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Abstract—We consider the impact of incomplete information in which the relay nodes cooperate as one party in competing
on incentives for node cooperation in parallel relay netwoks with  \ith the source node.
one source node, one destination node, and multiple relay des. All the above papers assume a complete information setting

All nodes are selfish and strategic, interested in maximizig their h | in th twork h lete k led
own profit instead of the social welfare. We consider the pratical where players in the network game have complete knowiedge

situation where the channel state on any given relay path isst @bout quantities such as the state of network links. In m@gct
observable to the source or to the other relays. We examine this assumption is often too strong. Information regarding

different bargaining relationships between the source andthe network quantities is typically incomplete and imperfelct.
relays, and propose a framework for analyzing the efficiency g jnternet service provider (ISP) pricing game, for instan
loss induced by incomplete information. We analyze the soage - . .
of the efficiency loss, and quantify the amount of inefficieng the characteristics a_md service requirements of t.he userbe
which results. opaque to the service providels [18]. In a multi-hop network
such as the Internet, a source does not typically have gerfec
. INTRODUCTION information on the congestion state of links a few hops away
[19]. Finally, in wireless networks, the source usually roain
There is now widespread awareness of the importance gifserve or test the channel state from a relay to the deistinat
incentives in the management of communication netwarks [1jeither can a relay observe the channel state from otheysrela
[6]. Network nodes often cannot be relied upon to coopets the destination. Given the above, it is clear that in aziaty
atively implement network algorithms in the service of theelfish behavior in network settings, the role of incomplete
social good. Instead, selfish nodes will behave in a givéfformation must be emphasized.
manner only if it is profitable for them to do so. Of clear One approach to network design problems with incomplete
interest is the impact of such selfish actions on the socigformation is through dominant implementable mechanisms
good. From the network point of view, it is important to20]. This idea has been used in the context of spectrum
design incentives such as pricing schemes, which induggctions([Z1] and communication networks|[22]. These mech-
selfish behavior aligned with the social good. anisms, however, require a centralized authority and extra
In single-hop networks, the incentive issue and its impact dunding from an outsider. This makes the extension to génera
social efficiency have been extensively studied[In [7], B¢ multi-hop networks difficult. Another approach, based oa th
authors considered the Nash Equilibrium for selfish roytinglea of Bayesian Nash Equilibrium, a generalization of the
in which source packets choose paths to the destinationNash Equilibrium concept, is advocated in[23]. Here, the
minimize their individual latency, rather than complyingtww authors consider selfish routing in a single-hop networleneh
a global routing algorithm to achieve social optimality.[8] every source node knows only its own traffic requirement,
and [10], the authors consider network service pricing fer i but has knowledge of the traffic distribution of other sostce
ternet service providers. They showed that cooperatiomamoNhile the results in[23] are appealing, it remains unclesw h
multiple service providers is required when their links arthey might extend to the multi-hop network situation.
used by common users. In_[11], the authors study competitiveln this work, we investigate the impact of incomplete
behavior among multiple parallel links, and characteritesl information on the problem of pricing and incentives in a
efficiency loss due to competition. two-hop parallel relay network. We consider two scenarios,
The issue of incentives has also been investigated for muttine in which the source has limited bargaining power and one
hop networks. A number of papers [12]-[14] advocate thie which the source has full bargaining power. In the limited
use of credits to provide incentives for network nodes tmargaining power scenario, the source can only react pgsiv
cooperate. In[[15], the authors investigate the impact &f heo the relays’ signals, and the game can be considered to be a
erogeneous traffic on the pricing of network service prosgde pricing game. For this case, we show that all Nash Equilibria
Selfish behavior has also been investigated in the contextimthe complete information game are efficient, includingst
cooperative relay networks. In_[16], the authors consideranduced by linear charging functions. We then charactdhiee
a nonlinear pricing game, where the relay nodes propoBayesian Nash Equilibrium for the incomplete information
nonlinear charging functions to the source, and the sourgame in which relays propose linear pricing functions, and
allocates the traffic to minimize the payment to relay nodeshow that incomplete information can induce inefficiencies
In [17], the authors considered a Stackelberg bargainingega which are exacerbated by asymmetric prior knowledge on
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the type distribution. Next, in the scenario where the seurc
has full bargaining power, the source is allowed to provide
a general contract. For this case, we first show that in the
game with complete information, (Bayesian) Nash equdibri
exist and are all efficient. Next, we investigate the game r, -e C2Bins f12) CoyBrys frg)
with incomplete information. To deal with the difficulty of ‘
characterizing the Bayesian Nash Equilibria in this case, w
first show that if a resource allocation outcome can be redliz
by a Bayesian Nash equilibrium, then there exists a “truth
telling” Bayesian Nash equilibrium that realizes the omeo
We then show that the set of outcomes for the “truth telling”
Bayesian Nash equilibria is included in the set of outcornes f Fig. 1.
the Nash equilibria for a complete information game, in wahic
the link cost functions are replaced by specified “virtuadtco
functions.” Using this approach, we obtain for a symmetrignk with channel gairg;;, bandwidthi’, and receiver noise
network scenario a bound on the amount of inefficiency whigiower N. Using the Shannon capacity formula, we have
may result from incomplete information. fij = Wlog(1+g;;P;;/N), whereP,; is transmission power
1. NETWORK MODEL required on link(, 7). Thus, the link cost is

A. Network Traffic Allocation Cii (035, fij) = ﬂ(g.ﬂ,j/w —1).
In wireline and wireless networks, it is often the case that 9ij
an information source cannot directly reach its destimatioHere,6;; denotes the channel gaip,.
but must do so with the aid of intermediate relays. We modelNow consider the overall cost;(9;,r;) for relay nodei
such a situation as follows. Consider a parallel relay ndtwoto forward traffic of rater; from sources to destinationd,
modelled by a directed gragh = (V, E), with a single source where §; measures the quality dype of the path from s
s, destinationd, and a set of relaysg, where|I| = n. We to d throughi. We assume tha€;(0;,r;) = Cyi(0si, ;) +
assume that there is no direct link betweeandd. Instead, C;;(0;4,7;). The costsC;(6;,;) are particularly amenable to
The relays in/ are used to forward traffic in a two-hop fashioranalysis if §; can be expressed as a simple scalar function
from s to d. of 5, and6;4: 0; = h(0s,0;q4). This is true in the example
The source wishes to maintain a certain rate of transmissiohthe power consumption cost function given above, where
with the destination. We shall consider two scenarios. ¥); = g;; is the channel gain on linki, j). Normalizing the
the first inelastic scenario, the source has a fixed rate bandwidth and receiver noise power to 1, we have
of transmission. This rate must be carried by the relays in

C..©0,

nd

ConOons fin) Fod)

relay channel

I, where the traffic rate forwarded by relayis r;, and Ci(0i,ri) = Psi+ Pia
S ri = 5. In the seconalastic scenario, the source may = (2" =1)/gsi + (2" = 1)/gia
be willing to withhold some of its transmission rate, acéogd = (2 — 1)9,*17 (1)

to how the cost of sending traffic affects it overall utilityet

ro denote the amount of traffic withheld or rejected. Thewhered; = (g.;'+g;,')~! = (6,; +6;;') 1. In this paper, we
rs — 1o is the total admitted traffic from the source. A traffidocus on situations where the path qualitycan be expressed
vectorr £ (rg,r1,...,7m,) € R”H is a feasible routing of the as a scalar function of;; and;4. We further assume that

source traffic if it sa‘usfle@o + le T =Ts. belongs to a compact interv,, ¢;].
Motivated by the power consumption example, we as-

B. Cost Function and Utility Function sume thatC;(0;,r;) is twice continuously differentiable on
In general, for any relay nodg there is a cost involved [6,,6;] x [0,7,], and strictly increasing and convex in:
in forwarding traffic for source. This cost typically depends 9C;(6;,r;)/0r; > 0 and 92C;(0;,7;)/9r? > 0. Also, assume
both on the properties of the links adjacent on relagnd thatC;(6;,r;) is strictly decreasing if;: 9C;(0;,r;)/00; < 0.
the amount of traffic flowing through those links. Denote thEurthermore, assum@*C; (6;,r;)/06;0r; < 0.
traffic flow on link (z,5) € E by fi;. We assume that link Now consider the source. In the inelastic case, source
(,4) has a cost functio;;(6;;, fi;) with C;;(0;;,0) = 0, s sends traffic at a fixed rate, into the network. In the
where 6;; is a measure of the quality of linki,j). This elastic case, source may withhold traffic of rater, from
quality may have different physical meanings in differerthe network, and send the other part of the traffic- ro into
contexts. For example, if the cost function reflects the gquethe network. Let the utility function of the source be given b
ing delay on (3, j) then using the M/M/1 approximation, W, (6, r), whered, € [0, 0] parameterizes the utility for the
Cij (035, fi5) = & . Here 0;; denotes the link capacily;;. source, and is the source rate admitted into the network. For
For another exampfe consider the cost of power assumpt@sample, the source utility may B&;(6;,r) = 05 log(1 +r).
required for transmitting traffic of ratg;; over a wireless Assume thatW,(r) = W(rs) for all r > r,, i.e. rs is




the maximum desired source raté;(0,,r) is assumed to For the case of an elastic sourag, = (r§,r},...,7}) is
be continuously differentiable, strictly increasing amihcave the socially optimal allocation if and only if3) holds and
in 7 on [0,7,]. Let Cs(0s,70) & Wi(rs) — Wi(rs — o) furthermore,

denote the sourcetstility loss from having traffic of rater
withheld from the network. Equivalently, if, is regarded

as the traffic rate routed on drtual overflow link directly D. Game Structure

from s to d [19], thenC;(6;, o) represents the cost on the ypjike the cooperative setting, in a network consisting of
overflow link when the link parameter ig; and the flow ggifish and strategic nodes, the source as well as the relays
rate isro. Since W(r,) is a constant, it can be seen thafiji strategize to maximize their own utility, rather than
Cs(0s,70) is continuously differentiable oft;, 0] < [0,7s], \work together to minimize the overall network cost. Since
strictly increasing and convex iny: 9C(0s,70)/0r0 > 0 forwarding traffic entails cost, the relays will carry theisce’s
and 3205(.95,7’0.)/87’3 > 0. Furthermore, we assume thayfic only if they are sufficiently well compensated. The
Cs(0s,m0) s strictly decreasing is: 9C;(0s,70)/00s < 0. gource, on the hand, wishes to have its traffic forwardedeat th
Finally, it can be seen that;(6,,0) = 0 for all 6,. It can  gajiest possible cost to itself. The natural setting inchtid
easily be checked that these propertles_ are satisfied for H&‘?ry out this game is one which allows for transfer payments
exampleW; (6, 7) = 65log(1 + r), for which Cs(05,70) = \yhich accompany traffic allocations from the source to the
Ws(rs) — 0slog(l + rs — ro). With the aid of the virtual respective relays.
overflow link, we may view a game with an elastic source |, this work, we assume that the (maximum) source input
as a game with an inelastic source of rafeand an overflow (a¢e;. and the parametet, are known to all nodes. As dis-
link (s, w) with cost functionC(6s, 7o) cussed above, the cost functiah(é;, ;) for relay i depends
C. Socially Optimal Allocation on t_he path quality para_meter or tyfe In practical network_
settings, the value of this type may be randomly fluctuating.
A socially optimal traffic allocation in a parallel relayFor instance, in wireless communication, the channel gain
network is an allocation which minimizes the total networ@ij fluctuates due to shadowing and fading. In the Internet,
cost, assumed to be the sum of the link costs. Such @@ quality of a particular path may fluctuate according to
allocation can be realized through cooperation of the netwonetwork congestion levels. Accordingly, we may assume that
nodes. In networks with selfish and strategic nodes, a $pci&, is randomly distributed according to distribution functio
optimal allocation may or may not be realizable. Nevertb®gle 7 (4;). In practical network scenarios, the exact realization of
the optimal allocation serves as an important benchmagkis typically known only to relay, and not to the source or
with which to measure the amount of potential inefficiencyy the relays other than Thus,6; is private informationto
introduced by selfish and strategic behavior. relay i. Nevertheless, the source and other relays may still
Let R = {(ro,r1,...,70): 15 > 0Vj =0,...,n,5" ;7 = have knowledge of the distributio;(6;). For instance, a
rs} be the set of feasible traffic allocations, and feE R wireless source or a relay # i may know the distribution
denote the vector of traffic rates in the network, wheyés of the channel gains for relay but typically does not know
the rate withheld by the source, andis the rate routed to the realization of those channel gains. An Internet source o
relay i, = 1,...,n. Note that for the case of an inelastica path;j # i may know the distribution of the congestion
source,rg = 0. level on pathi, but does not know the exact realization of the
congestion level.
In order for the source node to allocate its traffic intelli-
gently in the presence of incomplete information regardiveg
N ) 0;’s, it needs to observe some “signal” from the relay nodes.
I €argmin Ci(bs,70) + ) _ Cil0i, 7). (@) This can be realized by having the relay node send a signal
=1 according to the realization of its type to the soufdeet 1;
Since the link cost functionS;(0;, ;) as well a’s(6s,79) be the set of signals for relay where M; is a subset of the
are all strictly increasing and strictly convex, the sdgial set of differentiable functions of0, r,]. The signal map for
optimal allocationr* exists and is unique. The conditiongelayi is
for specifying r* can be obtained using the Kuhn-Tucker Si 1 ©; = M,
conditions. Letc;(6;,7;) = 0C;(6;,7;)/0r; andcs(0s,19) £ P
C,(04,70)/0r0 éenot()e the m;rgina)ll/cost functi(on of)lin‘k where®; = [0;, 6;] ands;(0;) = mi().

. , : Given the signalsn;(-),7 = 1,...,n, the source decides
and the marginal cost function of the overflow link for source . ) i
s, respectively. on an allocation of its traffic as well as a vector of transfer

For the case of an inelastic sourag, — (0,r%,... %) payments to the relays. This allocation is calledantract

is the socially optimal allocation if and only if for each= Letr = (ro,r1,...,7a) € R denote the vector of traffic rates

cs(0s,15) = if ry >0, c¢s5(0s,75) > " if r§=0.

Definition 1. A traffic allocation vectorr* is called socially
optimal if

n

L...,n, 10ne can also consider the possibility of the source sendirgigaal
) ) according to its typds. However, since we assurig is known to all network
ci(0p,rf)=c"if v >0, ¢(0;,r7)>c" if 7 =0. (3) nodes, we do not consider this possibility here.



in the network, where, is the rate withheld by the source, IIl. Games with Limited Source Bargaining Power

andr; is the rate routed to relaii = 1,...,n. Note that for  \ve first consider a specific instance of the general game

the inelastic case;o = 0. Now lett = (t1,%s,....tn) € R} gegcribed in Sectiofi IED in which the source has limited
be the vector of transfer payments, whereis the transfer bargaining power. In this case, the source can only react

1 a A RN . . -
payment to relay. Let M = M, x--- x My andT' = R}.  haqgjvely to the relays’ signals. Specifically, the trangay-

Then the allocation map of the source node is ment from the source to any given relay must equal the
g: M — RxT, relay’s signal function evaluated at the traffic rates rdute

to the relay. That is, the source allocation rule is given by

whereg(mi(-),...,mn(-)) = (r,t). g(mi(), ..., mn()) = (r,t), where

The above framework encompasses many forms of pricing .

games explored in previous literature. For instancel ir,[16 c W.(0 O ) — (Y (6

the relay signals are simply charging functiofg-), and the e ER 5(0s:ms) (8s,70) ;mz(n)( )

transfer payments are required to equal the charges denhandeti = mi(ry), i=1,...,n. @)

by the relays, i.et; = P;(r;).
The signal maps of the relays along with the allocation mdgffectively, the relays’ signal functions act as chargingd-
of the source realize a corresponding network allocatiop mtions, and the transfer payments must correspond to thestela
charges. The source can only allocate its traffic to minimize
f:©—>RxT, the cost of withheld traffic plus the total charges paid to the
where f(61,...,0,) = g(51(61),...,5.(0n)) = (r,t). relays. In this case, the game can be considered topbieiag
In the game with incomplete information corresponding tgame

the above setting, the utility of the source is given by A. Pricing Game with Complete Information

Uy (05, g(51(01), - . ., 5 (0n)) = Ws(rs) — Cs (B, 70) — zn:ti. In this s_ection, we consider the specific _pri_cing game With
= complete informationvhere the source has limited bargaining
power and the vector of relay typegs = (61,...,0,) is
known to all nodes in the network. Note that this is degererat
Ui(0;,9(51(01), ..., 80 (0n))) = ti — Ci(0;,15). version of the game considered in Secfion]I-D where therprio
distribution on the type of relay available to all nodes is
aiven by the distribution functiod;(xz) = 0 for z < 4, and
=1 for = > 6;, whered; is the realization of relay’s

The utility of relayi is given by

The game with incomplete information proceeds as follow
First, each relayi observes its own private informatiofy. Fi(z)
Second, the source provides a contract for the relay nod%e

The contract announces the source allocation guleM — Since the allocation rule of the source is fixed By (8)-(73, th

fx T Third, the relays swn_ultaneously decide to either acce??ﬁowledge of) cannot cause the source to adjust its allocation
or reject the contract. If a given relay accepts the contthen rule accordingly. Thus, knowledge @fis not useful to the

it wil pa_rt|C|pate n the game Wh.'h follows. Oth_erW|se,eth source due to its lack of bargaining power. Also, due to the
relay quits anq réceives zero utllyFo_urth and finally, the degenerate prior distribution ah, we need only consider the
relay nodes simultaneously send their signals to the_ spurge | concept of Nash equilibrium here. We now show that
and the source allocates rates and transfer payments awgor fact all the Nash equilibria in this complete information

to the announced. - -
. . I ricing game are efficient.
In the following, we give the formal definition of thep g9
Bayesian Nash equilibrium corresponds to the game wiltheorem 1. In the pricing game with complete information,

incomplete information described above. Bet (91,...,6,,), Nash equilibria exist, and all Nash equilibria are efficient
0_; = (0) 2, ands_;(0_;) = (s;(0;)) 4 Moreover, there exists an efficient Nash equilibrium in Wwhic

. h rel li harging function.
Definition 2. A Bayesian Nash Equilibrium of the above gamtcaéalC relay USes a finear charging function

is a set of strategie$si, ..., s,, g} satisfying Proof: We focus on the case for inelastic sources. The
1. for each relay node and every feasiblg; : ©; — Af;, €lastic case can be similarly handled. Sittce: (61, ..., 0,)

is known to all nodes in the network, we suppress the
Eo  A{Ui(0:,9(si(0:), s—i(0-:)))} dependence of various quantities én In this game with
> Eo_, {Ui(0;,9(8:(0:),5-i(6-:)))}, (4) limited source bargaining power, the relays’ signals repné

charging functions. LeB;(r;) be the charge required by relay
i for forwarding traffic of rater;, and letb;(r;) £ Bl(r;) be
Eg {Us(0s,9(s(0))} > Ea {Us(0s,9(s(0)))}. (5) the marginal charging function, or pricing function. L&f(r;)
andc; (r;) be cost function and marginal cost function for relay

2Note that the relays which quit can simply be left out of themga i respectively.

formulation. Thus, without loss of generality, we assumetfe rest of the L h . iall . | all . bet —
paper that the source plays the game in a manner which givesiegative et the (un'que) socially optimal allocation —

expected utility to all relays, so that all relays stay in tame. (ri,rs,...,r%). Suppose that there exists a Nash Equilibrium

Ty

2. for every feasibley: M — R x T,



with charging functionsB;(r;) and corresponding rate alloca-inverse function ofp; such thaty; = wi(pi(ﬂi))._We assume
tion r = (r1,79,...,7) # r*. With a possible re-ordering of that the densityf;(6;) is positive over®; = [0, 6;].
the relay indices, we may assume that> r; for i < kq, We prove the following theorem.

= <i < rrfor i > k. * . . .
ri =1y for ky < i <kp, andr <7 fori > ks ASTEY" oo 5 it the source is inelastic, in any Bayesian Nash

and_both*must sum to,, ki > 1 andky <m. Equilibrium, the price function satisfies the followingfeit
Sincer* is the unique socially optimal allocation, from the

L o ential equations:
optimality conditions, we have g

. e % . “ e ox dw; (pi) Fi(wi(pi)) —(n—2)rs
ci(ri)y=c"ifrf >0, ¢(r])>cifrf=0. (8) ; = 1) Fu(ws00) {pﬂ“s — ot ) )
where ¢* is the optimal marginal cost. Now by the strict .
convexity of C;(r;), s 14
g ) L +;pirs_cj(wj(pi) 7“)}7 (1)
{ ci(r) > c* forall r e [rf,r) if i <k )
ci(r) < ¢ forall r € (ry, 7] if i > ko wherep; (0;) is given by the inverse ab;(p;).
. ) ) . In particular, in the symmetric situation whetg;(9,) =
The profit of relay: for i <k, is F(#;) and C;(6;,r;) = C(0;,7;) for all i, the Bayesian Nash
Ty T Equilibrium satisfies:
/ bi(r) — c;i(r)dr + / bi(r) — c;(r)dr. (10) o, P
’ " (6. = 1 C(6: fﬁ F)"~ —p 40 15
Since we are at a Nash equilibrium, for ak &, and for any pi(0i) = re (6i,s) = F(0;)n1 - (19)

0 <& <ri—rf [l" sbi(r) = ci(r)dr > 0. For otherwise,
relayi < k; will deviate to another charging function whicn ~ Proof: By an argument similar to that iri_[24};(0;)

is extremely high fromr} to 7;, so as not to take the extraand w;(p;) are both strictly decreasing functions. Since the
traffic r; —r}. Now choose < min,.i<k, or i>k,|ri —7;|. Let charging functions are linear, the source will always altec

all its traffic to the relay proposing the lowest prﬁ:eiven the

r

m € argmaxi<ick, fmli ci(r)dr (11) other relays’ pricing strategies;(p,),j # i, the probability
I € argming,<i<n f:_“% ci(r)dr that relayi proposes the lowest price is given by
By (9), Pr{p; < p;forall j+#i}="Pr{0; <w,(p;) forall j#i}
Tm T1+e€
/ em/(r)dr >/ c(r)dr (12) - HF7 (w; (pi))
Tm —E€ T J#i

However, since[’™ by (r) — cp(r)dr > 0, there exists a For each giveq private type;, relay i wishes to choose its
charging functionB;(r) for relay | such thatB,(r) equals P'iCEP: to maximize the expected profit

By(r) from 0 tor;, but mi(0i,pi) = Pr{p; <p; forall j #i}(pirs — Ci(0i,7s))
S cbm(rydr = [ cm(r)dr = [ Ew;m)) s — Ci(6i,75)) (16)
> (M h(r)ydr > [T e (r)dr. J#

T Tl

5 (13) In order to maximizer;(6;, p;), the first-order condition must
Thus if relay ! uses B;(r), then in order to maximize its pe hold:

profit, the source will switch an amount of traffic fromrelay 57, (03, p:) 1 dw; (p;)

m to relay l. Thus, relayl can deviate toB;(r) and geta ~——5 —— = mej(wj(m)) CZ

higher profit, contradicting our assumption of being at alNas bi i1 T a\WapE pi

equilibrium. 4T (17)
The existence of an efficient Nash equilibrium in which pirs — Ci(bi,7s)

relays use linear charging functions has been demonstrated =0

in [16], completing the proof. B After some algebra, we obtaif {14).

B. Pricing Game with Incomplete Information We now focus on the symmetric situation for an inelastic

s source, where;(0;) = F(6;) and C;(0;,r;) = C(6;,r;) for
When the source and the relays# i cannot observe the 4 ;. First, using an argument similar to that [n[24], all the

type 0; of relay i, the source and the relays must contengjay nodes should have the same pricing straieidy) and
themselves with maximizing their expected profits. In thléj(pi)_ Thus, the expected profit for relayis

situation, the characterization of Bayesian Nash Equalifor .

general nonlinear charging functions is very difficult. Wit mi(0i,pi) = F(w(p:)" (pirs — C(0i,75)).  (18)

our discussion to the case where relays lmgar charging _ _ _ _
Note that since); are continuous random variables gnd6;) are strictly

functiqns, i'e_"Bi(ei’ ri) = pi(0i)ri, where thg prif@i(ei) decreasing functions, the probability that there are asw iti the relay prices
per unit traffic depends on the type. Let w; = p;* be the is zero.



Let the value function for relay (the maximum profit ~ We shall focus on the case of an inelastic source. The elastic
for relay ¢ given typef; by choosing the optimap;(6;)) be source case is similar. We consider the symmetric situation

v;(6;) & max,, m;(6;, p;). By the envelope theorem, where F;(6;) = F(6;) and C;(0;,7;) = C(6;,r;) for all 1.
1 In the case where all relays bid linear charging functiohs, t
dvi(0:;) _ O{F(w(p)" " (pirs — C(bi, 7))} highest type relay will receive all the traffic. Here, theceri
do; 90, =m0,  Of @narchy is determined by
ne10C(0;,7s C(max;cy 0;,75
= Fupy 20r) plo) = — s O t) (24)
i mingep Z C(6;,7i)
— _F(gi)n—lw (19) i

00;

Sincep(d;) is decreasing, the lowest type player must wi
zero expected profit, i.ev;(6) = 0. Thus,

We develop the following bound op(6).

I:f‘heorem 4. In the symmetric linear pricing game with in-
, complete information, if the marginal cost functiof®;, ;) =
i 9 s 80(9“7’1) H .
01 (65) :/ _F(e)n,lac( ,T )d9. (20) o IS goncave,_tht_erp(@) < n, yvheren is t_he nu_mber
0 00 of relays, with equality if and only i€(6;, ;) is linear in r;

We now use[(18) and_(20) to solve for the optimal pricin&lnd the relay types; are all the same.
function: Proof: Let (r¥)"_, = (a;rs)", be the socially optimal
0. allocation for a given type realizatiohy where}"" ; a; = 1
pi(0:) anda; > 0 for all 7. Thus the optimal cost is

= — N Fm T T + C 91’7 Ts (21)
Ts {F(w(pi))" ! ( )} Z/ c(0;,7;)dr; (25)

Il
!
=

5
S
N

1 fg n—19C (6 Ts)d9
- re C(6:,rs) — F(6;)n—1 Since c(0;,r;) is concave it can be shown that
foairs C(ei,Ti)dTi > 2 0 (Gi,ri)dri, where equality
B holds if and only ifc(el,rl) is linear inr;. Thus we have

The case of an elastic source can be treated in a similar
way. We omit the proof here and simply state the result. Z / c(6;,r)dr; (26)

Theorem 3. If the source is elastic, in any Bayesian Nash
Equilibrium, the price function satisfies the followingfeit Therefore,
ential equations:

doip) _ Fwip) [ -2 nm) ) - o cmaxibirdr
p; (n =D filwi(p:)) | pirs = Cilwi(p), v = 7o) Z@o b, ri)dr:
_dTo(pi)( ; — aci(eiﬂ“sf’r‘g))) fOL max; 9177"1)617"1 (27)
. O —ro) (22) Tl a? fy el ri)dr
DiTs — Ci(’LUi(p),TS - TO) er ( ax 0 )d ) 1
r. 4+ de(Pi)(p_ _ 301’(91’1577“0)) < o c\max; by, T;)ar; _ <n
+y S TOXiiaf o elmax Oy, ri)dri 3ol 6
— birs — Cj(wj (p),?"s - TO) .
J# where the second inequality follows from the assumption tha
wherep;(0;) is given by the inverse af;(p;). 9%C; (0;, T‘i)/aeiari < 0. Equality obtains in all three previous
.. . inequalities ifc(#;,r;) is linear inr; and the relay types;
C. Efficiency Analysis areqa" the Sam(e_ ) y P m

In this section, we measure the inefficiency introduced by Next, we give a general bound on the price of anarchy for
the pricing game with incomplete information. We shall usall cost functions satisfying our assumptions in Secfion II
the useful measurprice of anarchy defined for each given

type vectors. Theorem 5. In the symmetric linear pricing game with

mcomplete information, let the support set for eathbe

Definition 3. The price of anarchy(¢) for a given type vector @ £ [9, 4]. If the marginal cost functior(6;, ;) = w

6 in the incomplete information game is satisfies—c%ro‘“)) < k for some constart, thenp(6) < k
ax,. Cl 91', i o . . .
p(0) = maxy e re 3 Cilli, i) (23) Proof: Since C(6;,r;) is convex in r; and

minger 33; Cil0i 1) D2Ci(6;,1;)/06;0r; < 0 by assumptiong(8;,7;) > ¢(6;,0) >
where RP is the set of all traffic allocations correspondingec(max; 6;,7;) > ¢(6,0). Also c(max; 0;,7;) < c(8,r,). Thus,
to Bayesian Nash equilibria, ang is the set of all feasible "' | [ c(6i,7:)dr; > ¢(6,0)rs, and [ * c(max; 0;,7;)dr;
traffic allocations. < ¢(8,7s)rs. The result follows. [ |



Recall our result that all Nash equilibria in the complete 1V. Games with Full Source Bargaining Power
information pricing game are efficient, including any which

results from Imgar pricing. Thgs, we see that. m_compleBaower, and passively reacts to the relays’ signals, whieh ar
information can introduce inefficiencies. The main insight

that | . lete inf i > h | equivalent to charging functions. The source can only atiec
at In-an incompiete Information pricing game, the Telaya, v atfic to minimize its cost in withheld traffic plus thetéd
cannot calculate the socially optimal traffic allocatioredo

the lack of inf i ding t Theref h | transfer payment to the relays. In this section, we examine
€ lack ot information regarding types. 1heretore, th@ysl y,o scanario where the source has full bargaining power, in

cannot bid the marginal cost at the socially optimal OUtCOME sense that the contract announced by the source is not
as th_e price, Thus, the game cannot reach an efficient N"ﬁ ted to the one described ibl(@}}(7). We first investigtite
Equilibrium. . I N Bayesian) Nash equilibria which can result from games with
Although .BayeS|a.n.Nash Equilibria are not efficient |n-th ource bargaining power in the case of complete information
X . L "Here, we show that all (Bayesian) Nash equilibria are effiicie
they safisfy an asympiotic efficient property: the OUtcomﬁﬁen, we proceed to the case of incomplete information, and

of _the Bayesian N?Sh Equilibrium when goes to 2810 IS characterize the potential inefficiencies associated witit
efficient. To see this, note that by [24], all the relay PIEEIN .o se

functions in the symmetric case are the same and decreasing.

Thus the highest type re!a_y will alway_s getall the traffic.&kh A Games with Complete Information
rs goes to zero, the efficient allocation also allocates all the

traffic to the highest type relay. Thus, in the symmetric case. ¢ , h b h a
Bayesian Nash Equilibrium is efficient when goes to zero. Information, the source can observe the type vector

We now show, however, that in the asymmetric Iinee{rel""’en) of the relays, and then design the allocation map

pricing game with incomplete information, the Bayesian INag/ accordmg tof. Sm_ce the ty_pe?i IS not_ pnyate K.) r(_elay_
Equilibria are not efficient even when, goes to zero. We 1, relay s cannot manipulate this information in designing its

focus on the case of two relays, where the cost functioﬁ?nal_”ng s_trategysi. Since the source can ob_ser&,eit_ can
of the relays are identical, but the distributions of theetyp efiectively ignore the strategies of the relays in designyn

are different. Using Theorem 2, we obtain the foIIOWinJ%\llevertheless, the source needs to ensure that the reldys wil
differential eduationS' ' ccept its proposed contract and stay in the game. The latter

will hold as long aslU;(6;,¢9(0)) = t; — C;(6;,7;) > 0 for all
dw; rsF1 (w1 (p)) i. That is, all relays receive non-negative utility by acaspt
dp (prs— Clwa,r)) fi(wi) the contract proposed by the source, and therefore aragilli
) to participate in the game.

In the discussion thus far, the source has limited bargginin

In a game with source bargaining power and complete

dwy 75 Fo (w2 (p
dp (prs — Clw1,75)) f2(w2) Lemma 1. In any (Bayesian) Nash Equilibrium of the com-
Explicitly solving for the solution is difficult, but we can Pléte information game with source bargaining power, all
observe some properties of the solution. First, we must hal@lays receive zero utility.
Proof: Suppose that there exists a (Bayesian) Nash Equi-
librium where the source allocation rule
This is because if the relay prices for the highest type are B
not the same, then the relay with the higher price will lower g(m (), s ma()) = (r,%)
its price to increase its probability of winning the gameg g ch thall; (6;, 74, t;) = ti—Cy(6;,7;) > 0 for somei. Since
thus increasing the expected revenue. From the diffetentige source can obserdeit could select another allocation rule
equations, we obtain ¢ (mi(:), ...,mn () = (r',t') such that

7 /p rsF (w1 (p)

D1 (?) = p2(§) = Pmin-

dp (28) ri=rii=1,...,n; ti=ti—e t;=t;forallj#i

2

w1(p)

)
Pmin (prs — C(wa(p),7s)) f1(w1(p))
. wheree is small enough so thaf — C;(6;,7;) > 0. Note that
wa(p) g_/ rs Fa(wa(p)) dp (29) the set of relays which would opt to accept contracand
puin (P75 — C(w1(p),75)) f2(w2(p)) stay in the game is the same as the set for contyacOn
the other hand, by shifting its allocation rule frgmto ¢’, the

i?g;%g:?ﬁéigé a:gt?;nbse ﬁﬂghcfzgf i%t) 722(92) ): source has strictly decreased its total transfer paymetite w
p. 9 ' (p wa(p), keeping the same traffic allocation. Thus, the source’syutil

i.e. 81 # 05. Therefore, we have a situation where two . . . . . .
. , . is _strictly increased. This contradicts our assumptionein@
relays with different type propose the same price. When thﬁ S
7 . a Nash equilibrium. ]
realization occurs, the highest type relay does not cafhal
traffic, even whernr; goes to zero. Thus, in the asymmetridheorem 6. In the complete information game with source
case, the Bayesian Nash Equilibrium is not asymptotic effici bargaining power, all (Bayesian) Nash equilibria are effict.

asrs goes to zero.




Proof: At any Nash equilibrium, the source maximizedink cost functions are replaced by a specified “virtual cost
its utility functions.”

n

Definition 4. A Bayesian Nash Equilibrium of the game with
Us(Os,9(51(01), - . 50 () = WS(QS’TS)_OS(HS’TO)_Z“' bargaining power is truth telling if\/ = © and every relay

=t node is willing to report their true type to the source node.
By Lemmald, at the equilibrium, we hawe = C;(6;,7;)

for all 5. Thus, the traffic allocation by the source minimized héorem 7. If a resource allocation outcomg¢ can be real-

Cy(0s,70) + X1, Ci(6;,77), and therefore the equilibrium is ized b_y a Bayesiaq Nash Equilibrium of the game with source

efficient. m Dargaining power, in which every relay receives non-negati
Using LemmallL and Theorefl 6, we can easily Sthé(pe_(_:te_d utllltyf then tr_lere exists a truth telling Bayesiash

for the Nash equilibrium of the complete information gamEauilibrium which realizesf.

with source bargaining power. By Theorem 6, the source Proof: Suppose there is a Bayesian Nash Equilibrium

allocation rule at the equilibrium may be obtained by savinwhich realizes the allocation outconféd). By the definition

for the socially optimal traffic allocation™, wherer* = of the Bayesian Nash Equilibrium, we hayé (4) afd (5). Now

argmaxrer Cs(0s,70) + Y__y Ci(6s,7:). As noted in Sec- gbserve that by[{4), we must have

tion[lI-=C| due to the strict convexity of the optimizationob- B

lem, r* exists and is unique. By Lemriia 1, at the equilibrium, 6; € argmaxEp {Ui(Gi,g(si(Gi), s,i(eﬂ-)))} (30)

the transfer paymertt = C;(6;,r}) for everyi =1, ... mﬂ 0:
For the relays, any feasible signal mapmay be chosen for for all 4. Otherwise, if there exists some
the equilibrium. 0’ such that  Ey_, {U;(6i,9(s:(0)),5_:(0_:)))}

To see why this constitutes an equilibrium, note the follows £, {U;(6;, g(s:(6;),s_:(0_;)))}, then there is another
ing sequence of events in the game with source bargainig@ategys/ () satisfying s;(6;) = s;(6;) and s;(6) = s;(6)
power. First, each relay observes its type;. Second, the for all § # 6;, such thatEy_, {Ui(8;, g(s'(6:), s_i(6-:)))}
source provides the contragt: M — (r*,t), wherer* is > B, {U;(0;, 9(si(6;),s_:(6_;)))}, violating (2). Therefore,
the socially optimal traffic allocation, and = C;(0;, ;) for sinceg(s1(61),...,sn(6,)) = f(#), we have
everyi. Note thatg is independent of the signals sent by the _
relays. Third, the relays accept the mechanism because they);, € arg max Fy_, {Ui(el-, f(ei,o,i))} for all 7 (31)

each receive zero utility, and therefore are indifferenthwi 0:€0;
respect to carrying traffic or not. Fourth and finally, theayel f € argmaxFEy {Us(957 f(e))} ) (32)
nodes will play signal map; without deviation, since the !

source allocation map is independent of the relays’ signaig, s there exists a direct truth telling Bayesian Nash Equi
Thus, the Nash equilibrium holds and is unique. librium with the outcome (6). -

B. Games with Incomplete Information Theorem Y says that the set of outcomes corresponding to
a%\/lesian Nash Equilibria for the game with source bargginin
o)

B
fWeI nov_\ll_;urn ':t? thelcase tgat source ca_nn?ttob;eryetthe “ﬂ) er and incomplete information is a subset of the outcomes
of refay. Thus the re‘ay nodes can manipufate their ypes_&grresponding to truth telling Bayesian Nash Equilibria, i
order to get more ut|I|_ty, and the_so.urce can no longer qes'%ich each relay proposes its type truthfully to the souacel
the aIIoce}tt;]on tagcordl_ng 6. As |nt|r|]‘100mplete mfotrmathn the source optimally allocates rates according to the sélay
games without bargaining power, the source mus max'm'gpes. This finding simplifies our analysis considerablycsi

lthe eﬁaect?wtmn (t)f protf_ns ac;cEc; rdlng to ’tlhe ﬁ'gnal.?bsggr;dgy 'We can now focus on the truth telling Bayesian Nash Equdibri
ays. The characterization ot Bayesian Nash tquilior in order to bound the efficiency loss introduced by inconglet

case is very Qiﬁicult dug to the complexity of the strategly S& formation in games with source bargaining power.
and the possible behaviors of source and relays. Nevestele We now investigate the outcomes which can be realized

o the Bayesian Nash Equiibria whioh avods the cffcuty oY Ut teling Bayesian Nash Eqilbria. Notice that e
: s L . equilibria correspond to the solutions of the optimization

calculating the the equilibria explicitly. We shall do thistwo roblem given by({31) an@{B2), in addition to the non-nagati

steps. First, we show that if a resource allocation outcoame & g ' S

be realized by a Bayesian Nash equilibrium for a game Wiﬁqxpected utility constraint

source bargaining in which every relay receives non-negati Ey_ {Ui(0:,1:)} = Eg_, {t:(0,1) — Ci(0;,7:(0))} >0
expected utility, then there exists a “truth telling” Baigas (33)
Nash equilibrium that realizes the outcome. Second, we sheyy all 4, and feasibility constraint € R.

that the set of outcomes for the “truth telling” Bayesian Nas ) o
equilibria is included in the set of outcomes for the Nashheorem 8. The set of solutions for the optimization problem

equilibria for a complete information gamein which the defined by@I)}33)is included in the set of outcomes corre-
sponding to the Nash equilibria for the complete informatio

“4Recall thatC; (6;,0) = 0. game in which the link cost functiords (6;,r;) are replaced



by We now bound the price of anarchy in the symmetric case.

Ji(0:, 1) = Ci(0,75) — 1 — Fi(6:) aci(eiv“’)_ (34) Theorem 9. Consider the symmetric case where the link

fi(0:) 00; cost functiong’; (6;, ;) and the type distributions’(6;) are
the same for all relays. If (i)J(6;,r;) is convex inr; and
Proof: Please see the Appendix. m decreasing ind;, (i) X(0;,r) = J(0i,mi) — C(0;,7;) is

We refer to the functions/; as virtual cost functions concave inr;, (iii) % < 0, then the price of anarchy

Note that by Theorerml6, all Nash equilibria corresponding#) can be upper bounded as follows.

to games with complete information are efficient. Thus, the If the marginal cost function:(6;,r;) = is con-
set of outcomes corresponding to the Nash equilibria for theve, thenp(§) < n, wheren is the number of relays (with
complete information game with virtual link cost functionsquality if and only ifc(6;,r;) is linear in r; and the relay
Ji(0:,7;) is given by typesd; are all the same). Iﬁ%—%ﬁ; < k for some constart,
then p(6) < k. ’

80(0“7‘7)

r' = arg min Cs(0s,7m0) + Z Ji(0;,7i).
=1 Note that for the example where all the relays’ typesre
If Ji(6;,7;) is strictly convex inr; for all i, then the unlformly distributed or{0, 1] and the cost functions are given

optimization problem has a unique solution. For instante, BY 7-(¢"* — 1), the assumptions of the Theorem are satisfied.
all the relays’ type®; are uniformly distributed of0, 1], and Proof: Let (r})iec; € argmin; 32, J(6;,7;), and (r7) be
the cost functions are given b} i — 1), thenJ;(6;,r;) = the efficient allocation. We first prove that df,, > 9k, and
1 H / *
Cy(0;,7;) — =E00 0Ci0irs) _ 1 ori 1) which is strictly '™ T Tk = Tmk 1S fixed, r,, > 17,. If for any f; < O,
(6:,7:) £i(0:) 90, 92( ) . y r,, = 0, then the inequality immediately holds. We then

gog\;ezslggz Na:sdh Sémi;lﬁ/bsl?ﬁ:e;slﬂg ”ﬂam:enV\t/ir;Ir? scc?usr%e lfba(%onader the situation that there exists sofhe< 6,, and
Y q 9 > 0. Let z(6;,7;) = M Thus for the optimal

. . . . Tk
gaining power exists, then the corresponding traffic atioca allocation, %, > ri > 0 and o o AS

is the solution of the optimization problem. In general, the N
(ez,n) is decreasmg i;, we have:c(em,rk) < z(Ok, 7).

set of traffic allocations corresponding to the Baye3|anH\Ia 9 v
x(6;,7;) is decreasing inr;, x(em,rm) < (O, 7).

Equilibria (of the game with source bargaining power) is ?hus 2Omsr) < a(Opsrt). AS c(Br) (Br17)
subset of the solution set for the optimization. In the next( m N "'m .
omv m) + I(omvrm) < C(ekvrk) + ZC(@k,Tk). By (13]):
section, we use this fact to bound the efficiency loss for gamé , , ) ]
(omv m) + I(omvrm) > C(ekvrk) + x(ekark)’ asr, > 0.
with incomplete information. ; , ; o
As r} + 1} = rmip = 1, + 1, and virtual cost function is
C. Efficiency Analysis convex, we have’ > 7.
In this section, we bound the amount of inefficiency in the Now we prove thad ", C(0;,r;) < C(max; 6;,7,). Without
outcomes for games with incomplete information. We focuess of generality, we assume that < 6, < ... < 0,. Any
on the inelastic scenario wherg = 0. Following [7], define situation where some types are the same can be handled by

the price of anarchy for typé as: modifying number of relays. We have
maXye RE Z Ci(0i,7i) Z:mln C(6;,7i)
p(0) = — 3 (35) T
r Cz 91'3 [
min eRZi: ( 7’) _ min [C(@n,rn)
where RF is the set of all Bayesian Nash Equilibria T .
for the game with incomplete information. LeR’ = tgoomm [ZC(9n—1,7°n—1) + min...
argminger y_; Ji(0i, ;). By Theoremd17 andl8, we have in TSI 5y
RP C R’. Therefore, + min C(0a, 1) + 0(917“)} }
max,egs Y, Ci(0;, 1) TS e T
p(0) < — : oa (36) As we showed above] > r¥ givenr, +r,_, =rf+r;f | =
mlnreRzi: Z( i,"’i) Tzz 1- ThUS C(@i,m,i_l) Z 0(6‘1,7“;) + C(@i_l,rgfl) 2

C(0;,7r}) + C(6;—1,r_;). By induction, we can prove that
n}: C(0;,7}) < C(max; 0;,75). Now using the same technique
conditions in [B). An allocation” in R’ must satisfy the 25 in the proofs of Theoreri$ 4 add 5, we obtain the result.
following necessary conditions: for all € {1,...,n} such If e|th.er the virtual cost functiond; (91_,73.) are not convex,
thatr/ > 0, or the link cost functions and type distributions are not the
9C(6; T,_) | = Fy(6:) 92C (01, 10) same across rglays_, th(_en h_|gher prices of anarchy may .result
i i (37) Consider the situation in Figure 2. Here, there are only two
or; fi(6:) 90,0r; relays.(rj,rs — r7) is the efficient allocation. Since the type
o 9C;r5) 1-F(0, ;) 0°C(0:,7%) for all 4 distributions are not the same, the marginal virtual costs a
- or; 1(0;) 00;0r; J as indicated in the figure. To minimize the sum of the virtual

Since the link cost functions are strictly convex, the sibcia
optimal allocationr* are given by the necessary and sufficie




costs, the source allocates all traffic to relay 2, while thend _
allocation is clearly the worst outcome for minimizing the d’Ey_, {Ui(oi,f(oi,&i))}

sum of the link costs. — <0. (39)
do; i—o,
JACRD . The first-order condition is equivalent to
S g, 2000 o)
G i g,
c,(6,,r, — 1, > I — B {801‘(91’7 7i(0:,0_:)) dm(@iie_i) } 41)
3 ! or; db; ~
¢,(6.1): ! 0i=0:
A T The second-order condition is equivalent to
, d*t;(0:,0_;)
r 0 —3
=0 5>0 rn P P
~ ~ 2
Fig. 2. Efficiency Loss in Asymmetric Case < B, d2C;(6;, Ti§9i, 0_;)) ldm(&:@_i)‘| (42)
or; ;
V. CONCLUSION N AC;(0;,75(6;,0_,)) d®r;(0;,6_;)
This work investigated the impact of incomplete informatio or; d§i2 7o,

on incentives for node cooperation in parallel relay neksor
We considered two situations in which source either haskaﬂ)artwi
bargaining power or full bargaining power. For the situatio

By evaluating the first-order condition &t differentiating
th respect tdd;, we get:

where the source has partial bargaining power, we have shown By {d2 {ti(6:,0-:)} }

that all Nash Equilibria in the complete information game ar - do?

efficient, including those induced by linear charging fuois. 82C; (03, 7:(65,0_1)) [dri(6;,0_,) 2

We then characterized the Bayesian Nash Equilibrium for the = FEo_; 52 [ 10, ] (43)
incomplete information game in which relays propose linear ! ’

pricing functions, and showed that incomplete informatian +6Ci(9i, 7i(0i,0-)) d*ri(0:,0-:)

induce inefficiencies, which are exacerbated by asymmetric or; do?

prior knowledge on the type distribution. In the situation 02C;(05,7:(0;,0_;)) dri(0;:,0_;)

where the source has full bargaining power, we first showed or;00; db); } :

that in the game with complete information, (Bayesian) Na%‘omparing with the second-order condition, we get
equilibria exist and are all efficient. Next, we investightbe

game with incomplete information. To deal with the diffigult By 13201'(91" ri(0:,0-:)) dri(6:,0-:) _ 0. (44)
of characterizing the Bayesian Nash Equilibria in this case o or;00; do; -

we first showed that if a resource allocation outcome can beWe have already assumed that

realized by a Bayesian Nash equilibrium, then there exists D2C;(0,,7:(605,0))

a “truth telling” Bayesian Nash equilibrium that realizdset e b P < () for eachd_ ;. (45)

outcome. We then showed that the set of outcomes for the Ori90; _ )
“truth telling” Bayesian Nash equilibria is included in tset  Notice that when an outcome can be realized by a Bayesian
of outcomes for the Nash equilibria for a complete informiati Nash Equilibrium, the following condition must hold:

game, in which the link cost functions are replaced by a ori(0;,0_;)
specified “virtual cost functions.” Using this approach, we 00,

obtained for a symmetric network scenario a bound on ththerwise, the source would allocate a higher rate to a lower
amount _of inefficiency which may result from incompletqype relay, which is not optimal. Notice that Hy {45) ahd](46)
information. (@4) automatically holds.

Thus, the following conditions are necessary for the first
and second-order conditions to hold.

> 0 given anyf_; (46)

VI. APPENDIX

Proof of TheoreniI8The first and second-order conditions E A
for (31) are: 4E.. {t{@z, 971)}
aEq_, {Ui(6:, £(6:,6-))} a0
0_; i zjv iy U—i _ 0 (38) — B 801-(91-, 7’1-(91-, Q,i)) dri(oi;eﬂ')
do; _ o or; do. _
9,;:91 ? 91:9,;




Ors(61,0_) R = E9{Ws(rs)—CS(HS,TO)—Zti(G)}
% > 0 given anyf_;

Let V;(6;,6i) = max; Ui(0;,7:(0:,0-3),:(0:,0—;)). We
use the envelope theorem just as we did in the previous ~—

sections: v % 9,0l ri(00,0.1))
C $ 0G0, 1i(0;, 0 / .
+;‘/01 fz(ez)EG i /91 89/ d91‘| daz
dEe_Vi(0:,0_;)  O0FEp_Ui(0i,7,(0:,0_:),t,(0:,0_;)
d91 N 891 F—o = E9 Ws (Ts) 95, TO Z O }
OBy Ci(0i,m:(0:,0_; ))‘ 2 000,700
- @ -y [k / AL SN
20, - Z Pl 50/ ;
xd(1 — F;(0:))
Let §; andd; be the upper and lower bounds on relay node ~ Eo {WS(TS) s(0s,75) Z Ci(0 }
i's type, then
% 0Ci(05,7:(05,0-4))
o, Vi(0i,0-i) (48)

| x(1— Fi(6:))lg:
_ ‘(91-,9_-) . /(.)01 6E0710i(6‘i7ri(9i’e_i))dei

0: 90 +ZE9 / (1= Fi(6:))

9C;i(0;,1i(0;,0-)) ..,
xd l/eu 207 do;

We see from the above equation that, as we already assumed
9Cilbir) ), the expected utility of relayis non-decreasing
with ?espect tod;. Thus, to guarantee that constraifisI(33) = p, {Ws(rs) — Cy(0s,70) ZC }
holds, the lowest type must receive non-negative profit.l@n t
other hand, the relay with the lowest type can never receive

a positive profit, otherwise the source will reduce its profit +ZE9 / 1—F;(6;))
by some small amount and still guarantee that the contract is
acceptable to all, which contradicts the definition of Bages L OCi (0], m:(00,60-4)) , ,
Nash Equilibrium. Thus, the lowest type relay should reeeiv xd / 90’ dp;
zero profit. b !
= EG{WS(TS) - 05(957T0)}
0;
Ey Vi(0;,0_;) =0 (49) — ZEe,i /9 Ci(0i,7i(0i,0-:))
. 1-— Fl(éz) 601'(91', rz(e))f(H)dH
Plugging in, we get fi(0:) 90, o

= E‘Q[W (Ts) — O (953 TO)]

-~ 7’ _ 1—1’7‘1(91) 601(9“7”1(9))
[ PGl Gl s N I
[4

90; Thus, we obtain a game with complete information and
full source bargaining power where the revenue function is
changed taJ;(0;, r;) rather thanC;(0;, ;).
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