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Abstract—We consider the impact of incomplete information
on incentives for node cooperation in parallel relay networks with
one source node, one destination node, and multiple relay nodes.
All nodes are selfish and strategic, interested in maximizing their
own profit instead of the social welfare. We consider the practical
situation where the channel state on any given relay path is not
observable to the source or to the other relays. We examine
different bargaining relationships between the source andthe
relays, and propose a framework for analyzing the efficiency
loss induced by incomplete information. We analyze the source
of the efficiency loss, and quantify the amount of inefficiency
which results.

I. INTRODUCTION

There is now widespread awareness of the importance of
incentives in the management of communication networks [1]–
[6]. Network nodes often cannot be relied upon to cooper-
atively implement network algorithms in the service of the
social good. Instead, selfish nodes will behave in a given
manner only if it is profitable for them to do so. Of clear
interest is the impact of such selfish actions on the social
good. From the network point of view, it is important to
design incentives such as pricing schemes, which induce
selfish behavior aligned with the social good.

In single-hop networks, the incentive issue and its impact on
social efficiency have been extensively studied. In [7], [8], the
authors considered the Nash Equilibrium for selfish routing,
in which source packets choose paths to the destination to
minimize their individual latency, rather than complying with
a global routing algorithm to achieve social optimality. In[9]
and [10], the authors consider network service pricing for in-
ternet service providers. They showed that cooperation among
multiple service providers is required when their links are
used by common users. In [11], the authors study competitive
behavior among multiple parallel links, and characterizedthe
efficiency loss due to competition.

The issue of incentives has also been investigated for multi-
hop networks. A number of papers [12]–[14] advocate the
use of credits to provide incentives for network nodes to
cooperate. In [15], the authors investigate the impact of het-
erogeneous traffic on the pricing of network service providers.
Selfish behavior has also been investigated in the context of
cooperative relay networks. In [16], the authors considered
a nonlinear pricing game, where the relay nodes propose
nonlinear charging functions to the source, and the source
allocates the traffic to minimize the payment to relay nodes.
In [17], the authors considered a Stackelberg bargaining game,

in which the relay nodes cooperate as one party in competing
with the source node.

All the above papers assume a complete information setting
where players in the network game have complete knowledge
about quantities such as the state of network links. In practice,
this assumption is often too strong. Information regarding
network quantities is typically incomplete and imperfect.In
an internet service provider (ISP) pricing game, for instance,
the characteristics and service requirements of the users can be
opaque to the service providers [18]. In a multi-hop network
such as the Internet, a source does not typically have perfect
information on the congestion state of links a few hops away
[19]. Finally, in wireless networks, the source usually cannot
observe or test the channel state from a relay to the destination.
Neither can a relay observe the channel state from other relays
to the destination. Given the above, it is clear that in analyzing
selfish behavior in network settings, the role of incomplete
information must be emphasized.

One approach to network design problems with incomplete
information is through dominant implementable mechanisms
[20]. This idea has been used in the context of spectrum
auctions [21] and communication networks [22]. These mech-
anisms, however, require a centralized authority and extra
funding from an outsider. This makes the extension to general
multi-hop networks difficult. Another approach, based on the
idea of Bayesian Nash Equilibrium, a generalization of the
Nash Equilibrium concept, is advocated in [23]. Here, the
authors consider selfish routing in a single-hop network, where
every source node knows only its own traffic requirement,
but has knowledge of the traffic distribution of other sources.
While the results in [23] are appealing, it remains unclear how
they might extend to the multi-hop network situation.

In this work, we investigate the impact of incomplete
information on the problem of pricing and incentives in a
two-hop parallel relay network. We consider two scenarios,
one in which the source has limited bargaining power and one
in which the source has full bargaining power. In the limited
bargaining power scenario, the source can only react passively
to the relays’ signals, and the game can be considered to be a
pricing game. For this case, we show that all Nash Equilibria
in the complete information game are efficient, including those
induced by linear charging functions. We then characterizethe
Bayesian Nash Equilibrium for the incomplete information
game in which relays propose linear pricing functions, and
show that incomplete information can induce inefficiencies,
which are exacerbated by asymmetric prior knowledge on
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the type distribution. Next, in the scenario where the source
has full bargaining power, the source is allowed to provide
a general contract. For this case, we first show that in the
game with complete information, (Bayesian) Nash equilibria
exist and are all efficient. Next, we investigate the game
with incomplete information. To deal with the difficulty of
characterizing the Bayesian Nash Equilibria in this case, we
first show that if a resource allocation outcome can be realized
by a Bayesian Nash equilibrium, then there exists a “truth
telling” Bayesian Nash equilibrium that realizes the outcome.
We then show that the set of outcomes for the “truth telling”
Bayesian Nash equilibria is included in the set of outcomes for
the Nash equilibria for a complete information game, in which
the link cost functions are replaced by specified “virtual cost
functions.” Using this approach, we obtain for a symmetric
network scenario a bound on the amount of inefficiency which
may result from incomplete information.

II. NETWORK MODEL

A. Network Traffic Allocation
In wireline and wireless networks, it is often the case that

an information source cannot directly reach its destination,
but must do so with the aid of intermediate relays. We model
such a situation as follows. Consider a parallel relay network
modelled by a directed graphG = (V,E), with a single source
s, destinationd, and a set of relaysI, where |I| = n. We
assume that there is no direct link betweens andd. Instead,
The relays inI are used to forward traffic in a two-hop fashion
from s to d.

The source wishes to maintain a certain rate of transmission
with the destination. We shall consider two scenarios. In
the first inelastic scenario, the source has a fixed raters
of transmission. This rate must be carried by the relays in
I, where the traffic rate forwarded by relayi is ri, and∑n

i=1 ri = rs. In the secondelasticscenario, the source may
be willing to withhold some of its transmission rate, according
to how the cost of sending traffic affects it overall utility.Let
r0 denote the amount of traffic withheld or rejected. Then
rs − r0 is the total admitted traffic from the source. A traffic
vectorr , (r0, r1, . . . , rn) ∈ R

n+1
+ is a feasible routing of the

source traffic if it satisfiesr0 +
∑n

i=1 ri = rs.

B. Cost Function and Utility Function
In general, for any relay nodei, there is a cost involved

in forwarding traffic for sources. This cost typically depends
both on the properties of the links adjacent on relayi and
the amount of traffic flowing through those links. Denote the
traffic flow on link (i, j) ∈ E by fij . We assume that link
(i, j) has a cost functionCij(θij , fij) with Cij(θij , 0) = 0,
where θij is a measure of the quality of link(i, j). This
quality may have different physical meanings in different
contexts. For example, if the cost function reflects the queu-
ing delay on (i, j), then using the M/M/1 approximation,
Cij(θij , fij) =

fij
kij−fij

. Here,θij denotes the link capacitykij .
For another example, consider the cost of power assumption
required for transmitting traffic of ratefij over a wireless
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Fig. 1. relay channel

link with channel gaingij , bandwidthW , and receiver noise
power N . Using the Shannon capacity formula, we have
fij = W log(1+ gijPij/N), wherePij is transmission power
required on link(i, j). Thus, the link cost is

Cij(θij , fij) =
N

gij
(2fij/W − 1).

Here,θij denotes the channel gaingij .
Now consider the overall costCi(θi, ri) for relay nodei

to forward traffic of rateri from sources to destinationd,
where θi measures the quality ortype of the path from s
to d through i. We assume thatCi(θi, ri) = Csi(θsi, ri) +
Cid(θid, ri). The costsCi(θi, ri) are particularly amenable to
analysis if θi can be expressed as a simple scalar function
of θsi and θid: θi = h(θsi, θid). This is true in the example
of the power consumption cost function given above, where
θij = gij is the channel gain on link(i, j). Normalizing the
bandwidth and receiver noise power to 1, we have

Ci(θi, ri) = Psi + Pid

= (2ri − 1)/gsi + (2ri − 1)/gid

= (2ri − 1)θ−1
i , (1)

whereθi , (g−1
si +g−1

id )−1 = (θ−1
si +θ−1

id )−1. In this paper, we
focus on situations where the path qualityθi can be expressed
as a scalar function ofθsi andθid. We further assume thatθi
belongs to a compact interval[θi, θi].

Motivated by the power consumption example, we as-
sume thatCi(θi, ri) is twice continuously differentiable on
[θi, θi] × [0, rs], and strictly increasing and convex inri:
∂Ci(θi, ri)/∂ri > 0 and∂2Ci(θi, ri)/∂r

2
i > 0. Also, assume

thatCi(θi, ri) is strictly decreasing inθi: ∂Ci(θi, ri)/∂θi < 0.
Furthermore, assume∂2Ci(θi, ri)/∂θi∂ri ≤ 0.

Now consider the sources. In the inelastic case, source
s sends traffic at a fixed raters into the network. In the
elastic case, sources may withhold traffic of rater0 from
the network, and send the other part of the trafficrs − r0 into
the network. Let the utility function of the source be given by
Ws(θs, r), whereθs ∈ [θs, θs] parameterizes the utility for the
source, andr is the source rate admitted into the network. For
example, the source utility may beWs(θs, r) = θs log(1+ r).
Assume thatWs(r) = Ws(rs) for all r ≥ rs, i.e. rs is



the maximum desired source rate.Ws(θs, r) is assumed to
be continuously differentiable, strictly increasing and concave
in r on [0, rs]. Let Cs(θs, r0) , Ws(rs) − Ws(rs − r0)
denote the source’sutility loss from having traffic of rater0
withheld from the network. Equivalently, ifr0 is regarded
as the traffic rate routed on avirtual overflow link directly
from s to d [19], thenCs(θs, r0) represents the cost on the
overflow link when the link parameter isθs and the flow
rate is r0. SinceWs(rs) is a constant, it can be seen that
Cs(θs, r0) is continuously differentiable on[θs, θs] × [0, rs],
strictly increasing and convex inr0: ∂Cs(θs, r0)/∂r0 > 0
and ∂2Cs(θs, r0)/∂r

2
0 > 0. Furthermore, we assume that

Cs(θs, r0) is strictly decreasing inθs: ∂Cs(θs, r0)/∂θs < 0.
Finally, it can be seen thatCs(θs, 0) = 0 for all θs. It can
easily be checked that these properties are satisfied for the
exampleWs(θs, r) = θs log(1 + r), for which Cs(θs, r0) =
Ws(rs) − θs log(1 + rs − r0). With the aid of the virtual
overflow link, we may view a game with an elastic source
as a game with an inelastic source of raters and an overflow
link (s, w) with cost functionCs(θs, r0).

C. Socially Optimal Allocation
A socially optimal traffic allocation in a parallel relay

network is an allocation which minimizes the total network
cost, assumed to be the sum of the link costs. Such an
allocation can be realized through cooperation of the network
nodes. In networks with selfish and strategic nodes, a socially
optimal allocation may or may not be realizable. Nevertheless,
the optimal allocation serves as an important benchmark
with which to measure the amount of potential inefficiency
introduced by selfish and strategic behavior.

Let R , {(r0, r1, ..., rn): rj ≥ 0 ∀j = 0, . . . , n,
∑n

j=0 rj =
rs} be the set of feasible traffic allocations, and letr ∈ R
denote the vector of traffic rates in the network, wherer0 is
the rate withheld by the source, andri is the rate routed to
relay i, i = 1, . . . , n. Note that for the case of an inelastic
source,r0 = 0.

Definition 1. A traffic allocation vectorr∗ is called socially
optimal if

r
∗ ∈ argmin

r∈R
Cs(θs, r0) +

n∑

i=1

Ci(θi, ri). (2)

Since the link cost functionsCi(θi, ri) as well asCs(θs, r0)
are all strictly increasing and strictly convex, the socially
optimal allocationr∗ exists and is unique. The conditions
for specifying r

∗ can be obtained using the Kuhn-Tucker
conditions. Letci(θi, ri) , ∂Ci(θi, ri)/∂ri and cs(θs, r0) ,

∂Cs(θs, r0)/∂r0 denote the marginal cost function of linki
and the marginal cost function of the overflow link for source
s, respectively.

For the case of an inelastic source,r
∗ = (0, r∗1 , . . . , r

∗
n)

is the socially optimal allocation if and only if for eachi =
1, . . . , n,

ci(θi, r
∗
i ) = c∗ if r∗i > 0, ci(θi, r

∗
i ) > c∗ if r∗i = 0. (3)

For the case of an elastic source,r
∗ = (r∗0 , r

∗
1 , . . . , r

∗
n) is

the socially optimal allocation if and only if (3) holds and
furthermore,

cs(θs, r
∗
0) = c∗ if r∗0 > 0, cs(θs, r

∗
0) > c∗ if r∗0 = 0.

D. Game Structure
Unlike the cooperative setting, in a network consisting of

selfish and strategic nodes, the source as well as the relays
will strategize to maximize their own utility, rather than
work together to minimize the overall network cost. Since
forwarding traffic entails cost, the relays will carry the source’s
traffic only if they are sufficiently well compensated. The
source, on the hand, wishes to have its traffic forwarded at the
smallest possible cost to itself. The natural setting in which to
carry out this game is one which allows for transfer payments
which accompany traffic allocations from the source to the
respective relays.

In this work, we assume that the (maximum) source input
raters and the parameterθs are known to all nodes. As dis-
cussed above, the cost functionCi(θi, ri) for relay i depends
on the path quality parameter or typeθi. In practical network
settings, the value of this type may be randomly fluctuating.
For instance, in wireless communication, the channel gain
gij fluctuates due to shadowing and fading. In the Internet,
the quality of a particular path may fluctuate according to
network congestion levels. Accordingly, we may assume that
θi is randomly distributed according to distribution function
Fi(θi). In practical network scenarios, the exact realization of
θi is typically known only to relayi, and not to the source or
to the relays other thani. Thus,θi is private informationto
relay i. Nevertheless, the source and other relays may still
have knowledge of the distributionFi(θi). For instance, a
wireless source or a relayj 6= i may know the distribution
of the channel gains for relayi, but typically does not know
the realization of those channel gains. An Internet source or
a path j 6= i may know the distribution of the congestion
level on pathi, but does not know the exact realization of the
congestion level.

In order for the source node to allocate its traffic intelli-
gently in the presence of incomplete information regardingthe
θi’s, it needs to observe some “signal” from the relay nodes.
This can be realized by having the relay node send a signal
according to the realization of its type to the source.1 Let Mi

be the set of signals for relayi, whereMi is a subset of the
set of differentiable functions on[0, rs]. The signal map for
relay i is

si : Θi → Mi,

whereΘi , [θi, θi] andsi(θi) = mi(·).
Given the signalsmi(·), i = 1, . . . , n, the source decides

on an allocation of its traffic as well as a vector of transfer
payments to the relays. This allocation is called acontract.
Let r = (r0, r1, ..., rn) ∈ R denote the vector of traffic rates

1One can also consider the possibility of the source sending asignal
according to its typeθs. However, since we assumeθs is known to all network
nodes, we do not consider this possibility here.



in the network, wherer0 is the rate withheld by the source,
andri is the rate routed to relayi, i = 1, . . . , n. Note that for
the inelastic case,r0 = 0. Now let t = (t1, t2, ..., tn) ∈ R

n
+

be the vector of transfer payments, whereti is the transfer
payment to relayi. Let M , M1 × · · · ×Mn andT , R

n
+.

Then the allocation map of the source node is

g : M → R× T,

whereg(m1(·), . . . ,mn(·)) = (r, t).
The above framework encompasses many forms of pricing

games explored in previous literature. For instance, in [16],
the relay signals are simply charging functionsPi(·), and the
transfer payments are required to equal the charges demanded
by the relays, i.e.ti = Pi(ri).

The signal maps of the relays along with the allocation map
of the source realize a corresponding network allocation map

f : Θ → R × T,

wheref(θ1, . . . , θn) = g(s1(θ1), . . . , sn(θn)) = (r, t).
In the game with incomplete information corresponding to

the above setting, the utility of the source is given by

Us(θs, g(s1(θ1), . . . , sn(θn)) = Ws(rs)−Cs(θs, r0)−
n∑

i=1

ti.

The utility of relay i is given by

Ui(θi, g(s1(θ1), . . . , sn(θn))) = ti − Ci(θi, ri).

The game with incomplete information proceeds as follows.
First, each relayi observes its own private informationθi.
Second, the source provides a contract for the relay nodes.
The contract announces the source allocation ruleg : M →
R×T . Third, the relays simultaneously decide to either accept
or reject the contract. If a given relay accepts the contract, then
it will participate in the game which follows. Otherwise, the
relay quits and receives zero utility.2 Fourth and finally, the
relay nodes simultaneously send their signals to the source,
and the source allocates rates and transfer payments according
to the announcedg.

In the following, we give the formal definition of the
Bayesian Nash equilibrium corresponds to the game with
incomplete information described above. Letθ , (θ1, . . . , θn),
θ−i , (θj)j 6=i, ands−i(θ−i) , (sj(θj))j 6=i.

Definition 2. A Bayesian Nash Equilibrium of the above game
is a set of strategies{s1, . . . , sn, g} satisfying

1. for each relay nodei and every feasiblẽsi : Θi → Mi,

Eθ−i
{Ui(θi, g(si(θi), s−i(θ−i)))}

≥ Eθ−i
{Ui(θi, g(s̃i(θi), s−i(θ−i)))} , (4)

2. for every feasiblẽg : M → R× T ,

Eθ {Us(θs, g(s(θ)))} ≥ Eθ {Us(θs, g̃(s(θ)))} . (5)

2Note that the relays which quit can simply be left out of the game
formulation. Thus, without loss of generality, we assume for the rest of the
paper that the source plays the game in a manner which gives non-negative
expected utility to all relays, so that all relays stay in thegame.

III. Games with Limited Source Bargaining Power
We first consider a specific instance of the general game

described in Section II-D in which the source has limited
bargaining power. In this case, the source can only react
passively to the relays’ signals. Specifically, the transfer pay-
ment from the source to any given relay must equal the
relay’s signal function evaluated at the traffic rates routed
to the relay. That is, the source allocation rule is given by
g(m1(·), . . . ,mn(·)) = (r, t), where

r ∈ argmax
r
′∈R

Ws(θs, rs)− Cs(θs, r
′
0)−

n∑

i=1

mi(r
′
i) (6)

ti = mi(ri), i = 1, . . . , n. (7)

Effectively, the relays’ signal functions act as charging func-
tions, and the transfer payments must correspond to the relays’
charges. The source can only allocate its traffic to minimize
the cost of withheld traffic plus the total charges paid to the
relays. In this case, the game can be considered to be apricing
game.

A. Pricing Game with Complete Information
In this section, we consider the specific pricing game with

complete informationwhere the source has limited bargaining
power and the vector of relay typesθ = (θ1, . . . , θn) is
known to all nodes in the network. Note that this is degenerate
version of the game considered in Section II-D where the prior
distribution on the type of relayi available to all nodes is
given by the distribution functionFi(x) = 0 for x < θi and
Fi(x) = 1 for x ≥ θi, whereθi is the realization of relayi’s
type.

Since the allocation rule of the source is fixed by (6)-(7), the
knowledge ofθ cannot cause the source to adjust its allocation
rule accordingly. Thus, knowledge ofθ is not useful to the
source due to its lack of bargaining power. Also, due to the
degenerate prior distribution onθi, we need only consider the
usual concept of Nash equilibrium here. We now show that
in fact all the Nash equilibria in this complete information
pricing game are efficient.

Theorem 1. In the pricing game with complete information,
Nash equilibria exist, and all Nash equilibria are efficient.
Moreover, there exists an efficient Nash equilibrium in which
each relay uses a linear charging function.

Proof: We focus on the case for inelastic sources. The
elastic case can be similarly handled. Sinceθ = (θ1, . . . , θn)
is known to all nodes in the network, we suppress the
dependence of various quantities onθ. In this game with
limited source bargaining power, the relays’ signals represent
charging functions. LetBi(ri) be the charge required by relay
i for forwarding traffic of rateri, and letbi(ri) , B′

i(ri) be
the marginal charging function, or pricing function. LetCi(ri)
andci(ri) be cost function and marginal cost function for relay
i, respectively.

Let the (unique) socially optimal allocation ber∗ =
(r∗1 , r

∗
2 , ..., r

∗
n). Suppose that there exists a Nash Equilibrium



with charging functionsBi(ri) and corresponding rate alloca-
tion r = (r1, r2, ..., rn) 6= r

∗. With a possible re-ordering of
the relay indices, we may assume thatri > r∗i for i < k1,
ri = r∗i for k1 ≤ i < k2, andri < r∗i for i ≥ k2. As r 6= r

∗

and both must sum tors, k1 > 1 andk2 < n.
Sincer∗ is the unique socially optimal allocation, from the

optimality conditions, we have

ci(r
∗
i ) = c∗ if r∗i > 0, ci(r

∗
i ) > c∗ if r∗i = 0. (8)

where c∗ is the optimal marginal cost. Now by the strict
convexity ofCi(ri),

{
ci(r) > c∗ for all r ∈ [r∗i , ri) if i < k1
ci(r) < c∗ for all r ∈ (ri, r

∗
i ] if i > k2

(9)

The profit of relayi for i < k1 is
∫ r∗i

0

bi(r) − ci(r)dr +

∫ ri

r∗
i

bi(r) − ci(r)dr. (10)

Since we are at a Nash equilibrium, for alli < k1 and for any
0 < δ < ri − r∗i ,

∫ ri
ri−δ bi(r) − ci(r)dr ≥ 0. For otherwise,

relay i < k1 will deviate to another charging function which
is extremely high fromr∗i to ri, so as not to take the extra
traffic ri−r∗i . Now chooseǫ < mini:i<k1 or i≥k2

|ri−r∗i |. Let
{

m ∈ argmax1≤i<k1

∫ ri
ri−ǫ ci(r)dr

l ∈ argmink2≤i≤n

∫ ri+ǫ

ri
ci(r)dr

(11)

By (9), ∫ rm

rm−ǫ

cm(r)dr >

∫ rl+ǫ

rl

cl(r)dr (12)

However, since
∫ rm
rm−ǫ

bm(r) − cm(r)dr ≥ 0, there exists a
charging functionB̃l(r) for relay l such thatB̃l(r) equals
Bl(r) from 0 to rl, but
∫ rm
rm−ǫ

bm(r)dr ≥
∫ rm
rm−ǫ

cm(r)dr

>
∫ rl+ǫ

rl
b̃l(r)dr >

∫ rl+ǫ

rl
cl(r)dr.

(13)
Thus if relay l uses B̃l(r), then in order to maximize its
profit, the source will switch anǫ amount of traffic from relay
m to relay l. Thus, relayl can deviate toB̃l(r) and get a
higher profit, contradicting our assumption of being at a Nash
equilibrium.

The existence of an efficient Nash equilibrium in which
relays use linear charging functions has been demonstrated
in [16], completing the proof.

B. Pricing Game with Incomplete Information
When the source and the relaysj 6= i cannot observe the

type θi of relay i, the source and the relays must content
themselves with maximizing their expected profits. In this
situation, the characterization of Bayesian Nash Equilibria for
general nonlinear charging functions is very difficult. We limit
our discussion to the case where relays bidlinear charging
functions, i.e.Bi(θi, ri) = pi(θi)ri, where the pricepi(θi)
per unit traffic depends on the typeθi. Let wi , p−1

i be the

inverse function ofpi such thatθi = wi(pi(θi)). We assume
that the densityfi(θi) is positive overΘi = [θi, θi].

We prove the following theorem.

Theorem 2. If the source is inelastic, in any Bayesian Nash
Equilibrium, the price function satisfies the following differ-
ential equations:

dwi(pi)

dpi
=

Fi(wi(pi))

(n− 1)fi(wi(pi))

{
−(n− 2)rs

pirs − Ci(wi(pi), rs)

+
∑

j 6=i

rs
pirs − Cj(wj(pi), rs)

}
, (14)

wherepi(θi) is given by the inverse ofwi(pi).
In particular, in the symmetric situation whereFi(θi) =

F (θi) andCi(θi, ri) = C(θi, ri) for all i, the Bayesian Nash
Equilibrium satisfies:

pi(θi) =
1

rs



C(θi, rs)−

∫ θi
θ

F (θ)n−1 ∂C(θ,rs)
∂θ dθ

F (θi)n−1



 . (15)

Proof: By an argument similar to that in [24],pi(θi)
and wi(pi) are both strictly decreasing functions. Since the
charging functions are linear, the source will always allocate
all its traffic to the relay proposing the lowest price.3 Given the
other relays’ pricing strategieswj(pj), j 6= i, the probability
that relayi proposes the lowest price is given by

Pr{pi < pj for all j 6= i} = Pr{θj < wj(pi) for all j 6= i}

=
∏

j 6=i

Fj(wj(pi))

For each given private typeθi, relay i wishes to choose its
price pi to maximize the expected profit

πi(θi, pi) = Pr{pi < pj for all j 6= i}(pirs − Ci(θi, rs))

=
∏

j 6=i

Fj(wj(pi))(pirs − Ci(θi, rs)) (16)

In order to maximizeπi(θi, pi), the first-order condition must
be hold:

∂ ln πi(θi, pi)

∂pi
=

∑

j 6=i

1

Fj(wj(pi))
fj(wj(pi))

dwj(pi)

dpi

+
rs

pirs − Ci(θi, rs)
(17)

= 0

After some algebra, we obtain (14).
We now focus on the symmetric situation for an inelastic

source, whereFi(θi) = F (θi) andCi(θi, ri) = C(θi, ri) for
all i. First, using an argument similar to that in [24], all the
relay nodes should have the same pricing strategyp(θi) and
w(pi). Thus, the expected profit for relayi is

πi(θi, pi) = F (w(pi))
n−1(pirs − C(θi, rs)). (18)

3Note that sinceθi are continuous random variables andpi(θi) are strictly
decreasing functions, the probability that there are any ties in the relay prices
is zero.



Let the value function for relayi (the maximum profit
for relay i given typeθi by choosing the optimalpi(θi)) be
vi(θi) , maxpi

πi(θi, pi). By the envelope theorem,

dvi(θi)

dθi
=

∂{F (w(pi))
n−1(pirs − C(θi, rs))}

∂θi

∣∣∣∣∣
pi=pi(θi)

= −F (w(pi))
n−1 ∂C(θi, rs)

∂θi

= −F (θi)
n−1 ∂C(θi, rs)

∂θi
(19)

Sincep(θi) is decreasing, the lowest type player must win
zero expected profit, i.e.,vi(θ) = 0. Thus,

vi(θi) =

∫ θi

θ

−F (θ)n−1 ∂C(θ, rs)

∂θ
dθ. (20)

We now use (18) and (20) to solve for the optimal pricing
function:

pi(θi) = p(θi)

=
1

rs

{
vi(θi)

F (w(pi))n−1
+ C(θi, rs)

}
(21)

=
1

rs



C(θi, rs)−

∫ θi
θ

F (θ)n−1 ∂C(θ,rs)
∂θ dθ

F (θi)n−1





The case of an elastic source can be treated in a similar
way. We omit the proof here and simply state the result.

Theorem 3. If the source is elastic, in any Bayesian Nash
Equilibrium, the price function satisfies the following differ-
ential equations:

dwi(pi)

dpi
=

Fi(wi(pi))

(n− 1)fi(wi(pi))

{
−(n− 2)(rs − r0(pi)

pirs − Ci(wi(p), rs − r0)

−
− dr0(pi)

dpi
(pi −

∂Ci(θi,rs−r0)
∂(rs−r0)

))

pirs − Ci(wi(p), rs − r0)
(22)

+
∑

j 6=i

rs +
drs(pi)
dpi

(pi −
∂Ci(θi,rs−r0)

∂(rs−r0)
)

pirs − Cj(wj(p), rs − r0)

}

wherepi(θi) is given by the inverse ofwi(pi).

C. Efficiency Analysis
In this section, we measure the inefficiency introduced by

the pricing game with incomplete information. We shall use
the useful measureprice of anarchy, defined for each given
type vectorθ.

Definition 3. The price of anarchyρ(θ) for a given type vector
θ in the incomplete information game is

ρ(θ) =
maxri∈RE

∑
i Ci(θi, ri)

minri∈R

∑
i Ci(θi, ri)

(23)

whereRE is the set of all traffic allocations corresponding
to Bayesian Nash equilibria, andR is the set of all feasible
traffic allocations.

We shall focus on the case of an inelastic source. The elastic
source case is similar. We consider the symmetric situation
whereFi(θi) = F (θi) and Ci(θi, ri) = C(θi, ri) for all i.
In the case where all relays bid linear charging functions, the
highest type relay will receive all the traffic. Here, the price
of anarchy is determined by

ρ(θ) =
C(maxi∈I θi, rs)

minr∈R

∑

i

C(θi, ri)
(24)

We develop the following bound onρ(θ).

Theorem 4. In the symmetric linear pricing game with in-
complete information, if the marginal cost functionc(θi, ri) =
∂C(θi,ri)

∂ri
is concave, thenρ(θ) ≤ n, wheren is the number

of relays, with equality if and only ifc(θi, ri) is linear in ri
and the relay typesθi are all the same.

Proof: Let (r∗i )
n
i=1 = (airs)

n
i=1 be the socially optimal

allocation for a given type realizationθ, where
∑n

i=1 ai = 1
andai ≥ 0 for all i. Thus the optimal cost is

C∗ =

n∑

i=1

∫ airs

0

c(θi, ri)dri (25)

Since c(θi, ri) is concave, it can be shown that∫ airs
0

c(θi, ri)dri ≥ a2i
∫ rs
0

c(θi, ri)dri, where equality
holds if and only ifc(θi, ri) is linear inri. Thus we have

C∗ ≥

n∑

i=1

a2i

∫ rs

0

c(θi, ri)dri (26)

Therefore,

ρ(θ) =

∫ rs
0 c(maxi θi, ri)dri∑n
i=1

∫ airs
0 c(θi, ri)dri

≤

∫ rs
0 c(maxi θi, ri)dri∑n
i=1 a

2
i

∫ rs
0 c(θi, ri)dri

(27)

≤

∫ rs
0 c(maxi θi, ri)dri∑n

i=1 a
2
i

∫ rs
0 c(maxi θi, ri)dri

=
1∑n

i=1 a
2
i

≤ n

where the second inequality follows from the assumption that
∂2Ci(θi, ri)/∂θi∂ri ≤ 0. Equality obtains in all three previous
inequalities if c(θi, ri) is linear in ri and the relay typesθi
are all the same.

Next, we give a general bound on the price of anarchy for
all cost functions satisfying our assumptions in Section II.

Theorem 5. In the symmetric linear pricing game with
incomplete information, let the support set for eachθi be
Θ , [θ, θ]. If the marginal cost functionc(θi, ri) =

∂C(θi,ri)
∂ri

satisfiesc(θ,rs)

c(θ,0)
≤ k for some constantk, thenρ(θ) ≤ k.

Proof: Since C(θi, ri) is convex in ri and
∂2Ci(θi, ri)/∂θi∂ri ≤ 0 by assumption,c(θi, ri) ≥ c(θi, 0) ≥
c(maxi θi, ri) ≥ c(θ, 0). Also c(maxi θi, ri) ≤ c(θ, rs). Thus,∑n

i=1

∫ airs
0

c(θi, ri)dri ≥ c(θ, 0)rs, and
∫ rs
0

c(maxi θi, ri)dri
≤ c(θ, rs)rs. The result follows.



Recall our result that all Nash equilibria in the complete
information pricing game are efficient, including any which
results from linear pricing. Thus, we see that incomplete
information can introduce inefficiencies. The main insightis
that in an incomplete information pricing game, the relays
cannot calculate the socially optimal traffic allocation due to
the lack of information regarding types. Therefore, the relays
cannot bid the marginal cost at the socially optimal outcome
as the price, Thus, the game cannot reach an efficient Nash
Equilibrium.

Although Bayesian Nash Equilibria are not efficient in the
symmetric linear pricing game with incomplete information,
they satisfy an asymptotic efficient property: the outcome
of the Bayesian Nash Equilibrium whenrs goes to zero is
efficient. To see this, note that by [24], all the relay pricing
functions in the symmetric case are the same and decreasing.
Thus the highest type relay will always get all the traffic. When
rs goes to zero, the efficient allocation also allocates all the
traffic to the highest type relay. Thus, in the symmetric case, a
Bayesian Nash Equilibrium is efficient whenrs goes to zero.

We now show, however, that in the asymmetric linear
pricing game with incomplete information, the Bayesian Nash
Equilibria are not efficient even whenrs goes to zero. We
focus on the case of two relays, where the cost functions
of the relays are identical, but the distributions of the types
are different. Using Theorem 2, we obtain the following
differential equations:

dw1

dp
= −

rsF1(w1(p))

(prs − C(w2, rs))f1(w1)

dw2

dp
= −

rsF2(w2(p))

(prs − C(w1, rs))f2(w2)

Explicitly solving for the solution is difficult, but we can
observe some properties of the solution. First, we must have

p1(θ) = p2(θ) = pmin.

This is because if the relay prices for the highest type are
not the same, then the relay with the higher price will lower
its price to increase its probability of winning the game,
thus increasing the expected revenue. From the differential
equations, we obtain

w1(p) = θ −

∫ p

pmin

rsF1(w1(p))

(prs − C(w2(p), rs))f1(w1(p))
dp (28)

w2(p) = θ −

∫ p

pmin

rsF2(w2(p))

(prs − C(w1(p), rs))f2(w2(p))
dp (29)

For a givenp, let θ1 andθ2 be such thatp1(θ1) = p2(θ2) =
p. From the above equations, it is clear thatw1(p) 6= w2(p),
i.e. θ1 6= θ2. Therefore, we have a situation where two
relays with different type propose the same price. When this
realization occurs, the highest type relay does not carry all the
traffic, even whenrs goes to zero. Thus, in the asymmetric
case, the Bayesian Nash Equilibrium is not asymptotic efficient
asrs goes to zero.

IV. Games with Full Source Bargaining Power

In the discussion thus far, the source has limited bargaining
power, and passively reacts to the relays’ signals, which are
equivalent to charging functions. The source can only allocate
its traffic to minimize its cost in withheld traffic plus the total
transfer payment to the relays. In this section, we examine
the scenario where the source has full bargaining power, in
the sense that the contract announced by the source is not
limited to the one described in (6)-(7). We first investigatethe
(Bayesian) Nash equilibria which can result from games with
source bargaining power in the case of complete information.
Here, we show that all (Bayesian) Nash equilibria are efficient.
Then, we proceed to the case of incomplete information, and
characterize the potential inefficiencies associated withthat
case.

A. Games with Complete Information
In a game with source bargaining power and complete

information, the source can observe the type vectorθ =
(θ1, . . . , θn) of the relays, and then design the allocation map
g according toθ. Since the typeθi is not private to relay
i, relay i cannot manipulate this information in designing its
signalling strategysi. Since the source can observeθ, it can
effectively ignore the strategies of the relays in designing g.
Nevertheless, the source needs to ensure that the relays will
accept its proposed contract and stay in the game. The latter
will hold as long asUi(θi, g(θ)) = ti − Ci(θi, ri) ≥ 0 for all
i. That is, all relays receive non-negative utility by accepting
the contract proposed by the source, and therefore are willing
to participate in the game.

Lemma 1. In any (Bayesian) Nash Equilibrium of the com-
plete information game with source bargaining power, all
relays receive zero utility.

Proof: Suppose that there exists a (Bayesian) Nash Equi-
librium where the source allocation rule

g(m1(·), ...,mn(·)) = (r, t)

is such thatUi(θi, ri, ti) = ti−Ci(θi, ri) > 0 for somei. Since
the source can observeθ, it could select another allocation rule
g′(m1(·), ...,mn(·)) = (r′, t′) such that

r′i = ri, i = 1, . . . , n; t′i = ti − ǫ, t′j = tj for all j 6= i

whereǫ is small enough so thatt′i −Ci(θi, r
′
i) > 0. Note that

the set of relays which would opt to accept contractg and
stay in the game is the same as the set for contractg′. On
the other hand, by shifting its allocation rule fromg to g′, the
source has strictly decreased its total transfer payment, while
keeping the same traffic allocation. Thus, the source’s utility
is strictly increased. This contradicts our assumption of being
at a Nash equilibrium.

Theorem 6. In the complete information game with source
bargaining power, all (Bayesian) Nash equilibria are efficient.



Proof: At any Nash equilibrium, the source maximizes
its utility

Us(θs, g(s1(θ1), . . . , sn(θn)) = Ws(θs, rs)−Cs(θs, r0)−

n∑

i=1

ti.

By Lemma 1, at the equilibrium, we haveti = Ci(θi, ri)
for all i. Thus, the traffic allocation by the source minimizes
Cs(θs, r0) +

∑n
i=1 Ci(θi, ri), and therefore the equilibrium is

efficient.
Using Lemma 1 and Theorem 6, we can easily solve

for the Nash equilibrium of the complete information game
with source bargaining power. By Theorem 6, the source
allocation rule at the equilibrium may be obtained by solving
for the socially optimal traffic allocationr∗, where r

∗ =
argmaxr∈R Cs(θs, r0) +

∑n
i=1 Ci(θi, ri). As noted in Sec-

tion II-C, due to the strict convexity of the optimization prob-
lem, r∗ exists and is unique. By Lemma 1, at the equilibrium,
the transfer paymentti = Ci(θi, r

∗
i ) for every i = 1, . . . , n.4

For the relays, any feasible signal mapsi may be chosen for
the equilibrium.

To see why this constitutes an equilibrium, note the follow-
ing sequence of events in the game with source bargaining
power. First, each relayi observes its typeθi. Second, the
source provides the contractg : M → (r∗, t), wherer∗ is
the socially optimal traffic allocation, andti = Ci(θi, r

∗
i ) for

every i. Note thatg is independent of the signals sent by the
relays. Third, the relays accept the mechanism because they
each receive zero utility, and therefore are indifferent with
respect to carrying traffic or not. Fourth and finally, the relay
nodes will play signal mapsi without deviation, since the
source allocation map is independent of the relays’ signals.
Thus, the Nash equilibrium holds and is unique.

B. Games with Incomplete Information
We now turn to the case that source cannot observe the type

of relay. Thus the relay nodes can manipulate their types in
order to get more utility, and the source can no longer design
the allocation according toθ. As in incomplete information
games without bargaining power, the source must maximize
the expectation of profits according to the signals sent by re-
lays. The characterization of Bayesian Nash Equilibria forthis
case is very difficult due to the complexity of the strategy set
and the possible behaviors of source and relays. Nevertheless,
we devise a method for characterizing outcomes corresponding
to the Bayesian Nash Equilibria which avoids the difficulty of
calculating the the equilibria explicitly. We shall do thisin two
steps. First, we show that if a resource allocation outcome can
be realized by a Bayesian Nash equilibrium for a game with
source bargaining in which every relay receives non-negative
expected utility, then there exists a “truth telling” Bayesian
Nash equilibrium that realizes the outcome. Second, we show
that the set of outcomes for the “truth telling” Bayesian Nash
equilibria is included in the set of outcomes for the Nash
equilibria for a complete information game, in which the

4Recall thatCi(θi, 0) = 0.

link cost functions are replaced by a specified “virtual cost
functions.”

Definition 4. A Bayesian Nash Equilibrium of the game with
bargaining power is truth telling ifM = Θ and every relay
node is willing to report their true type to the source node.

Theorem 7. If a resource allocation outcomef can be real-
ized by a Bayesian Nash Equilibrium of the game with source
bargaining power, in which every relay receives non-negative
expected utility, then there exists a truth telling Bayesian Nash
Equilibrium which realizesf .

Proof: Suppose there is a Bayesian Nash Equilibrium
which realizes the allocation outcomef(θ). By the definition
of the Bayesian Nash Equilibrium, we have (4) and (5). Now
observe that by (4), we must have

θi ∈ argmax
θ̃i

Eθ−i

{
Ui(θi, g(si(θ̃i), s−i(θ−i)))

}
(30)

for all i. Otherwise, if there exists some
θ′ such that Eθ−i

{Ui(θi, g(si(θ
′
i), s−i(θ−i)))}

> Eθ−i
{Ui(θi, g(si(θi), s−i(θ−i)))}, then there is another

strategys′i(θ) satisfying s′i(θi) = si(θ
′
i) and s′i(θ) = si(θ)

for all θ 6= θi, such thatEθ−i
{Ui(θi, g(s

′
i(θi), s−i(θ−i)))}

> Eθ−i
{Ui(θi, g(si(θi), s−i(θ−i)))}, violating (4). Therefore,

sinceg(s1(θ1), . . . , sn(θn)) = f(θ), we have

θi ∈ arg max
θ̃i∈Θi

Eθ−i

{
Ui(θi, f(θ̃i, θ−i))

}
for all i (31)

f ∈ argmax
f̃

Eθ

{
Us(θs, f̃(θ))

}
. (32)

Thus, there exists a direct truth telling Bayesian Nash Equi-
librium with the outcomef(θ).

Theorem 7 says that the set of outcomes corresponding to
Bayesian Nash Equilibria for the game with source bargaining
power and incomplete information is a subset of the outcomes
corresponding to truth telling Bayesian Nash Equilibria, in
which each relay proposes its type truthfully to the source,and
the source optimally allocates rates according to the relays’
types. This finding simplifies our analysis considerably, since
we can now focus on the truth telling Bayesian Nash Equilibria
in order to bound the efficiency loss introduced by incomplete
information in games with source bargaining power.

We now investigate the outcomes which can be realized
by truth telling Bayesian Nash Equilibria. Notice that these
equilibria correspond to the solutions of the optimization
problem given by (31) and (32), in addition to the non-negative
expected utility constraint

Eθ−i
{Ui(θi, ri)} = Eθ−i

{ti(θ, r)− Ci(θi, ri(θ))} ≥ 0
(33)

for all i, and feasibility constraintr ∈ R.

Theorem 8. The set of solutions for the optimization problem
defined by(31)-(33) is included in the set of outcomes corre-
sponding to the Nash equilibria for the complete information
game in which the link cost functionsCi(θi, ri) are replaced



by

Ji(θi, ri) = Ci(θi, ri)−
1− Fi(θi)

fi(θi)

∂Ci(θi, ri)

∂θi
. (34)

Proof: Please see the Appendix.
We refer to the functionsJi as virtual cost functions.

Note that by Theorem 6, all Nash equilibria corresponding
to games with complete information are efficient. Thus, the
set of outcomes corresponding to the Nash equilibria for the
complete information game with virtual link cost functions
Ji(θi, ri) is given by

r
′ = argmin

r∈R
Cs(θs, r0) +

n∑

i=1

Ji(θi, ri).

If Ji(θi, ri) is strictly convex in ri for all i, then the
optimization problem has a unique solution. For instance, if
all the relays’ typesθi are uniformly distributed on[0, 1], and
the cost functions are given by1θi (e

ri − 1), thenJi(θi, ri) =

Ci(θi, ri)−
1−Fi(θi)
fi(θi)

∂Ci(θi,ri)
∂θi

= 1
θ2

i

(eri − 1), which is strictly
convex in ri and strictly decreasing inθi. In this case, if
a Bayesian Nash Equilibrium of the game with source bar-
gaining power exists, then the corresponding traffic allocation
is the solution of the optimization problem. In general, the
set of traffic allocations corresponding to the Bayesian Nash
Equilibria (of the game with source bargaining power) is a
subset of the solution set for the optimization. In the next
section, we use this fact to bound the efficiency loss for games
with incomplete information.

C. Efficiency Analysis
In this section, we bound the amount of inefficiency in the

outcomes for games with incomplete information. We focus
on the inelastic scenario wherer0 = 0. Following [7], define
the price of anarchy for typeθ as:

ρ(θ) =

max
r∈RE

∑
i

Ci(θi, ri)

minr∈R

∑
i

Ci(θi, ri)
(35)

where RE is the set of all Bayesian Nash Equilibria
for the game with incomplete information. LetRJ ≡
argminr∈R

∑
i Ji(θi, ri). By Theorems 7 and 8, we have

RE ⊆ RJ . Therefore,

ρ(θ) ≤

max
r∈RJ

∑
i

Ci(θi, ri)

minr∈R

∑
i

Ci(θi, ri)
(36)

Since the link cost functions are strictly convex, the socially
optimal allocationr∗ are given by the necessary and sufficient
conditions in (3). An allocationr′ in RJ must satisfy the
following necessary conditions: for alli ∈ {1, . . . , n} such
that r′i > 0,

∂C(θi, r
′
i)

∂ri
−

1− Fi(θi)

fi(θi)

∂2C(θi, r
′
i)

∂θi∂ri
(37)

≤
∂C(θj , r

′
j)

∂rj
−

1− Fj(θj)

fj(θj)

∂2C(θi, r
′
j)

∂θi∂rj
for all j

We now bound the price of anarchy in the symmetric case.

Theorem 9. Consider the symmetric case where the link
cost functionsCi(θi, ri) and the type distributionsFi(θi) are
the same for all relays. If (i)J(θi, ri) is convex inri and
decreasing inθi, (ii) X(θi, ri) ≡ J(θi, ri) − C(θi, ri) is
concave inri, (iii) ∂X(θi,ri)

∂θi∂ri
≤ 0, then the price of anarchy

ρ(θ) can be upper bounded as follows.
If the marginal cost functionc(θi, ri) = ∂C(θi,ri)

∂ri
is con-

cave, thenρ(θ) ≤ n, wheren is the number of relays (with
equality if and only ifc(θi, ri) is linear in ri and the relay
typesθi are all the same). Ifc(θ,rs)

c(θ,0)
≤ k for some constantk,

thenρ(θ) ≤ k.

Note that for the example where all the relays’ typesθi are
uniformly distributed on[0, 1] and the cost functions are given
by 1

θi
(eri − 1), the assumptions of the Theorem are satisfied.
Proof: Let (r′i)i∈I ∈ argmini

∑
i J(θi, ri), and (r∗i ) be

the efficient allocation. We first prove that ifθm > θk, and
rm + rk = rmk is fixed, r′m ≥ r∗m. If for any θk < θm,
r′k = 0, then the inequality immediately holds. We then
consider the situation that there exists someθk < θm and
r′k > 0. Let x(θi, ri) = ∂X(θi,ri)

∂ri
. Thus for the optimal

allocation, r∗m > r∗k > 0 and r∗m + r∗k = rmk. As
x(θi, ri) is decreasing inθi, we havex(θm, r∗k) ≤ x(θk, r

∗
k).

As x(θi, ri) is decreasing inri, x(θm, r∗m) ≤ x(θm, r∗k).
Thus x(θm, r∗m) ≤ x(θk, r

∗
k). As c(θm, r∗m) = c(θk, r

∗
k) ,

c(θm, r∗m) + x(θm, r∗m) ≤ c(θk, r
∗
k) + x(θk, r

∗
k). By (37),

c(θm, r′m) + x(θm, r′m) ≥ c(θk, r
′
k) + x(θk, r

′
k), as r′k > 0.

As r∗k + r∗m = rmk = r′k + r′m, and virtual cost function is
convex, we haver′m ≥ r∗m.

Now we prove that
∑

i C(θi, r
′
i) ≤ C(maxi θi, rs). Without

loss of generality, we assume thatθ1 < θ2 < ... < θn. Any
situation where some types are the same can be handled by
modifying number of relays. We have

min∑
i ri=rs

∑

i

C(θi, ri)

= min∑
i
ri=rs

[
C(θn, rn)

+ min∑
i<n

ri=rs−rn

[∑

i>1

C(θn−1, rn−1) + min ...

+ min
r1+r2=rs−

∑
i>2

ri
C(θ2, r2) + C(θ1, r1)

]
· · ·

]

As we showed above,r′i ≥ r∗i given r′i + r′i−1 = r∗i + r∗i−1 =
ri,i−1. Thus C(θi, ri,i−1) ≥ C(θi, r

′
i) + C(θi−1, r

′
i−1) ≥

C(θi, r
∗
i ) + C(θi−1, r

∗
i−1). By induction, we can prove that∑

i C(θi, r
′
i) ≤ C(maxi θi, rs). Now using the same technique

as in the proofs of Theorems 4 and 5, we obtain the result.
If either the virtual cost functionsJi(θi, ri) are not convex,

or the link cost functions and type distributions are not the
same across relays, then higher prices of anarchy may result.
Consider the situation in Figure 2. Here, there are only two
relays.(r∗1 , rs − r∗1) is the efficient allocation. Since the type
distributions are not the same, the marginal virtual costs are
as indicated in the figure. To minimize the sum of the virtual



costs, the source allocates all traffic to relay 2, while this
allocation is clearly the worst outcome for minimizing the
sum of the link costs.
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Fig. 2. Efficiency Loss in Asymmetric Case

V. CONCLUSION

This work investigated the impact of incomplete information
on incentives for node cooperation in parallel relay networks.
We considered two situations in which source either has partial
bargaining power or full bargaining power. For the situation
where the source has partial bargaining power, we have shown
that all Nash Equilibria in the complete information game are
efficient, including those induced by linear charging functions.
We then characterized the Bayesian Nash Equilibrium for the
incomplete information game in which relays propose linear
pricing functions, and showed that incomplete informationcan
induce inefficiencies, which are exacerbated by asymmetric
prior knowledge on the type distribution. In the situation
where the source has full bargaining power, we first showed
that in the game with complete information, (Bayesian) Nash
equilibria exist and are all efficient. Next, we investigated the
game with incomplete information. To deal with the difficulty
of characterizing the Bayesian Nash Equilibria in this case,
we first showed that if a resource allocation outcome can be
realized by a Bayesian Nash equilibrium, then there exists
a “truth telling” Bayesian Nash equilibrium that realizes the
outcome. We then showed that the set of outcomes for the
“truth telling” Bayesian Nash equilibria is included in theset
of outcomes for the Nash equilibria for a complete information
game, in which the link cost functions are replaced by a
specified “virtual cost functions.” Using this approach, we
obtained for a symmetric network scenario a bound on the
amount of inefficiency which may result from incomplete
information.

VI. A PPENDIX

Proof of Theorem 8: The first and second-order conditions
for (31) are:

dEθ−i

{
Ui(θi, f(θ̃i, θ−i))

}

dθ̃i

∣∣∣∣∣∣
θ̃i=θi

= 0 (38)

and
d2Eθ−i

{
Ui(θi, f(θ̃i, θ−i))

}

dθ̃i
2

∣∣∣∣∣∣
θ̃i=θi

≤ 0. (39)

The first-order condition is equivalent to

Eθ−i

dti(θ̃i, θ−i)

dθ̃i

∣∣∣∣∣
θ̃i=θi

(40)

= Eθ−i

{
∂Ci(θi, ri(θ̃i, θ−i))

∂ri

dri(θ̃i, θ−i)

dθ̃i

}∣∣∣∣∣
θ̃i=θi

.(41)

The second-order condition is equivalent to

Eθ−i

d2ti(θ̃i, θ−i)

dθ̃i
2

∣∣∣∣∣
θ̃i=θi

≤ Eθ−i





∂2Ci(θi, ri(θ̃i, θ−i))

∂r2i

[
dri(θ̃i, θ−i)

dθ̃i

]2

(42)

+
∂Ci(θi, ri(θ̃i, θ−i))

∂ri

d2ri(θ̃i, θ−i)

dθ̃i
2

}∣∣∣∣∣
θ̃i=θi

.

By evaluating the first-order condition atθi differentiating
with respect toθi, we get:

Eθ−i

{
d2 {ti(θi, θ−i)}

dθ2i

}

= Eθ−i

{
∂2Ci(θi, ri(θi, θ−i))

∂r2i

[
dri(θi, θ−i)

dθi

]2
(43)

+
∂Ci(θi, ri(θi, θ−i))

∂ri

d2ri(θi, θ−i)

dθ2i

+
∂2Ci(θi, ri(θi, θ−i))

∂ri∂θi

dri(θi, θ−i)

dθi

}
.

Comparing with the second-order condition, we get

Eθ−i

∂2Ci(θi, ri(θi, θ−i))

∂ri∂θi

dri(θi, θ−i)

dθi
≤ 0. (44)

We have already assumed that

∂2Ci(θi, ri(θi, θ−i))

∂ri∂θi
≤ 0 for eachθ−i. (45)

Notice that when an outcome can be realized by a Bayesian
Nash Equilibrium, the following condition must hold:

∂ri(θi, θ−i)

∂θi
≥ 0 given anyθ−i (46)

Otherwise, the source would allocate a higher rate to a lower
type relay, which is not optimal. Notice that by (45) and (46),
(44) automatically holds.

Thus, the following conditions are necessary for the first
and second-order conditions to hold.

dEθ−i

{
ti(θ̃i, θ−i)

}

dθ̃i

= Eθ−i

∂Ci(θi, ri(θ̃i, θ−i))

∂ri

dri(θ̃i, θ−i)

dθ̃i

∣∣∣∣∣
θ̃i=θi



∂ri(θi, θ−i)

∂θi
≥ 0 given anyθ−i

Let Vi(θi, θ−i) = maxθ̃i Ui(θi, ri(θ̃i, θ−i), ti(θ̃i, θ−i)). We
use the envelope theorem just as we did in the previous
sections:

dEθ−i
Vi(θi, θ−i)

dθi
=

∂Eθ−i
Ui(θi, ri(θ̃i, θ−i), ti(θ̃i, θ−i)

∂θi

∣∣∣∣∣
θ̃i=θi

= −
∂Eθ−i

Ci(θi, ri(θ̃i, θ−i))

∂θi

∣∣∣∣∣
θ̃i=θi

(47)

Let θi andθi be the upper and lower bounds on relay node
i’s type, then

Eθ−i
Vi(θi, θ−i) (48)

= Eθ−i
Vi(θi, θ−i)−

∫ θi

θi

∂Eθ−i
Ci(θi, ri(θi, θ−i))

∂θi
dθi

We see from the above equation that, as we already assumed
∂Ci(θi,ri)

∂θi
< 0, the expected utility of relayi is non-decreasing

with respect toθi. Thus, to guarantee that constraints (33)
holds, the lowest type must receive non-negative profit. On the
other hand, the relay with the lowest type can never receive
a positive profit, otherwise the source will reduce its profit
by some small amount and still guarantee that the contract is
acceptable to all, which contradicts the definition of Bayesian
Nash Equilibrium. Thus, the lowest type relay should receive
zero profit.

Eθ−i
Vi(θi, θ−i) = 0 (49)

Plugging in, we get

Eθ−i
Vi(θi, θ−i) = −

∫ θi

θi

∂Eθ−i
Ci(θi, ri(θi, θ−i))

∂θi
dθi (50)

Suppose the type distribution function of relayi is Fi(θi)
and the density isfi(θi). Let R be the expected revenue of
the source node. Then,

R = Eθ

{
Ws(rs)− Cs(θs, r0)−

∑

i

ti(θ)

}

= Eθ

{
Ws(rs)− Cs(θs, r0)−

∑

i

Vi(θ) −
∑

i

Ci(θ)

}

= Eθ

{
Ws(rs)− Cs(θs, r0)−

∑

i

Ci(θ)

}

+
∑

i

∫ θi

θi

fi(θi)Eθ−i

[∫ θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′i
dθ′i

]
dθi

= Eθ

{
Ws(rs)− Cs(θs, r0)−

∑

i

Ci(θ)

}

−
∑

i

∫ θi

θi

Eθ−i

[∫ θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′i
dθ′i

]

×d(1− Fi(θi))

= Eθ

{
Ws(rs)− Cs(θs, rs)−

∑

i

Ci(θ)

}

−
∑

i

Eθ−i

[∫ θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′i
dθ′i

]

×(1− Fi(θi))|
θi
θi

+
∑

i

Eθ−i

∫ θi

θi

(1− Fi(θi))

×d

[∫ θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′i
dθ′i

]

= Eθ

{
Ws(rs)− Cs(θs, r0)−

∑

i

Ci(θ)

}

+
∑

i

Eθ−i

∫ θi

θi

(1− Fi(θi))

×d

[∫ θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′i
dθ′i

]

= Eθ{Ws(rs)− Cs(θs, r0)}

−
∑

i

Eθ−i

∫ θi

θi

Ci(θi, ri(θi, θ−i))

−
1− Fi(θi)

fi(θi)

∂Ci(θi, ri(θ))

∂θi
fi(θi)dθi

= Eθ[Ws(rs)− Cs(θs, r0)]

−Eθ

∑

i

(
Ci(θi, ri(θ)) −

1− Fi(θi)

fi(θi)

∂Ci(θi, ri(θ))

∂θi

)

Thus, we obtain a game with complete information and
full source bargaining power where the revenue function is
changed toJi(θi, ri) rather thanCi(θi, ri).
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