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Abstract

It has been well recognized that channel state information (CSI) feedback is of great importance for

dowlink transmissions of closed-loop wireless networks. However, the existing work typically researched

the CSI feedback problem for each individual mobile station(MS), and thus, cannot efficiently model the

interactions among self-interested mobile users in the network level. To this end, in this paper, we propose

an alternative approach to investigate the CSI feedback rate control problem in the analytical setting of a

game theoretic framework, in which a multiple-antenna basestation (BS) communicates with a number

of co-channel MSs through linear precoder. Specifically, wefirst present a non-cooperative feedback-rate

control game (NFC), in which each MS selects the feedback rate to maximize its performance in a

distributed way. To improve efficiency from a social optimumpoint of view, we then introduce pricing,

called the non-cooperative feedback-rate control game with price (NFCP). The game utility is defined

as the performance gain by CSI feedback minus the price as a linear function of the CSI feedback

rate. The existence of the Nash equilibrium of such games is investigated, and two types of feedback

protocols (FDMA and CSMA) are studied. Simulation results show that by adjusting the pricing factor,

the distributed NFCP game results in close optimal performance compared with that of the centralized

scheme.
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I. INTRODUCTION

The increasing demands for fast and reliable wireless communications have spurred development of

multiple-antenna systems in order to efficiently harvest the capacity gains [1], [2]. Recent information-

theoretic research indicates that a feedback channel can befurther employed to furnish channel state

information (CSI) to the transmitter side, which may affectclosed-loop capacity gains [3]. With some

form of knowledge of the wireless channel conditions, the transmitter can adapt to the propagation

conditions by the use of a variety of channel adaptive techniques [4]. Specifically, in a multiple mobile

station (MS) scenario, with the knowledge of the channel to nearby co-channel MSs, it is possible to

actively suppress the signal to the interfered users and meanwhile maximize the effective signal power [5].

In this case, the base station (BS) can obtain the required channel coefficients through a feedback channel

from the MS. Then, mechanisms such as multiple-antenna precoding can be utilized to mitigate the effects

of co-channel interference and exploit spatial dimensionsto increase the capacity of wireless networks [6].

Since CSI is essential for closed-loop wireless communication systems, the techniques on how to

effectively feedback CSI from the transmitter to the receiver has been intensively studied [3], [4]. As

perfect feedback of CSI is typically unavailable due to complexity or practicality constraints, the infinite

feedback of CSI is hard to realize in practice. Therefore, itis important to investigate how to control

the amount of feedback signalling overhead according to theindividual requirements in order to achieve

good quality of service (QoS). As a result, CSI feedback ratecontrol problem has attracted lots of

attention in recent years [5], [7]. In [8], the quantized feedback approach for power-control is designed

to minimize an upper bound of multiple-input-single-output (MISO) systems. Recently, two specific forms

of partial feedback, namely, channel mean feedback [9] and channel covariance feedback [10], have been

investigated for slow-varying and rapidly varying MIMO channels, respectively.

The existing work typically treated each MS independently,and researched the multi-MS CSI feedback

problem in physical layer, e.g., from either communicationor information theory point of view. This

cannot efficiently model the interactions among self-interested mobile users in wireless systems [3], [5].
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If the feedback channel is limited, there exists conflicts ineffective CSI feedback rates between each MS.

If one MS transmits too much CSI, it will result in the reduction of the rest MSs’ CSI feedback amounts,

and thus, degrade the others’ performance. Hence, it will bedesirable to sort out the competition problem

by finding a balance in this multi-MS feedback scenario, and meanwhile achieve better QoS.

Game theory [11], [12] offers a set of mathematical tools to study the complex interactions among

interdependent rational players and predict their choicesof strategies [13]–[15]. In this paper, an alternative

approach to the feedback rate control problem in wireless systems based on an economic model is

proposed. In this model, each MS’s preference is represented by a utility function, which quantifies the

level of satisfaction a user gets from using the system resources [16]. Each player in the game maximizes

a utility function in a distributed fashion. The game settles at a Nash equilibrium if one exists. Since

users act selfishly, the equilibrium point is not necessarily the best operating point from a social point of

view [17]. To achieve a more socially desirable result, a powerful tool by pricing the system resources

can be introduced, which is able to guide user behavior toward a more efficient operating point [16],

[17].

To the best of our knowledge, the game-theoretic methods arefirst applied to study CSI feedback rate

control under this economical model. Specifically, we investigate the scenario in a single-cell wireless

data network, where a multiple-antenna BS communicates with a number of co-channel users through a

minimum mean square error (MMSE) precoder and each user tries to maximize its own utility. Two types

of feedback protocols, FDMA and CSMA, are investigated. Forease of understanding, we first present

a noncooperative feedback rate control game (NFC), which optimizes individual utility in a distributed

fashion. While the resulting noncooperative feedback ratecontrol game has a Nash equilibrium, it is

inefficient from a social point of view. Therefore, we further introduce pricing to create cooperation

between each MS in order to improve efficiency, called the noncooperative feedback-rate control game

with price (NFCP). The price function is a linear function ofthe CSI feedback rate that also allows a

distributed implementation by broadcasting the price per bandwidth from the BS to all the MSs. It shows
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that there exists an equilibrium in the proposed NFCP. Simulation results indicate that by adjusting price,

NFCP provides better overall utility than NFC. In addition,the distributed NFCP game approach achieves

near optimal performance compared to the centralized scheme, and thus, improves the overall throughput

of wireless data networks.

The rest of the paper is organized as follows: In Section II, we introduce some preliminaries, including

the system model, the multiple access protocols, and CSI feedback rate model. In Section III, we describe

the MMSE precoder, and some properties by using the CSI feedback rate model. The proposed NFC and

NFCP algorithms are described in IV. Simulation results areprovided in Section V. In Section VI, we

draw the main conclusions. Some derivations are given in theappendixes.

Notation: Boldface lower-case letters denote vectors,(·)∗, (·)T and(·)H represent conjugate, transpose,

and conjugate transpose, respectively,‖x‖2 = xHx, andVar[x] represents its variance.

II. PRELIMINARIES

In this section, we first give the system model. Then two typesof feedback channels are discussed.

Finally, the CSI feedback rate model is illustrated.

A. System Model

In this paper, we consider a system in which a number of co-channel MSs are served by one BS. The

architecture is depicted in Fig.1. The BS is assumed to know the linear processing performed by the MSs,

which can acquire the required CSI through a feedback channel from the MSs. Using multiple antennas

at the BS of a cellular system, transmit precoding can be performed for simultaneous transmission to

several co-channel mobile users. The precoder is designed assuming a stationary scenario in which the

fast (Rayleigh) fading is described by its second order properties. We also assume narrow-band signals

without any time dispersion, i.e., the channel fading is frequency flat. For simplicity, we assume every

MS is equipped with a single receive antenna. We assume that the system works in a FDD model, where

the BS hasNt transmit antennas servingNs MSs simultaneously in the same frequency band, while each
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MS feeds back the CSI through different channels in order to better protect the control information by

avoiding collisions.

For the k-th MS, the input signal,xk, is first precoded by complex weightswk ∈ CNt×1 before

transmitted from theNt antennas at the BS. The corresponding output can be written as

sk = wkxk, (1)

wheresk ∈ CNt×1.

The received signal at thek-th MS can be then expressed as

yk = hT
k

Ns
∑

i=1

si + nk

= hT
k

Ns
∑

i=1

wH
i xi + nk

= hT
kwkxi + hT

k

Ns
∑

i=1,i 6=k

wixi + nk, (2)

wherehk = [h1,k, . . . , hNt,k]
T ∈ CNt×1 represents the channel coefficients from the BS to thek-th MS

with zero mean and unit variance,nk is the AWGN noiseCN (0, N0), hT
kwkxk is the desired signal,

andhT
k

∑Ns

i=1,i 6=k wixi can be treated as the interference. Note that the model can easily be extended

to frequency selective channels, taking both co-channel interference and inter-symbol interference into

account [6].

B. Two Multiple Access Models

In this subsection, two multiple access protocols for the uplink are presented. For simplicity, in the

downlink, the BS simultaneously serves multiple co-channel mobile users by performing precoding, while

in the uplink two standard multiple access protocols are examined for CSI feedback. We assume that the

total system bandwidth isB, and the bandwidths for downlink and uplink transmissions are BDL and

BUL, respectively. Then, we have

B = BDL +BUL. (3)
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1) Frequency Division Multiple Access:The BS serves MSs simultaneously in the same frequency

band, while each MS feeds back the CSI through orthogonal channels, i.e., frequency division multiple

access (FDMA), in order to better protect the control information by avoiding interference.

Recalling (11), the uplink bandwidth can be then calculatedas

BUL = β

Ns
∑

k=1

rk, (4)

whereβ denotes a scaling factor to transform the uplink CSI feedback rate into bandwidth. And the

downlink bandwidth can be expressed as

BDL = B −BUL = B − β

Ns
∑

k=1

rk. (5)

2) Carrier Sense Multiple Access:Likewise, the BS serves MSs simultaneously in the same frequency

band, while each MS feeds back the CSI through Carrier Sense Multiple Access (CSMA), which can

listen to channel before transmitting a packet to avoid the avoidable collisions. Sender retransmits after

some random time if there is a collision. For efficiency, slotted CSMA is considered: Time is slotted and

a packet can only be transmitted at the beginning of one slot.Sender finds out whether transmission was

successful or experienced a collision by listening to the ACK/NACK broadcast from the receiver.

Without loss of generality, we consider the slottedp-persistent CSMA in [18], which can be described

by the following steps:

• If the channel is idle, transmit with probabilityp, and delay for worst case propagation delay for

one packet with probability1− p;

• If the channel is busy, continue to listen until medium becomes idle, then go to Step1;

• If transmission is delayed by one time slot, continue with Step 1.

For slottedp-persistent CSMA, the throughput (S) is given by [18]:

S =
G
∑∞

k=0(p(1 − p)k + α[1 − (1− p)k+1]) · exp
(

G(1− p)k+1 + αG[−(k + 1) + 1−(1−p)k+2

p
]
)

(1 + α) · exp(G(1 + α)) + α
∑∞

k=1 · exp
(

G(1 − p)k + αG[−k + 1−(1−p)k+1

p
]
)

, (6)

whereα = τ
T

, τ is the propagation delay,T is the packet transmission time, andG is the offered

load (overall rate). By CSMA, each user tries to adjust its requested feedback raterk over the uplink
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bandwidthBDL. However, if the overall rate is too high, due to the random access nature, the network

would be congested. As a result, the accurate ratezk of userk will reduce a lot. From [19], we have

zk(rk, r−k) =







rkS
G
, if G ≤ G0,

0, otherwise,
(7)

where the overall rateG =
∑

k rk, andG0 is the maximum network payload. Similarly, the downlink

bandwidth can be calculated as that in (5):BDL = B − β
∑Ns

k=1 rk.

C. CSI Feedback Rate Model

In a closed-loop wireless communication system, the MS needs to feed back the quantized CSI back

to the BS to perform transmit precoding. For simplicity and without loss of generality, we here use the

equivalentquantized feedback channelby transforming the real channel matrix in terms of feedbackrate

and distortion. We consider a limited and lossless feedbackchannel. Through CSI quantization, the real

channel output for thek-th MS, denoted byhk, can be modeled as [20]

hk = hk + ns, (8)

wherehk ∈ CNt×1 represents the quantized feedback channel output with zeromean and1−Dk variance,

ns ∈ CNt×1 is an independent additive noise matrix with each entry corresponding to an i.i.d. Gaussian

variable with distributionCN (0,Dk), andDk represents the channel quantization distortion constraint.

Note thathk andns are mutually independent. Due to imperfection in the feedback channel, the quality

of the feedback information can be measured by the distortion on the sourcehk from its representation

hk, which is defined by

Dk = ‖hk − hk‖2. (9)

Lemma 1:Given distortion rateDk, the quantized CSI can be modeled as

hk = µhk + νnq, (10)

whereµ = 1−Dk, the elements ofnq ∈ CNt×1 are i.i.d. Gaussian variables with distributionCN (0, 1),

andν =
√

Dk(1−Dk). The detailed derivations ofµ andν is given in Appendix A.
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Based on the Shannon’s rate-distortion theory of continuous-amplitude sources, the rate-distortion

function of a zero-mean and unit variance complex Gaussian source is given by [22]

rk = log2

(

1

Dk

)

, (11)

where rk represents the feedback rate of userk. It can be observed in (11) that whenDk = 1, i.e.,

completely distorted, the feedback rate is equal to zero, while Dk → 0, this requires the infinite feedback

rate to realize the undistorted CSI.

Substituting (11) into (10), the quantized CSI matrix,hk, can be expressed as a function of the feedback

rate,rk

hk = (1− 2−rk)hk +
√

2−rk(1− 2−rk)nq, (12)

which clearly connects the feedback rate,rk, with the quantized CSI,h, in order to reveal its impact on

system performance. After normalization, (12) becomes

hk =
√

1− 2−rkhk +
√
2−rknq, (13)

which can be used to perform precoding at the BS side.

III. T RANSMIT PRECODING WITH L IMITED CSI FEEDBACK

In this section, we first present transmit precoder implemented at BS, and then discuss a few properties

of limited CSI feedback.

A. Minimum Mean Square Error Precoder

For simplicity and without loss of generality, we just consider the conventional MMSE based precoder

design, and other advanced precoding approaches can be readily applied in this paper. The received

signals in (2) can be rewritten in a matrix form

y = HWx+ n, (14)

wherey = [y1, . . . , yNs
]T ∈ CNs×1, H = [h1, . . . ,hNs

]T ∈ CNs×Nt , W = [w1, . . . ,wNt
] ∈ CNt×Nt ,

andn = [n1, . . . , nNs
]T ∈ CNs×1.
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In this section, we demonstrate that the following form for the precoder

W = KH
H
(H H

H
+ ψI)−1, (15)

with two free scalar parametersK andψ, is a general form for an optimal linear precoder, andH =

[h1, . . . ,hNs
]T ∈ CNs×Nt . By varying the choice of these parameters, optimality can be achieved with

respect to a variety of criteria that have been considered inthe literature. In general,K is a normalization

constant used to comply with the unit transmit power constraint (averaged over data symbols), and it can

be expressed as

K =‖ T ‖−1, (16)

whereT = H
H
(H H

H
+ ψI)−1 represents the unnormalized transmit precoder. The other parameter,

ψ, is typically a regularization parameter. Maximizing the average SINR under flat fading, which is the

same for all MSs due to the assumption of symmetry in the distribution of the channel matrix, and taking

Nt andNs (which in this context, is the number of transmit antennas aswell as the number of MSs with

single antenna) large, the optimalψ can be expressed as the following general form [21]

ψ ≈ SINR−1. (17)

Note that althoughψ was solved for the equal SINR case in [21],ψ is really a tunable parameter that

can be optimized for other criteria. By settingψ = 0, (15) becomes the simplest and the most common

zero-forcing (channel inversion) precoder

W = KH
H
(H H

H
)−1. (18)

Recalling (2), the signal to noise plus interference ratio (SINR) of thek-th MS can be written as

γk =
| hT

kwk |2
| hT

k

∑Ns

i=1,i 6=k wi |2 +N0

. (19)

Its corresponding throughput can be expressed as

Ck(γk) = BDL log2(1 + γk). (20)
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B. Analysis of the CSI feedback impact

Since the precoderW is designed by the feedback CSI,H, optimal performance using the MMSE rule

can be achieved whenrk → +∞, for ∀i ∈ [1, . . . , Ns]. We in this subsection present a few properties of

(19) based on the CSI feedback:

1) γk is continuous and monotonic increasing inrk.

Proof: It is obvious in (19) thatγk is continuous inrk. In addition, from (12), we can see

that the increase ofrk, i.e. the decrease ofDk, improves the amount of the feedback CSI,hk. This

enhances the accuracy of the constructed precoder,wk, and thus, increases the value ofSINRk.

2) lim
rk→+∞

γk = εk, whereεk is a constant.

Proof: Given ri (for ∀i ∈ [1, . . . , Ns], but i 6= k), we have lim
rk→+∞

hk = hk. Hence,γk

converges to a constant when the feedback rate is large enough.

In 1), it implies that the feedback rate (rk) of every MS should be as large as possible. However, if using

orthogonal channels in Subsection-II-C-1), this will reduce the downlink bandwidth and then decrease

the system throughput. By adopting the CSMA protocol in Subsection-II-C-2), this will results in more

collisions in the uplink, and degrade the effective feedback rate. Obviously, there exists a trade-off between

feedback rate (rk) and system throughput (Ck(γk)) in both uplink multiple access protocols. Notice that

these properties will be reused to prove the existence of theNFCP equilibrium in Subsection-IV-B.

IV. N ONCOOPERATIVEFEEDBACK CONTROL GAME FOR CHANNEL STATE INFORMATION

In this section, we first define the utility function. Then, wedescribe the noncooperative CSI feedback

control game. Next, we use the pricing method to improve the performance of the proposed game. the

convergence to the Nash equilibrium is also proved. Finally, we construct a centralized solution for

performance comparison.

A. Utility Function

The concept of utility is commonly used in microeconomics and refers to the level of satisfaction the

decision-taker receives as a result of its actions. MSs access a wireless system through the air interface
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that is a common resource and they transmit information expending bandwidth resources. Since the air

interface is a shared medium, each MS’ transmission is a source of competition for others. SINR is an

effective measure of the quality of signal reception for thewireless user [22]. An MS tries to achieve a

high quality of reception (throughput in this paper) while at the same time expending a certain amount

of system bandwidth to feedback CSI. Obviously, the CSI feedback rate determines the accuracy of the

precoder, and thus, affect the system throughput. Therefore, it is possible to view both throughput and

the CSI feedback rate as commodities that a wireless user desires. The utility function of thek-th MS

can be expressed as

uk = Ck(γk) = BDL log2(1 + γk). (21)

Utility as defined above is the throughput conditioned on thefeedback bit. Note that ifrk = 0,

omnidirectional transmission instead of precoding shouldbe used which results in minimum value ofCk.

This suggests that, in order to maximize utility, all users in the system should feed back a certain amount

of CSI. For orthogonal feedback channels in (5), when the amount of feedback increases, downlink

bandwidth,BDL, will decrease, and thus reduce the system throughput. Withregard to CSMA, when the

network payload increases, more collisions happen and consequently the average delay for each packet

increases. Any network payload larger thanG0 in (7) will cause an unacceptable average delay. As a

result, the utility becomes zero. All these facts indicate that the feedback rate should not be either too

small or too large for better utility. In other word, there isan optimal point on how much to feedback

from each MS point of view.

Intuitively, there exists a tradeoff relationship betweenobtaining high throughput and requiring small

amount of CSI feedback on the condition of a total system bandwidth constraint. Finding a good balance

between the two conflicting objectives is the primary focus of the CSI feedback rate control component

of radio resource management. This tradeoff is illustratedthrough the conceptual plot in Fig. 2, where

orthogonal feedback channel is assumed. If the feedback rate were fixed, the terminal would experience

higher throughput as the SINR increases which leads to increased satisfaction of the use of the system
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resources. If the SINR were to be fixed (fixed throughput), increasing the feedback rate expedites uplink

bandwidth, which effectively reduces the satisfaction of the mobile terminal. For sufficiently large SINR

values, the throughput approaches zero, which results in anasymptotic decrease in utility in the high

SINR region.

B. Game Formulation

In the sequel, we first consider the noncooperative feedbackrate control game (NFC) where each

MS tries to maximize its individual utility. LetG = [N, {Rk}, {uk(·)}] denote the NFC whereN =

{1, . . . , Ns} is the index set for the mobile users currently in the cell,Rk is the strategy set, anduk(·)

is the payoff function of userk. Each user selects a feedback rate levelrk such thatrk ∈ Rk. Let the

feedback rate vectorr = (r1, . . . , rNs
) ∈ R denote the user’s strategies in terms of the selected rate

levels of all the users, whereR is the set of all rate vectors. The resulting utility level for the k-th user

is uk(rk, r−k), wherer−k denotes the vector consisting of the other user’s strategies other than thek-th

user. This notation emphasizes that thek-th user has control over its own rate,rk only. The utility of the

k-th MS with feedback raterk can be expressed more rigorously as

uk(rk, r−k) = BDL log2(1 + γk(rk, r−k)). (22)

Note that (22) demonstrates the strategic interdependencebetween MSs. The level of utility each MS

gets depends on its own feedback rate and also on the choice ofother players’ strategies, through the

SINR γk of that user. The efficiency function can be chosen to represent any precoding scheme described

in Section III. In this paper, we assume that the strategy space,Rk, of each user is a compact, convex

set with minimum and maximum rate constraints denoted byrmin
k andrmax

k , respectively. For simplicity,

we let rmin
k = 0 for all k, which results in the strategy spaceRk = [0, rmax

k ]. The utility function takes

the generic form given in Fig. 3 for fixed interference plus noise.

The NFC game can be expressed as

(NFC) max
rk∈Rk

uk(rk, r−k), ∀k ∈ N . (23)
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From (23), it clearly indicates that the feedback rate that optimizes individual utility depends on rates

of all the other MSs in the network. It is necessary to characterize a set of rates where the users are

satisfied with the utility they receive given the rate selections of other users.

NFC offers a solution to the rate control problem where no MS can increase its utility any further

through individual effort. Thus, it is an outcome obtained as a result of distributed decision taking,

which could be expected to be less efficient than a possible rate selection obtained through cooperation

between terminals and/or as a result of centralized optimization. Specifically, in the NFC, each MS aims

to maximize its own utility by adjusting its own feedback rate, but it ignores the cost (or harm) it imposes

on the other terminals. For example, by orthogonal feedbackchannels, if one MS increases the usage of

bandwidth in order to send more CSI, it will decrease the available bandwidth for other MSs. While for

CSMA, the higher feedback rate will cause the heavier collision possibility.

C. Pricing Mechanism

To overcome this problem, we resort to a usage-based pricingschemes. By introducing a pricing factor

for the feedback CSI, we can increase system performance by implicitly inducing cooperation, and yet

we maintain the noncooperative nature of the resulting feedback rate of the CSI control solution. Within

the context of a resource allocation problem for a closed-loop wireless system, the resource being shared

is the radio environment, and the resource usage is determined by MS’s feedback rate. Hence, efficiency

in feedback rate control can be promoted by the proposed usage-based pricing strategy where each user

pays a penalty proportional to its usage amount, i.e. rate, of feedback CSI.

The NFCP can be expressed as the following optimization problem

(NFCP) max
rk∈Rk

uck(rk, r−k) = uk(rk)− ck(rk), ∀k ∈ N (24)

whereGc = [N, {Rk}, {uck(·)}] represents aNs player noncooperative feedback rate control game with

pricing (NFCP),uck(rk, r−k) is the utility for NFCP, andck(rk) denotes the pricing function for thek-th

MS, which in this paper is restricted to linear schemes of theform

ck(rk) = αrk. (25)



13

TABLE I

NFCPALGORITHM FOR EACH MS

Algorithm 1: Non-cooperative CSI feedback rate control game with a

given price α at the MS side

1. Set initial CSI vector at timet = 0: r(0) = r0. Also, let k = 1;

2. For all j, such thatτj ∈ T :

∗ Given r−k(τj−1), compute:

rk(τj) = argmaxrk∈rk uc
k(rk, r−k(τj−1).

Hereα is announced by the BS and is a constant referred to as the price factor per feedback bandwidth.

Note that (24) also demonstrates the strategic interdependence between users, and the pricing factor

needs to be tuned such that user self-interest leads to the best possible improvement in overall network

performance. Combining (21) and (25), the NFCP with linear price in (24) is as follows

(NFCP) max
rk∈Rk

uck(rk) = BDL log2(1 + γk)− αrk, ∀k ∈ N . (26)

By considering the NFCP algorithm in (26), givenα, a sequence of rates can be generated in Table I.

We refer tork(τj) as theset of best feedback rates for thek-th MS at timej instance in response to

the interference vectorr−k(τj−1). For the network level algorithm for each value ofα, we may first

run the NFCP whenα = 0, which is equivalent to the NFC described in (23). Once the equilibrium

with no price is obtained, the NFCP is played again after incrementing the price factor,α, by a positive

value,△α. Algorithm I returns a set of CSI rates at equilibrium with this value of the price factor. If the

utilities at this new equilibrium with some positive price improve with respect to the previous instance,

the price factor is incremented and the procedure is repeated. We continue until an increase in results in

utility levels worse than the previous equilibrium values for at least one user. We declare the last value

to be the best price factor,αBEST. The way thatαBEST is determined by the network is summarized in

algorithmic format in Table II.
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TABLE II

NFCPALGORITHM FOR THE NETWORK

Algorithm 2: Non-cooperative CSI feedback rate control game with price

algorithm for the whole network

1. Setα = 0 and announceα = 0 to all MSs;

2. Getuk for all at equilibrium usingAlgorithm 1, increaseα := α+

△α, and then announce to all MSs;

2. If uα
k < uα+δα

k for all then go to step2, else stop and declareαBEST = α.

D. Nash Equilibrium

In this subsection, we investigate the equilibrium of the proposed games, at which no player can

improve its utility by changing its own strategy only. Note that since NFC can be treated as a special

case of NFCP whenα = 0, it would be sufficient to declare the equilibrium existenceof the NFC if a

Nash equilibrium exists in the NFCP.

Definition 1: A rate vectorr = (r1, . . . , rNs
) is a Nash equilibrium of the NPCPG = [N, {Rk}, {uck(·)}]

if, for every k ∈ N , uck(rk, r−k) ≥ uck(r
′
k, r−k), r′k ∈ Rk.

There are some existing theorems to show the existence. We only need to prove that the proposed

game satisfies the requirements of the theorems. It has been shown a Nash equilibrium exists, for∀ k:

Theorem 1:A Nash equilibrium exists in the NFCP,G = [N, {rk}, uck(·)] if ∀k ∈ N :

1) rk, the support domain ofuk(rk), is a nonempty, convex, and compact subset of a certain Euclidean

spaceR.

2) uk(rk) is continuous inr and quasi-concave inrk.

Proof: Obviously, the support domainrk, which is a vector, satisfies the first condition.

To prove thatuck(rk) is quasi-concave, it is equivalent to prove that the first-order derivative ofuck(rk)

is a monotonic decreasing function whose value varies from positive to negative in term ofrk [24]. For

convenience, letbk(rk) , B − β
∑Ns

k=1 rk andwk(rk) , log2(1+γk), and thusuck(rk) = bk(rk)wk(rk)−

αrk. The first-order derivative ofuck(rk) with respect tork can be calculated as
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uck
′(rk) = b′k(rk)wk(rk) + bk(rk)w

′
k(rk)− α, (27)

whereb′k(rk) = −β.

As γk is continuous and monotonic increasing inrk, proved in Subsection-III-C-1, it is obvious that

wk(rk) is also continuous and monotonic increasing inrk, i.e. w′
k(rk) > 0. In addition, sincewk(rk)

is concave in term ofrk, wk
′′(rk) ≤ 0, which indicates thatw′

k(rk) is a decreasing function. Because

bk(rk) is monotonic decreasing inrk, we may conclude that bothb′k(rk)wk(rk) and bk(rk)w′
k(rk) are

decreasing functions. Hence,uck
′(rk) is monotonic decreasing inrk.

As lim
rk→+∞

γk = εk, we may easily obtain lim
rk→+∞

w′
k(rk) = 0. From (27), given the pricing factorα,

we can then have:

• lim
rk→0

uck
′(rk) = Bw′

k(rk)− α > 0;

• lim
rk→+∞

uck
′(rk) = −βwk(rk)− α < 0.

Hence,uck(rk) is a concave function, and as every concave function is quasiconcave,Theorem 1is

proved. Finally, we prove the existence of the equilibrium of the game, and can conclude that gameG

of (26) always admits at least one Nash equilibrium.

E. Centralized Scheme

To compare the performance, a centralized scheme is constructed assuming all CSI is known. The

objective is to optimize the sum rate capacity defined in (21)subject to the constraint of feedback rates:

max
ri

Ns
∑

i=1

ui(ri)

s.t. B − β

Ns
∑

i=1

ri > 0,

0 ≤ ri ≤ rmax. (28)

Notice that our proposed noncooperative game theoretic based algorithm is distributive, in the sense that

only the price information needs to be exchanged, while the centralized scheme needs to gather all the
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information, which will cause significant signalling.

F. Implementation Discussion

There are several implementation issues for the proposed scheme. Firstly, the channel estimation for the

downlink channel might not be accurate due to both fast fading and noise effects. Under this condition,

the transmit precoder formula should be rewritten considering the estimation inaccuracy. Secondly, the

proposed scheme needs iteratively update the price and rateinformation. A natural question arises if

the distributed scheme has less signalling than the centralized scheme. The comparison is similar to

distributed and centralized power control in the literature [25], [26]. Since the channel condition is

continuously changing, the distributed solution only needs to update the difference of the parameters

such as rate and pricing factor, while the centralized scheme requires all channel information in each

time period. As a result, the distributed solution has a clear advantage and dominates the current and

future wireless network design. For example, the power control for cellular networks, the open loop power

control is done only once during the link initialization, while the close-loop power control (distributed

power allocation such as [25]) is performed1500 times for UMTS and800 times for CDMA2000. Finally,

for the multi-BS multi-MS case, we can use clustering methodto divide the network into sub-networks,

and then employ the single BS-MSs solution proposed in this paper.

V. SIMULATION RESULTS

In this section, we provide simulation results for the proposed distributed games. All simulations are

performed for a BPSK modulation over the Rayleigh fading channels with the MMSE precoder in (15).

For simplicity, we assume that both the transmit power and the noise variance are normalized to unit.

The specific parameters are given below each figure.

A. Results through Orthogonal Feedback Channels

In this subsection, we first provide simulations to evaluatethe impact of CSI feedback on each

individual. Here we plot the utility of MS1 in term of its CSI feedback rate by fixing the feedback
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rates of the rest MSs. For simplicity, we assume2 MSs and the CSI feedback rate of MS2 is r2 = 1, 3,

and 10, respectively. From Fig. 3, we can see that when the feedbackrates of other users are fixed

(fixed uplink bandwidth), the target MS will first experiencehigh throughput as its CSI feedback rate

increases, which then leads to increased satisfaction of the use of the system resources. For sufficiently

larger1 values, the utility of MS1 begins to decrease. It is obvious that the utility function of each MS

is a concave function in terms of the feedback rate, which again partially proves through simulations the

existence of equilibrium of the proposed NFCP game.

Fig. 4 is constructed by letting the algorithm in Table I reach the Nash equilibrium at each value of

α. The best price factor can be found if all mobile users receive worse overall payoff than the previous

equilibrium utility according to algorithm II. It can be also observed from the figure when the pricing

factor increases, the total utility and the sum rates first increase, as shown in the small window, and

then begin to decrease. It indicates that solution by NFCP with α = αBEST = 0.025 offers a significant

improvement in total utilities with respect to the NFC whenα = 0, where pricing factor is not involved.

At high pricing factor, we can see both sum utility and rate converge to a constant value. This is because

the system stops requiring users feedback CSI as it costs toomuch.

In Fig. 5, we compare the proposed NFCP game theoretical approach with the centralized scheme.

From the simulation results, we can see that the distributedsolution and the centralized solution are

asymptotically the same ifα is in the right region. Whenα is too large, the MSs will be reluctant to

feedback. Whenα is too small, the MSs will feed back in a non-cooperative manner. In Fig. 6, it shows

that the variations of the sum feedback rate as well as the individual feedback rate in term of the pricing

factor, whereBUL = β
∑Ns

k=1 rk. From the figure we can see that these results match very well the

sum rate result in Fig. 4. Whenα = 0, it requires the maximum amount of feedback. But with the price

increase, the feedback rate starts to decrease until zero, which make the throughput dropped to minimum.
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B. Results through CSMA

For simplicity, we here consider a special case of slottedp-persistent CSMA by settingp = 1, i.e.,

1-persistent CSMA. In Fig. 7, it shows the total throughput again the traffic load. It indicates that there

exists an optimal transmission rate corresponding to the maximum throughput. In Fig. 8, we examine the

impact of CSI feedback on each individual using CSMA. From Fig. 8, we can see that the utility function

of each MS is a concave function in terms of the feedback rate,which again proves the effectiveness

of the proposed NFCP game. In Fig. 9, we evaluate the throughput performance in term of the pricing

factor. It shows in Fig. 9 that the proposed NFCP provides much better results than the NFC game.

Fig. 10 compares the proposed NFCP game with the centralizedscheme. From the simulation results, we

can see that the distributed solution and the centralized solution are almost the same whenα is adjusted

to the optimal working point.

VI. CONCLUSIONS

In this paper, we have studied the CSI feedback rate control problem in a single-cell wireless data

network, where a multiple-antenna BS communicates with a number of co-channel users through a

MMSE precoder. Specifically, we proposed a non-cooperativefeedback-rate control game without and

with price. The price function is a linear function of the CSIfeedback rate. The existence of the Nash

equilibrium of such a game is proved. Simulation results areperformed over FDMA and CSMA protocols

in the feedback channel. It shows that the distributed NFCP game with the proposed utility results in

improving the overall throughput of wireless data networks, and the simple distributed algorithm can

provide comparative performance in comparison of the centralized one by properly varying the pricing

parameter.

APPENDIX A

PARAMETER DERIVATIONS IN (10)

Thought channel quantization,µ can be simply expressed by the following linear function

µ = x+ yDk. (29)
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The real channel outputhk and its corresponding quantized channelhk in (10) satisfies the following

linear extreme conditions:

• When there is no quantization errors, i.e.,ν = Dk = 0, we have

µ2 = x2 = 1; (30)

• When the quantization is completely inaccurate, i.e.,Dk = 1 andµ = 0, we get

µ2 = (x+ y)2 = 0. (31)

Combining (30) and (31), we may easily getµ = 1−Dk. Recalling (8), from (10), we can also have

Var
[

hk

]

= Var [µhk + νnq] = Var [µhk] + Var [νnq] ⇒ 1−Dk = µ2 + ν2, (32)

and thus, we can finally obtainν =
√

Dk(1−Dk).
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Fig. 1. System model: One BS is serving a number of MSs by precoding based on the CSI feedback.
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Fig. 3. The utility ofMS1 in term of r1, where the number ofMSs is 2 andr2 = 1, 3, 10 over orthogonal feedback channels.
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Fig. 5. Performance comparisons of NFCP and the centralizedscheme over orthogonal feedback channels, where the number

of MSs is 10,B = 20, andβ = 0.01.
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Fig. 9. Performance of NFCP over CSMA feedback channels, where the number of MSs is 10, andB = 20.
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