &etw these two approaches are equivalent.
all the iterations and significantly complicates the analys With the help of the on-the-fly approach, we are able to
To handle these dependencies, we adopt an elegant technij(ite down the equations we need. Indeed, let us denote by
recently introduced in[[36] (to study the size of the largest: € V the ith selected node, and I€t(X; = u) be the
connected component) and extended i [37] (to study the bRi§bability that node: € V' is chosen as a starting node. It is
of traceroute sampling). However, our work differs in man§asy to show that with=2[E| we have

aspects from botH [36] and [37], on which we comment in f

detail in the related work Sectidd I1. P(Xo=v) = > —— P(Xi=u) (6)
1) Exploration without replacement at the stub levele uzv '

begin by defining Algorithm 1 (below) - a general graph P(X;=w) = Z Z ke R P(Xi=u), (7)

traversal technique that collects a sequence of nSgesthout VAW uFw,v Z=ky—ku 2=k

replacements. To be compatible with the configuration model . .

. ! , and so on. Theoretically, these equations allow us to caeul
(see Sectiof 1V), we are interested in the procasthe stub . :

. . the expected node degree at any iteration, and thus theedegre

level where we consider one stub at a time, rather than OPE < of BES
node at a time. An integral part of the algorithm is a quéue N . o
that keeps the discovered, but still not-yet-followed stub 3) Breaking the dependencieShere is still one problem
First, we enqueue ofp all the stubs of some initial nodg, With the equations above. Due to the increasing number of
and by settingS « [v1]. Next, at every iteration, we dequeudiested sums, the results can be calculated in practice fsta fi
one stub fromQ, call it a, and follow it to discover its partner- few iterations only. This is because we select stutmiformly

stubb, andb’'s ownerw(b). If nodew(b) is not yet discovered, and independently at random from all thematchedtubs. So
i.e, if v(b) ¢ S, then we append(b) to S and we enqueue the stub selected at iteratiandepends on the stubs selected

on Q all other stubs of(b). at iterationsl ...7—1, which results in the nested sums. We
remedy this problem by implementing the on-the-fly approach
Algorithm 1 Stub-Level Graph Traversal as follows. First, we assign each stub a real-valued index

drawn uniformly at random from the interva), 1]. Then,
every time we process line 4, we pitlas the unmatched stub
with the smallest index. We can interpret this as a contisuou
time process, where we determine progressively the partner

1: S+ [v1] and @ « [all stubs ofv;]
2: while @ is nonemptydo
3. Dequeue: from @

Discovera’s partnerb ! /
if v(b) ¢ S then of stubs dequeued frond), by scanning the interval from
Appendu(b) to S time t=0 to t=1 in a search of unmatched stubs. Because

the indices chosen by the stubs are independent from each

else other, the above trick breaks the dependence between tie stu
Removeb from Q which is crucial for making this approach tractable.

100 end if In Fig.[d, we present an example execution of Algorithm 1,

where line 4 is implemented as described above.

Enqueue o) all stubs ofv(b) exceptd

© e N Ok

11: end while

4) Expected sampled degree distributigif®. Now we are
Depending on the scheduling discipline for the elementsady to derive the expected observed degree distribyiion
in @ (line 3), Algorithm 1 implements BFS (for a first-in firstRecall that all the stub indices are chosen independently an
out scheduling), DFS (last-in first-out) or Forest Fire ¢firs uniformly from [0, 1]. A vertexv with degreek is not sampled
in first-out with randomized stub losses). Line 9 guarantegst at timet if the indices of all itsk stubs are larger thah
that the algorithm never tracebacks the edges,that stuba  which happens with probabilityl —¢)*. So the probability
dequeued fron® in line 3 never belongs to an edge that hathatv is sampled before time is 1—(1—t)*. Therefore, the
already been traversed in the opposite direction. expected fraction of vertices of degréesampled before is

2) Discovery on-the-flyln line 4 of Algorithm 1, we follow &
stuba to discover its partneb. In a fixed graph, this step Fi(t) = pe(1=(1=1)%). (8)
is deterministic. In the configuration mod&G(py), a fixed By normalizing EqQ[(B), we obtain the expected obsenie, (
graph G is obtained by matching all the stubs uniformly atsampled) degree distribution at tine
random. Next, we can sample this fixed graph and average the
result over the space of all the random graghtG(p;,) that BFs Jr(t) pr(1 — (1=1)%)
have just been constructed. Unfortunately, this space grow g (1) = -

Y0 - Swa-a-oy 9
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0 time ¢ (index) 1 0 current timet 1 0 time ¢ (index)

Fig. 2. An illustration of the stub-level, on-the-fly grapkpéoration without replacements. In this particular exéengve show an execution of BFS starting

at nodev;. Left: Initially, each nodev hask, stubs, wherek, is a given target degree af Each of these stubs is assigned a real-valued number drawn
uniformly at random from the intervgD, 1] shown below the graph. Next, we follow Algorithm 1 with a $tag nodewv;. The numbers next to the stubs

of every nodev indicate the order in which these stubs are enqueued)on Center: The state of the system at tinie All stubs in [0, ¢] have already
been matched (the indices of matched stubs are set in pteh Il unmatched stubs are distributed uniformly at randmn (¢, 1]. This interval can contain
also some (here two) already matched stub&ight: The final result is a realization of a random graphwith a given node degree sequence.( of the
configuration model)G may contain self-loops and multiedges.

Unfortunately, it is difficult to interprei;™(¢) directly, be- We now take the derivative of the above equation with respect
causet is proportional neither to the number of matched edgés ¢, which results in the conditional probability density
nor to the number of discovered nodes. Recall that our pgimdunction kv(ll_—*tto)kvfl. Settingt — to (but keepingt > ty),

goal is to expresg;™ as a function of fractiory of covered reduces it tok,, which is the probability density that is
nodes. We achieve this by calculatinff¢) - the expected sampled at,, given that it has not been sampled before. This

fraction of nodes, of any degree, visited before titne means that at every point in time, out of all nodes that hate no
B B & yet been selected, the probability of selectinig proportional
ft) = zk: fe(t) =1 zk:pk(l—t) : 10) {5 its degreé,. Therefore, this scheme is equivalent to node

sampling weighted by degree, without replacements.
Becausep, > 0, andp, > 0 for at least oné: > 0, the term
7 : . .
2k _p’“(l_t) s continuous and strictly decreasing from 1to 7) Equivalence of traversals witfi— 0 to RW: Finally, for
0 with ¢ growing from O to 1._ T_hus, for € [0,1] th_ere exists F-+0 (and thust—0), we havel —(1—t)* ~ kt, and Eq.[[®)
a well defined=1(f) that satisfies Eq.(10).e., the inverse of g ojifies to Eq.[[R). This means that in the beginning of the

J(). Although we cannot compute f) analytically (except gampiiing process, every traversal technique is equivatent
in some special cases such as fox 4), it is straightforward RW, as shown in Fig. 1 fof—0

to find it numerically. Now, we can rewrite Edq.](9) as

() = pe(1 = (1=t(f)") 7 (11) 8 (¢ isdecreasingif: Asin Sectiof VB2, letX; € V
>p(l = (1=t(f)) be theith selected node, and let= 2|E|. We have shown
which is the expected observed degree distribution afteereo above that our procedure is equivalent to weighted sampling
ing fraction f of nodes of grapi@. Consequently, the expectedwithout replacements, thus we can wrigX; = u) = £,
observed average degree is Now, it follows from Eq. (®) thatP(Xo = w) = 2= . q,,
where o, = >, .., 4. Because for any two nodes
la)(f) = Xk: ko agi™(f)- (12) and b, we havze:af— ' 2k — k) /(2 — ko) (2 — ko),

_ _ a,, strictly decreases with growing,,. As a result,P(X5)
In other words, E4.(11) and EQ.{12) describe the bias of BF$more concentrated around nodes with smaller degrees than
sampling undeRG(py.), which was our first goal in this paper.ig P(X;), implying thatE[kx,] < E[kx,]. We can use an
Below, we further analy_ze these equations to get more itﬂ;igl&nalogous argument at every iteratiore [V|, which allows
in the nature of BFS bias. us to say thaE[kx,] < E[kx, ,]. In other words(¢™®)(f) is

5) Equivalence of traversal techniques und&i¥’ (p): An  a decreasing function of.

interesting observation is that, under the random grapheimod A practical consequence is that many short traversals are
RW (py), all common traversal technlque§ (BFS, DFS, I:'?_ﬁore biased than a long one, with the same total number of
SBS, etc) are subject to exactly the same bias. The expdmagamples_
is that the sampled node sequerteas fully determined by

the choice of stub indices o, 1], independently of the way 9) Comments on the graph connectivitiote that the
we manage the elements ) configuration modeRG(py) might result in a grapldz that is

6) Equivalence of traversals to weighted sampling withofiot connected. In this case, every exploration techniquerso
replacement: Consider a nodes with a degreek,. The only the component’ in which it was initiated; consequently,
probability thato is discovered before time, given that it the Pprocess described in Section VB3 stops dfide covered.

has not been discovered befage< t, is i In practice, it is also possible to efficiently generate a
. B 1—t\"™ simple and connected random graph with a given degree
P(v before timet | v not beforety) = 1— (Tto) (13) sequence[54].



VI. CORRECTING FOR NODE DEGREE BIAS B. Graph traversals

In the previous section we derived the expected observedJnder BFS and other traversals, the inclusion probabil-
degree distributiong;, as a function of the original degreeity =27 (i.e, the probability of nodev being included in
distribution p,. The distributiong;, is usually biased towards sampleS) of nodev € V' is proportional to
high-degree nodese., {qr) > (pi). Moreover, because many e
node properties are correlated with the node dedree [, the 7 o~ e o (1—t(f),
estimates are also potentially biased. For exampleg (e} Do
be an arbitrary function defined on graph nodle¢e.g, node where the second relation originates from Eg.(11). Con-
age) and let its mean value sequently, an application of the Horvitz-Thompson estima-

tor [56], designed typically for sampling without replaocemn,

Tay = ﬁ > a(v) (14) leads to
z(v)
2 1—(1—t(f))k”> . (

veES

) -1
ZW) '

veS
(22)
Now, similarly to the analysis of RW (above), we obtain

veV

be the value we are trying to estimate.aifv) is somehow Za= = (
correlated with node degrég, then the straightforward esti-
matorZ, ¢ = 1/|5]- 3, cs x(v) is subject to the same bias
as is{qx). In this section, we derive unbiased estimatoss

of za. We also directly applyta, to obtain the estimatorgy ~ ~ -1
and(py) of the original node degree distribution and its mean, py = = P(JJW . (Z ﬁ) (23)
respectively. !

Let S C V be a sequence of vertices that we sampled.@gﬂ = Zkﬁgﬁ_ (24)
Based onS, we can estimate, as k

R number of nodes it with degreek
k. = 9] .

However, in order to evaluate these expressions, we need to
evaluatet(f), that, in turn, requirep,. We can solve this
chicken-and-egg problem iteratively, if we know the realcfr
tion f of covered nodes, or equivalently the graph siz¢
First, we evaluate Eq.(23) for some valuestadnd feed the

1) Random Walk (RW)Under RW, the sampling proba-resultingpy’s into Eq. [I0) to obtain the correspondirfcs.
bility of a nodewv is proportional to its degreg,. Because By repeating this process, we can efficiently drive the \@lue
the sampling is done with replacements, we can apply tge ¢ arbitrarily close tof, and thus find the desireg}..
Hansen-Hurwitz estimatof [55] to obtain the following unbi | summary, for BFS, we showed how to estimate the

(15)

A. Random walks (baseline)

ased estimatot_[13]=[16] meanz,, of an arbitrary function:(v) defined on graph nodes,
. S es () /ky with the estimator of the original degree distributipp as a
Tay = W (16) special case. Note that our approach is feasible, as it nejui
vE v

only the sampleS (with value z(v) and degree:, for every
For example, ifz(v) = 14, then z5 estimates the nodev € S) and the fractionf of sampled nodes. In [24], we
proportion of nodes with degree equal koi.e, exactlyps. make apyt hon implementation of all the above estimators

In that case, Eq.(16) simplifies to publicly available.
—1 .
P qA_k . Z@ 17) C. Alternative approach
k k z l In Section[VIIl, we propose and evaluate a family of

alternative correction procedures that anebiased for any
where we used the fact that . 1x,—k} = [V]- G- From grpitrary topology Although seemingly attractive, they are
Eq.(I7), we can estimate the average node degree as  characterized by large variance, which makes them far less
N\ -1 effective than ourRG(py.)-based correction technique.
o) = ki =1 (20 =B ag)
3 ; l ZUGS% VIl. SIMULATION RESULTS
In this section, we evaluate our theoretical findings on

2) Metropolis Hastings Random Walk (MHRWYnder random and real-life graphs.

MHRW, we trivially have

1 A. Random graphs
Ta = Y x(v) (19) : - o
av |S| ’ Fig.[3 verifies all the formulae derived in this paper, for the
A~ ves 20 random graphRG(py) with a given degree distribution. The
P = % (20) analytical expectations are plotted in thick plain linestlie
(op") = Zk@?H = qu% (21) background and the averaged simulation results are plotted
k k in thinner lines lying on top of them. We observe almost a
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Fig. 3. Comparison of sampling techniques in theory and in simulatn. Left: Observed (sampled) average node degigé as a function of the fractionf
of sampled nodes, for various sampling techniques. Thédtseare averaged over 1000 graphs with 10000 nodes eachsaggshdoy the configuration model
with a fixed heavy-tailed degree distributign, (shown on the right). Right: Real, expected, and estimated (corrected) degree distrisufor selected
techniques and values ¢f (other techniques behave analogously). We obtained amadogesults for other degree distributions and graph dizeésThe
term (k) is the real average node degree, dhd) is the real average squared node degree.

Average node degree, assortativity> 0 Average node degree, assortativity 0

expected (analytic)
= = random walk (RW)
40r = = m Metropolis-Hastings random walk (MHRW)
®—ae Breadth First Search (BFS)
4—4 Depth First Search (DFS)
A—A Forest Fire (FF)
301 B—& weighted random sample

expected (analytic)
= = random walk (RW)
401 = = m Metropolis-Hastings random walk (MHRW)
®—e Breadth First Search (BFS)
&—4 Depth First Search (DFS)
a—a Forest Fire (FF)
B—@ weighted random sample

Y N N @ -~---—--------------------------q

645

(pr) - average sampled node degree
(pr) - average sampled node degree

00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

f - fraction of covered nodes f - fraction of covered nodes

Fig. 4. The effect of assortativity » on the results First, we use the configuration model with the same degreteilition p;, as in Fig[3 (and the same
number of node$V| = 10000) to generate a grap&'. Next, we apply the pairwise edge rewiring techniquel [57¢hange the assortativity of G' without
changing node degrees. This technique iteratively takesramdom edgegvi, w1} and {v2, w2}, and rewires them agvq, w2} and {va2, w1} only if it
brings us closer to the desired value of assortativiths a result, we obtain graphs with a positive (left) and tiega(right) assortativityr. Note that for a
better readability, we present only the valuesfof [0,0.1], i.e, ten times smaller than in Fifl] 3.

perfect match between theory and simulation in estimatieg tbe quantified by calculating thessortativity coefficient [58],
sampled degree distribution (Fig.[3, right) and its meaty,) which is the correlation coefficient computed over all edges
(Fig.[3, left). Indeed, all traversal techniques follow t@me (i.e., degree-degree pairs) in the graph. Values), » >0 and
curve (as predicted in Sectibn V-B5), which initially coides r = 0 indicate disassortative, assortative and purely random
with that of RW (see Sectioh_V-B7) and is monotonicallgraphs, respectively.

decreasing inf (see Sectiol _V-B8). We also show that o )

degree-weighted node sampling without replacements ghib For the same initial parameters as in Hig.z3,(|V]), we

exactly the same bias (see Sectiorn V-B6). Finally, app|yir§jmulated different Iev_ells of assortativity. Fi._ 4 .shovk(uet
the estimatorg, derived in SectiofiY!I perfectly corrects forresults. Graph assortativitystrongly affects the first iterations
the bias ofgy. of traversal techniques. Indeed, for assortativity 0 (Fig.[4,

left), the degree bias is even stronger than for= 0

Of course, real-life networks are substantially differer(Fig.[3, left). This is because the high-degree nodes are now
from RG(py). For example, depending on the graph typénterconnected more densely than in a purely random graph,
nodes may tend to connect to similar or different nodeand are thus easier to discover by sampling techniques that
Indeed, in most social networks high-degree nodes tendrto care inherently biased towards high-degree nodes. Integhst
nect to other high-degree nodesl[58]. Such networks arectalForest Fire is by far the most affected. A possible explamati
assortative In contrast, biological and technological networks that under Forest Fire, low-degree nodes are likely to be
are typicallydisassortativei.e., they exhibit significantly more completely skipped by the first sampling wave. Not surpris-
high-degree-to-low-degree connections. This obsematen ingly, a negative assortativity < 0 has the opposite effect:



every high-degree node tends to connect to low-degree node; Facebook]] UNI RW BF S BFS_| MHRW

£

; 2 ) El 982K | 2.26M | 28x81K | 1.19M | 2.26M
which significantly slows down the discovery of the former. f 0.44% | 1.03% | 28x0.04% | 0.54% | 1.03%
In contrast, random walks RW and MHRW are not affected (k) 94.1 | 3380 323.9 285.9 95.2

i Vi is i L (ak) - 329.8 320.1 3287 | 941
by _the qhanges_ in as_sortat|V|ty. Thls_ is expected, because B0 ) 039 85 4 797 952
their stationary distributions hold f@nyfixed (connected and

Orkut

aperiodic) graph regardless of its topological properties El B B - 3.07M -
- - - 11.3% -
B. Real-life fully known topologies (Pr) 30° 331

TABLE Il

Recall, that our analysis is based on the random graph FACEBOOK AND ORKUT DATA SETS AND MEASUREMENTS

model RG(py) (see Sectioi1V), which is only an approxima-
tion of a typical real-life networlG. Indeed,RG(py) follows
the node degree distribution @f, but is likely to miss other

important properties such as assortativity [58], whosea®n |ndeed, note that this run starts @°= 50 for f=0, and
the BFS process we have just demonstrated. For this reasgfytematically grows withf instead of falling.

one may expect that the technique based6#(p; ) performs Finally, note that both BF§ and BFS are very short

poorly on real-life graphs. Surprisingly, this is not thesea compared to the Facebook size, with< 1% in both cases.

~ We evaluated our approach on a broad range of large, r§ghy this reason, we observe almost no drop in the sampled
life, fully known Internet topo!ogles. As our main source OBverage node degrg®") in Fig.[B(a,b). For the same reason,
data we use SNAP Graph Library [59]; Talflé Il overviewoih the BFS and RW estimators yield almost identical result
these datasets. We present the results in Eig. 5. Interesty)| he above observations hold also for teatire degree

ingly, in most cases the sampled average node de@Eg distribution, which is shown in Figl 6(c).
closely matches the predictiofy, ™) of the random graph

model RG (p;,). More importantly, applying our BFS estimator  2) Orkut: Finally, we apply our methodology to a single
(pF%) of real average node degree corrects for the biBES sample of Orkut collected |n.2006 and described in [19].
of (g*) surprisingly well. Some significant differences ardt contains|.5| = 3072k nodes, which accounts fgi=11.3%
visible only for f — 0 and for some specific topologies (the?f entire Orkut size.
last two in Fig[®), which is exactly because the real-lifagys ~ We show the results in Fid.] 6(d). Similarly to Facebook
are not fully captured by graph mod&iG(py,). BFS,, the sampled average node degrgg™) does not
Finally, we also study the RW estimator Eql(18), as decrease monotonically irff. Again, the underlying reason
simpler alternative to the BFS one Eql(24). Although theyight be the arbitrary choice of the starting node (in sparse
coincide for f — 0, the RW estimator systematically ancconnected Indiain this case). Nevertheless, the estiniatoy
significantly underestimates the average node degjrpdor ~approximates the average node defretatively well.

larger values off.
VIIl. A RBITRARY-TOPOLOGYBFSESTIMATORS

C. Sampling Facebook and Orkut ) _ )
The RG(py)-based BFS-bias correction procedure is, by

In this section, we apply and test the previous ideas @ynstruction, unbiased for random grapRé&/(p,). However,
sampling real-life, large-scale, and not fully known oBlinywhen applied to arbitrary graphs, in particular to rea-lif-
social networks: Facebook and Orkut. ternet topologies, ouRG (py)-based estimators are potentially

1) Facebook:We have implemented a set of crawlers téubject to some bias.¢., may be not perfect). Fortunately,
collect the samples of Facebook (FB) following the BFS, Rwe have seen in Secti¢n VIIIB that this bias is usually very
MHRW techniques. The data sets are summarized in Table limited. This is becaus&rG/(p,) mimics an arbitrary node
BFSys consists of 28 small BFS-es initiated at 28 differerdegree distributionp,,, which is, by far, the most crucial
nodes, which allowed us to easily parallelize the procegiarameter affecting the BFS degree bias.

Moreover, at the time of data collection, we (naively) thoug Interestingly, it is possible to derive estimators thatumbi-
that this would reduce the BFS bias. After gaining more insigased in any arbitrary topologyJnfortunately, thesarbitrary-
(which, nota bene, motivated this paper), we collected glsin topology estimatorare characterized by a very large variance,
large BFS. UNI represents the ground truth. The details ofvhich makes them, in practice, less effective than/tlig(py, )-
our implementation are described IA[2,3]. based estimators.

Results. We present the Facebook sampling results in

Fig. IE(a-c) and in Tabl€_Tll. First, we observe that under 4Unfortunately, according to our personal communicatiorthwOrkut
’ administrators, there is no ground truth value of the Oskaiverage node

BFSys, our esumatorsq,fFS and pISFS perform_ very well. For degree(k) for October 2006j.e., the period when the BFS sample bf[19]
example, we obtaifjp; )= 85.4 compared with the true value was collected. However, many hints point to a number closg:fe-30, e.g,
(k)=94.1. In contrast, BF$ yields (p£™)=72.7 only. Most reports (k) = 30.2 in June-September 2006, aid[64] repafits = 19

. ) . in late 2004 (which is in agreement with the densification [a®{60]). But,
prObably' this is bec.au.se Blfﬁqnssts of a S'ngle BFS 'UN a5 these studies may potentially be subject to various diage cannot take
that happens to begin in a relatively sparse part of Facebowkse numbers for granted.
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Dataset| # nodes| # edges| (k)= (pk) <<kk>> Description
ca-CondMat 21363 91341 8.6 22.5 | Collaboration network of Arxiv Condensed Mattér [60]
email-EuAll 224832 340794 3.0 567.9 | Email network of a large European Research Institution [60]
Facebook-New-Orleang 63392 816885 25.8 88.1 | Facebook New Orleans network [33]
wiki-Talk | 2388953 | 4656681 3.9 | 2705.4 | Wikipedia talk (communication) network [61]
p2p-Gnutella3l 62561 147877 4.7 11.6 | Gnutella peer to peer network from August 31 2002 [60]
soc-Epinions1 75877 405738 10.7 183.9 | Who-trusts-whom network of Epinions.coin_[62]
soc-Slashdot0811 77360 | 546486 14.1 | 129.9 | Slashdot social network from November 2008]1[63]
as-caida20071108 26475 53380 4.0 280.2 | CAIDA AS Relationships Datasets, from November 2007
web-Google | 855802 | 4291351 10.0 | 170.4 | Web graph from Google [63]
TABLE I
REAL-LIFE INTERNET TOPOLOGIES USED IN SIMULATIONSALL GRAPHS ARE CONNECTED AND UNDIRECTEWHICH REQUIRED PREPROCESSING IN
SOME CASES.
ca-CondMat email-EuAll Facebook-New-Orleans wiki-Talk p2p-Gnutella3l
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%.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 os <I)EW> - corrected by RW
fraction f fraction f fraction f fraction f

Fig. 5. BFS in real-life (fully known) Internet topologies described in Table [l The blue circles represent the average node de@fg&) sampled
by BFS, as the function of the fraction of covered noglesThe thin lines are the corrected vaIu@?FS) resulting from the BFS estimator E.{24) (plain
line) and the RW estimator EQ.{18) (dashed). Results areaged over 1000 randomly seeded BFS samples. The thick dieethe analytical expectations
assuming the random graph moded(py ). Thick red line (top) is the expectation Q@ISFS), calculated with Ed.(12) given the knowledge of the trueenod
degree distributiorp;,. Thick gray line (bottom) is the expectation of correctgtf™), Eq.[23),i.e., precisely(k).

In this section we show examples of arbitrary-topologlet Q(w) C V be a set of nodes uniquely defined@yandw.
estimators and compare them wilt(G(p,)-based estimators Define
in simulations.

A. Goal 2(v)
Let G = (V, E) be a connected undirected graph. A typical Bo= Y ()’ (25)
(incomplete) graph traversal, such as BFS, is determined by veQ(U)

the first node. So we can denote B{v) C V the set of
sampled nodes, given that we started at nedel’. Our goal
is to useS(v) to estimate the total

where
Ltot = Z z(v),
veV
wherez is a finite measurable function defined on graph nodes. 7(v) = Z p(w). (26)

B. General arbitrary-topology estimator

Let U € V be a random variable representing the first node
in our sample, following the probability distribution

Pr[U=w] = p(w) > 0. Lemma 1: 7 iS an unbiased estimator afy:.
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Fig. 6. BFS in on-line (not fully known) topologies. As in Fig.[3, except that the plots are based on BFS samples takFacebook with 28 (random)

seeds (a) and one seed (b), as well as in Orkut with one seedddjtionally,

do not have the true degree distributipp of Orkut, we cannot calculate its

we show in (c) the full node degree distriloms for Facebook. Because we
analytical cum@ﬁ). Nevertheless, we show in (d) our best guess of Orkut's

average node degreé) learned by other means, as explained in Footnote 2.

Proof: In order to prove Lemma 1, we have to show thawe define our sampling technique asi&tage BFS,i.e,

E[Zwot] = > ,cy z(v). Indeed:

E[Ztot] = Z p(w) Z iEZ; -

weV veQ(w)

-y ¥ ig% p(w) =
veV weV: veQ(w)

“Y I Y ) -
veV T weV: veQ(w)

= x(v) T vU) =

- UEZV 7T(’U) ( )

= Z x(v).
veV

S(u) = B;(u). Depending on our choice @)(u), we may
obtain various feasible arbitrary-topology estimators:
1) Trivial: The simplest choice of)(v) is

Q(v) = {v}.

This estimator makes use of the first sampled node only, which
naturally results in a huge variance.
2) Extreme:We can extend trivial for one specific nodé
Bi(v)

to obtain
aw={ 5l

3) Half-radius: A more balanced approach is

Qv) = BW2J (v).

if v=v*
otherwise.

(Note that the sums were swapped and appropriately updagg@ther words, out of the collectedstage BFS samplé(v),

after the first step.)
O

C. Practical requirements

We have just shown thati in Eq.[2B) is an unbiased
estimator ofzy. This is true forany choiceof Q(w) C V,
regardless of our sampling method. By defini@fw), we

define the estimator. However, there are two requiremeats t

we should take into account.

First, our estimator must bieasible i.e., we must be able
to calculatezoi(v) from our sampleS(U). This means that all
nodes whose values are needed to calculgtenust be known
(sampled). One obvious necessary condition is dl) C
S(U), becaus&)(U) is the set of nodes whose valug&)
are used in the estimataty; in Eq.[25). However, usually
we have to know many nodes from beyo@dU) in order to
evaluate Ed.(26). We give some examples below.

Second, the estimatak,; should be characterized bysenall
variance

D. Arbitrary-topology estimators for BFS

Let B;(u) be a ball of sizek around vertexu € V, i.e,
the set of all vertices within hops fromu. For simplicity,

we use for estimation only the nodes collected in the fif8t
stages of our BFS. It is easy to verify that the half-radius
estimator is feasible.

4) Half-radius extendedfinally, we can extend the half-
radius estimator to potentially cover some more nodes, as
follows.

Q(u) = B2 (u) U {veV: Bi(v) C Bji(u)}.

hE. Evaluation

We have tried the above approaches in simulations to
estimate the average node degfee= :ctot/|V|ﬁ As our error
metric, we used Root Mean Square Error (RMSE), which is
appropriate in our case, as it captures both the estimaasr bi
and its variance. RMSE is defined as:

RMSE = E|[&w/|V] - (k))2].

In our simulations, we calculated the me&rover 1000 BFS
samples initiated at nodes chosen uniformly at randoen,
with probability p(v) = 1/|V]|. In Table[IM, we show the
results for the half-radius estimator with= 2. Other values
of ¢ and other estimators do not improve the results compared
to the RG(py,)-based estimator.

SFor simplicity, we considered the total number of nodig$ as known.



Dataset| (px) | correction method| (px) | RMSE
cwconawa | o | gy | 65 | 103
emavconr | 30 | Sy iy 21 | 173

Facebook-New-Orleans 25.8 agg?gﬁgﬁggy gig ﬁg

o | 3o | Mmooy | 38 |27
paaraeaz] 47 | SOy Gy 55 | 4¢
soc-Epinions1| 10.7 agg?gﬁgﬁggy 19073 26963

soc-Slashdot0811 14.1 agg?g)t_ob%os'ggy ol I

as-caida20071108 4.0 agg?g')tfi)%os'ggy g:g ‘1‘:;

e ooge| 100 | WDt pdoqy| 1051 35
TABLE IV

COMPARISON OF THE ARBITRAR¥TOPOLOGY ESTIMATOR DERIVED IN
THIS SECTION WITH THE RG (py, )-BASED ESTIMATOR PROPOSED IN THE
PAPER WE USED THE REAL-LIFE INTERNET TOPOLOGIES DESCRIBED IN

TABLE [ HERE, WE USE THE HALFRADIUS ARBITRARY-TOPOLOGY
ESTIMATOR WITH DEPTH¢ = 2. THE RESULTS ARE AVERAGED OVERLOOO
SEED NODES CHOSEN UNIFORMLY AT RANDOM FROM THE GRAPH
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node degree of a network. Whenever possible, it is a good
practice to restrict BFS to some well defined community in
the sampled graph. If the community is small enough, we may
be able to exhaust it (at least its largest connected conmppne
which automatically makes our BFS sample representative of
this community. For examplée, [20,33] collected full sangpbé
several Facebook regional networks, andl[63,65] completel
covered the WWW graph restricted to one or few domains.
When such communities are not available.g( regional
networks are not accessible anymore in Facebook), we are
left with a regular unconstrained BFS sample. In that cage, w
recommend applying th&G(py)-based correction procedure
presented in this paper to quantify the node degree biaghwhi
may help us evaluate the bias introduced in the topological
metrics.

X. CONCLUSION

To the best of our knowledge, this is the first work to quan-
tify the node-degree bias of BFS. In particular, we cal@dat
the node degree distributiof), expected to be observed by
BFS as a function of the fractioii of covered nodes, in a
random graphRG(py) with a given degree distributiopy,.
We found that for a small sample sizé,— 0, BFS has the

Although unbiased, all the proposed arbitrary-topolodit essame bias as the classic Random Walk, and with incregsing
mators have very large RMSE compared to f€(p,.)-based the bias monotonically decreases.

estimators. There are two main reasons for that. First,deror

to guarantee feasibility, we usually hay®(v)| < |S(v)],
which results in a “waste” of values(v) of most of the culating any node statistics. Our technique performed very

sampled nodes. Second, the siz€gv)| may significantly well on a broad range of Internet topologies. Its readyse-u
differ for different nodesv, which translates to differencesimplementation can be downloaded from1[24].

in particular estimate8io(v).

Based on our theoretical analysis, we proposed a practical
RG(py)-based procedure to correct for this bias when cal-

In this paper, we used olRG(py)-based correction proce-

To summarize, the arbitrary-topology estimator is unliasgjure to estimate local graph properties, such as nodetitstis
but has a huge variance, which makes it much worse thaR interesting direction for future is to exploit the node

the potentially slightly biased (for real-life topolog)ebut

degree-biases calculated here to develop estimators of non

much more concentrate®G(py)-based estimator. It is anj|ocal graph properties, such as graph diameter.

instance of the well-known “accuracy vs precision” trade-o
Indeed, in the statistics terminology, we could say that the

arbitrary-topology estimator is “accurate but very impset,
whereas theRG(py)-based estimator is “slightly inaccurateand the initial idea of the unbiased estimator in SedfiorlVII

but precise”.

IX. PRACTICAL RECOMMENDATIONS

In order to samplenode propertieswe recommend using
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