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Abstract—Breadth First Search (BFS) is a widely used ap-
proach for sampling large unknown Internet topologies. Itsmain
advantage over random walks and other exploration techniques
is that a BFS sample is a plausible graph on its own, and therefore
we can study its topological characteristics. However, it has been
empirically observed that incomplete BFS is biased toward high-
degree nodes, which may strongly affect the measurements.

In this paper, we first analytically quantify the degree bias
of BFS sampling. In particular, we calculate the node degree
distribution expected to be observed by BFS as a function of the
fraction f of covered nodes, in a random graphRG(pk) with an
arbitrary degree distribution pk. We also show that, forRG(pk),
all commonly used graph traversal techniques (BFS, DFS, Forest
Fire, Snowball Sampling, RDS) suffer from exactly the same bias.

Next, based on our theoretical analysis, we propose a practical
BFS-bias correction procedure. It takes as input a collected BFS
sample together with its fraction f . Even though RG(pk) does
not capture many graph properties common in real-life graphs
(such as assortativity), ourRG(pk)-based correction technique
performs well on a broad range of Internet topologies and on
two large BFS samples of Facebook and Orkut networks.

Finally, we consider and evaluate a family of alternative
correction procedures, and demonstrate that, although they are
unbiased for an arbitrary topology, their large variance makes
them far less effective than theRG(pk)-based technique.

Index Terms—BFS, Breadth First Search, graph sampling,
estimation, bias correction, Internet topologies, OnlineSocial
Networks.

I. I NTRODUCTION

A large body of work in the networking community focuses
on Internet topology measurements at various levels, including
the IP or AS connectivity, the Web (WWW), peer-to-peer
(P2P) and online social networks (OSN). The size of these
networks and other restrictions make measuring the entire
graph impossible. For example, learning only the topology of
Facebook social graph would require downloading more than
250TB of HTML data [2,3], which is most likely impractical.
Instead, researchers typically collect and study a small but
representative sample of the underlying graph.

In this paper, we are particularly interested in sampling
networks that naturally allow to explore the neighbors of a
given node (which is the case in WWW, P2P and OSN).
A number of graph exploration techniques use this basic
operation for sampling. They can be roughly classified in two
categories: (i) random walks, and (ii) graph traversals.

In the first category,random walks, nodes can be revisited.
This category includes the classic Random Walk (RW) [4] and

This paper is a revised and extended version of [1].
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Random Walk (RW)

Graph traversal techniques:
- BFS
- DFS

- Forest Fire
- Snowball / RDS

Metropolis-Hastings Random Walk (MHRW)

Fig. 1. Overview of analytical results. We calculate the node degree
distribution qk expected to be observed by BFS in a random graphRG(pk)
with a given degree distributionpk, as a function of the fraction of sampled
nodesf . (In this plot, we show only its average〈qk〉.) We show RW and
MHRW as a reference.〈k〉 = 〈pk〉 is the real average node degree, and
〈k2〉 is the real average squared node degree.Observations: (1) For
a small sample size, BFS has the same bias as RW; with increasing f , the
bias decreases; a complete BFS (f=1) is unbiased, as is MHRW (or uniform
sampling). (2) All common graph traversal techniques (thatdo not revisit
the same node) lead to the same bias. (3) The shape of the BFS curve
depends on the real node degree distributionpk, but it is always monotonically
decreasing; we calculate it precisely in this paper. (4) We also calculate
the original distributionpk based on the sampledqk andf (not shown here).

its variations [5,6], as well as the Metropolis-Hastings Random
Walk (MHRW). They are used for sampling of nodes on the
Web [7], P2P networks [8]–[10], OSNs [2,11] and large graphs
in general [12]. Random walks are well studied [4] and result
in samples that have either no bias (MHRW) or a known bias
(RW) that can be corrected for [13]–[16]. In contrast to BFS,
random walks collect a representative sample of nodes rather
than of topology, and are thereforenot the focus of the paper.
However, we use them as baseline for comparison.

In the second category,graph traversals, each node is
visited exactly once (if we let the process run until com-
pletion and if the graph is connected). These methods vary
in the order in which they visit the nodes; examples include
BFS, Depth-First Search (DFS), Forest Fire (FF), Snowball
Sampling (SBS) and Respondent-Driven Sampling (RDS)1.
Graph traversals, especially BFS, are very popular and widely
used for sampling Internet topologies,e.g., in WWW [17]
or OSNs [18]–[20]. [19] alone has about 380 citations as of
December 2010, many of which use its Orkut BFS sample.
The main reason of this high popularity is that a BFS sam-
ple is a plausible graph on its own. Consequently, we can
study its topological characteristics (e.g., shortest path lengths,

1RDS is essentially SBS equipped with some bias correction procedure
(omitted in Fig. 1).
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clustering coefficients, community structure), which is a big
advantage of BFS over random walks. Of course, this approach
is correct only if the BFS sample is representative of the entire
graph. At first sight it seems true,e.g., a BFS sample of a
lattice is a (smaller) lattice.

Unfortunately, this intuition often fails. It was observed
empirically that BFS introduces a bias towards high-degree
nodes [17,21]–[23]. We also confirmed this fact in a recent
measurement of Facebook [2,3], where our BFS crawler found
the average node degree324, while the real value is only94.
This means that the average node degree is overestimated by
BFS by about 250%! This has a striking effect not only on the
node property statistics, but also on the topological metrics.

Despite the popularity of BFS on the one hand, and its
bias on the other hand, we still know relatively little about
the statistical properties of node sequences returned by BFS.
The formal analysis is challenging because BFS, similarly
to every sampling without replacement, introduces complex
dependencies between the sampled nodes difficult to deal with
mathematically.

Contributions. Our work is a step towards understanding
the statistical characteristics of BFS samples and correcting
for their biases, with the following main contributions.

First, we focus on a random graphRG(pk) with a given
(and arbitrary) degree distributionpk. We calculate precisely
the node degree distributionqk expected to be observed by
BFS as a function of the fractionf of sampled nodes. We
illustrate this and related results in Fig. 1. To the best of our
knowledge, this is the first analytical result describing the bias
of BFS sampling.

Second, based on our theoretical analysis, we propose a
practical BFS-bias correction procedure. It takes as inputa
collected BFS sample together with the fractionf of covered
nodes, and estimates the mean of an arbitrary functionx(v)
defined on graph nodes. Even thoughRG(pk) misses many
graph properties common in real-life graphs (such as assorta-
tivity), our RG(pk)-based correction technique performs well
on a broad range of Internet topologies, and on two large BFS
samples of Facebook and Orkut networks. We make its ready-
to-usepython implementation publicly available at [24].

Third, we complement the above findings by proposing a
family of alternative correction procedures that are unbiased
for any arbitrary topology. Although seemingly attractive, they
are characterized by large variance, which makes them far less
effective than theRG(pk)-based correction technique.

Scope. Our theoretical results hold strictly for the random
graph modelRG(pk). (However, we show that they apply
relatively well to a broad range of real-life topologies.) We
also restrict our attention to static graphs with self-declared un-
weighted social links; dynamically varying graphs [8,10,25]–
[30] and interaction graphs [31]–[33] are out of the scope of
this paper.

Finally, ourRG(pk)-based bias-correction procedure is de-
signed for local graph properties, such as node statistics.Our
analytical results can potentially help the estimation of non-

local graph properties (such as graph diameter), which is our
main direction for the future.

Outline. The outline of the paper is as follows. Section II
discusses related work. Section III presents BFS and other
graph traversal algorithms under study. We also briefly de-
scribe random walks that are used as baseline for compar-
ison throughout the paper. Section IV presents the random
graphRG(pk) model used in this paper. Section V analyzes
the degree bias of BFS. Section VI shows how to correct
for this bias. Section VII evaluates our results in simulations
and by sampling real world networks. Section VIII introduces
and evaluates alternative BFS-bias correction techniques. Sec-
tion IX gives some practical sampling recommendations, and
Section X concludes the paper.

II. RELATED WORK

BFS used in practice.BFS is widely used today for ex-
ploring large networks, such as OSNs. In [18], Ahn et al.
used BFS to sample Orkut and MySpace. In [19] and [27],
Mislove et al. used BFS to crawl the social graph in four
popular OSNs: Flickr, LiveJournal, Orkut, and YouTube. [19]
alone has about 380 citations as of December 2010, many of
which use its highly biased Orkut BFS sample. In [20], Wilson
et al. measured the social graph and the user interaction graph
of Facebook using several BFSs, each BFS constrained in one
of the largest 22 regional Facebook networks. In our recent
work [2,3], we have also crawled Facebook using various
sampling techniques, including BFS, RW and MHRW.

BFS bias. It has been empirically observed that incom-
plete BFS and its variants introduce bias towards high-degree
nodes [17] [21]–[23]. We confirmed this in Facebook [2,3],
which, in fact, inspired and motivated this paper. Analogous
bias has been observed in the field of social science, for
sampling techniques closely related to BFS,i.e., Snowball
Sampling and RDS [15,34,35] (see Section III-B4).

Analyzing BFS.To the best of our knowledge, the sampling
bias of BFS has not been analyzed so far. [36] and [37] are
the closest related papers to our methodology. The original
paper by Kim [36] analyzes the size of the largest connected
component in classic Erdös-Rényi random graph by essentially
applying the configuration model with node degrees chosen
from a Poisson distribution. To match the stubs (or “clones”
in [36]) uniformly at random in a tractable way, Kim proposes
a “cut-off line” algorithm. He first assigns each stub a random
index from [0, np], and next progressively scans this interval.
Achlioptas et al. used this powerful idea in [37] to study the
bias of traceroute sampling in random graphs with a given
degree distribution. The basic operation in [37] is traceroute
(i.e., “discover a path”) and is performed from a single node
to all other nodes in the graph. The union of the observed
paths forms a “BFS-tree”, which includes all nodes but misses
some edges (e.g., those between nodes at the same depth in the
tree). In contrast, the basic operation in the traversal methods
presented in our paper is to discover all neighbors of a node,
and it is applied to all nodes in increasing distance from
the origin. Another important difference is that [37] studies a
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completed BFS-tree, whereas we study the sampling process
when it has visited only a fractionf < 1 of nodes. Indeed, a
completed BFS (f=1) is trivial in our case: it has no bias, as
all nodes are covered.

In the field of social science, a significant effort was put to
correct for the bias of BFS’s close cousin - Snowball Sampling
(SBS) [34]. SBS together with a bias correction procedure is
called Respondent-Driven Sampling (RDS) [35]. The currently
used correction technique [15,16] assumes that nodes can be
revisited, which essentially approximates SBS by Random
Walk (see Section VI-A1). In this paper, we formally show
that this approximation is valid if the fractionf of sampled
nodes is relatively small. However, as [38] points out, the
current RDS methodology is systematically biased for larger f .
Consequently, [39] proposed an SBS bias correction method
based on the random graphRG(pk). This is essentially the
same basic starting idea as used in our original paper published
independently [1]. However, the two papers fundamentally
differ in the final solution: [39] proposes a simulation-aided
approach, whereas we solve the problem analytically.

Another recent and related paper is [40]. The authors
propose and evaluate a heuristic approach to correct the
degree bias in theith generation of SBS, based on the
values measured in the generationi− 1. In practice, this
generation-based scheme may be challenging to implement,
because the number of nodes per generation may grow close
to exponential withi. Consequently, we are likely to face a
situation where collecting the next generation is prohibitively
expensive, while the current generation has much fewer nodes
than our sampling capabilities allow for.

Probability Proportional to Size Without Replacement
(PPSWOR).At a closer look, ourRG(pk)-based approach
reduces BFS (and other graph traversals) to a classic sam-
pling design called Probability Proportional to Size Without
Replacement (PPSWOR) [41]–[48]. Unfortunately, to the best
of our knowledge, none of the existing results is directly
applicable to our problem. This is because, speaking in the
terms used later in this paper, the available results either
(i) require the knowledge ofqk(f) (expected, not sampled)
as an input, (ii) propose how to calculateqk(f) for the first
two nodes only, or (iii) calculateqk(f) as an average of many
simulated traversals of the known graph (in contrast, we only
have one run on unknown graph) [48]. In fact, this work can
be naturally extended to address the problems with PPSWOR.

Previous version of this paper.This work is a revised and
extended version of our recent conference paper [1]. The main
changes are: (i) a successful application of ourRG(pk)-based
correction procedure to a wide range of large-scale real-life
Internet topologies (Table II, Fig. 5, Fig. 6(d), Section VII-B),
(ii) bias correction procedures for arbitrary node properties
(Section VI), (iii) a complementary BFS-bias correction tech-
nique (Section VIII), and (iv) a publicly available ready-to-use
python implementation of our approach.

Finally, we would like to stress that our two other JSAC
submissions [3,49] focus on sampling techniques based on

random walks, which differ in fundamental aspects (sampling
with replacement vs without, sampling of nodes vs of topol-
ogy) from the BFS sampling addressed here.

III. G RAPH EXPLORATION TECHNIQUES

Let G = (V,E) be a connected graph with the set of
verticesV , and a set of undirected edgesE. Initially, G is
unknown, except for one (or some limited number of) seed
node(s). When sampling through graph exploration, we begin
at the seed node, and we recursively visit (one, some or all) its
neighbors. We distinguish two main categories of exploration
techniques: random walks and graph traversals.

A. Random walks (baseline)

Random walks allow revisiting the same node many times.
We consider2 the following classic examples:

1) Random Walk (RW):In this classic sampling tech-
nique [4], we start at some seed node. At every iteration, the
next-hop nodev is chosen uniformly at random among the
neighbors of the current nodeu. It is easy to see that RW
introduces a linear bias towards nodes of high degree [4].

2) Metropolis Hastings Random Walk (MHRW):In this
technique, as in RW, the next-hop nodew is chosen uniformly
at random among the neighbors of the current nodeu. How-
ever, with a probability that depends on the degrees ofw andu,
MHRW performs a self-loop instead of moving tow. More
specifically, the probabilityP MH

u,w of moving fromu to w is as
follows [50]:

P MH
u,w =





1
ku

·min(1, ku

kw

) if w is a neighbor ofu,
1−

∑
y 6=u P

MH
u,y if w = u,

0 otherwise,
(1)

wherekv is the degree of nodev. Essentially, MHRW reduces
the transitions to high-degree nodes and thus eliminates the
degree bias of RW. This property of MHRW was recently
exploited in various network sampling contexts [2,8,10,11].

B. Graph traversals

In contrast, graph traversals never revisits the same node.
At the end of the process, and assuming that the graph is
connected, all nodes are visited. However, when using graph
traversals for sampling, we terminate after having collected a
fraction f < 1 (usuallyf ≪ 1) of graph nodes.

1) Breadth First Search (BFS):BFS is a classic graph
traversal algorithm that starts from the seed and progressively
explores all neighbors. At each new iteration the earliest ex-
plored but not-yet-visited node is selected next. Consequently,
BFS discovers first the nodes closest to the seed.

2) Depth First Search (DFS):This technique is similar to
BFS, except that at each iteration we select the latest explored
but not-yet-visited node. As a result, DFS explores first the
nodes that are faraway (in the number of hops) from the seed.

2We include random walks only as a useful baseline for comparison with
graph traversals (e.g., BFS). The analysis of random walks does not count as
a contribution of this paper.
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G = (V, E) graphG with nodesV and edgesE
kv degree of nodev
pk = 1

|V |

∑
v∈V 1kv=k degree distribution inG

〈k〉 = 〈pk〉 =
∑

k k pk average node degree inG
qk expected sampled degree distribution
〈qk〉 =

∑
k k qk expected sampled average node degree

q̂k sampled degree distribution
p̂k estimated original degree distribution inG
f fraction of nodes covered by the sample

TABLE I
NOTATION SUMMARY.

3) Forest Fire (FF): FF is a randomized version of BFS,
where for every neighborv of the current node, we flip a coin,
with probability of successp, to decide if we explorev. FF
reduces to BFS forp=1. It is possible that this process dies
out before it covers all nodes. In this case, in order to make FF
comparable with other techniques, we revive the process from
a random node already in the sample. Forest Fire is inspired by
the graph growing model of the same name proposed in [51]
and is used as a graph sampling technique in [12].

4) Snowball Sampling (SBS) and Respondent-Driven Sam-
pling (RDS): According to a classic definition by Good-
man [34], ann-name Snowball Sampling is similar to BFS, but
at every nodev, not allkv, but exactlyn neighbors are chosen
randomly out of allkv neighbors ofv. Thesen neighbors are
scheduled to visit, but only if they have not been visited before.

Respondent-Driven Sampling (RDS) [15,16,35] adopts SBS
to penetrate hidden populations (such as that of drug addicts)
in social surveys. In Section II, we comment on current
techniques to correct for SBS/RDS bias towards nodes of
higher degree.

IV. GRAPH MODEL RG(pk)

A basic, yet very important property of every graph is its
node degree distributionpk, i.e., the fraction of nodes with
degree equal tok, for all k ≥ 0.3 Depending on the network,
the degree distribution can vary, ranging from constant-degree
(in regular graphs), a distribution concentrated around the
average value (e.g., in Erdös-Rényi random graphs or in well-
balanced P2P networks), to heavily right-skewed distributions
with k covering several decades (as this is the case in WWW,
unstructured P2P, Internet at the IP and Autonomous System
level, OSNs). We handle all these cases by assuming that we
are givenany fixed node degree distributionpk. Other than
that, the graphG is drawn uniformly at random from the set
of all graphs with degree distributionpk. We denote this model
by RG(pk).

BecauseRG(pk) mimics an arbitrary node degree distribu-
tion pk, it can be considered a “first-order approximation” of
real-life graphs. Of course, there are many graph properties
other thanpk that are not captured byRG(pk). However, we
show later that, with respect to the BFS sampling bias,RG(pk)
approximates the real Internet topologies surprisingly well.

We use a classic technique to generateRG(pk), called the
configuration model[52]: each nodev is given kv “stubs”

3As we definepk as a ‘fraction’, not the ‘probability’,pk determines the
degree sequence in the graph, and vice versa.

or “edges-to-be”. Next, all these
∑

v∈V kv = 2|E| stubs are
randomly matched in pairs, until all stubs are exhausted (and
|E| edges are created). In Fig. 2 (ignore the rectangular interval
[0,1] for now), we present four nodes with their stubs (left)
and an example of their random matching (right).

V. A NALYZING THE NODE DEGREEBIAS

In this section, we study the node degree bias observed
when the graph exploration techniques of Section III are run
on the random graphRG(pk) of Section IV. In particular,
we are interested in the node degree distributionqk expected
to be observed in the raw sample. Typically, the observed
distribution is different from the original one,qk 6= pk, with
higher average value〈qk〉 > 〈pk〉 (i.e., average sampled and
observed node degree, respectively). Below, we deriveqk as
a function ofpk and, in the case of BFS, of the fraction of
sampled nodesf .

A. Random walks (baseline)

We begin by summarizing the relevant results known for
walks, in particular for RW and MHRW. They will serve as a
reference point for our main analysis of graph traversals below.

1) Random Walk (RW):Random walks have been widely
studied; see [4] for an excellent survey. In any given connected
and aperiodic graph, the probability of being at a particular
node v converges at equilibrium to the stationary distribu-
tion πRW

v = kv

2|E| . Therefore, the expected observed degree
distributionqRW

k is

qRW
k =

∑

v

πRW
v · 1{kv=k} =

k

2|E|
pk |V | =

k pk
〈k〉

, (2)

where〈k〉 is the average node degree inG. Eq.(2) is essentially
similar to calculation in [13]–[16]. As this holds for any
fixed (and connected and aperiodic) graph, it is also true for
all connected graphs generated by the configuration model.
Consequently, the expected observed average node degree is

〈qRW
k 〉 =

∑

k

k qRW
k =

∑
k k

2 pk
〈k〉

=
〈k2〉

〈k〉
, (3)

where〈k2〉 is the average squared node degree inG. We show
this value 〈k2〉

〈k〉 in Fig. 1.

2) Metropolis Hastings Random Walk (MHRW):It is easy
to show that the transition matrixP MH

u,w shown in Eq.(1)
leads to a uniform stationary distributionπMH

v = 1
|V | [50], and

consequently:

qMH
k = pk (4)

〈qMH
k 〉 =

∑

k

k qMH
k =

∑

k

k pk = 〈k〉. (5)

In Fig. 1, we show that MHRW estimates the true mean.
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B. Graph traversals (Main Result)

In both RW and MHRW the nodes can be revisited. So
the state of the system at iterationi+1 depends only on
iteration i, which makes it possible to analyze with Markov
Chain techniques. In contrast, graph traversals do not allow for
node revisits, which introduces crucial dependencies between
all the iterations and significantly complicates the analysis.
To handle these dependencies, we adopt an elegant technique
recently introduced in [36] (to study the size of the largest
connected component) and extended in [37] (to study the bias
of traceroute sampling). However, our work differs in many
aspects from both [36] and [37], on which we comment in
detail in the related work Section II.

1) Exploration without replacement at the stub level:We
begin by defining Algorithm 1 (below) - a general graph
traversal technique that collects a sequence of nodesS, without
replacements. To be compatible with the configuration model
(see Section IV), we are interested in the processat the stub
level, where we consider one stub at a time, rather than one
node at a time. An integral part of the algorithm is a queueQ
that keeps the discovered, but still not-yet-followed stubs.
First, we enqueue onQ all the stubs of some initial nodev1,
and by settingS← [v1]. Next, at every iteration, we dequeue
one stub fromQ, call it a, and follow it to discover its partner-
stubb, andb’s ownerv(b). If nodev(b) is not yet discovered,
i.e., if v(b) /∈ S, then we appendv(b) to S and we enqueue
on Q all other stubs ofv(b).

Algorithm 1 Stub-Level Graph Traversal

1: S ← [v1] and Q← [all stubs ofv1]
2: while Q is nonemptydo
3: Dequeuea from Q
4: Discovera’s partnerb
5: if v(b) /∈ S then
6: Appendv(b) to S
7: Enqueue onQ all stubs ofv(b) exceptb
8: else
9: Removeb from Q

10: end if
11: end while

Depending on the scheduling discipline for the elements
in Q (line 3), Algorithm 1 implements BFS (for a first-in first
out scheduling), DFS (last-in first-out) or Forest Fire (first-
in first-out with randomized stub losses). Line 9 guarantees
that the algorithm never tracebacks the edges,i.e., that stuba
dequeued fromQ in line 3 never belongs to an edge that has
already been traversed in the opposite direction.

2) Discovery on-the-fly:In line 4 of Algorithm 1, we follow
stuba to discover its partnerb. In a fixed graphG, this step
is deterministic. In the configuration modelRG(pk), a fixed
graphG is obtained by matching all the stubs uniformly at
random. Next, we can sample this fixed graph and average the
result over the space of all the random graphsRG(pk) that
have just been constructed. Unfortunately, this space grows

exponentially with the number of nodes|V |, making the
problem untractable. Therefore, we adopt an alternative con-
struction ofG - by iteratively selectingb on-the-fly (i.e., every
time line 4 is executed), uniformly at random from all still
unmatched stubs. By the principle of deferred decisions [53],
these two approaches are equivalent.

With the help of the on-the-fly approach, we are able to
write down the equations we need. Indeed, let us denote by
Xi ∈ V the ith selected node, and letP(X1 = u) be the
probability that nodeu ∈ V is chosen as a starting node. It is
easy to show that withz=2|E| we have

P(X2=v) =
∑

u 6=v

kv

z−ku
· P(X1=u) (6)

P(X3=w) =
∑

v 6=w

∑

u 6=w,v

kw

z−kv−ku
·

kv

z−ku
· P(X1=u), (7)

and so on. Theoretically, these equations allow us to calculate
the expected node degree at any iteration, and thus the degree
bias of BFS.

3) Breaking the dependencies:There is still one problem
with the equations above. Due to the increasing number of
nested sums, the results can be calculated in practice for a first
few iterations only. This is because we select stubb uniformly
and independently at random from all theunmatchedstubs. So
the stub selected at iterationi depends on the stubs selected
at iterations1 . . . i−1, which results in the nested sums. We
remedy this problem by implementing the on-the-fly approach
as follows. First, we assign each stub a real-valued indext
drawn uniformly at random from the interval[0, 1]. Then,
every time we process line 4, we pickb as the unmatched stub
with the smallest index. We can interpret this as a continuous-
time process, where we determine progressively the partners
of stubs dequeued fromQ, by scanning the interval from
time t= 0 to t= 1 in a search of unmatched stubs. Because
the indices chosen by the stubs are independent from each
other, the above trick breaks the dependence between the stubs,
which is crucial for making this approach tractable.

In Fig. 2, we present an example execution of Algorithm 1,
where line 4 is implemented as described above.

4) Expected sampled degree distributionqBFS
k : Now we are

ready to derive the expected observed degree distributionqk.
Recall that all the stub indices are chosen independently and
uniformly from [0, 1]. A vertexv with degreek is not sampled
yet at timet if the indices of all itsk stubs are larger thant,
which happens with probability(1− t)k. So the probability
that v is sampled before timet is 1−(1−t)k. Therefore, the
expected fraction of vertices of degreek sampled beforet is

fk(t) = pk(1−(1−t)
k). (8)

By normalizing Eq.(8), we obtain the expected observed (i.e.,
sampled) degree distribution at timet:

qBFS
k (t) =

fk(t)∑
l fl(t)

=
pk(1 − (1−t)k)∑
l pl(1− (1−t)l)

. (9)
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Fig. 2. An illustration of the stub-level, on-the-fly graph exploration without replacements. In this particular example, we show an execution of BFS starting
at nodev1. Left: Initially, each nodev haskv stubs, wherekv is a given target degree ofv. Each of these stubs is assigned a real-valued number drawn
uniformly at random from the interval[0, 1] shown below the graph. Next, we follow Algorithm 1 with a starting nodev1. The numbers next to the stubs
of every nodev indicate the order in which these stubs are enqueued onQ. Center: The state of the system at timet. All stubs in [0, t] have already
been matched (the indices of matched stubs are set in plain line). All unmatched stubs are distributed uniformly at random on (t, 1]. This interval can contain
also some (here two) already matched stubs.Right: The final result is a realization of a random graphG with a given node degree sequence (i.e., of the
configuration model).G may contain self-loops and multiedges.

Unfortunately, it is difficult to interpretqBFS
k (t) directly, be-

causet is proportional neither to the number of matched edges
nor to the number of discovered nodes. Recall that our primary
goal is to expressqBFS

k as a function of fractionf of covered
nodes. We achieve this by calculatingf(t) - the expected
fraction of nodes, of any degree, visited before timet

f(t) =
∑

k

fk(t) = 1−
∑

k

pk(1−t)
k . (10)

Becausepk ≥ 0, andpk > 0 for at least onek > 0, the term∑
k pk(1−t)

k is continuous and strictly decreasing from 1 to
0 with t growing from 0 to 1. Thus, forf ∈ [0, 1] there exists
a well definedt= t(f) that satisfies Eq.(10),i.e., the inverse of
f(t). Although we cannot computet(f) analytically (except
in some special cases such as fork ≤ 4), it is straightforward
to find it numerically. Now, we can rewrite Eq. (9) as

qBFS
k (f) =

pk(1− (1−t(f))k)∑
l pl(1− (1−t(f))l)

, (11)

which is the expected observed degree distribution after cover-
ing fractionf of nodes of graphG. Consequently, the expected
observed average degree is

〈qBFS
k 〉(f) =

∑

k

k · qBFS
k (f). (12)

In other words, Eq.(11) and Eq.(12) describe the bias of BFS
sampling underRG(pk), which was our first goal in this paper.
Below, we further analyze these equations to get more insights
in the nature of BFS bias.

5) Equivalence of traversal techniques underRW (pk): An
interesting observation is that, under the random graph model
RW (pk), all common traversal techniques (BFS, DFS, FF,
SBS, etc) are subject to exactly the same bias. The explanation
is that the sampled node sequenceS is fully determined by
the choice of stub indices on[0, 1], independently of the way
we manage the elements inQ.

6) Equivalence of traversals to weighted sampling without
replacement: Consider a nodev with a degreekv. The
probability thatv is discovered before timet, given that it
has not been discovered beforet0 ≤ t, is

P(v before timet | v not beforet0) = 1−

(
1−t

1−t0

)kv

(13)

We now take the derivative of the above equation with respect
to t, which results in the conditional probability density
function kv(

1−t
1−t0

)kv−1. Setting t→ t0 (but keepingt > t0),
reduces it tokv, which is the probability density thatv is
sampled att0, given that it has not been sampled before. This
means that at every point in time, out of all nodes that have not
yet been selected, the probability of selectingv is proportional
to its degreekv. Therefore, this scheme is equivalent to node
sampling weighted by degree, without replacements.

7) Equivalence of traversals withf→0 to RW: Finally, for
f→0 (and thust→0), we have1−(1−t)k ≃ kt, and Eq. (9)
simplifies to Eq. (2). This means that in the beginning of the
sampling process, every traversal technique is equivalentto
RW, as shown in Fig. 1 forf→0.

8) 〈qBFS
k 〉 is decreasing inf : As in Section V-B2, letXi ∈ V

be the ith selected node, and letz= 2|E|. We have shown
above that our procedure is equivalent to weighted sampling
without replacements, thus we can writeP(X1= u) = ku

z .
Now, it follows from Eq. (6) thatP(X2 = w) = kw

z · αw,
where αw =

∑
u6=w

ku

z−ku

. Because for any two nodesa
and b, we haveαb−αa = z(ka− kb)/((z − ka)(z − kb)),
αw strictly decreases with growingkw. As a result,P(X2)
is more concentrated around nodes with smaller degrees than
is P(X1), implying that E[kX2

] < E[kX1
]. We can use an

analogous argument at every iterationi ≤ |V |, which allows
us to say thatE[kXi

] < E[kXi−1
]. In other words,〈qBFS

k 〉(f) is
a decreasing function off .

A practical consequence is that many short traversals are
more biased than a long one, with the same total number of
samples.

9) Comments on the graph connectivity:Note that the
configuration modelRG(pk) might result in a graphG that is
not connected. In this case, every exploration technique covers
only the componentC in which it was initiated; consequently,
the process described in Section V-B3 stops onceC is covered.

In practice, it is also possible to efficiently generate a
simple and connected random graph with a given degree
sequence [54].
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VI. CORRECTING FOR NODE DEGREE BIAS

In the previous section we derived the expected observed
degree distributionqk as a function of the original degree
distributionpk. The distributionqk is usually biased towards
high-degree nodes,i.e., 〈qk〉> 〈pk〉. Moreover, because many
node properties are correlated with the node degree [2], their
estimates are also potentially biased. For example, letx(v)
be an arbitrary function defined on graph nodesV (e.g., node
age) and let its mean value

xav =
1

|V |

∑

v∈V

x(v) (14)

be the value we are trying to estimate. Ifx(v) is somehow
correlated with node degreekv, then the straightforward esti-
matorx̂naive

av = 1/|S| ·
∑

v∈S x(v) is subject to the same bias
as is〈qk〉. In this section, we derive unbiased estimatorsx̂av

of xav. We also directly applŷxav to obtain the estimatorŝpk
and〈p̂k〉 of the original node degree distribution and its mean,
respectively.

Let S ⊂ V be a sequence of vertices that we sampled.
Based onS, we can estimateqk as

q̂k =
number of nodes inS with degreek

|S|
. (15)

A. Random walks (baseline)

1) Random Walk (RW):Under RW, the sampling proba-
bility of a nodev is proportional to its degreekv. Because
the sampling is done with replacements, we can apply the
Hansen-Hurwitz estimator [55] to obtain the following unbi-
ased estimator [13]–[16]

x̂ RW
av =

∑
v∈S x(v)/kv∑
v∈S 1/kv

. (16)

For example, if x(v) = 1{kv=k} then x̂ RW
av estimates the

proportion of nodes with degree equal tok, i.e., exactlypk.
In that case, Eq.(16) simplifies to

p̂ RW
k =

q̂k
k
·

(
∑

l

q̂l
l

)−1

(17)

where we used the fact that
∑

v∈S 1{kv=k} = |V | · q̂k. From
Eq.(17), we can estimate the average node degree as

〈p̂ RW
k 〉 =

∑

k

k p̂ RW
k = 1 ·

(
∑

l

q̂l
l

)−1

=
|S|∑
v∈S

1
kv

(18)

2) Metropolis Hastings Random Walk (MHRW):Under
MHRW, we trivially have

x̂ MH
av =

1

|S|

∑

v∈S

x(v), (19)

p̂ MH
k = q̂k, (20)

〈p̂ MH
k 〉 =

∑

k

k p̂ MH
k =

∑

k

k q̂k. (21)

B. Graph traversals

Under BFS and other traversals, the inclusion probabil-
ity πBFS

v (i.e., the probability of nodev being included in
sampleS) of nodev ∈ V is proportional to

πBFS
v ∼

q BFS
kv

pkv

∼ 1− (1−t(f))kv ,

where the second relation originates from Eq.(11). Con-
sequently, an application of the Horvitz-Thompson estima-
tor [56], designed typically for sampling without replacement,
leads to

x̂ BFS
av =

(
∑

v∈S

x(v)

1−(1−t(f))kv

)
·

(
∑

v∈S

1

1−(1−t(f))kv

)−1

.

(22)
Now, similarly to the analysis of RW (above), we obtain

p̂ BFS
k =

q̂k
1− (1−t(f))k

·

(
∑

l

q̂l
1− (1−t(f))l

)−1

(23)

〈p̂ BFS
k 〉 =

∑

k

k p̂ BFS
k . (24)

However, in order to evaluate these expressions, we need to
evaluatet(f), that, in turn, requirespk. We can solve this
chicken-and-egg problem iteratively, if we know the real frac-
tion f real of covered nodes, or equivalently the graph size|V |.
First, we evaluate Eq.(23) for some values oft and feed the
resulting p̂k’s into Eq. (10) to obtain the correspondingf ’s.
By repeating this process, we can efficiently drive the values
of f arbitrarily close tof real, and thus find the desired̂pk.

In summary, for BFS, we showed how to estimate the
meanxav of an arbitrary functionx(v) defined on graph nodes,
with the estimator of the original degree distributionpk as a
special case. Note that our approach is feasible, as it requires
only the sampleS (with valuex(v) and degreekv for every
nodev ∈ S) and the fractionf of sampled nodes. In [24], we
make apython implementation of all the above estimators
publicly available.

C. Alternative approach

In Section VIII, we propose and evaluate a family of
alternative correction procedures that areunbiased for any
arbitrary topology. Although seemingly attractive, they are
characterized by large variance, which makes them far less
effective than ourRG(pk)-based correction technique.

VII. S IMULATION RESULTS

In this section, we evaluate our theoretical findings on
random and real-life graphs.

A. Random graphs

Fig. 3 verifies all the formulae derived in this paper, for the
random graphRG(pk) with a given degree distribution. The
analytical expectations are plotted in thick plain lines inthe
background and the averaged simulation results are plotted
in thinner lines lying on top of them. We observe almost a
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Fig. 3. Comparison of sampling techniques in theory and in simulation. Left: Observed (sampled) average node degree〈qk〉 as a function of the fractionf
of sampled nodes, for various sampling techniques. The results are averaged over 1000 graphs with 10000 nodes each, generated by the configuration model
with a fixed heavy-tailed degree distributionpk (shown on the right). Right: Real, expected, and estimated (corrected) degree distributions for selected
techniques and values off (other techniques behave analogously). We obtained analogous results for other degree distributions and graph sizes|V |. The
term 〈k〉 is the real average node degree, and〈k2〉 is the real average squared node degree.
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Fig. 4. The effect of assortativity r on the results. First, we use the configuration model with the same degree distribution pk as in Fig. 3 (and the same
number of nodes|V | = 10000) to generate a graphG. Next, we apply the pairwise edge rewiring technique [57] tochange the assortativityr of G without
changing node degrees. This technique iteratively takes two random edges{v1, w1} and {v2, w2}, and rewires them as{v1, w2} and {v2, w1} only if it
brings us closer to the desired value of assortativityr. As a result, we obtain graphs with a positive (left) and negative (right) assortativityr. Note that for a
better readability, we present only the values off ∈ [0, 0.1], i.e., ten times smaller than in Fig. 3.

perfect match between theory and simulation in estimating the
sampled degree distributionqk (Fig. 3, right) and its mean〈qk〉
(Fig. 3, left). Indeed, all traversal techniques follow thesame
curve (as predicted in Section V-B5), which initially coincides
with that of RW (see Section V-B7) and is monotonically
decreasing inf (see Section V-B8). We also show that
degree-weighted node sampling without replacements exhibits
exactly the same bias (see Section V-B6). Finally, applying
the estimatorŝpk derived in Section VI perfectly corrects for
the bias ofqk.

Of course, real-life networks are substantially different
from RG(pk). For example, depending on the graph type,
nodes may tend to connect to similar or different nodes.
Indeed, in most social networks high-degree nodes tend to con-
nect to other high-degree nodes [58]. Such networks are called
assortative. In contrast, biological and technological networks
are typicallydisassortative, i.e., they exhibit significantly more
high-degree-to-low-degree connections. This observation can

be quantified by calculating theassortativity coefficientr [58],
which is the correlation coefficient computed over all edges
(i.e., degree-degree pairs) in the graph. Valuesr<0, r>0 and
r = 0 indicate disassortative, assortative and purely random
graphs, respectively.

For the same initial parameters as in Fig. 3 (pk, |V |), we
simulated different levels of assortativity. Fig. 4 shows the
results. Graph assortativityr strongly affects the first iterations
of traversal techniques. Indeed, for assortativityr > 0 (Fig. 4,
left), the degree bias is even stronger than forr = 0
(Fig. 3, left). This is because the high-degree nodes are now
interconnected more densely than in a purely random graph,
and are thus easier to discover by sampling techniques that
are inherently biased towards high-degree nodes. Interestingly,
Forest Fire is by far the most affected. A possible explanation
is that under Forest Fire, low-degree nodes are likely to be
completely skipped by the first sampling wave. Not surpris-
ingly, a negative assortativityr < 0 has the opposite effect:
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every high-degree node tends to connect to low-degree nodes,
which significantly slows down the discovery of the former.

In contrast, random walks RW and MHRW are not affected
by the changes in assortativity. This is expected, because
their stationary distributions hold foranyfixed (connected and
aperiodic) graph regardless of its topological properties.

B. Real-life fully known topologies

Recall, that our analysis is based on the random graph
modelRG(pk) (see Section IV), which is only an approxima-
tion of a typical real-life networkG. Indeed,RG(pk) follows
the node degree distribution ofG, but is likely to miss other
important properties such as assortativity [58], whose effect on
the BFS process we have just demonstrated. For this reason,
one may expect that the technique based onRG(pk) performs
poorly on real-life graphs. Surprisingly, this is not the case.

We evaluated our approach on a broad range of large, real-
life, fully known Internet topologies. As our main source of
data we use SNAP Graph Library [59]; Table II overviews
these datasets. We present the results in Fig. 5. Interest-
ingly, in most cases the sampled average node degree〈q̂ BFS

k 〉
closely matches the prediction〈q BFS

k 〉 of the random graph
modelRG(pk). More importantly, applying our BFS estimator
〈p̂ BFS

k 〉 of real average node degree corrects for the bias
of 〈q̂ BFS

k 〉 surprisingly well. Some significant differences are
visible only for f → 0 and for some specific topologies (the
last two in Fig. 5), which is exactly because the real-life graphs
are not fully captured by graph modelRG(pk).

Finally, we also study the RW estimator Eq.(18), as a
simpler alternative to the BFS one Eq.(24). Although they
coincide for f → 0, the RW estimator systematically and
significantly underestimates the average node degree〈k〉 for
larger values off .

C. Sampling Facebook and Orkut

In this section, we apply and test the previous ideas in
sampling real-life, large-scale, and not fully known online
social networks: Facebook and Orkut.

1) Facebook:We have implemented a set of crawlers to
collect the samples of Facebook (FB) following the BFS, RW,
MHRW techniques. The data sets are summarized in Table III.
BFS28 consists of 28 small BFS-es initiated at 28 different
nodes, which allowed us to easily parallelize the process.
Moreover, at the time of data collection, we (naively) thought
that this would reduce the BFS bias. After gaining more insight
(which, nota bene, motivated this paper), we collected a single
large BFS1. UNI represents the ground truth. The details of
our implementation are described in [2,3].

Results. We present the Facebook sampling results in
Fig. 6(a-c) and in Table III. First, we observe that under
BFS28, our estimatorsq BFS

k and p̂ BFS
k perform very well. For

example, we obtain〈p̂ BFS
k 〉=85.4 compared with the true value

〈k〉= 94.1. In contrast, BFS1 yields 〈p̂ BFS
k 〉= 72.7 only. Most

probably, this is because BFS1 consists of a single BFS run
that happens to begin in a relatively sparse part of Facebook.

Facebook UNI RW BFS28 BFS1 MHRW
|S| 982K 2.26M 28×81K 1.19M 2.26M
f 0.44% 1.03% 28×0.04% 0.54% 1.03%

〈q̂k〉 94.1 338.0 323.9 285.9 95.2
〈qk〉 - 329.8 329.1 328.7 94.1
〈p̂k〉 - 93.9 85.4 72.7 95.2

Orkut
|S| - - - 3.07M -
f - - - 11.3% -

〈p̂k〉 30 2 33.1

TABLE III
FACEBOOK AND ORKUT DATA SETS AND MEASUREMENTS.

Indeed, note that this run starts atq̂ BFS
k = 50 for f = 0, and

systematically grows withf instead of falling.
Finally, note that both BFS28 and BFS1 are very short

compared to the Facebook size, withf < 1% in both cases.
For this reason, we observe almost no drop in the sampled
average node degre〈qBFS

k 〉 in Fig. 6(a,b). For the same reason,
both the BFS and RW estimators yield almost identical results.

All the above observations hold also for theentire degree
distribution, which is shown in Fig. 6(c).

2) Orkut: Finally, we apply our methodology to a single
BFS sample of Orkut collected in 2006 and described in [19].
It contains|S| = 3072K nodes, which accounts forf=11.3%
of entire Orkut size.

We show the results in Fig. 6(d). Similarly to Facebook
BFS1, the sampled average node degree〈q̂ BFS

k 〉 does not
decrease monotonically inf . Again, the underlying reason
might be the arbitrary choice of the starting node (in sparsely
connected India in this case). Nevertheless, the estimator〈p̂ BFS

k 〉
approximates the average node degree4 relatively well.

VIII. A RBITRARY-TOPOLOGYBFS ESTIMATORS

The RG(pk)-based BFS-bias correction procedure is, by
construction, unbiased for random graphsRG(pk). However,
when applied to arbitrary graphs, in particular to real-life In-
ternet topologies, ourRG(pk)-based estimators are potentially
subject to some bias (i.e., may be not perfect). Fortunately,
we have seen in Section VII-B that this bias is usually very
limited. This is becauseRG(pk) mimics an arbitrary node
degree distributionpk, which is, by far, the most crucial
parameter affecting the BFS degree bias.

Interestingly, it is possible to derive estimators that areunbi-
ased in any arbitrary topology. Unfortunately, thesearbitrary-
topology estimatorsare characterized by a very large variance,
which makes them, in practice, less effective than theRG(pk)-
based estimators.

4Unfortunately, according to our personal communication with Orkut
administrators, there is no ground truth value of the Orkut’s average node
degree〈k〉 for October 2006,i.e., the period when the BFS sample of [19]
was collected. However, many hints point to a number close to〈k〉=30, e.g.,
[18] reports〈k〉 = 30.2 in June-September 2006, and [64] reports〈k〉 = 19
in late 2004 (which is in agreement with the densification law[51,60]). But,
as these studies may potentially be subject to various biases, we cannot take
these numbers for granted.
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Dataset # nodes # edges 〈k〉=〈pk〉
〈k2〉
〈k〉

Description

ca-CondMat 21 363 91 341 8.6 22.5 Collaboration network of Arxiv Condensed Matter [60]
email-EuAll 224 832 340 794 3.0 567.9 Email network of a large European Research Institution [60]

Facebook-New-Orleans 63 392 816 885 25.8 88.1 Facebook New Orleans network [33]
wiki-Talk 2 388 953 4 656 681 3.9 2705.4 Wikipedia talk (communication) network [61]

p2p-Gnutella31 62 561 147 877 4.7 11.6 Gnutella peer to peer network from August 31 2002 [60]
soc-Epinions1 75 877 405 738 10.7 183.9 Who-trusts-whom network of Epinions.com [62]

soc-Slashdot0811 77 360 546 486 14.1 129.9 Slashdot social network from November 2008 [63]
as-caida20071105 26 475 53 380 4.0 280.2 CAIDA AS Relationships Datasets, from November 2007

web-Google 855 802 4 291 351 10.0 170.4 Web graph from Google [63]

TABLE II
REAL-LIFE INTERNET TOPOLOGIES USED IN SIMULATIONS. ALL GRAPHS ARE CONNECTED AND UNDIRECTED(WHICH REQUIRED PREPROCESSING IN

SOME CASES).

Average node degree:
〈pk〉 - real

〈qBFS
k 〉 - expected by BFS

〈q̂ BFS
k 〉 - sampled by BFS

〈p̂ BFS
k 〉 - corrected by BFS

〈p̂ RW
k 〉 - corrected by RW
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Fig. 5. BFS in real-life (fully known) Internet topologies described in Table II. The blue circles represent the average node degree〈q̂ BFS
k

〉 sampled
by BFS, as the function of the fraction of covered nodesf . The thin lines are the corrected values〈p̂ BFS

k
〉 resulting from the BFS estimator Eq.(24) (plain

line) and the RW estimator Eq.(18) (dashed). Results are averaged over 1000 randomly seeded BFS samples. The thick linesare the analytical expectations
assuming the random graph modelRG(pk). Thick red line (top) is the expectation of〈q BFS

k
〉, calculated with Eq.(12) given the knowledge of the true node

degree distributionpk. Thick gray line (bottom) is the expectation of corrected〈p̂ BFS
k

〉, Eq.(24),i.e., precisely〈k〉.

In this section we show examples of arbitrary-topology
estimators and compare them withRG(pk)-based estimators
in simulations.

A. Goal

Let G = (V,E) be a connected undirected graph. A typical
(incomplete) graph traversal, such as BFS, is determined by
the first node. So we can denote byS(v) ⊂ V the set of
sampled nodes, given that we started at nodev ∈ V . Our goal
is to useS(v) to estimate the total

xtot =
∑

v∈V

x(v) ,

wherex is a finite measurable function defined on graph nodes.

B. General arbitrary-topology estimator

Let U ∈ V be a random variable representing the first node
in our sample, following the probability distribution

Pr[U=w] = p(w) > 0.

Let Q(w) ⊆ V be a set of nodes uniquely defined byG andw.
Define

x̂tot =
∑

v∈Q(U)

x(v)

π(v)
, (25)

where

π(v) =
∑

w∈V : v∈Q(w)

p(w). (26)

Lemma 1: x̂tot is an unbiased estimator ofxtot.
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Fig. 6. BFS in on-line (not fully known) topologies. As in Fig. 5, except that the plots are based on BFS samples taken in Facebook with 28 (random)
seeds (a) and one seed (b), as well as in Orkut with one seed (d). Additionally, we show in (c) the full node degree distributions for Facebook. Because we
do not have the true degree distributionpk of Orkut, we cannot calculate its analytical curve〈qBFS

k
〉. Nevertheless, we show in (d) our best guess of Orkut’s

average node degree〈k〉 learned by other means, as explained in Footnote 2.

Proof: In order to prove Lemma 1, we have to show that
E[x̂tot] =

∑
v∈V x(v). Indeed:

E[x̂tot] =
∑

w∈V

p(w)
∑

v∈Q(w)

x(v)

π(v)
=

=
∑

v∈V

∑

w∈V : v∈Q(w)

x(v)

π(v)
p(w) =

=
∑

v∈V

x(v)

π(v)

∑

w∈V : v∈Q(w)

p(w) =

=
∑

v∈V

x(v)

π(v)
π(v) =

=
∑

v∈V

x(v).

(Note that the sums were swapped and appropriately updated
after the first step.)

�

C. Practical requirements

We have just shown that̂xtot in Eq.(25) is an unbiased
estimator ofxtot. This is true forany choiceof Q(w) ⊆ V ,
regardless of our sampling method. By definingQ(w), we
define the estimator. However, there are two requirements that
we should take into account.

First, our estimator must befeasible, i.e., we must be able
to calculatêxtot(v) from our sampleS(U). This means that all
nodes whose values are needed to calculatex̂tot must be known
(sampled). One obvious necessary condition is thatQ(U) ⊂
S(U), becauseQ(U) is the set of nodes whose valuesx(v)
are used in the estimator̂xtot in Eq.(25). However, usually
we have to know many nodes from beyondQ(U) in order to
evaluate Eq.(26). We give some examples below.

Second, the estimator̂xtot should be characterized by asmall
variance.

D. Arbitrary-topology estimators for BFS

Let Bi(u) be a ball of sizek around vertexu ∈ V , i.e.,
the set of all vertices withini hops fromu. For simplicity,

we define our sampling technique as ai-stage BFS,i.e.,
S(u) = Bi(u). Depending on our choice ofQ(u), we may
obtain various feasible arbitrary-topology estimators:

1) Trivial: The simplest choice ofQ(v) is

Q(v) = {v}.

This estimator makes use of the first sampled node only, which
naturally results in a huge variance.

2) Extreme:We can extend trivial for one specific nodev∗

to obtain

Q(v) =

{
Bi(v) if v = v∗

{v} otherwise.

3) Half-radius: A more balanced approach is

Q(v) = B⌊i/2⌋(v).

In other words, out of the collectedi-stage BFS sampleS(v),
we use for estimation only the nodes collected in the firsti/2
stages of our BFS. It is easy to verify that the half-radius
estimator is feasible.

4) Half-radius extended:Finally, we can extend the half-
radius estimator to potentially cover some more nodes, as
follows.

Q(u) = B⌊k/2⌋(u) ∪ {v ∈ V : Bi(v) ⊆ Bi(u)}.

E. Evaluation

We have tried the above approaches in simulations to
estimate the average node degree〈k〉 = xtot/|V |.5 As our error
metric, we used Root Mean Square Error (RMSE), which is
appropriate in our case, as it captures both the estimator bias
and its variance. RMSE is defined as:

RMSE =
√

E [(x̂tot/|V | − 〈k〉)2].

In our simulations, we calculated the meanE over 1000 BFS
samples initiated at nodes chosen uniformly at random,i.e.,
with probability p(v) = 1/|V |. In Table IV, we show the
results for the half-radius estimator withi= 2. Other values
of i and other estimators do not improve the results compared
to theRG(pk)-based estimator.

5For simplicity, we considered the total number of nodes|V | as known.
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Dataset 〈pk〉 correction method 〈p̂k〉 RMSE

ca-CondMat 8.6 arbitrary-topology 8.5 10.3
RG(pk)-based 7.6 3.3

email-EuAll 3.0
arbitrary-topology 3.1 17.3
RG(pk)-based 1.7 1.5

Facebook-New-Orleans 25.8
arbitrary-topology 25.6 33.5
RG(pk)-based 21.5 11.8

wiki-Talk 3.9 arbitrary-topology 3.8 27.9
RG(pk)-based 2.4 1.9

p2p-Gnutella31 4.7 arbitrary-topology 4.8 4.6
RG(pk)-based 3.7 1.6

soc-Epinions1 10.7
arbitrary-topology 10.3 29.3
RG(pk)-based 9.7 6.6

soc-Slashdot0811 14.1
arbitrary-topology 14.5 40.5
RG(pk)-based 17.3 6.8

as-caida20071105 4.0 arbitrary-topology 3.9 4.7
RG(pk)-based 2.9 1.5

web-Google 10.0 arbitrary-topology 10.6 55.2
RG(pk)-based 6.1 5.1

TABLE IV
COMPARISON OF THE ARBITRARY-TOPOLOGY ESTIMATOR DERIVED IN

THIS SECTION WITH THERG(pk)-BASED ESTIMATOR PROPOSED IN THE

PAPER. WE USED THE REAL-LIFE INTERNET TOPOLOGIES DESCRIBED IN
TABLE II. H ERE, WE USE THE HALF-RADIUS ARBITRARY-TOPOLOGY

ESTIMATOR WITH DEPTHi = 2. THE RESULTS ARE AVERAGED OVER1000
SEED NODES CHOSEN UNIFORMLY AT RANDOM FROM THE GRAPH.

Although unbiased, all the proposed arbitrary-topology esti-
mators have very large RMSE compared to theRG(pk)-based
estimators. There are two main reasons for that. First, in order
to guarantee feasibility, we usually have|Q(v)| ≪ |S(v)|,
which results in a “waste” of valuesx(v) of most of the
sampled nodes. Second, the sizes|Q(v)| may significantly
differ for different nodesv, which translates to differences
in particular estimateŝxtot(v).

To summarize, the arbitrary-topology estimator is unbiased
but has a huge variance, which makes it much worse than
the potentially slightly biased (for real-life topologies) but
much more concentratedRG(pk)-based estimator. It is an
instance of the well-known “accuracy vs precision” trade-off.
Indeed, in the statistics terminology, we could say that the
arbitrary-topology estimator is “accurate but very imprecise”,
whereas theRG(pk)-based estimator is “slightly inaccurate
but precise”.

IX. PRACTICAL RECOMMENDATIONS

In order to samplenode properties, we recommend using
RW. RW is simple, unbiased for arbitrary topologies (assum-
ing that we use correction procedures summarized in Sec-
tion VI-A1), and practically unaffected by the starting point.
RW is also typically more efficient than MHRW [2,3,10].

In contrast, RW and MHRW are not useful when sampling
non-local graph properties, such as the graph diameter or the
average shortest path length. In this case, BFS seems very
attractive, because it produces a full view of a particular region
in the graph, which is usually a plausible graph for which
the non-local properties can be easily calculated. However, all
such results should be interpreted very carefully, as they may
be also strongly affected by the bias of BFS. For example,
the graph diameter drops significantly with growing average

node degree of a network. Whenever possible, it is a good
practice to restrict BFS to some well defined community in
the sampled graph. If the community is small enough, we may
be able to exhaust it (at least its largest connected component),
which automatically makes our BFS sample representative of
this community. For example, [20,33] collected full samples of
several Facebook regional networks, and [63,65] completely
covered the WWW graph restricted to one or few domains.
When such communities are not available (e.g., regional
networks are not accessible anymore in Facebook), we are
left with a regular unconstrained BFS sample. In that case, we
recommend applying theRG(pk)-based correction procedure
presented in this paper to quantify the node degree bias, which
may help us evaluate the bias introduced in the topological
metrics.

X. CONCLUSION

To the best of our knowledge, this is the first work to quan-
tify the node-degree bias of BFS. In particular, we calculated
the node degree distributionqk expected to be observed by
BFS as a function of the fractionf of covered nodes, in a
random graphRG(pk) with a given degree distributionpk.
We found that for a small sample size,f → 0, BFS has the
same bias as the classic Random Walk, and with increasingf ,
the bias monotonically decreases.

Based on our theoretical analysis, we proposed a practical
RG(pk)-based procedure to correct for this bias when cal-
culating any node statistics. Our technique performed very
well on a broad range of Internet topologies. Its ready-to-use
implementation can be downloaded from [24].

In this paper, we used ourRG(pk)-based correction proce-
dure to estimate local graph properties, such as node statistics.
An interesting direction for future is to exploit the node
degree-biases calculated here to develop estimators of non-
local graph properties, such as graph diameter.
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