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Electrical Vehicles in the Smart Grid:

A Mean Field Game Analysis

Romain Couillet, Samir M. Perlaza, Hamidou Tembine, andddane Debbah

Abstract

In this article, we investigate the competitive interaatioetween electrical vehicles or hybrid oil-
electricity vehicles in a Cournot market consisting of #leity transactions to or from an underlying
electricity distribution network. We provide a mean fieldnga formulation for this competition, and
introduce the set of fundamental differential equatiornmgihe behavior of the vehicles at the feedback
Nash equilibrium, referred here to as the mean field equulibr This framework allows for a consistent
analysis of the evolution of the price of electricity as wedl of the instantaneous electricity demand in
the power grid. Simulations precisely quantify those pars and suggest that significant reduction of

the daily electricity peak demand can be achieved by apfai@pelectricity pricing.

. INTRODUCTION

Electrical vehicles (EV) and plug-in hybrid electrical weks (PHEV) have been recognized as natural
components of future electricity distribution networksiolkvn as smart grids [1]/]2]/[3]. As opposed
to classical vehicles, EV and PHEV are equipped with ba&sewhich can be charged or discharged by
using a simple plug-in connector compatible with the lodakeicity distribution grid. Thus, EV and
PHEV can be conceived as both energy consuming devices abilenemergy sources [4], [5].[6].[7].

In the former case, EV and PHEV can be seen as devices sgdirérenergy demand of energy suppliers

and, thus, adding a new constraint to reliably distribute eékectricity. In the latter case, EV and PHEV
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can be used to store or even to transport the energy from crgrayghical area to another and then to
increase the reliability of the energy supply in certaine®or time intervals.

In this framework, it is therefore an important economiaadl &ocial challenge to enforce charge and
discharge policies to EV and PHEV in an optimal manner. Hepimality must be interpreted in the
sense of individual revenue obtained by the EV and PHEV osvméren participating in the energy
trades and also in terms of reliability of the energy supplycpss to the fixed consumers. In this paper,
we consider that a way to improve reliability is to allow EVdARHEV to buy and sell energy to or
from the smart grid, as in a classical Cournot competitidn @Bearly, the price at which the energy is
sold and bought depends on the existing demand in the gricalsdon the demand and offer resulting
from all the vehicles connected to the network. This contipetiinteraction resulting from the energy
trade, given a global price, can be analyzed using tools figmamic game theory [9]. This is studied
for instance in[[10], where a noncooperative game is playadrg a number of PHEV groups aiming
to sell part of their stored energy to the smart grid; an atlyor based on best response dynamics is
then proposed to allow PHEV groups to reach a Nash equilioriu

Nonetheless, in practical scenarios, the number of vehiclgght be drastically large so that finite
dimensional game theory analysis might not necessariygbenough insight about the global behavior
of the market. To overcome this problem, in this paper, weysthe energy trade when the number of
vehicles tends to infinity and all vehicles are considerdatafollowing the paradigm of [11]/T12]. More
precisely, we shall model this interaction as a mean fieldeg§lfi], [14]. In contrast to finite games,
where each player follows the evolution of the state of th@@and the actions taken by all other players
in order to maximize a given individual benefit, in the meaidfigame formulation, players do not react
to actions from individual players but rather to the aggtedaehavior of all players. The notion of
(Nash) equilibrium in the context of mean field games is knasmmean field equilibrium (MFE). When
focusing only on the class of regular functions of time anttdrg levels, a necessary condition for the
MFE is to be the solution of a coupled system of partial défgial equations (PDE) which includes a
(backward) Hamilton-Jacobi-Bellman (HJB) equation antbanard) Fokker-Planck-Kolmogorov (FPK)
equation.

The closest contribution to our specific problem setting1S][ [16]. Therein, a mean field game
approach to the study of oil production is developed.[In [1B¢ selfish players are oil producers and
the mean field variable is the oil selling price. In this detjove develop a similar framework as in [15]
but on a finite time horizon, applied to both EV and PHEV, witshicle owners as the selfish players

and electricity price as the mean field variable.
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The reminder of this article unfolds as follows. In Sectifinwe describe the problem formulation in
the case where only electrical vehicles interact with thergymarket. Therein, the problem is formulated
as a continuous time differential game with finite time honzThis formulation is then written under the
form of a mean field game and the differential equations dasgrthe MFE are presented. In Section
[I] the same analysis presented for EV is carried out fordage of PHEV. In Section 1V, we provide
numerical simulations and derive conclusions for both ages. Finally, in Sectiof V, we conclude this

work.

[I. ELECTRICAL VEHICLES
A. System Model

Consider a finite se = {1,..., K} of EVs participating to energy trading with an underlying
electricity distribution network. The consumption rate wahicle ¥ € X at timet € [0,7] is denoted
by gt(k). This consumption rate is measured in units of electricky pme. We assume th@tﬁk) is
deterministic and known by EW. The amount of energy stored in the battery of vehiclat timet is
denoted byxgk) € [0, 1], quantified in energy units. Here:ék) = 0 for an empty battery andgk) =1
for a fully charged battery. We denote b&k) the energy provisioning rate of vehickeat time ¢, that
is, the rate at which vehiclgé buys or sells its energy. We relate the varialni@> to gt(k) and a§k> by
the following differential equation

%wgk) _ agk) B gt(k)’ 1)
whereagk) and gt(k) are chosen such that the trajecta&) is unique for a given initialrgk) and that,
forall t, 0 < xﬁk) <1. Suchaﬁk) is called anadmissibleprovision rate.

In the following, we denotex; = (xgl), . ,ng)) anday = (aﬁl), . ,a§K>) the battery level profile
and provisioning rate profile at time respectively. Consider now a predefined pefiied’]. We denote
z®) = {xﬁ’“),o <t <T}anda® = {aﬁ’“),o < t < T} the trajectories of the battery level and
provisioning rates for E\k, respectively. We also denate= {x;,0 <t < T} anda = {a,0 <t < T}
the trajectories of the battery level and provisioning ratefiles. We finally denoted” the set of all
admissible provision rates.

The price at which vehicles either sell or buy electricitytime ¢ is determined by the function
pe - RE = R, a; — pi(ay). The time dependency of the prige models a realistic dynamic pricing
policy accounting for the energy demand for other servibas £V battery loading. This function can be

tuned to create incentives for EV to sell or buy energy at ifigetéme periods. In addition to electricity
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price, other factors influence the energy trades of EV own#fes model the latter, for playek, by the
following set of functions. The functiohgk) R—-R,a— hgk) (o) models the (psychological) cost for
playerk to buy or sell electricity at rater at timet¢. Indeed, EV owners are more likely to trade energy
at some convenient time intervals, e.g. during nighttimeemvthe EV is parked at home. The function
ft(k) :0,1] = R, z — ft(k)(x) models the cost for vehiclgé to possess only a fraction of energy
reserves at time. For instance, during periods of high energy consumptibe,itterest of EV owners
is to have maximally loaded batteries. Finaky®) : [0,1] — R, = — x*)(z) models the cost for EV
to end the trade periof), 7'] with a fractionz of battery load. This function guarantees that EV owners
do not sell all their battery content at the end of the tradesofprehensive discussion on the choices
of these functions is considered in Section IV.

The goal of EVE is to determine the consumption rate$) that minimize its total cosf, : AX — R,
(@M, ... o)) = J.(a® al=*)), over a time windowo, T'] given the consumption rateg —*) chosen

by all the other EVs. That is,

7 (aae)’ a(—k)) _ /
0

for a given initial stater,. Note importantly that the instantaneous global priggx;) is a function of

T
(afpulea) + b (@) + (P @) at+ D @F) @

the instantaneous provisioning rate profitg which in return depends both on the instantaneous energy
reserve profiler; and on the initial energy reserve profitg.
In the following, we formulate a differential game which nedsl the interactions between the active

EVs in the system.

B. Classical Game Formulation

We model the energy trades resulting from the interactionsray the electrical vehicles and the smart
grid by a K-player continuous-time differentiglameof pre-specified fixed duratio@ > 0. Let X, the
set of EV, be the set gblayers The state of the game, at timeis determined by the energy reserve
profile x; = (mﬁl), - ,ng)), whose trajectorye is determined by the initial state, and, through the
players’ control, by the state evolution equatibh (1). Thstdunction of playet is defined by[(R). The
objective of playerk is to determine a control trajectory*) that minimizes its cost. At instant the
instantaneous contr@lﬁk) is determined based on the information available to playevhich we denote
by the information set;t('“). We will consider here that the information set correspadiodthe singleton
nt(k) = {xﬁk)}. That is, players are assumed memoryless as they do not teenéne previous individual

states nor their previous instantaneous controls.
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In the following, we describe the strategy of playker that is, the mapping from the individual
information set to the space of individual controls. Let enate the strategy of playérby the mapping
A BB Al T A () with A}Y, the set of admissible controls for playert timet. Given the
nature of the information sets, this strategy can be redeiweas anon-anticipative (own-state) feedback

strategy The action of playek is therefore described as

(9 _ (8 0y 3)

Oy~ =" t

In the following, we will mostly use the notatioa:nﬁk), implicitly assuming the existence of a mapping
7Y, and we denotel/ = AL x ... x Afe, Al C Af,, the class of feedback strategies at tim&he
notation A% c AKX will be used for the class of alk-vector feedback control§AX, 0 <t < T}. We
recall that the interdependence between players in thisegampears through the electricity price: the
individual controlaﬁk) depends on the global prige(a;), which depends itself on all the other players’
individual controlsa! ™.

The formulation of the game is completed by further impodingt both the deterministic function
g: and the corresponding strategied), ..., &), with 4% = {~* . 0 < ¢t < T}, are such that the
trajectory defined by the initial value, and the differential equatiofl(1) is well defined and unique.

Following the above game formulation, we consider as duilin notion the own-state feedback Nash
equilibrium, which we define as follows.

Definition 1: The control profilea* = (a*W,... o*®)) € AX is an own-state feedback Nash
equilibrium (NE) if, for all ¥ € X and for all admissible controk = (Y, ..., o)) € AK, it
holds that

Jy (a*w),a*(—k)) < Ji (a(m,a*(—k))’ (4)

with a:(k) = t(k) (a:t*(k)), agk) = %(k) (xg’“)), k € X, andx},x, satisfying the state evolutiofl(1), for a
common initial statec.

Our interest in the NE lies in the fact that, at a state of NEtre EV use a control policy, from
which they have no reason to depart. Nonetheless, analylzénE of such a game, whefre is greater
than one is a difficult problem. In fact, even if a NE existayduld lead to solutions that are inherently
difficult to exploit. In particular, it is clear that, undemi$ formulation, any change in the battery level
of a given player impacts all other players which must reach @onsequence. We aim at reducing this

complexity by adopting some additional, but reasonabladitmns.
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C. Mean Field Game Formulation

In this section, we simplify the equilibrium analysis of tt#ferential game presented in the previous
section by considering the following hypotheses: (i) thiecd@layers is sufficiently large to be considered
infinite, and (ii) players are indistinguishable, in the serthat a different player labelling leads to the
same joint state distribution. The first assumption is téndlere as we analyze a large population of
EVs. The second assumption reflects the fact that all pladyare, to some extent, similar batteries and
similar individual objectives (but obviously different thery states).

From the assumptions of player indistinguishability andlemthe largeK limit setting [17], we can
drop the player indexes in the previous notations and mddelbattery) states of the players at time
t by a random variable; with distributionm(¢, x). As such,m(t,z) is the limiting distribution of the

empirical distributionm® (¢, z) defined as

1
K —
m*(t,z) = ® E_ 0,00 -

Now, in order to avoid the unrealistic assumption that aligkes consume energy at the same rate at
any time instant, we model the EV consumption rate by thehststic procesg;dt + g;o:dW4, with W, a
Brownian motion. The state evolution of is therefore described by the following stochastic diffeiad
equation (SDE)

dz; = aydt — g; (dt + o dWy) + ANy, (5)

with zp € [0,1] (now seen as a random variable) having distribution = m(0,-). The termd.V,

is a reflective variable to ensure that remains in[0,1]. Similar to above, we will assume that all
conditions are met for such a trajectory to be well-defined. Now, under the assumption of player
indistinguishability, the analysis of the game reducehtodtudy of the trajectory of the individual state
and individual control of a single player game (or equivélierof a stochastic control problem), with
cost functionJ : A — R, a — J(«), with A the set of all control§a,,0 < ¢ < T} admissible for the

state dynamicd (5), defined as

T
Ja) = E /0 (cupe(my) + haw) + folze)) dt + r(a), 6)

for a given initial (zg, mg), wherem,; = m(t,-) is the distribution of the players among all individual
states, andr; satisfies the dynamic§l(5). The contral is a feedback control that can be seen as the
imagea; = y:(z;) of the (own-state) feedback strategy: 7. — A,z — ~(x) on the information set

n: = {x;}. The set of such controls is denotéd, and the set of control profilefn;,0 < ¢t < T} is
denotedA C A.
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In this context, the energy trading price writgs: M; — R, my — p(my), with M, the class
of distributionsm,;. The price can now be seen as a function of the total instantenEV demand
fol aymy(x). However, for computational ease, we will instead consttat prices are fixed not by the
total EV consumptionfo1 aymy(dx) but by theexpectedconsumptiory; + %(fol xmy(dz)), where both
guantities only differ by an additional Brownian motionrtewvheno; > 0. In practice, this suggests that
the energy regulators which set the instantaneous price@teave the information on the instantaneous
demand at time but know the distributionn; at timet¢ (as we will see, this information is accessible

in anticipation at timeg = 0). We therefore defing, as

pe(my) = D(t,-)7! (gt + % /01 xmt(dx)> )
where D(t,p) is the total energy demand function (including both EV anteexal trades) at time
for a given pricep, and the inverse is with respect to composition. Under thevatassumptions, the
continuous time differential game discussed in SediidBl Hecomes a mean field game as introduced in
[13], [14].

D. Mean Field Equilibrium

Our interest now is to transpose the notion of own-stateldaeki NE into the corresponding notion
of equilibrium in the mean field game, namely the own-statglimck mean field equilibrium (MFE).
Based on Definitionl1, we state the following definition.

Definition 2: The controlo* € A is amean field equilibrium in (own-state) feedback strategfiefor

all « € A consistent withm*, it holds that
J (a;m*) < J (s m*), (7)

whereJ (-;m*) denotes/ (-) with m replaced bym* in its expressiomn* being the distribution induced
by the mean field equilibriuna* for the dynamics[(5) and for a given initial state distribatin.

Let us define thevalue functionv : [0, 7] x [0,1] — R, (u,y) — v(u,y), as follows,

T
v(u,y) = ;g_lE {/ (cupe(my) + he(ay) + fi(xy)) dt + k(z7)

wherez; is any solution to[(5) withr, = y.
According to [16], an MFEx* for the game that generates a regular couplen) must be a solution

to the following (backward) Hamilton-Jacobi-Bellman etjoa
Ov(t, ) = — inf {adpo(t, x) + ap(mi) + hu(ae) + file)}

ac

1
+gtamv(t>x) - igtzazgaixv(t>x) (8)
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wherem(t,-)* = mj is the solution of the following (forward) Fokker-Plancleknogorov equation

dum(t, ) = ~0, (0} — gi)m(t, )] + 5oPoPdR,m(, ) ©

for givenm(0, -).

In the following, we assume the cokta,) for control quadratic, i.e.
1 2
hi(a) = §Ht0é ,

with H, > 0 representing the unwillingness of the car owner to buy dresedrgy at time. This choice is
seemingly non-natural as it implies that users are morengilo buy or sell small quantities rather than
large quantities of energy. Nonetheless, under the meahdgahe formulation, this has to be understood
as the fact that, on average, only a limited population ofsiaétimet is willing (or able) to buy energy.
As such, intuitively, making the (psychological) cost ofying or selling energy larger for larger amounts
of energy forces only part of the population to buy or sell. fAs the particular choice of a quadratic
cost rather than any other cost function, it is convenientcldculus mostly.

Under this assumption, solving

;IellfR{a@mv(t, x) + api(my) + he(ag) + fi(ze)}

for all ¢, it is immediate by convexity arguments to see that the agtinajectorya™ is explicitly given
by

of = —Hit Bav(t, ) + pe(mi)] (10)

possibly subject to some boundary conditions to ensureathat|0, 1] at all times. In the remainder of
the article, we will assume this condition always met, sd #tano time we will consider EV owners
with completely full or completely empty batteries.

The HJB equation now becomes

0=0w(t,z)— <Hit [O0zv(t, z) + pr(m])] + gt> Opv(t, )

pi(my)
H;

[0z0(t, 2) + pr(mp)] + fi()

1 1
+ 5 10e0(t,2) + pe(mi)] + 3ottt @),

which can be simplified as

L 0ot 2) + pu(m)? + giduo(t, 2)

8tU(t, ZL') = ﬁ
t

~ i) ~ 5oRgt Rt )
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and the FPK equation is
1
oym(t,z) = <F [0, (t, ) + pe(m(t, x)] + gt> O,m(t, x)
t

1 1
+ Eaixv*(u a:)m(t, l') + i‘thJ?aﬁxm(f, 33‘)

This defines the two fundamental differential equationsdblved, either explicitly or numerically, for
determining the MFE.
In the next section, we improve the EV framework by turning gurely electrical vehicles into PHEYV,

introducing therefore the possibility for players to seleetween two alternative sources of energy.

[Il. PLUG-IN HYBRID VEHICLES
A. System Model

In this section, we consider that vehicles in the eare PHEV. A PHEV can operate both with an
electrical energy source and an alternative energy sofocéstance oil. The PHEV interacts with the
electricity distribution grid by trading electricity witan elastic price, while trading oil at a fixed price
(which is a natural assumption on a daily or even weekly badie describe the energy reserves of PHEV
k by the two-dimensional vectozrt(k) = (zﬁ?, zg?)T € [0,1)%, wherez; ; is the amount of energy stored
in the batteries and,; the level of the oil tank. We denote the provisioning ratelettricity and oil
of PHEV k by ug’ft) eR andugft) € R, respectively. In addition, we deno#®) : R, x [0,1]2 — [0, 1],
(t,z) — BM)(t, z), with z = (21, z2), the function that determines the relative proportion argg drawn
from the batteries of PHEV: at timet. Typically, taking 5% (t, z) = 21 /(21 + 20) translates a policy
where energy is consumed indistinctly of the energy solNote that, depending on the typical distances
covered by PHEV owners at time(e.g. weekdays against weekend&¥) (¢, zt(k)) may explicitly depend
ont. Alternatively, we may have considerg) (z, zt(k)) an additional control variable which can be set
optimally by the car owner depending on the status of theggnararket. Nonetheless, for simplicity
of analysis, we do not consider this scenario here. We rdaltMG/ariabIeSzt(k), ugk), and ﬁ(’“) by the
following state evolution dynamics

(k
1

)

~

(k)
| ) (11)

- 5(757 zt(k))

d @ _ M

z
de”

~ ~+

s,

and, similar to previously, we consider onfiyfunctions andugk) controls which are admissible, in the

sense of their defining a unique solutiaﬁ) for eacht, k.

October 29, 2018 DRAFT



10

We then define the cost of PHEN in the time window|[0,T] as

T
Ly (), 9 = /O (re (17, o™) 4 ) + 5P ) e+ MG, @2)

for a given initial statez, € [0, 1]2%, i.e. the initial energy reserves of all PHEV, where= (™), ... p(5)),
with p%) = {uﬁk) = (uglft), ugft)), 0 <t < T} belonging to the set of admissible controls for the dynamics
(1)

Here,ry : R2E — B2, pus my(p® . ) = (r o (Y 0, ran (8D i) evaluates

the instantaneous prices; of electricity andr,; of oil, given the controlsp®) = (ugk),ugk)). In

particular, we assume here that the price for oil is fixedegibyrzt(ugl), . ,ugK)) = ry. Note that in
this case the trajectory of the state= {z; = (zlfl), . ,zt(N)),O <t < T} is determined by the initial

statezy = (z(()l), e ,zéK)) and by the dynamic$ (11). We dendiethe set of state trajectories

The functionqt(k) ‘R?2 = R, p+— qt(k)(u) evaluates the psychological cost of trading a quantity
of electricity and a quantity, of oil at time ¢, wherep = (uq, u2)". The functionsﬁk) :[0,1)2 = R,
z — s\™(2) denotes the cost for PHENto be in statez = (21, z2) at timet. Finally, ¢*) : [0, 1]2 — R,
z — €W (2) is the cost for PHEVK to be in statez = (21, 2,) at timeT. These are analogous to the
functionsh®, ¥, andx® in @), respectively.

In the following, we formulate the finite-number of playerffatential game.

B. Classical Game Formulation

The interaction between all PHEVs is modeled by gplayer continuous-time stochastic differential
game of pre-specified fixed duratidn > 0. As for the case of EV, the aim of playéris to determine
the control trajectoryu(®) = {ugk),o < t < T} such that its cost; in (IZ) is minimized given
the initial conditionsz, and the control trajectories adopted by all the other pkyér*). We denote
the set of all admissible controlg®) of player k over the time period0, 7] by U, and we denote
U="U; x---x Ug. At time ¢, the instantaneous contrpl(’f) is determined based on the information
available to playelk, which we denote by the information sgﬁk), as in the previous section. Here,
the information set corresponds to the singlety.ﬁﬁ) = {zt(k)}. Let us denote the strategy of player
k by Ht(k) : nt(k) — Uy, nt(k) — Ht(k)(nt(k)). As stated above, this strategy corresponds to the class of

non-anticipative own-state feedback strategies, and viennite
i =0 (). (13)

The image of@t(k), i.e. the set of own-state feedback controls, is denbtedand we writell = U; x

qu
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11

C. Mean Field Game Formulation

In this section, we proceed similarly to Sectlon lI-C. We hsee a finite-game counting meastumné

of the form
1 K
m(t2) = ¢ kzl O 42 = (21,22)" (14)

with z = (21, 22)T, and we assume asymptotic player indistinguishabilityrteuge that it admits a weak
limiting distribution m(¢,-) as K — co. As previously, the individual state of each player is asstino

be a noisy version of the deterministic state trajectorylii) (determined by the following SDE,

az = " a | P51 e, | 1
2.t 1—B(t, z) 1
for a given initial statezy. In particular, W; = (Wl,t,WZt)T is a two-dimensional Brownian motion
with independent components aiN is the associated reflection vector. Similar to the EV sdenag
determines the variance of the noise at tim&he analysis of the game now reduces to the analysis of

the behavior of a single player. The cost functibf) £ L, assumed identical to all players, reads

T
L(gm) = E /0 (re () + au(pe) + s1(20)) dt + E(21), (15)

wherem; = m(t,-) € M, is the distribution of the state variabtg andM; is the set of distributions at
time ¢. The initial state condition igq € [0,1]?, a random variable with distributiom,. The price for

electricity is given by the functiom; ; : M; — R, with

d
ri(mg) = D(t, )" | g B(t, z)mi(z)dz + — z1my(z)dz (16)
[071]2 dt [071]2

for z = (21, 22)" in the integrals. The price for oil is constant, given by, = 7.

The next section is dedicated to determining the MFE for ¢faime.

D. Mean Field Analysis

Under the above game formulation, the optimal control poblvhich represents the equilibrium of

the game formulates as

u(0,20) = inf L(p,mo)
peu
t,z
dz, = "] ar— Bt =1) g¢ [dt + o, dWy] + AN, (17)
M2t 1—B(t,z)
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12

We introduce the value function

T

o(u,y) = inf E [ [ et + ) + () e +a1) (18)
peu u

with initial value z, = y.

As in the EV case, we consider the cost function as quadthid,is,

1 1
q(pe) = §Ql,t(,ul,t)2 + §Q2¢(Mz,t)2,

with (Q17t7Q27t) S IR,2.
The HJB equation, which provides a necessary condition Her éxistence of an MFE generating
regular couplegv, m), is here given by

—Owltz) = b e () + e + 6 ()
+( e — 9iB(t, 2) )0z, 0(t, )
+ (2 + 9:(B (t,2) — 1)) D:,0(t, 2)}
FA(E) + 50 6 [(B(1,2)) 7,0, 2)
+26(t, 2)(1 — B(t, 2))0%v(t, z)
+(1 = B(t, 2))°0%,.,0(t, )] | (19)

wherem* = {m};,0 <t < T}, m; =m(t,-)*, is solution to the FPK equation
Om(t,z) = =0 [(1; — B (t,2) g)m (¢ 2)]
=0z [(H34+ (B (t,2) = Dg)m (t, 2)]
0ot [B(1, 2202 m (1,2) + (1= (1,20, ,m (1,2)
+28(t,2) (1= B (1, 2))0,.,m (t.2)] |

with py = (4, p15,4) € U; the cost minimizing £;-adapted) feedback control, determined by

W, = ——Ql (re () + Day0(t, 2) (20)
1,t

W = o (rat Ot 2)). (21)
Q24

Assumingo; = 0, we obtain more compact forms. In particular, after substih of the expression of
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wpy, the HIB equation becomes

o (tz) — ﬁ(@zlv(t,z)—kn,t(m;‘)f
1
g O (6.2) 4 1)
+gtﬁ (t> Z) azlv (tv Z)
+9:(1 = B(t,2))0,v(t,z) — fr (2). (22)

wherem} is solution to

1 1
o (12) = [ G @unit") 4 G Oeit”) 0105 1.2) = 0.8 (8.2)]| m 1. 2)
Ql,t Q2,t
1
gt 6.2 +0.07) + 5 .2) 1] 2. (12
1
[ta(rg +0.,v°)+ (1 -6 (¢, z))gt] 0z,m (t,z) (23)
with v* the solution to[(22), which is our final expression. Note imtigalar that, fors(¢, z) = et
z = (21, 22)7, which we will use in Sectiof IV, we have that
0,0 (t,z) — 0,8 (t,z) = (24)

21—1-22.

IV. SIMULATIONS

In this section, we provide simulation results for the aieat vehicle schemes developed in Section
Mand Sectior 1.

A. EV analysis

We first consider the scenario of Sectian Il. We assume ast&athree-day scenario £ 0 at midnight
the first day and = T' = 1 seventy-two hours later) where players have an averageiogst®n rate that
depends on specific periods of the days. The scenario isafygi@a Friday to Sunday energy consumption,
with higher overall electricity consumption on Friday ariffedent patterns of car usage on Friday than
on Saturday and Sunday. Since it is difficult to provide a ersal system parametrization, we will take
arbitrary scalings in the energy consumption functions.

The car electricity consumption functiapn is depicted in Figuréll, where we see in particular that
consumption is higher on Friday and with a peak around 5pnilevdonsumption is lower on weekend
days with different peak times. The variangg on the consumption is taken equal@®1 at all time,

ensuring a standard deviation of the orden 6. The demand functiod(t, p) is such that the price
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is a quadratic function of the total electricity demand frbwth electrical vehicles and other electricity

services. Specifically, we take here

Pt = ([gt + % /wm(t,w)dw] ' + dt>

whered, stands for the demand of electricity in services other thectecal cars, withz|™ = max(x,0).

2

We therefore assume that this demand is deterministic amot igltered by the evolution of EV electricity
price, which is a realistic assumption if the EV electriaiharket is independent of the outer electricity
trading market. The functiod, is depicted in dashed line in Figuré 4, up to a constant cporeding to
the total average EV consumption; that is, the dashed lipeesents the total electricity consumption if
EV consumption were distributed equally in time. For siroiy of understanding, we assung = 30
constant; that is, we do not consider that the car owners hayeparticular incentive to charge or
discharge at some specific time periQdWe take f(t,z) = (1 — z)? to impose consumers to keep a
certain level of electricity in their batteries, and the bdary conditions(z) = (1 —x)? in order to avoid
large sales at the last minute. The initial conditionma(0, -) is a triangle distributionn, centered a0.5
and with suppor{0.3,0.7]. The boundary conditions om andv are such thad,m(0, ) = d,m(1,-) =
0,v(0,-) = d,v(1,-) = 0 in order to force the energy content to lie [in 1].

To solve the system of equations (&) (9)(im,v), we proceed by solving sequentially the HIB and
FPK equations using a simple fixed-point algorithm untilveengence. We do not ensure here that this
algorithm does converge, neither do we ensure that theicolabtained is the solution sought for.
Using a finite difference method on a sampling ld@ft points in the time axis (every 30min) and of
100 points in the battery level axis, the above scheme leadsetaligtribution evolutionm* depicted in
Figure[2. A few observations can be already made from thigdige easily observe daily sequences
of increases and decreases of the average battery levelse&\Vim particular that during nighttime, the
battery levels increase, indicating that energy is puretias nighttime and consumed during daytime.
It is interesting to note that, due to the small varian@’ethat was chosen, the overall tendency is for
m*(t,-) to concentrate into a single mass when> 1. This is a usual phenomenon which determines
the steady state if time were to continue with constant \&afoe all time-dependent system parameters.

From the expression af*, v*, and the equations derived in Sectloh Il, it is now possibl®ettain

much information about the system. In particular, it is iasting to follow the electricity bought or sold

INote that the determination of a corréet is highly subjective and is better kept constant for the safkimterpretation.
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by electrical vehicles at all time, that is the quantity

d N
gt + 7 | ™ (t,z)dx

or the overall electricity consumption in the market given b

gt + % /:Um*(t, x)dx + dy

and the pricep;(m;}) defined here as

pilmi) = ([g v [ as] 4 dt>

This is depicted in Figurgl 3, Figuté 4 and in Figlfe 5, respelgt
We see first in Figurél3 that the peaks of electricity boughel®ctrical vehicles take place during

2

the night where the overall demand is low, while they are airttowest during peak demand periods.
This is a natural outcome of the fact that prices are highndupieak demand periods. However, we also
see that the difference of amplitude between lowest andeBigpurchases is not large. This is due to
the fact that, while prices are high in peak demand periddas BV owners still have a strong incentive
not to find their batteries empty, driving them to keep buyéhectricity at peak periods. This behaviour
can be hindered by relaxing the constrajiit, x).

Of more interest is Figurel 4, where the differences betwéectrecity consumption with or without
incentives on EV behaviour is presented. This figure depiaisshed line the overall energy consumption
if the EV purchases were equally distributed in the threg{oleriod (that is, with no incentive), and in
plain line the overall consumption under our current asdigng. It is seen here that the price incentives
on electricity purchases produce a much expected peak denmegliction in the critical day periods,
and a simultaneous increase of consumption during low copsan periods. Note importantly that our
analysis does not consider changediinvhen the price for electricity changes; only the part of &leity
reserved for EV drives prices which in turn drive the EV bebax, which is a natural assumption if
different price conditions are applied to EV and other sesi The price evolution is depicted in Figure

B, where it is seen in this setting that the price is mostlyadriby the functiond,.

B. PHEV analysis

In this second section, we wish to analyze the behavior ofitbiylehicles as described in Section
[ Since solving three-dimensional differential equais is time-consuming, we only provide results for

the time scale discretized if2 samples and for the “spatial” scales discretized both6irsamples. For
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EV electricity consumption

| | | | | | | | |
2 18 24 30 36 42 48 54 60 66 72
Time (in hours)

|
0 6 1

Fig. 1. Mean energy consumptigp of EV as a function of time.

Battery levelz

0
0 6 12 18 24 30 36 42 48 54 60 66
Time ¢ (in hours)

Fig. 2. Density solutionn*(¢,x) as a function of the time and the battery levet.

each differential equation, the resolution is performedtegating the resolution of the two-dimensional
differential equations along time and electricity scales éach fixed oil tank level, and time and oil
scales for each fixed battery level. Then the system of HIBFRRI differential equations is solved
by further iterating a fixed point algorithm as in the preagection. For simplicity of interpretation,

we consider here a time-independent scenario where foth 0.2 and (¢4, ¢2+) = (125,125) are
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0.71

0.7

0.69

EV purchases

0.68

0.67]
0 6 1
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I I I I I I
4 60 66 72

| | I
2 18 24 30 36 42 48 5
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Fig. 3. Electricity purchased by EV as a function of the time

I I I
. ----No EV regulation
1.5 2%\ —— EV regulation ]

1.4 »

1.3 N

1.2 | .

Total electricity consumption

1.1

= ! | ! l | ! | ! l | !
0 6 12 18 24 30 36 42 48 54 60 66 72
Time (in hours)

Fig. 4. Total electricity consumption with or without EV ndgtion as a function of the time

constant with timg. We take the electricity price to bg ; = (D(t,1,))" +0.5, where now the demand
is solely due to the electricity being bought by PHEVs; ttetwe do not consider other sources of
electricity consumption in order to focus on the oil/elaxty interaction solely. The oil price is set to

roy = 2 = 0.7. This is a natural choice as it is expected that an approgirgaantityg, = 0.2 will

2Such a large value for the entries bf is motivated by faster algorithm convergence reasonspuath it inhibits as a

counterpart fast variations ef along time.
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Fig. 5. Evolution of the pricen;(m;) as a function of the time.

be asked for at any time to cover for the energy consumed ehargrice for electricityr; , ~ 0.7. We
impose a constraing;(z) = 20(2 — z; — 22)%, wherez = (21, 22)". The relative consumptioft of oil
and electricity is proportional to the total quantity of eme that is3(¢, z) = z1/(z1 + 22) and therefore

1 —B(t,z) = z2/(z1 + 22). We takeos, = 0 for simplicity. The boundary constraints are identical to
those in the previous section. As for the terminal constramv, it imposes thaw(7,z) = £(z) =
10(2 — (21 + 22))%

We consider the scenario wherg0, -) is a (properly truncated and scaled) Gaussian distribuwtim
mean(0.4,0.6)" and covariance.02l,, with I, the 2 x 2 identity matrix. That is, we assume that, initially,
most vehicles have more oil than electricity. This is degricin Figurd 6. We then let the system evolve
freely under the above set of constraints. It is natural tesguhat the overall behavior is a decrease of
either or both quantities of oil and electricity to zero iktprices are too high, or an increase of either or
both quantities to one, if the prices are more reasonablatVghinteresting to observe is the trajectory
jointly followed by the players. The resulting final diswifon m*(7', -) is depicted in Figurgl7. What we
observe in the aforementioned conditions is that the Irdiistribution has shifted towards an increase of
both electricity and oil levels, with a stronger increasehef mean battery level. Another observation is
that the distribution tends to stretch along the= 2z, diagonal in the figure, translating the fact that oil
and electricity are seen almost as equivalent goods duesttbtisely constraining energy cost policy.

Among the different further analyses, in Figlre 8, we coasid section of the distribution of the
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Qil tank level

0.4 0.6 0.8
Battery level

Fig. 6. Initial distributionm (0, -) at timet = 0, as a function of both levels of battery and oil tank.

optimal transaction policy:j , and u3, at timet = 0*, for zo, = 0.5 and zg; = 0.9 (we remind that
both 7, and i3, are functions oft, 21 andzy;). That is, we observe the initial behavior of players
with half-filled oil tanks and almost completely filled oilrtks. It is seen that, for users with a very low
level of electricity, buying electricity is an appealingaite. This can be interpreted by the fact that, as
few players are in strong need for energy, it is possible ume a large quantity of electricity at a
reasonable price. Those players with low reserves of @égtare the main beneficiaries. For users with
already a reasonable level of electricity though, eleityriand oil are seen as equivalent goods. As a
matter of fact, our results also show that, at time 0™, the price of electricity equals ; = 0.706 ~ ry.
That is, the players with low electricity levels draw as muéhihe electricity overhead (compared to oil)
as is needed to reach an equilibrium price with oil. Now, iaiso observed that, for users with large
quantities of oil, electricity becomes a compelling pusshan order to further increase the total quantity
of energy (sincef imposesz;; + 22, to be close t®2), hence a larger incentive for buying electricity
when the battery level is not large. When both battery ank lewels are alike, we see that the quantity
of electricity purchased is the same as the quantity of aitipased.

Obviously, from the very generic settings of both EV and PH&Wblems, many more scenarios can
be carried out so to evaluate the actual impact of the EV ang\Péh realistic smart grid scenarios. The
simulations above and their interpretations only providigaanework of fully rational vehicle owner’s

behavior, which needs be reported to real-life conditiolith wxtreme care.
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Fig. 7. Final distributionn (T, -) as a function of both levels of battery and oil tank.
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Fig. 8. Optimal transactions at time= 0" for players with different oil and battery levels.

V. CONCLUSION

In this article, we proposed a game theoretical frameworintalel the behavior of electrical vehicle
and hybrid electricity-oil vehicle owners aiming at selfisiminimizing their operating cost. As the
number of selfish players is large, and players are assuniax ale then turned the problem into a
mean field game, for which we obtain the fundamental diffeaémequations describing the mean field

equilibrium of the game. Using numerical methods, we dremctsions which give new insights on the
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way to optimize the electrical vehicle penetration in theufa smart grid.
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