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Algebraic Watchdog: Mitigating Misbehavior in
Wireless Network Coding
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Abstract—We propose a secure scheme for wireless network network bandwidth, while the source is still unaware of the
coding, called the algebraic watchdog. By enabling nodes ttetect need for retransmission.
malicious behaviors probabilistically and use overheard ressages Referencel]9] introduces a protocol for routing wireless ne

to police their downstream neighbors locally, the algebrai . .
watchdog delivers a secure globatelf-checking network. Unlike works, called thevatchdog and pathratein which upstream

traditional Byzantine detection protocols which are receiver- node_s F_JO"CG the_ir downstream neighbors uqimgmiscuous
based, this protocol gives the senders an active role in checking monitoring Promiscuous monitoring means that if a nade

the node downstream. The key idea is inspired by Martiet al.'s s within range of a node’, it can overhear communication
watchdog-pathrater, which attempts to detect and mitigate the to and fromv’ even if those communication do not directly

effects of routing misbehavior. involve v. This scheme successfully detects adversaries and
As an initial building block of a such system, we first focus on v y

a two-hop network. We present a graphical model to understad  e€moves misbehaving nodes from the network by dynamically
the inference process nodes execute to police their downsam adjusting the routing paths. However, the protocol reguae
neighbors; as well as to compute, analyze, and approximatén¢  significant overhead (12% to 24%) owing to increased control
probabilities of n;lis%etgction |an.d faflsi dete?tion. In adqion, traffic and numerous cryptographic messagés [9].
we present an algebraic analysis of the performance using an . : .
hypgthesis testinggframework };hat provideg exact formulaef%r Our goal 'S_to design and ana_Iyze a WatChdog"nSp'red
probabilities of false detection and misdetection. protocol for wireless networks using network coding. We
We then extend the algebraic watchdog to a more general Propose a new scheme called thégebraic watchdog in
network setting, and propose a protocol in which we can estdish ~ which nodes can detect malicious behaviors probabilisfica
trust in coded systems in a distributed manner. We develop a by taking advantage of the broadcast nature of the wireless

graphical model to detect the presence of an adversarial n@l a4, m - Although we focus on detecting malicious or mis-
downstream within a general multi-hop network. The structure

of the graphical model (a trellis) lends itself to well-known P€having nodes, the same approach can be applied to faulty
algorithms, such as the Viterbi algorithm, which can compue Or failing nodes. Our ultimate goal is a robustlf-checking
the probabilities of misdetection and false detection. Wetow network The key difference between the our wofk][10] and
analytically that as long as the min-cut is not dominated by he  that of [€] is that we allow network coding. Network coding
Byzantine adversaries, upstream nodes can monitor downstam o1 s advantageous as it not only increases throughpu
neighbors and allow reliable communication with certain prob- . - L
ability. Finally, we present simulation results that suppat our ~and robustness against failures and erasures but also it is
analysis. resilient in dynamic/unstable networks where state infatram
may change rapidly or may be hard to obtain.
The key challenge in algebraic watchdog is that, by incor-
. INTRODUCTION porating network coding, we can no longer recognize packets
individually. In [9], a nodev can monitor its downstream
There have been numerous contributions to secure wirel@gsghborv’ by checking that the packet transmitted #yis
networks, including key management, secure routing, Byzag copy of whatv transmitted tov’. However, with network
tine detection, and various protocol designs (for a genegding, this is no longer possible as transmitted packetsar
survey on this topic, seel[LJ[2][3][4][S][€][7][8]). Couering function of the received packets. Furthermarepay not have
these types of threats is particularly important in miltarfy|| information regarding the packets received 4t thus,
communications and networking, which are highly dynamigode v is faced with the challenge of inferring the packets
in nature and must not fail when adversaries succeed risceived atv’ and ensuring that’ is transmitting a valid
compromising some of the nodes in the network. We considghction of the received packets. We note thaf [13] combines
the problem of Byzantine detection. The traditional apphda  source coding with watchdog; thus, [13] does not face the
receiver-based-i.e. the receiver of the corrupted data detectsame problem as the algebraic watchdog.
the presence of an upstream adversary. However, this @gtect The paper is organized as follows. In Secfidn II, we briefly
may come too late as the adversary is partially successfuldcuss the intuition behind algebraic watchdog. In SedlB
disrupting the network (even if it is detected). It has westeye present the background and related material. In Section
V] we introduce our problem statement and network model.

This work was partially presented at IEEE ISIT 2009 (Seouwydq) titled | Section[V, we ana|yze the pl’OtOCOl for a simple tWO-hOp
“An Algebraic Watchdog for Wireless Network Coding”, and I&EE ITW

2010 (Dublin, Ireland) titled “A Multi-hop Multi-source Ajebraic Watchdog”. _network_' first algebra'ca"_y in Sectign VB and then graplt_i;c
*M. Kim and M. Médard {minjikim, medard@mit.edu) are with the in Section[V=A. In Sectiori_VI, we extend the analysis for

Research Laboratory of Electronics at the Massachusedtitute of Tech- algebraic watchdog to a more general two-hop network, and
nology, MA USA. 3. Barros (jbarros@fe.up.pt) is with the Instituto dein Sectior I, we present an algebraic watchdog protoool f
Telecommunicagdes, Faculdade de Engenharia da Umleelsido Porto, ; p g agp

Portugal. a multi-hop network. We present simulation results in Secti
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I1l. BACKGROUND
A. Secure Network Coding

Network coding, first introduced i [11], allows algebraic
mixing of information in the intermediate nodes. This mixin
has been shown to have numerous performance benefits. It is
known that network coding maximizes throughput for mul-
ticast [11] and increases robustness against faillireés ]

Fig. 1: An example network. erasures[[14]. However, a major concern for network coded
systems is their vulnerability to Byzantine adversariesin

[X] which confirm our analysis and show that an adversafje corrupted packet generated by a Byzantine adversary can
within the network can be detected probabilistically by ugsontaminate all the information to a destination, and pgape

stream nodes. In Sectidil X, we summarize our contributiéf Other destinations quickly. For example, in random linea
and discuss some future work. network coding[[14], one corrupted packet in a generati@n (

a fixed set of packets) can prevent a receiver from decoding
any data from that generation even if all the other packets it
Il. INTUITION has received are valid.

Consider a network in which the sources are well-behaving There are several papers that attempt to address this prob-
(If the sources are malicious, there is no “uncorrupted” ifém. One approach is to correct the errors injected by the
formation flow to protect). In such a case, the sources cB¥Zantine adversaries usingetwork error c_orrecﬂon[@]._
monitor their downstream neighbors as shown in Fiddre Referencel[I5] bounds the maximum achievable rate in an
Assume that nodes;, vs, v3, and v, are sources. Nodes inadversarial setting, and generalizes the Hamming, Gilbert
Sy = {v1,v2,v3} can monitorvs collectively or indepen- Vgrs_hamov, and Smgleton bounds. Jgg’gal.[lm] propose a
dently. In addition,us and v, can monitorvg. This enforces distributed, rate-optimal, network coding scheme for imakt
vs andvg to send valid information. Note that we do not mak®etwork that is resilient in the presence of Byzantine adver
any assumption on whetheg andwg are malicious or not — saries for sufficiently large field and packet size. Refegenc
they are forced to send valid information regardless ofrthdi-Z] generalizes[[16] to provide correction guaranteesrega
true nature. adversarial errors for any given field and packet size. In

Ifitis the case thats andug are well-behaving, then we can[18], Kim et al. compare the cost and benefit associated with
employ the same scheme @ or vs to checkvs’s behavior. these By_zantlne detection schemes in ter_ms of transmitted b
Thus, propagatingrust within the network. Now, what ifos by allowing nodes to employ the detection schemes to drop
or v are malicious? If both; andwg are malicious, all flows Polluted data.
to v; are controlled by malicious nodesi-e. flows through
v7 are completely compromised. Therefore, evewyifs well-  B. Secure Routing Protocol: Watchdog and Pathrater

behaving, there is nothing thag or vi, vz, vs,v4 €an do 10 e hrohlem of securing networks in the presence of Byzan-

protect the flow throughy;. The only solution in this case tine adversaries has been studied extensively,€.§] [B][B].

would be to physically remove; andu from the network or The watchdog and pathratef9] are two exter,15ions to the

© congtrugt_a new path toy. ) Dynamic Source Routind [19] protocol that attempt to detect
The intuition is that as long as the min-cut to any node g, mitigate the effects of routing misbehavior. The watghd

not dominated by malicious nodes, then the remaining welfg et misbehavior based on promiscuous monitoring of the

behaving nodes can check its neighborhood and enforce thgf s missions of the downstream node to confirm if this relay
the information flow is delivered correctly to the destipati correctly forwards the packets it receives. If a node bound

For example, assume that only is malicious ands is well- - forward a packet fails to do so after a certain period of

behaving in Figur¢ll. Since; andvs monitor v, we know ime “the watchdog increments a failure rating for that node
that despitevs being malicious,us is forced to send valid oy 5 node is deemed to be misbehaving when this failure
information. Then,v7 receives two valid information flows, \a4ing exceeds a certain threshold. The pathrater thenthses
Wh'Ch,'t is now responsible of forwardlng..m IS vyell- gathered information to determine the best possible rdues
behaving, we do not have any problem.uf is malicious, 5\ iging misbehaving nodes. This mechanism, which does not
it may wish to inject errors to the information flow. In th'spunish these nodes (it actually relieves them from forwegdi

case,v; is only liable tovs; but it is liable to at least one e ratigns) provides an increase in the throughput of ortsv
well-behaving nodes. Thus, it is not completely free to inject,, i, misbehaving node$[9].

any error it chooses; it has to ensure thatcannot detect its

misbehavior, which may be difficult to accomplish. . )
In this paper, we show that this is indeed the case. Wfle Hypothesis Testing

first start by studying a two-hop network, which would be Hypothesis testing is a method of deciding which of the two

equivalent to focusing on the operations performed by nodegpotheses, denoted, and H1, is true, given an observation

in Sy to checkwvs. Then, we discuss how we can propagatdenoted a#/. In this paperH, is the hypothesis thatis well-

this two-hop policing strategy to a multi-hop scenario. behaving,H; is thatv is malicious, andJ is the information




gathered from overhearing. The observatiéns distributed [ | hy | hy |
differently depending whethef or H; is true, and these \ ' . |
distributions are denoted &%, and Py g, respectively. T !
. . Protected with error x.=2a.x.
An algorithm is used to choose between the hypotheses correcting codes
given the observatioly. There are two types of error associ- _ _ _
ated with the decision process: Fig. 2: A valid packetp; sent by well-behaving;.

o Type 1 error, False detectio\ccepting H; when Hy is
true (.e. considering a well-behaving to be malicious), Figurel2 illustrates the structure of a valid packet. Forpdica
and the probability of this event is denoted ity, we assume the payloaq to be a single symbol. We design

« Type 2 error, MisdetectianAccepting Hy, when H; is and analyze our protocol for a single symbol. However, the
true (.e. considering a malicious to be well-behaving), Protocol applies (and therefore, the analysis) to packets w
and the probability of this event is denotgd multiple symbols by applying the protocol on each symbol

The Neyman-Pearson theorem gives the optimal decision rgfParately.

that given the maximal tolerablg, we can m|n|m|ze7 by The payloadx; is coded with a(n, k:)- °°d‘? Ci with
Py minimum dlstancei Code(,; is an error-correcting code of
accepting hypothesigl, if and only if log 5—2 > t for

threshold d dant E th‘ h rateR; = & = 1— % and is tailored for the forward commu-
some threshold dependant ory. For more thorough SUIVeY e o For mstanceul uses cod&’;, chosen appropriately

on hypothesis testing in the context of authentication]2@p for the channelv;,v;) € E;, to transmit the payloass.

We assume that the payloagis n-bits, and the hash(-) is
IV. PROBLEM STATEMENT d-bits. We assume that the hash function usdd), is known
We shall use elements from a field, and their bito all nodes, including the adversary. In addition, we assum
representation. We use the same character in italic faat (thata;, hy, andh,, are part of the header information, and are
r) for the field element, and in bold foni.€. x) for the sufficiently coded to allow the nodes to correctly receiventh
bit-representation. We use underscore bold far. ) for even under noisy channel conditions. Protecting the header
vectors. For arithmetic operations in the field, we shall usgifficiently will induce some overhead, but the assumption
the conventional notation.é. +, —, -). For bit-operation, we remains a reasonable one to make. First, the header is smalle
shall use® for addition, and® for multiplication. than the message itself. Second, even in the routing case, th
We also require polynomial hash functions defined as fdakeader and the state information need to be coded suffigientl
lows (for a more detailed discussion on this topic, [21lhird, the hashed;, andh,, are contained within one hop.
A node that receivep; = [a;, hy,, hy,, x;] does not need to
Definition 4.1 Polynomial hash functions): For a finite repeathy,, only h,,. Therefore, the overhead associated with
field F andd > 1, the class of polynomial hash functionghe hashes is proportional to the in-degree of a node, ansl doe

Xj

on F is defined as follows: not accumulate with the routing path length.
d _ . A1 Assume that; transmitsp; = [a;, hy,, hy,, %;], wherek; =
F)={hsla= s F , L
HEF) = {hala = (ao aq) € } x; D e, e € {0,1}" If v; is misbehaving, there # 0. Our
whereh,(z) = Zf:o a;x’ for x € F. goal is to detect with high probability whes # 0. Even if
We model a wireless network with a hypergraph = |e| is small {.e. the hamming distance betweé&n andx; is

(V, E1, Es), whereV is the set of the nodes in the networksmall), the algebraic interpretation & and x; may differ
E, is the set of hyperedges representing the connectivitignificantly. For example, consider= 4, %; = [0000], and
(wireless links), andE; is the set of hyperedges represents; = [1000]. Then,e = [1000] and |e| = 1. However, the
ing the interference. We use the hypergraph to capture thigebraic interpretations &; andx; are 0 and 8, respectively.
broadcast nature of the wireless medium.(df,v2) € E; Thus, even a single bit flip can alter the message signifigantl
and (v1,v3) € E; wherevy,ve,vs € V, then there is an
intended transmission from; to v,, andvs can overhear A. Threat Model
this transmission (possibly incorrectly). There is a darta We assume powerful adversaries, who can eavesdrop their
transition probability associated with the interferenbhammnels neighbor’s transmissions, has the power to inject or carrup
known to the nodes, and we model them with binary channefackets, and are computationally unbounded. Thus, ther-adve
BSC(pij) for (vi,v;) € Es. sary will find %; that will allow its misbehavior to be unde-
A nodew; € V transmits coded informatiom; by trans- tected, if there is any sucky. However, the adversary does not
mitting a packetp;, wherep; = [a;, hr,, hy, xi] is @{0,1}-  know the specific realization of the random errors introdiice
vector. A valid packep; is defined as below: by the channels. We denote the rate at which an adversary
» a; corresponds to the coding coefficients, j € I;, injects error i.e. performs bit flips to the payload) to hg ..
where; C V is the set of nodes adjacenttpin Ej, The adversaries’ objective is to corrupt the informatiomflo
« hy, corresponds to the hashiz;), v; € I; whereh(-) is without being detected by other nodes.
a ¢-bit polynomial hash function, Our goal is to detect probabilistically a malicious behavio
« hy, corresponds to the polynomial haaly;), that is beyond the channel noise, represented3Y (p;x ).
e X; is the n-bit representation ofc; = Zjel ajz; € Note that the algebraic watchdog does not completely elim-
(Fan). inate errors introduced by the adversaries; its objectvei
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Fig. 3: A small neighborhood of a wireless network with Fig. 5: A graphical model from,’s perspective

Y, Note that a maliciouss would not inject errors ithy, only,

! Vy because the destinatian can easily verify ifhy, is equal
\ : to h(xs). Thereforeh,, andxs are consistent. In addition,
N e V3 woul(_j not inject errors inhy;, j € I3, as each node;
----» edgesin E, can verify the hash of its message. On the other hand, a
malicious v can inject errors inag, forcing v, to receive
Fig. 4: A wireless network withn = 2. incorrect coefficientsy;’s instead ofa;’s. However, any error

introduced inag can be translated to errorsx by assuming

limit the errors introduced by the adversaries to be at md&@td;'s are the correct coding coefficients. Therefore, we are
that of the channel. Channel errors (or those introduced Bgncerned only with the case in whicp introduces errors in
adversaries below the channel noise level) can be correct® (and therefore, iy, such thathy, = /(x3))-
using appropriate error correction schemes, which will be i
necessary even without Byzantine adversaries in the netwdp: Graphical model approach

The notion that adversarial errors should sometimes beWe present a graphical approach to model the problem for
treated as channel noise has been introduced previouslyi = 2 systematically, and to explain how a node may check
[18]. Under heavy attack, attacks should be treated witbiape its neighbors. This approach may be advantageous as it lends
attention; while under light attack, the attacks can beté¢gka easily to already existing graphical model algorithms a8l we
as noise and corrected using error-correction schemes. H$Some approximation algorithms.

results in this paper partially reiterate this idea. We shall consider the problem from'’s perspective. As
shown in Figure[, the graphical model has four layers:

Layer 1 contains2™*" vertices, each representing a bit-
representation ofXo, h(xz)]; Layer 2 contain®2™ vertices,

Consider a network (or a small neighborhood of nodes ingich representing a bit-representationxgf Layer 3 contains
larger network) with nodes;, vz, ...Um, Vm+1, Um+2. NOdeS 97 yertices corresponding tes; and Layer 4 containg”*+"
v;, i € [1,m], want to transmitz; t0 vi,42 Via vmi1. A vertices corresponding téks, h(xs)]. Edges exist between
single nodev;, i € [1,m], cannot check whethes,,.1 is  adjacent layers as follows:

misbehaving or not even if; overhears,,,1, since without . Layer 1 to Layer 2:An edge exists between a vertex

V. TWO-HOP NETWORK AN EXAMPLE

any information about; for j € [1,m], 2,41 is completely [v,u] in Layer 1 and a vertew in Layer 2 if and only if
random tov;. On the other hand, it; knowsz,+1 and; h(w) = u. The edge weight is normalized such that the
for all j € [1,m], thenv; can verify thatv,,., is behaving total weight of edges leavinpy,u] is 1, and the weight
with certainty; however, this requires at least- 1 additional is proportional to:

reliable transmissions to;. o ) o

We take advantage of the wireless setting, in which nodes P (v| Channel statistics and is the original message
can overhear their neighbors’ transmissions. In Figure &, W which is the probability that the inference channel outputs
use the solid lines to represent the intended chanfigland messages given an input message.
dotted lines for the interference channélg which we model  + Layer 2 to Layer 3:The edges represent a permutation.
with binary channels as mentioned in Section IV. Each node A vertexv in Layer 2 is adjacent to a vertax in Layer
checks whether its neighbors are transmitting values treat a 3 if and only if w = ¢ + asv, wherec = ajz; is a

consistent with the gathered information. If a node detds constanty andw are the bit-representation ofand w,

its neighbor is misbehaving, then it can alert other nodes in respectively. The edge weights are all 1.

the network and isolate the misbehaving node. o Layer 3 to Layer 4:An edge exists between a vertex
In the next subsections, we shall use an example witk in Layer 3 and a vertekw, u] in Layer 4 if and only if

2, as shown Figuriel4. We introduce the graphical model which  h(v) = u. The edge weight is normalized such that the
explains how a node; checks its neighbor’s behavior. Then,  total weight leavingv is 1, and is proportional to:

we use an algebraic approach to analyze and compuated
£ for this example network withn = 2. In this section, we
assume for simplicity that nodes do not code the payload —Nodew; overhears the transmissions fremto v3 and from
i.e. an error-correcting code of rat@; = 1 is used. vs 10 wvy; therefore, it receivedxs, h(x2)] and [X3, h(xs)],

P(w| Channel statistics and is the original message



corresponding to thstarting pointin Layer 1 and thedesti- from the field by a randomly chosen constant has the effect
nation pointin Layer 4 respectively. By computing the sunof randomizing the product. Here, we consider two cases:
of the product of the weights of all possible paths between th Case 1:If x5 + e3 ¢ X5, thenwvs fails v1’s check.
starting and the destination points,computes the probability =~ Case 2if z5+¢2 € X5, thenvs passes,’s check; however,
that vz is consistent with the information gathered. vs is unlikely to passwvs’s check. This is because;z; +
This graphical model illustrates sequentially and visuallws (s +e3) = a1 + asxe + ases = ag(x1 +e1) + agxs for
the inference process; executes. Furthermore, by usingsomee;. Here, for uniformly randonw; and as, e is also
approximation algorithms and pruning algorithms, we may heiformly random. Therefore, the probability that will pass
able to simplify the computation as well as the structure @ the probability that the uniformly random vector + e;
the graph. In addition, the graphical approach may be extebelongs toX; = {z | h(z) = h(z1)}NB(X1,7r1-2) Wherevy
to larger networks, as we shall discuss in Secfioh VI. overhearsk; from vy, and the probability that the interference
channel fromv; to vy outputsx; givenx € B(Xy,ri1-2) iS

B. Algebraic approach greater tharl — e.

We explain the inference process described above using the P (A maliciousvs passes»'’s check
graphical model introduced in Sectibn Y-A. Consider By - Vol(X;)
assumptionyp; correctly receives., ag, hy,, hi,, hy,, and =P +te1 € Xy1)= “on

h,,. In addition,v; receiveks = x2 + €’ andxs = x3 + €”, ] )

wheree’ ande” are outcomes of the interference channel/nereVol(-) is equal to the numbeir 05072 1}-vectors in the

Given %; for j = {2,3} and the transition probabilities; ~9'V€" set. S'nceVOl_(B(x’T)) - Zk:O (&) < 2%, and the

computesr;_,; such that the sum of the probability that thé®robability thath(z) is equal to a given value ig;, Vol(X1)

interference channel from; and v, outputs%; given x € IS given as follows:

B(x;,7rj—1) Is greater or equal tb — ¢ wheree is a constant, - =2 (n

andJB(;c, r) is an-dimensional ball of radius centered ak. Vol(X,) = VOZ(B(";II’ roz) ’“:20h (&) .

Now, v; computesX; = {x | h(z) = h(z;)} N B(X;,7j1) )

for j = {2,3}. Then,u; computesy, z; +ai forall x € X,. Therefore, fromy;’s perspective, the probability thatzac X

Then,v; intersectsX3 and the computed;z; +as@’s. If the passes the checkB,(z passes chegkis:

intersection is empty, then, claims thatR is misbehaving. ~ T2 (n) 3
The set{x | h(z) = h(z2)} represents the Layer 2 vertices 0-P(z2 +e2 ¢ Xo) + % ‘P22 4+ €2 € Xo).

reachable from the starting poinfxg, h(x2)] in Layer 1),

and X, is a subset of the reachable Layer 2 vertices suimilarly, P(zz + €2 € X5) = %37:@ and Vol(X3) =
that the total edge weight (which corresponds to the trimsit y-rs-»1 (7) Then, the probability that; is undetected from

probability) from the starting point is greater thdan—e. ~— 2 =1 J -
Then, computingy,z; + a2 represents the permutation from’1'S Perspective is the probability that least onez € X3
Layers 2 to 3. Finally, the intersection with; represents Passes the check:

finding a set of Layer 3 vertices such that they are adjacent toP(
the destination point[ks, h(xs)] in Layer 4) and their total
transition probability to the destination point is greatiean

A maliciousvs is undetected fromy;’s perspective
= min{1, P(z passes chedk Vol(X3)}.

I-e - . Note thatP(z passes chegk Vol(X3) is the expected num-
Lem_ma 5.1:Forn suff|C|elntIy large, the probability of false ). ¢ - X, that passes the check; thus, given a high
detection,y < e for any arbitrary small constant enoughP(z passes chegk would exceed 1. Therefore, we

Proof: As_sume th_at;3 is not malicious, and transmiteg take min{1, P(z passes chegk Vol(Xg)} to get a valid
and hy, consistent withv,'s check. Then, fom sufficiently probability. This proves the statement. -

large,v; can choose,_,; andrs_,; such that the probability
that the bit representation af; = o121 + asxs IS in X5 and
the probability that, € X, are greater thaih— e. Therefore,
XsN{oz 4+ asi | V& € X5} # 0 with probability arbitrary in{l el VO I Dyl (4 D Dyhirll (1) }

Lemma 5.3:The probability that a malicious; is unde-
tected fromus’s perspective is given by

close to 1. Therefore, a well-behaving passes;’s check o(htn) T o(hin) oh
with probability at leastl — . Thus,y < e. |

Lemma 5.2:The probability that a maliciouss is unde-
tected fromu,’s perspective is given by

where v, overhearsxsz from w3, and the probability that
the interference channel froms to vo outputs xg given
x € B(X3,73-2) is greater than — e.

, e () () () Proof: By similar analysis as in proof of Lemnia .2
mm{l’ o(htn) T ohtn) oh } Theorem 5.1:The probability of misdetections, is:

_ Proof: As_sume thatvs is malicious and injects errors 5 minf1 re () . P (1) ii n
into x3. Consider an element € X3, wherez = ajz; + =YL T Gy o(h+n) oh [ NE
Qo + € = ay1 + gz + e3) for somee andes. Note that, k=0

since we are using a field of si2#, multiplying an element wherer = min{rs_,1,732}.



Proof: The probability of misdetection is the minimumpair [%;, h(x;)], there are multiple candidates of (i.e. | X;|)
of the probability that, andv, do not detect a malicious;. although the probabilities associated with each inferrgdre
Therefore, by LemmBH.2 alid 5.3, the statement is trum  different. This is because there are uncertainties agsocia
Theorem[Sll shows that the probability of misdetectionith the wireless medium, represented B C'(p;1).
$ decreases with the hash size, as the hashes restrict theor each: € X;, p;(Z;, z) gives the probability of: being
space of consistent codewords. In addition, sinces, ro—,1, the original codeword sent by nodeg given thatv; overheard
rs—1, andrs_o represent the uncertainty introduced by the; under BSC(p;1). Since we are only considering € X;,
interference channels} increases with them. Lastly and thewe normalize the probabilities usiny” to get thetransition
most interestinglyj decreases with, since}", _, (7) <2" probability T;(z;, ). Note T;(&;,y) = 0 if h(y) # h(x;).
for r < n. This is because network coding randomizes the The structure off; heavily depends on the collisions of
messages over a field whose size is increasing exponentiffig hash functiom.(-) in use. Note that the structure @
with n, and this makes it difficult for an adversary to introduces independent of, and therefore, a single transition matrix
errors without introducing inconsistencies. T can be precomputed for all € [1,m] given the hash
We can apply Theorerh 3.1 even when and v, can- function h(-). A graphical representation df is shown in
not overhear each other. In this case, beth,, andr,_.; Figure[6a. For simplicity of notation, we represefitas a
equal ton, giving the probability of misdetections = matrix; however, the transition probabilities can be cotegu
min{1,Y";_, (7)/8"} wherer = min{rs_,1,73-,2}. Here, efficiently using hash collision lists as well.
5 highly depends om, the size of the hash, as andv, are
only using their own message and the overheard hashes. B \watchdog trellis
The algebraic approach results in an analysis with exact d the information aathered to generate a trellis
formulae fory and . In addition, these formulae are con- NO v, Uses . gathe generate '
I S which is used to infer the valid linear combination that
ditional probabilities; as a result, they hold regardlefsao

L ; L should transmit ta,,,+2. As shown in Figuréléb, the
priori knowledge of whethers is malicious or not. However, U1 ) mt2 g ¢
hrelhs hasm layers: each layer may contain up 28 states,

perfo_rmlng algebraic analysis is not very extensible Wlteach representing the inferred linear combination so far. F
growing m. ; . . i
example, Layei consist of all possible values ijjzl 05T
The matricesl;, i € [2,m], defines the connectivity of the
trellis. Let s; and s; be states in Layei — 1 and Layeri,

We extend the algebraic watchdog to a more general tWesspectively. Then, an edde,, s;) exists if and only if
hop network, as in Figulg 3. We shall develop upon the trellis

introduced in SectiofiV, and formally present a graphical 3 & such thats; + ciw = s2, Ty(Zi, z) # 0.

representation of the inference process performed by a nQgg denotew, (-, ) to be the edge weight, whete, (s, s2) =

performing algebraic watchdog on its downstream neighborr ;. 1) if edge (sy, s5) exists, and zero otherwise.
There are three main steps in performing the algebraic

watchdog. First, we need to infer the original messages froeq Viterbi-like algorithm
the overheard information, which is captured by the trémsit _ . . ,
matrix in Sectior VI-A. The second step consists of formingI We denotew(s, i) to be the weight of state in Layer i.
an opinion regarding what the next-hop nagg,; shouldbe odew; sellect_s atart statein Lgyer 1 corresponding te; z1,

sending, which is inferred using a trellis structure as shoviS Shown in Figurgl6. The weight of Layer 1 statesis, 1) =

in Sectior[VI-B and a Viterbi-like algorithm in Sectign Vi-C 1 if 8 = w1, Z€ro otherW|se._ For the subsequent Iay_ers,
Finally, we combine the inferred information with what wenultiple paths can lead to a given state, and the algorithm
overhear fromv,,,; to make a decision on how,,; is keeps the aggregate probability of reaching that state.€lo b

behaving, as discussed in Secton MI-D. Figlte 6 illuswat&0re precisew(s, i) is:

these three steps. w(s,i) = Z w(s',i—1) - we(s', ).
Vs'elayeri—1

V1. ALGEBRAIC WATCHDOG FORTWO-HOP NETWORK

A. Transition matrix By definition, w(s,i) is equal to the total probability of

. . . (% 5 K . .
Vl\/_eHdgfl)r)le atransition matnx?}- to be a2"(1—H( ".)H X s = )i, ajz; given the overheard information. Therefore,
2n(1=H(55) matrix, whereH () is the entropy function. w(s,m) gives the probability thas is the valid linear com-
pi(Eiy) _ bination thatv,,+; should transmit tov,,42. It is important
- )R i R(y) = h(x) i isti
Ti(Z;,y) = to note thatw(s,m) is dependent on the channel statistics,

0, otherwise as well as the overheard information. For some states

pi(ii,y) = pAEY (1 = pyg )= BEY), w(s,m) = 0, which indicates that state can not be a valid
_ linear combination; only those stateswith w(s,m) > 0 are
N = > pilEny), the inferred candidate linear combinations
{ylh(y)=h(=)} The algorithm introduced above is a dynamic program, and
where A(x,y) gives the Hamming distance between codes similar to the Viterbi algorithm. Therefore, tools dewetd
wordsx andy. In other wordsy; computesX; = {z|h(z) = for dynamic programming/Viterbi algorithm can be used to

h(z;)} to be the list ofcandidatesof x;. For any overheard compute the probabilities efficiently.
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(a) Transition matrix T,(X,X;) (b) Trellis for Algebraic Watchdog (c) Inverse transition matrix 7-/(X,, j, Xy, 1)

Fig. 6: Graphical representation of the inference proces®dev;. In the trellis, the transition probability from Layeér— 1
to Layeri is given byT;(Z;, x;), which is shown in (a).

D. Decision making analysis for the simple two-hop network with a simple dexisi
Nodewv; computes the probability that the overheaig, policy — if the inferred linear combination and the message

andh(z,,,1) are consistent with the inferrad(-, m) to make overheard from the next hop node is non-empty, we deplare the

a decision regarding,,_.’s behavior. To do soy; constructs node well-behaving. However, the main purpose of this paper

an inverse transition matrix’—?, which is a2n(1~ ") x is to propose a method in which we can compptewhich
2n(1_dm+1 )45 matrix whose elements are defined as foIIows(,:'an be used to establish trust within a network. We note that i
! ) would be worthwhile to look into specific decision policiesla
1 Pt Fmid) it (y) = h(@mn) their performancei. false positive/negative probabilities) as
T (yv x’m+1) = . 5 .
0, otherwise in [10].
M = Z Pmt1(Tm+1,Y)- VII. ANALYSIS FOR TWO-HOP NETWORK

wih(y)=hzm 1)} We provide an analysis for the performance of algebraic

Unlike 7' introduced in Sectioh VI-AT ! (z, Z,,+1) gives watchdog for two-hop network.
the probability of overhearindZ,,41,(zm+1)] given that  Theorem 7.1:Consider a two-hop network as shown in
x € {y|h(y) = h(wmy1)} is the original codeword sent by Figure [3. Consider;, j € [1,m]. Then, the number of
vm41 and the channel statistics. Note tHAt! is identical matchedcodewords is:
to T except for the normalizing factotM. A graphical 4

. . . . n|>, jyi€[l,m H(pij)—H(5t))—1|—md
representation of ~! is shown in Figurél6c. 2 { 7l H]( 8 ) } :

In Figure[c,s, and s; are the inferred candidate linear  proof: Without loss of generality, we consider. The
comblnatllon§,|.e. w(s1,m) # 0 and w(sz,m) # 0; the proof uses on concepts and techniques developed for list-
end nodeindicates what node; has overheard from.,..1.  gecoding[[22]. We first consider the overhearingg$ trans-
Note that althoughs; is one of the inferred linear combina-mission i e 2, m]. Nodev; overhears;, from v;,. The noise
tions, s; is not connected to the end node. This is becaugfiroduced by the overhearing channel is characterized by
h(s1) # h(zm41). ON the other handy(sz) = h(m11); 88 @ BSC/(pyy); thus, E[A(xi, %i)] = npr1. Now, we consider the

result,s; is connected to the end node althougtyz, m) = 0. number of codewords that are WithiB(zy,, npe1 ), the Ham-
We define an inferred linear combinatianas matchedif ming ball of radiusnpy; centered atiy is |B(iy, npr1)| =

w(s,m) >0 andh(s) = h(m-1). on(H(p)=H()  Nodev; overhears the hash(zy); thus,

h que b usezT 0 co_mputt(; th_eftotal(j;)lrobab|l|ty bqf the number dof codewords that considers is reduced to
earing[im1, h(wmy1)] given the inferre ' In€ar CoMOINA- o (1 (ps1) - H(55)~8  Using this informationy; computes the
tions by computing the following equation:

set of inferred linear combinationse. s wherew(s, m) > 0.

p* = Zw(s,m) TS, Zng1)- Note thatv; knows precisely the values aof;. Therefore, the
Vs number of inferred linear combinations is upper bounded by:
Probability p* is the probability of overhearing,,,1 given n(H(ml),H(ﬂ)) _s
the channel statistics; thus, measures the likelihoodithat H (2 ! ) @)
is consistent with the information gathereddy Nodewv; can ke2,m]
usep* to make a decision on,,+1’s behavior. For example, — 9" [Zke[z,m] (H(znm)fH(%’“))}f(mfl)tS )

vy can use a threshold decision rule to decide whethgr; is

misbehaving or now; claims that,,, is malicious ifp* <t Due to the finite field operations, these inferred linear ciemb

wheret is a threshold value determined by the given chann@tions are randomly distributed over the spaeet }".

statistics; otherwisey; claimsuv,,.; is well-behaving. Now, we consider the overheard informatiaf,,, from
Depending on the decision policy used, we can use tHie downstream node,,:. By similar anglyflls as above,

hypothesis testing framework to analyze the probability afe can derive that there agg((Pm+1.1)=H(=57))=0 code-
false positive and false negative. Sectloh V provides suwlords in the hamming ballB(Z,,+1, npm+1,1) With hash




foreach nodev do Sectior VIl noted that presence of adversarial error (atea ra

According to the schedule, transmit and receive dataghove the channel noise) can be detected by a change in dis-

if v decides to check its neighborhoten tribution of p*. Corollary[8.1 does not make any assumptions
Listen to neighbors’ transmissions; on whether packetp;’s are valid or not. Instead, the claim

foreach downstream neighbor’ do states that transmits a valid packefiventhe packet®;
| Perform Two-hop Algebraic Watchdog an; it has recexgé packg P i

dend Corollary 8.2: Nodew can inject errors beyond the channel
enden noise only if either of the two conditions are satisfied:
Algorithm 1: Distributed algebraic watchdog at 1) All its parent nodesP(v) = {ul(u,v) € Ei} are

colluding Byzantine nodes;
2) All its downstream nodes.e. receivers of the transmis-

value h(z,,+1). Thus, the probability that a randomly chosen sion p;, are colluding Byzantine nodes.

codeword in the space d, 1} is in B(Zm 1, mpms1.1) N Remark: In Case 1),v is not responsible to any .weII—

(2h(z) = h(zms1)} is give by beha_vmg nodes. Node can transmit any packet without
the risk of being detected by any well-behaving parent node.

2n(H(pm+1,1)fH(dm%))75 However, then, the min-cut to is dominated by adversaries,

on : (3)  and the information flow throughis completely compromised

) — regardless of whether is malicious or not.
Then, the expected number ofatchedcodewords is the |4 case 2)w can generate any hash value since its down-

product of Equationd{2) andl(3). B stream nodes are colluding adversaries. Thus, it is ndeliab
If we assume that the hash is of length= en, then the ransmit a consistent hash, which is necessarysf®mparent
statement in Theorei 7.1 is equal to: nodes to monitor’s behavior. However, note that is not

responsible in delivering any data to a well-behaving node.
Even if v were well-behaving, it cannot reach any well-

behaving node without going through a malicious node in
the next hop. Thus, the information flow throughis again

" [Zi;ﬁj,ie[l,mH] H(pij)f(zisﬁjwie[lymﬂl H(%)+1+ms)} . (4)

This highlights the tradeoff between the quality of overirea
channel and the redundancy (introduceddyg and the hash

. completely compromised.
h). It enough redunda_ncy is introduced, tf(é;randflL together Therefore, Corollar{ 812 shows that the algebraic watchdog
form an error-correcting code for the overhearing channeks

. . an aid in ensuring correct delivery of data when the folfayvi
thus, allows exact decoding to a single matched codeword, g y oy

T vsis al h h d il be i assumption holds: for every intermediate nadé the path
e analysis also shows how adversarial errors can be intgks,een source to destinatianhas at least one well-behaving
preted. Assume that,,; wants to inject errors at rage, ..

. parent and at least one well-behaving chilile- there exists
Then,. nodew;, aIFhough has an overhearingSC(pm—1,1), at least a path of well-behaving nodes. This is not a trivial
effectively experiences an error rate pfg, + pm+1,1 —

. result as we are not only considering a single-path network,
Dadv * Pm+1,1- Note that this does not change the set y 9 gle-p

the inferred linear combinations; but it affects,, ;. Thus, ut also muilti-hop, multi-path network.

overall, adversarial errors affect the set of matched codesv

and the distribution op*. As we shall see in SectidnlX, the IX. SIMULATIONS

difference in distribution op* between a well-behaving relay We present MATLAB simulation results that show the

and adversarial relay can be used to detect malicious bahawilifference in distribution op* between the well-behaving and

adversarial relay. We consider a setup in Fiddre 3. We set all

pi1, © € [2,m] to be equal, and we denote this probability as

ps = p;1 for all i. We denotep,q, to be the probability at
We use the two-hop algebraic watchdog from Seclioh Which the adversary injects error; thus, the effective retinat

in a hop-by-hop manner to ensure a globally secure netwotk. observes from an adversarial relay is combined effect of

In Algorithm[dl, we present a distributed algorithm for nodeg,,,.1.1 and paq,. The hash functior(z) = ax + b mod 20

to secure the their local neighborhood. Each nederans- is randomly chosen over, b € F3.

mits/receives data as scheduled; however, nedandomly  We setn = 10; thus, the coding field size &'°. A typical

chooses to check its neighborhood, at which point nodepacket can have a few hundreds to tens of thousand bits.

listens to neighbors transmissions to perform the two-hdphus, a network coded packet with= 10 could have a few

algebraic watchdog from SectiénlVI. tens to a few thousands of symbols over which to perform
Corollary 8.1: Considerv,,.1 as shown in Figur€l3. As- algebraic watchdog. It may be desirable to randomize which

sume that the downstream nodg» is well-behaving, and symbols a node performs algebraic watchdog on, or when to

thus, forcesh,,, ., = h(zn11). Let p; be the packet received perform algebraic watchdog. This choice depends not only on

by v,,+1 from parent node; € P(v). Then, if there exists at the security requirement, but also on the computational and

least one well-behaving parent € P(v), v,,+1 cannot inject energy budget of the node.

errors beyond the overhearing channel nojsg.(; ;) without For each set of parameters, we randomly generate symbols

being detected. from Fyi10 (n = 10 bits) and run algebraic watchdog. For

VIIl. PROTOCOL FORALGEBRAIC WATCHDOG



each symbol, under a non-adversarial setting, we assur 0.03
that only channel randomly injects bit errors to the symbol
under adversarial setting, both the channel and the advers:i
randomly inject bit errors to the symbol. For each set o 0.02-
parameters, we run the algebraic watchdog 1000 times. Tht "=
this is equivalent to running the algebraic watchdog on 0.015
moderately-sized packet (10,000 bits) or over severallsmal
packets, which are network coded using field sizdefo.
For simplicity, nodes in the simulation do not use error  0.005 ‘ ‘ ‘ ‘
. o 0.05 0.1 0.15 0.2
correcting codes; thud; = 0 for all 7. This limits the power of P

adv
the algebraic watchdog; thus, the results shown can besiurth . _ R )
improved by using error correcting codés Fig. 7: The average value gf* with well-behaving relay

We denotey,, andp?,,,, as the value of* when the relay (denotedpjielay_) anq adversarial rglay (denoteg ;) over
is adversarial and is well-behaving, respectively. We tienot000 random iterations of algebraic watchdog. The erros bar
Varagy andvar,qq, to be the variance gf* ,, and D ety We represent the variancear;.cjq,y andvaryq,. We setm = 3,
shall show results that show the difference in distributisn ™ = 10 9 = 2, a”dps = Pm+1,1 = 10%. We varypaq., the
Piay @NdpY,,,, fromvy’s perspective. Note that this illustrates2dversary’s error injection rate.
that only one good parent nodd,e. v; in our simulations,

0.025-

0.01-

sufficient to notice the difference in distribution pf,, an —
Pleiay- Thus, confirming our analysis in Sectign ViIl. V o ?'ﬂwathéf?’
more parent nodes performing the check independent _pie'awatha_z
can improve the probability of detecton. |~ L+t poAbyy, o0 T pie'*‘wathazl
Our simulation results coincide with our analysis an 7 Py 70
tuition. Figure[Y shows that adversarial above the ch || Patine
noise can be detected. First of all, for all valuespgf, > 0 7p;“deft:6i2
Padoe < Preiays thus, showing that adversarial errors ca - 1 z“xth;
detected. Furthermore, the larger the adversarial erjectio Tt LTIz 20¢
rate, the bigger the difference in the distributiongpgf, an 0% 005 01 ois ¥
Prelay- When adversarial error rate is small, then the effe Pagy

error v; sees in the packet can easily be construed as t% 8: The average value of* with well-behaving relay
o he charnel roise, and s I appropite channel e Benotecys,,,) and soversarl relay (dena,,) over
9 ' y 0 random iterations of algebraic watchdog. We vary the

node._ AIS a :"SU“’ the valfhes/d(;strlbutprllsmglay atnd_padv value of¢, the length of the hash function used, ang,, the
are simiiar. fowever, as ne adversarial error rate Ine"?"iasadversary’s error injection rate. The error bars repretant
there is a divergence between the two distributions. No\gg- _ .

. ) S . riance,varyerq, andvarqq,. We setm = 3, n = 10, and
that the difference in the distributions of; . and p;,, _ O
. . et . Ps = Pm+1,1 = 10%
is not only in the average value. The varianger,.;q, IS
relatively constant throughoutds;..;., is approximately 0.18
throughout). On the other handar,q, generally decreases
with increase inp,q,. For smallp,q., the variancevar,q, is
approximately 0.18; while for large, ., the variancerar, g,

Results in Figuré]9 confirms our intuition that the better
v1's ability to collect information fromy;’s, inel, the better its
detection ability. If node is able to infer better or overheay

is approximately.08. This trend intuitively shows that, with with little or no errors, the. petter its inference on Whgtrtelay

increase inp,q,, Not only do we detect that the adversarigf®d€ should be transmitting. Thus, as overhearing channel

relay more often (since the average valugpf, decreases), progressively worsensp( increases),v;’s ability to detect

but we are more confident of the decision. v malicious behavior deteriorates; thus, unable to disistgu
Figure[8 shows the affect of the size of the hash. wi¢tween a malicious and a well-behaving relay. _

increase in redundancy (by using hash functions of leagth  Finally, we note the effect ofn, the number of nodes in

v, can detect malicious behavior better. This is true regasdidh® network, in Figure 10. Node's ability to checkuy,, 41 is
of whether the relay is well-behaving or not. Nodés ability reduced withm. Whenm increases, the number of messages

to judge its downstream node increases withThus, p, v has to infer increases, w_hi_ch _increases the uncertainty
for § is generally higher than that & whered > &'. This W|tr_1|n the system. However, it is important to note that as
holds forp,,,, as well. However, for any fixed, nodev, " INCTe€ases, there are more nodes, i € [1,m] that can
can see a distinction betwee,,,, and p’,, as shown in independently perform checks.%+1. This affect is not
Figure[8. A similar trend to that of Figuid 7 can be seeffPtured by the results shown in Figlrd 10.

for the distributions ofp;,, andp;,,,, for each value o%.

The interesting result is that even fér= 0, i.e. we include X. CONCLUSIONS AND FUTURE WORK

no redundancy or hash, node is able to distinguish an We proposed thalgebraic watchdogin which nodes can
adversarial relay from a well-behaving relay. verify their neighbors probabilistically and police theotally
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. & approximation algorithms to decide efficiently aggregat=al
trust information to a global trust state.
0.8
-1
06 10 REFERENCES
*QO4 o [1] J.-P. Hubaux, L. Buttyan, and S. Capkun, “The quest fecusity in
’ 107 mobile ad hoc networks,” irProceedings of the 2nd ACM MobiHoc
02 ACM, 2001, pp. 146-155.
[2] L. Zhou and Z. Haas, “Securing ad hoc networkbletwork, IEEE
0 10° vol. 13, no. 6, pp. 24 —30, 1999.
0 005 01 015 02 0 005 01 015 02 31 3 Douceur, “The sybil attack” irPeer-to-Peer Systemser. Lecture
ps_pm+1,1 ps_pm+1,].

(a) Linear scale (b) Log scale

Fig. 9: The average value gi* with well-behaving relay
(denotedp;,,,,) and adversarial relay (denoted,,) over
1000 random iterations of algebraic watchdog. We vary th®]
value of p; = py,41,1, the quality of overhearing channels.

(4]

The error bars represent the variancer, ., and varqq,.  [6]
We setm = 3, n = 10, andpqq, = 10%.
[7]
_p’t
0.15 relay
7p*adv [8]
.01 (9]
0.05
[10]

[

2 3 4 5 6 1 2 3 4 5 6
m m

(a) Linear scale (b) Log scale

Fig. 10: The average value ¢f* with well-behaving relay [12]
(denotedpy,,,,) and adversarial relay (denoteg,,) over [3
1000 random iterations of algebraic watchdog. We vary the
value ofm, the number of nodes using,,,; as a relay. The 14
error bars represent the varianeer,¢;q, andvarqq,. We set
m =3, n =10, andps = pm+1.1 = Padv = 10%.

[11]

[15]

[16]

Notes in Computer Science.
2429, pp. 251-260.

C. Karlof and D. Wagner, “Secure routing in wireless sensetworks:
attacks and countermeasure&d Hoc Networksvol. 1, no. 2-3, pp. 293
— 315, 2003.

R. Perlman, “Network layer protocols with Byzantine usiness,” Ph.D.
dissertation, Massachusetts Institute of Technology, I@&ige, MA,
October 1988.

M. Castro and B. Liskov, “Practical Byzantine fault todece,” in
Symposium on Operating Systems Design and Implement@isbI}
February 1999.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine gEse
problem,” ACM Transactions on Programming Languages and Systems
vol. 4, pp. 382-401, 1982.

P. Papadimitratos and Z. J. Haas, “Secure routing forilacdd hoc
networks,” in Prceedings of the SCS Communication Networks and
Disbributed Systems Modeling and Simulation Confere2602.

S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating nating
misbehavior in mobile ad hoc networks,” iRroceedings of the 6th
annual international conference on Mobile computing antivoeking
ACM, 2000, pp. 255-265.

M. Kim, M. Médard, J. Barros, and R. Kotter, “An algelic watchdog
for wireless network coding,” ifProceedings of IEEE IS|TJune 2009.
R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Netoinfor-
mation flow,” IEEE Transactions on Information Theoryol. 46, pp.
1204-1216, 2000.

R. Koetter and M. Médard, “An algebraic approach townwrk coding,”
IEEE/ACM Transaction on Networkingol. 11, pp. 782-795, 2003.
G. Liang, R. Agarwal, and N. Vaidya, “When watchdog nseebding,”
in Proceedings of IEEE INFOCOMVarch 2010.

D. Lun, M. Médard, R. Koetter, and M. Effros, “On codirfigr reliable
communication over packet network&hysical Communicatignvol. 1,
no. 1, pp. 3-20, March 2008.

R. W. Yeung and N. Cai, “Network error correctiorlCommunications
in Information and Systemso. 1, pp. 19-54, 2006.

S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and Médard,

Springer Berlin / Heidelberd)22ol.

by the means of overheard messages in a coded network. Using “Resilient network coding in the presence of Byzantine asides,” in

the algebraic watchdog scheme, nodes can compute a pr
bility of consistencyp*, which can be used to detect malicious

_Proceedings of IEEE INFOCOMMVarch 2007, pp. 616 — 624.

R. Koetter and F. R. Kschischang, “Coding for errors amdsures in
random network coding,IEEE Transactions on Information Theory

behavior. Once a node has been identified as malicious, these vol. 54, no. 8, pp. 3579-3591.

nodes can either be punished, eliminated, or excluded fnem 18]

network by using reputation based schemes suchlas [9][23].

We first presented a graphical model and an analysis of té]
algebraic watchdog for two-hop networks. We then extended
the algebraic watchdog to multi-hop, multi-source netvgorkioj
We provided a trellis-like graphical model for the detentio
inference process, and an algorithm that may be used (24
compute the probability that a downstream node is congisten
with the overheard information. We analytically showed how
the size of the hash function, minimum distance of the errdf?)
correcting code used, as well as the quality of the overhgariyg
channel can affect the probability of detection. Finallyg w
presented simulation results that support our analysis and
intuition.

Our ultimate goal is to design a network in which the
participants check their neighborhood locally to enable a
secure global network ke. a self-checking network. Possi-
ble future work includes developing inference methods and

M. Kim, M. Médard, and J. Barros, “Countering Byzamtiadversaries
with network coding: An overhead analysis,” Proceedings of MIL-
COM, 2008.

D. B. Johnson, “Routing in ad hoc networks of mobile kgsin
Proceedings of the Workshop on Mobile Computing SystemsAand
plications 1994, pp. 158-163.

U. M. Maurer, “Authentication theory and hypothesistieg,” IEEE
Transaction on Information Theoryol. 46, pp. 1350-1356, 2000.

M. Dietzfelbinger, J. Gil, Y. Matias, and N. PippengéPolynomial
hash functions are reliable,” iRroceedings of the 19th International
Colloquium on Automata, Languages and Programmingl. 623.
Springer-Verlag, 1992, pp. 235-246.

P. Elias, “List decoding for noisy channelsTechnical Report 335,
Research Laboratory of Electronics, MIT957.

S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Regpion-based
framework for high integrity sensor networksCM Transactions on
Sensor Networksvol. 4, no. 3, pp. 1-37, 2008.



	I Introduction
	II Intuition
	III Background
	III-A Secure Network Coding
	III-B Secure Routing Protocol: Watchdog and Pathrater
	III-C Hypothesis Testing

	IV Problem Statement
	IV-A Threat Model

	V Two-hop network: An Example
	V-A Graphical model approach
	V-B Algebraic approach

	VI Algebraic Watchdog for Two-hop Network
	VI-A Transition matrix
	VI-B Watchdog trellis
	VI-C Viterbi-like algorithm
	VI-D Decision making

	VII Analysis for Two-hop Network
	VIII Protocol for Algebraic Watchdog
	IX Simulations
	X Conclusions and Future Work
	References

