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Transmitting important bits and sailing high radio
waves: a decentralized cross-layer approach to

cooperative video transmission

Nicholas Mastronarde, Francesco Verde, Donatella Darsena, Anna Scaglione, and Mihaela van der Schaar

Abstract

We investigate the impact of cooperative relaying on uplinkand downlink multi-user (MU) wireless video
transmissions. The objective is to maximize the long-term sum of utilities across the video terminals in a decentralized
fashion, by jointly optimizing the packet scheduling, the resource allocation, and the cooperation decisions, under the
assumption that some nodes are willing to act as cooperativerelays. A pricing-based distributed resource allocation
framework is adopted, where the price reflects the expected future congestion in the network. Specifically, we formulate
the wireless video transmission problem as an MU Markov decision process (MDP) that explicitly considers the
cooperation at the physical layer and the medium access control sublayer, the video users’ heterogeneous traffic
characteristics, the dynamically varying network conditions, and the coupling among the users’ transmission strategies
across time due to the shared wireless resource. Although MDPs notoriously suffer from the curse of dimensionality,
our study shows that, with appropriate simplications and approximations, the complexity of the MU-MDP can be
significantly mitigated. Our simulation results demonstrate that integrating cooperative decisions into the MU-MDP
optimization can increase the resource price in networks that only support low transmission rates and can decrease
the price in networks that support high transmission rates.Additionally, our results show that cooperation allows users
with feeble direct signals to achieve improvements in videoquality on the order of5 − 10 dB peak signal-to-noise
ratio (PSNR), with less than 0.8 dB quality loss by users withstrong direct signals, and with a moderate increase
in total network energy consumption that is significantly less than the energy that a distant node would require to
achieve an equivalent PSNR without exploiting cooperativediversity.

Index Terms

Cooperative communications, cross-layer optimization, decode-and-forward relaying, Markov decision process
(MDP), multi-user scheduling, resource allocation, wireless video transmission.

I. INTRODUCTION

Existing wireless networks provide dynamically varying resources with only limited support for the Quality of

Service (QoS) required by delay-sensitive, bandwidth-intense, and loss-tolerant multimedia applications. This problem
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is further exacerbated in multi-user (MU) settings becausethey require multiple video streams, with heterogeneous

traffic characteristics, to share the scarce wireless resources. To address these challenges, a lot of research has focused

on MU wireless communication [1], [2], [3], [4], [5] and, in particular, MU video streaming over wireless networks [6],

[7], [8], [9], [10]. The majority of this research relies on cross-layer adaptation to match available system resources

(e.g., bandwidth, power, or transmission time) to application requirements (e.g., delay or source rate), and vice versa.

In MU video streaming applications [6], [7], [8], [9], [10],for example, cross-layer optimization is deployed to

strike a balance between scheduling lucky users who experience very good fades, and serving users who have the

highest priority video data to transmit. This tradeoff is important because rewarding a few lucky participants, as

opportunistic multiple access policies do [2], [3], [4], does not translate to providing good quality to the application

(APP) layer. Unfortunately, with the exception of [5], [11], the aforementioned research assumes that wireless users

are noncooperative. This leads to a basic inefficiency in the way that the networkresources are assigned: indeed,

good fades experienced by some nodes can go to waste because users with higher priority video data, but worse

fades, get access to the shared wireless channel.

A way to not let good fades go to waste is to enlist the nodes that experience good fades as cooperative helpers,

using a number of techniques available for cooperative coding [12], [13], [14]. As mentioned above, this idea has

been considered in [5], [11]. In [11], for example, a cross-layer optimization is proposed involving the physical (PHY)

layer, the medium access control (MAC) sublayer, and the APPlayer, where layered video coding is integrated with

randomized cooperation to enable efficient video multicastin a cooperative wireless network. However, because it is a

multicast system, there is no need for an optimal multiple-access strategy, and no need to worry about heterogeneous

traffic characteristics. In [5], a centralized network utility maximization (NUM) framework is proposed for jointly

optimizing relay strategies and resource allocations in a cooperative orthogonal frequency-division multiple-access

(OFDMA) network. In both [5], [11], it is assumed that each user has a static utility function of the average

transmission rate, where the utility derived by each user in[11] is a function of the average received rate of the base

and enhancement layer video bitstreams.

Unlike the aforementioned solutions, we take a dynamic optimization approach to the cooperative MU video

streaming problem. In particular, unlike [5], [11], the solution that we adopt explicitly considers packet-level video

traffic characteristics (instead of flow-level) and dynamicnetwork conditions (instead of average case conditions). Our

solution is inspired by the cross-layer resource allocation and scheduling solution in [10], in which the MU wireless
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video streaming problem is modeled and solved as an MU Markovdecision process (MDP) that allows the users,

via a uniform resource pricing solution, to obtain long-term optimal video quality in a distributed fashion. However,

although we use the traffic model and dual decomposition proposed in [10], cooperation renders our PHY/MAC

model completely different from that studied in [10], thus opening additional research issues with respect to [10],

such as how the cooperation decision should be made, what is the impact of cooperation on the resource price, and

what is the impact of cooperation on the total network energyconsumption. Moreover, as recently shown in [15],

augmenting the framework developed in [10] to also account for cooperation is challenging because of the complexity

of the resulting cross-layer MU-MDP optimization.

The contributions of this paper are fourfold. First, we formulate the cooperative wireless video transmission problem

as an MU-MDP using a time-division multiple-access (TDMA)-like network, randomized space-time block coding

(STBC) [16], and a decode-and-forward cooperation strategy. To the best of our knowledge, we are the first to consider

cooperation in a dynamic optimization framework. We show analytically that the decision to cooperate can be made

opportunistically, independently of the MU-MDP. Consequently, each user can determine its optimal scheduling policy

by only keeping track of its experienced cooperative transmission rates, rather than tracking the channel statistics

throughout the network. Second, in light of the fact that opportunistic cooperation is optimal, we propose a low

complexity opportunistic cooperative strategy for exploiting good fades in an MU wireless network. The key idea is

that nodes can, in a distributed manner, self-select themselves to act as cooperative relays. The proposed self-selection

strategy requires a number of message exchanges that is linear in the number of video sources, and selects sets of

cooperative relays in such a way that cooperation can be guaranteed to be better than direct transmission. Third, we

show experimentally that users with feeble direct signals to the access point (AP) are conservative in their resource

usage when cooperation is disabled. In contrast, when cooperation is enabled, users with feeble direct signals to

the AP use cooperative relays and utilize resources more aggressively. Consequently, the uniform resource price

that is designed to manage resources in the network tends to increase when cooperation is enabled in a network

that only supports low transmission rates, but tends to decrease when it is enabled in a network that supports high

transmission rates. Fourth, we study the impact of cooperation on the total network energy consumption. We show

that the increased transmission rate afforded by cooperation requires an increase in total network energy relative to

the lower rate direct transmission; however, this increaseis moderate compared to the amount of power required to

transmit directly to the access point at a transmission rateequivalent to the cooperative rate.
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The remainder of the paper is organized as follows. We introduce the system and application models in Sec-

tion II. In Section III, we provide expressions for the transmission rate, packet error rate, and network energy

consumption in both direct and cooperative transmission modes. In Section IV, we present the proposed MU cross-

layer PHY/MAC/APP optimization. In Section V, we propose a distributed protocol for opportunistically recruiting

cooperative relays. Finally, we report numerical results in Section VI and conclude in Section VII.

II. SYSTEM MODEL

We consider a network composed ofM users streaming video content over a shared wireless channel to a single

AP (see Fig. 1). Such a scenario is typical of many uplink media applications, such as remote monitoring and

surveillance, wireless video sensors, and mobile video cameras. The proposed optimization framework can also be

used for downlink applications, where the relays can be recruited for streaming video to a certain user in the network

in exactly the same way that they can be recruited to transmitto the AP in the uplink scenario. In Subsection II-A,

we introduce the MAC and PHY layer models. Then, in Subsection II-B, we describe the deployed APP layer model.

A. MAC and PHY layer models

We assume that time is slotted into discrete time-intervalsof lengthR > 0 seconds and each time slot is indexed

by t ∈ N.1 At the MAC sublayer, the users access the shared channel using a TDMA-like protocol. In each time

slot t, the AP endows theith user, fori ∈ {1, 2, · · · ,M}, with the resource fractionxit, where0 ≤ xit ≤ 1, such

that the user can use the amount of channel timeRxit for transmission. Letxt , (x1t , x
2
t , . . . , x

M
t )T ∈ RM denote

the resource allocation vector at time slott, which must satisfy the stage resource constraint‖xt‖1 =
∑M

i=1 x
i
t ≤ 1,

where the inequality accounts for possible signaling overhead.

Each node’s PHY layer is assumed to be a single-carrier single-input single-output system designed to handle

quadrature amplitude modulation (QAM) square constellations, with a (fixed) symbol rate of1/Ts symbols per

second. The PHY layer can support a set ofN + 1 data ratesβn , bn/Ts (bits/second), wherebn , log2(Mn) is

the number of bits that are sent every symbol period, withn ∈ {0, 1, . . . , N}, andMn is the number of signals in

1 The fields of complex, real, and nonnegative integer numbersare denoted withC, R, andN, respectively; matrices [vectors] are denoted
with upper [lower] case boldface letters (e.g.,A or x); the field ofm × n complex [real] matrices is denoted asCm×n [Rm×n], with C

m

[Rm] used as a shorthand forCm×1 [Rm×1]; the superscriptT denotes the transpose of a vector;|·| denotes the magnitude of a complex
number;‖x‖1 is the l1 norm of the vectorx ∈ C

n, which for positive real-valued vectors is simply the sum ofthe components, whereas‖x‖2
is the Euclidean norm ofx ∈ C

n; {A}ij indicates the(i + 1, j + 1)th element of the matrixA ∈ C
m×n, with i ∈ {0, 1, . . . , m − 1} and

j ∈ {0, 1, . . . , n−1}; a circular symmetric complex Gaussian random variableX with meanµ and varianceσ2 is denoted asX ∼ CN (µ, σ2);
⌊·⌋ and⌈·⌉ denote flooring- and ceiling-integer, respectively;E[·] stands for ensemble averaging; and, finally,[·]+ = max(·, 0).
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the QAM constellation. Hence,β0 ≤ β1 ≤ · · · ≤ βN form the basic rate setB and β0 is the base rateat which

the nodes exchange control messages. Letdn be the minimum distance of theMn-QAM constellation, the average

transmitter energy per symbol is given by

Es , d2n

(
Mn − 1

6

)
(Joules), (II.1)

which is assumed to be fixed for all the nodes and data rates, i.e., it does not depend on the indicesi and n.

Consequently, the average power per symbol expended by eachtransmitter isPs , Es/Ts (Watts). We consider a

frequency non-selective block fading model, wherehiℓt ∈ C denotes the fading coefficient over thei → ℓ link in

time slot t, with i 6= ℓ ∈ {0, 1, . . . ,M}, and i = 0 or ℓ = 0 corresponding to the AP. It is assumed that all the

channels are dual, i.e.,|hiℓt | = |hℓit |, and that the fading coefficientshiℓt are independent and identically distributed

(i.i.d.) with respect tot. Moreover, we defineHt ∈ CM×M as the matrix collecting the fading coefficients among

all of the nodes and the AP, i.e.,{Ht}iℓ = hiℓt , for i 6= ℓ ∈ {0, 1, . . . ,M}.

At the PHY layer, there are two transmission modes to choose from: direct and cooperative. In thedirect

transmission mode, as shown in Fig. 1, theith source node transmits directly to the AP at the data rateβi0
t ∈ B

(bits/second) for the assigned transmission time ofRxit seconds. In thecooperativetransmission mode, some nodes

serve as decode-and-forward relays. Specifically, in the cooperative mode, the assigned transmission time is divided

into two phases as illustrated in Fig. 1: inPhase I, theith source node directly broadcasts its own data to all the nodes

in the network at the data rateβi,1
t ∈ B for Rρit x

i
t seconds, where0 < ρit < 1 is the Phase I time fraction; inPhase

II , some of the nodes overhearing the source transmission, belonging to a certain subsetCi
t ⊆ {1, 2, . . . ,M} − {i},

demodulate the data received in Phase I, re-modulate the original source bits, and then cooperatively transmit towards

the AP, along with the original sourcei, at the data rateβi,2
t ∈ B for the remainingR (1 − ρit)x

i
t seconds. In the

sequel, we denote withβi,coop
t (bits/second) thecooperative data rateover the two phases, i.e., the amount of bits

that are transmitted in a single phase divided by the overalllength of the two phases, which depends on the data rates

βi,1
t andβi,2

t attainable in each of the two hops. The decision to transmit in the direct or cooperative transmission

mode depends on fading coefficients throughout the network in time slott and on the target packet error rate (PER).

Thus, the actual transmission rate of theith source in time slott is dictated by the cooperation decisionzit ∈ {0, 1},

wherezit = 1 if cooperation is chosen, andzit = 0 if direct transmission is chosen. In Section III, we computethe

transmission parametersβi0
t andβi,coop

t as functions of a subset of the entries inHt, as well as the time fractionρit,
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and, in Section V, we describe how to determine the set of cooperative relaysCi
t and the cooperation decisionzit.

B. APP layer model and packet scheduling

The source traffic can be modeled using any Markovian traffic model (e.g. [10], [19]). However, to accurately

capture the characteristics of the video packets, we adopt the sophisticated video traffic model proposed in [10], which

accounts for the fact that video packets have different deadlines, distortion impacts, and source-coding dependencies

(whereas the model in [19] does not consider these characteristics). In this section, we describe the key features of

this model, but because the problem formulation and noveltyof this paper do not depend on the deployed traffic

model (so long as the model is Markovian), we refer the interested reader to [10] for complete details.

For i ∈ {1, 2, . . . ,M}, the traffic stateT i
t , {F i

t ,b
i
t} represents the video data that theith user can potentially

transmit in time slott, and comprises the following two components: the schedulable frame setF i
t and the buffer state

bi
t. In time slott, we assume that theith user can transmit packets belonging to the set of video framesF i

t whose

deadlines are within the scheduling time window (STW)[t, t+W ]. The buffer statebi
t , (bit,j | j ∈ F i

t )
T represents

the number of packets of each frame in the STW that are awaiting transmission at timet. Thejth componentbit,j of

bi
t denotes the number of packets of framej ∈ F i

t remaining for transmission at timet. We assume that each packet

has sizeP bits. Fig. 2 illustrates how the traffic states are defined fora simple IBPB GOP structure.2

We now define the packet scheduling action. In each time slott, the ith user takes scheduling actionyi
t ,

(yit,j | j ∈ F i
t )

T , which determines the number of packets to transmit out ofbi
t. Specifically, thejth componentyit,j

of yi
t represents the number of packets of thejth frame within the STW that are scheduled to be transmitted in time

slot t. Importantly, the scheduling actionyi
t is constrained to be in the feasible scheduling action setPi(T i

t , β
i
t),

which depends on the traffic stateT i
t and the transmission rate supported by the PHY layerβi

t. In particular, the

following three constraints must be met:

1) Buffer: Every component ofyi
t must satisfy0 ≤ yit,j ≤ bit,j .

2) Packet: The total number of transmitted packets must satisfy‖yi
t‖1 =

∑
j∈F i

t
yit,j ≤

Rβi
t

P
, whereβi

t = βi0
t in the

direct transmission mode, i.e., whenzit = 0, andβi
t = βi,coop

t in the cooperative transmission mode, i.e., when

2In a typical hybrid video coder like H.264/AVC or MPEG-2, I, P, and B indicate the type of motion prediction used to exploittemporal
correlations between video frames. I-frames are compressed independently of the other frames, P-frames are predictedfrom previous frames,
and B-frames are predicted from previous and future frames.
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zit = 1. Note thatβi
t depends on a subset of the elements inHt as described later in Section III.3

3) Dependency: If there exists a framek that has not been transmitted, and framej depends on framek (denoted

by k ≺ j), then
(
bit,k − yit,k

)
yit,j = 0. In other words, all packets associated withk must be transmitted before

transmitting any packets associated withj.

The sequence of traffic states{T i
t : t ∈ N} can be modeled as a controllable Markov chain with transition

probability functionp(T i
t+1 | T

i
t ,y

i
t).

III. C OOPERATIVE PHY LAYER TRANSMISSION

In this subsection, with reference to the uplink scenario, we describe how the direct transmission rateβi0
t and the

cooperative transmission rateβi,coop
t depend on a subset of the elements in the channel state matrixHt.

Let us first consider the directi → ℓ link with instantaneous channel gainhiℓt and data rateβiℓ
t ∈ B (bits/second)

corrupted by additive white Gaussian noise. The bit error probability (BEP)P iℓ
t (hiℓt , β

iℓ
t ) at the output of the maximum

likelihood (ML) detector of nodeℓ, under the assumption that a Gray code is used to map the information bits into

QAM symbols and the signal-to-noise ratio (SNR) is sufficiently high, can be upper bounded as (see [20])

P iℓ
t (hiℓt , β

iℓ
t ) ≤ 4 exp

[
−

3 γ |hiℓt |
2

2
(
2β

iℓ
t Ts − 1

)
]
, (III.1)

where γ , Es

N0
is the average SNR per symbol expended by the transmitter andN0 is the noise power spectral

density. Each direct transmission is subject to a PER threshold at the MAC sublayer, which leads to a BEP constraint

P iℓ
t (hiℓt , β

iℓ
t ) ≤ BEP at the PHY layer. Consequently, the achievable data rateβiℓ

t under the BEP constraint is

βiℓ
t =

1

Ts

⌊
log2

(
1 + Γ |hiℓt |

2
)⌋

, where Γ ,
3 γ

2
∣∣loge

(
BEP
4

)∣∣ . (III.2)

The data rateβi0
t over the link between the source and the AP is obtained using (III.2) by settingℓ = 0. In this case,

the number of symbols required to transmit a packet ofP bits is equal toKi0
t , ⌈P/(βi0

t Ts)⌉. Thus, neglecting

receive and processing energy consumption, the energy required for a direct transmission of one packet is equal to

E i0
t , Ki0

t Es =
P Es
βi0
t Ts

= P
Ps

βi0
t

(Joules). (III.3)

It is worth noting that the energy expended in direct mode is inversely proportional to the achievable data rateβi0
t .

3We do not includexi
t in the packet constraint‖yi

t‖1 =
∑

j∈Fi
t
yi
t,j ≤

Rβi
t

P
becausexi

t is not known at the time the scheduling decision

yi
t is determined. Once the scheduling decision is determined,the resource allocationxi

t is determined asxi
t = P

Rβi
t

‖yi
t‖1 (see (IV.5)).

Importantly, the stage resource constraint ensures that the scheduling decisionsyi
t,∀i ∈ {1, . . . ,M}, are selected such that

∑M

i=1
xi
t ≤ 1.
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At this point, let us consider the cooperative mode. Becauseof possible error propagation, the end-to-end BEP for

a two-hop cooperative transmission is cumbersome to calculate exactly with decode-and-forward relays; therefore,

the relationship that tiesβi,1
t , βi,2

t , and the relevant channel state information, and that guarantees a certain reliability

of the overall link, is not as simple as (III.2). To significantly simplify the computation ofβi,1
t and βi,2

t , we use

two different BEP thresholdsBEP1 andBEP2 for the first and second hops, respectively. The thresholdBEP1 is

typically a large percentage of the total error rate budget,sayBEP1 = 0.9BEP , andBEP2 = BEP − BEP1,

since the first link is the bottleneck in decode-and-forwardrelaying. Indeed, the performance at each relay is that of

a single-input single-output system transmitting over a fading channel. On the other hand, the transmission over the

second link (from the recruited relays to the destination) can be regarded as a distributed multiple-input single-output

system operating over a fading channel; consequently, the performance at the destination, which can take advantage

from cooperative diversity, is significantly better than that of each source-to-relay link, even when a small number

of relays are recruited. Moreover, due to this fact and sincethe exponential function in (III.1) decays fast as a

function of its argument, we reasonably assume that the end-to-end BEP at the output of the ML detector of the AP

is dominated by the BEP over the worst source-to-relay channel, i.e., the link for which|hiℓt | is the smallest one.

Under this assumption, accounting for (III.2), we can estimateβi,1
t in Phase I as

βi,1
t =

1

Ts

⌊
log2

(
1 + Γ1 min

ℓ∈Ci
t

|hiℓt |
2

)⌋
, (III.4)

whereΓ1 is obtained fromΓ by replacingBEP with BEP1. In this phase, which lastsRρit x
i
t seconds, the number

of symbols needed to transmit a packet ofP bits is equal toKi,1
t = ⌈P/(βi,1

t Ts)⌉ and, thus, it must result that

Ki,1
t Ts =

P

βi,1
t

= Rρit x
i
t =⇒ P = Rβi,1

t ρit x
i
t . (III.5)

Supposing that a subsetCi
t of the available nodes are recruited to serve as relays in Phase II, these nodes, along

with theith user, cooperatively forward the source message by using arandomized STBC rule [16]. More specifically,

assuming error-free demodulation at the decode-and-forward relays, ifait ∈ CK
i,2
t gathers the block of i.i.d. QAM

source symbols to be transmitted in Phase II of time slott, then at theℓth node, for eachℓ ∈ {i} ∪ Ci
t, the vector

ait is mapped onto anorthogonalspace-time code matrixG(ait) ∈ CQ×L [21], whereQ is the block length and

L denotes the number of antennas in the underlying space-timecode. During Phase II, theℓth node transmits a

linear weighted combination of the columns ofG(ait), with the weights of theL columns ofG(ait) contained in the

vectorrℓ ∈ CL. We denote withR , (rℓ | ℓ ∈ Ci
t) ∈ CL×N i

t the weight matrix of all the cooperating nodes, where
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N i
t ≤ M is the cardinality ofCi

t.
4 Under the randomized STBC rule, the AP observes the space-time coded signal

G(ait) with equivalentchannel vector̃hi,2
t , hi0t ri + Rh

i,2
t , wherehi,2

t , (hℓ0t | ℓ ∈ Ci
t)

T ∈ CN i
t collects all the

channel coefficients between the relay nodes and the AP (see Fig. 1). Note that the AP only needs to estimateh̃
i,2
t

for coherent ML decoding and that the randomized coding is decentralized since theℓth relay choosesrℓ locally. By

capitalizing on the orthogonality of the underlying STBC matrix G(ait), the BEPP i,2
t (h̃i,2

t , βi,2
t ) over the second hop

at the output of the ML detector of the AP using data rateβi,2
t (bits/second) can be upper bounded as in (III.1) by

replacing|hiℓt |
2 andβiℓ

t with ‖h̃i,2
t ‖2 andβi,2

t , respectively. By imposing the BEP constraintP i,2
t (h̃i,2

t , βi,2
t ) ≤ BEP2,

the data rateβi,2
t attainable on the second hop of the cooperating link is givenby

βi,2
t =

1

Ts

⌊
log2[1 + Γ2 (|h

i0
t |

2 + ‖Rh
i,2
t ‖2)]

⌋
, (III.6)

whereΓ2 is obtained fromΓ in (III.2) by replacingBEP with BEP2. In this phase, which lastsR (1 − ρit)x
i
t

seconds, the number of symbols needed to transmit a packet ofP bits is equal toKi,2
t = ⌈P/(βi,2

t Ts)⌉ and, thus, it

must result that

QTs =
P

Rc β
i,2
t

= R (1− ρit)x
i
t =⇒ P = RRc β

i,2
t (1− ρit)x

i
t , (III.7)

whereRc , Ki,2
t /Q ≤ 1 is the rate of the orthogonal STBC rule. From (III.5) and (III.7), the transmission time for

the two phase communication mode is

Rxit =
P

βi,1
t

+
P

Rc β
i,2
t

= P

(
1

βi,1
t

+
1

Rc β
i,2
t

)

︸ ︷︷ ︸
1

β
i,coop
t

=
P

βi,coop
t

, (III.8)

which also unveils what is the functional dependence ofβi,coop
t on βi,1

t andβi,2
t . Moreover, from (III.5) and (III.7),

it is required that

Rβi,1
t ρit x

i
t = RRc β

i,2
t (1− ρit)x

i
t =⇒ ρit =

1

1 + βi,1
t /(βi,2

t Rc)
, (III.9)

which shows that, given the STBC rule, the time fractionρit is determined by the data rates in Phase I and II.

The cooperative mode is activated only if the cooperative transmission is more data-rate efficient than the direct

communication, i.e., only ifβi,coop
t > βi0

t , which from (III.8) leads to the following condition

1

βi,1
t

+
1

Rc β
i,2
t

<
1

βi0
t

. (III.10)

4One specific code of the STBC matrix is always assigned to the source itself, which transmits over the cooperative link every time
cooperation is activated. This can be accounted for by simply settingri = (1, 0 . . . , 0)T and replacing the first row ofR with (0 . . . , 0),
whereas the remaining entries ofR are identically and independently generated random variables with zero mean and variance1/L.
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If condition (III.10) is fulfilled, then the opportunistically optimal cooperation decision iszit = 1 ; otherwise, theith

source transmits to the AP in direct mode andzit = 0.

It is interesting to evaluate the energy consumption in the case of a cooperative transmission. Neglecting receive

and processing energy consumption, the energy expended by the sourcei for transmission of one packet is equal to

E i,source
t =

(
Ki,1

t +Ki,2
t

)
Es = P

Ps

β
i,coop
t

(Joules), (III.11)

whereas the energy expended by each recruited relay node fortransmitting one packet of theith source is given by

E i,relay
t = Ki,2

t Es = P
Ps

βi,2
t Rc

(Joules). (III.12)

It is noteworthy from (III.3) and (III.11) that, since cooperation is activated only whenβi,coop
t > βi0

t , the energy

expended by the source nodei for a cooperative transmission is smaller than that required by the same node for a

direct transmission. On the other hand, the energy (III.12)expended by the relays is inversely proportional to the

achievable data rate in Phase II. Therefore, provided thatβi,2
t Rc ≫ βi0

t , over a sufficiently long period, the energy

expenditure in relaying another node’s data can be partially compensated for when the recruited relay acts as a source

in the network. The total energy expended in the network to transmit‖yi
t‖1 packets for useri can be expressed as

E i
t

(
yi
t, z

i
t , C

i
t

)
=





‖yi
t‖1 E

i0
t , if zit = 0 ;

‖yi
t‖1
(
E i,source
t +N i

t E
i,relay
t

)
, if zit = 1 .

(III.13)

The energy consumption in the direct and cooperative modes is numerically compared in Section VI.

IV. COOPERATIVE MULTI -USER V IDEO TRANSMISSION

Recall thatT i
t denotes theith user’s traffic state andHt collects the channel coefficients among all the nodes and

the AP. Hence, the global state can be defined asst ,
(
T 1
t ,T

2
t , . . . ,T

M
t ,Ht

)
∈ S, whereS is a discrete set of all

possible states.5 Since: (i) theith user’s traffic state evolves as a Markov process controlled by its scheduling action

yi
t; (ii) the ith user’s traffic state transition is conditionally independent of the other users’ traffic state transitions

givenyi
t; and (iii) the state of eachi → ℓ link hiℓt is assumed to be i.i.d. with respect to time; the sequence of global

states{st : t ∈ N} can be modeled as a controlled Markov process with transition probability function

p(st+1 | st,yt) = p (Ht+1)

M∏

i=1

p(T i
t+1 | T

i
t ,y

i
t) , (IV.1)

5To have a discrete set of network states, the individual linkstates inHt are quantized into a finite number of bins (see [24] for details).
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whereyt , ({y1
t }

T , {y2
t }

T , . . . , {yM
t }T )T collects the scheduling actions of all the video users.

Under the scheduling actionyi
t, the ith user obtains the immediate utility

ui(T i
t ,y

i
t) ,

∑

j∈F i
t

qij y
i
t,j , (IV.2)

which is the total video quality improvement experienced bythe ith user by taking scheduling actionyi
t in traffic

stateT i
t under the assumption that quality is incrementally additive [17].

The objective of the MU optimization is the maximization of the expected discounted sum of utilitieswith respect

to the joint scheduling actionyt and the cooperation decision vectorzt , (z1t , z
2
t , . . . , z

M
t )T taken in each statest.

Due to the stationary Markovian transition probability function, the optimization can be formulated as an MDP that

satisfies the following dynamic programming equation6

U∗(s) = max
y,z

{
M∑

i=1

ui(T i,yi) + α
∑

s′∈S

p(H′)

M∏

i=1

p(T i′ | T i,yi)U∗(s′)

}
,∀s, (IV.3)

subject to

yi ∈ Pi(T i, βi) and
M∑

i=1

xi ≤ 1 (IV.4)

wherexi is the time-fraction allocated to theith user given its scheduling actionyi and transmission rateβi, i.e.,

xi =
P

Rβi
‖yi‖1 , (IV.5)

the parameterα ∈ [0, 1) is the “discount factor”, which accounts for the relative importance of the present and future

utility, andPi(T i,H) is the set of feasible scheduling actions given the traffic stateT i and channel state matrixH.

From Theorem 6.2.5 in [26], we know that there exists a stationary optimal policy that is the global optimal solution

to (IV.3) .

Given the distributionsp(H) andp(T i′ | T i,yi) for all i, the above MU-MDP can be solved by the AP using value

iteration or policy iteration [18]. However, there are two challenges associated with solving the above MU-MDP.

First, the complexity of solving an MDP is proportional to the cardinality of its state-spaceS, which, in the above

MU-MDP, scales exponentially with the number of users, i.e., M , and with the number of links inH, i.e., M2.

Hence, even for moderate sized networks, it is impractical to compute, or even to encode,U∗(s). In subsection IV-A,

we show that the exponential dependence on the number of links in H can be eliminated. Second, in the uplink

6In this section, since we model the problem as a stationary MDP, we omit the time index when it does not create confusion. Inplace of
the time index, we use the notation(·)′ to denote a state variable in the next time step (e.g.T i′, H′, s′).
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scenario, the traffic state information is local to the users, so neither the AP nor the users have enough information

to solve the above MU-MDP. In subsection IV-B, we summarize the findings in [10] that show that the considered

optimization can be approximated to make it amenable to a distributed solution. Additionally, this distributed solution

eliminates the exponential dependence on the number of users. Note that the simplification in subsection IV-A is

very important, because only after obtaining this result does it become possible to use the solution in [10].

A. Reformulation with simplified network state

The only reason to include the detailed network state information H and the cooperation decisionz in the MU-

MDP is to make foresighted cooperation decisions, which take into account the impact of the immediate cooperation

decision on the expected future utility of the users. However, if we can show that the optimal opportunistic (i.e.,

myopic) cooperation decision is also long-term optimal, then the detailed network state information does not need

to be included in the MU-MDP. The following theorem shows that the optimal opportunistic cooperation decision,

which maximizes the immediate transmission rate, is also long-term optimal.

Theorem 1 (Opportunistic cooperation is optimal):If utilizing cooperation incurs zero cost to the source and

relays, then the optimal opportunistic cooperation decision, which maximizes the immediate throughput, is also

long-term optimal.

Proof: See Appendix I.

To intuitively understand why maximizing the immediate transmission rate at the PHY layer is long-term optimal,

consider what happens when a user chooses not to maximize itsimmediate transmission rate (i.e., does not utilize

the optimal opportunistic cooperation decision). Two things can happen: either less packets are transmitted overall

because of packet expirations; or, the same number of packets are transmitted overall, but their transmission incurs

additional resource costs because transmitting the same number of packets at a lower rate requires more resources

[see (IV.5)]. In either case, the long-term utility is suboptimal. A consequence of Theorem 1 is that the cooperation

decision vectorz does not need to be included in the MU-MDP. Instead, it can be determined opportunistically by

selectingz to maximize the immediate transmission rate. Most importantly, this means that the MU-MDP does not

need to include the high-dimensional network state.

We now make two remarks regarding Theorem 1 so that its consequences are not misinterpreted. First, in the

introduction, we noted that maximizing throughput is a suboptimal multiple access strategy for wireless video. This

does not contradict Theorem 1 because it only states that thecooperation decisionshould be made opportunistically
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to maximize the immediate transmission rate. Indeed, myopic (opportunistic) resource allocation and scheduling is

suboptimal because it does not take into account the dynamicvideo data attributes (i.e., deadlines, priorities, and

dependencies). Second, although the users’ MDPs do not needto include the high-dimensional network state, the

optimal resource allocation and scheduling strategies still depend on it; however, instead of trackingHt, it is sufficient

to track the users’ optimal opportunistic transmission rates provided by the PHY layer, i.e.,βi
t for all i. Under the

assumption that the channel coefficients are i.i.d. random variables with respect tot, βi
t can also be modeled as an

i.i.d. random variable with respect tot. We let p(βi) denote the probability mass function (pmf) from whichβi
t is

drawn. We note thatp(βi) depends onp(H) and the deployed PHY layer cooperation algorithm.

Based on the second remark, we can simplify the maximizationproblem in (IV.3). Let us define theith user’s

state assi ,
(
T i, βi

)
∈ Si and redefine the global state ass , (s1, . . . , sM )T . In Section V, we describe howβi is

determined, but for now we will take for granted that it is known. Because the optimization does not need to include

the cooperation decision, the maximization of the expectedsum of discounted utilities in (IV.3) can be simplified by

only maximizing with respect to the scheduling actiony in each states, that is,

U∗(s) = max
y

{
M∑

i=1

ui(T i,yi) + α
∑

s′∈S

M∏

i=1

p(si′ | si,yi)U∗(s′)

}
,∀s, (IV.6)

subject to

yi ∈ Pi(T i, βi) and
M∑

i=1

xi ≤ 1, (IV.7)

wherep(si′ | si,yi) = p(βi′) p(T i′ | T i,yi).

B. Distributed solution

Similar to [10], (IV.6) can be reformulated as an unconstrained MDP using Lagrangian relaxation. The key idea is

to introduce a Lagrange multiplierλs associated with the stage resource constraint
∑M

i=1 x
i ≤ 1 in each global state

s because every global state has a different resource-quality tradeoff. The resulting dual solution has zero duality

gap compared to the primary problem [i.e., (IV.6)], but it still depends on the global state so it is not amenable to

a distributed solution. However, by imposing a uniform resource priceλs = λ, ∀s ∈ S, which is independent of the

multi-user state, the resulting MU-MDP can be decomposed into M MDPs, one for each user [10].7 These local

7We note that the resource price is only used to efficiently allocate the limited wireless resources among the users; it is not used to generate
revenue for the AP. In other words, it is a congestion price rather than a real price.
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MDPs satisfy the following dynamic programming equation

U i,∗(si, λ) = max
yi

[
ui(T i,yi)− λ

(
xi −

1

M

)
+ α

∑

si′∈S

p(si′ | si,yi)U i,∗(si′, λ)

]
, (IV.8)

Ûλ∗

(s) = min
λ≥0

M∑

i=1

U i,∗(si, λ) , (IV.9)

subject toyi ∈ Pi(T i, βi). Importantly, theith user’s dynamic programming equation defines the optimal scheduling

action as a function of theith user’s state, rather than the global states. In this paper, theith user solves (IV.8)

offline using value iteration; however, it can be easily solved online using reinforcement learning as in [10] and [19].

Also, note that due to the distributed nature of the proposedalgorithm, the stage resource constraint
∑M

i=1 x
i
t ≤ 1 is

not guaranteed to be satisfied during convergence or at steady-state. Because the stage resource constraint may be

violated, it must be enforced separately by the AP, which we assume normalizes the requested resource allocations

and, subsequently, has the users recompute their scheduling policies to satisfy the new allocations.

Although the optimization can be decomposed across the users, the optimal resource priceλ still depends on all

of the users’ resource demands. Hence,λ must be determined by the AP in both the uplink and downlink scenarios.

Specifically, the resource price can be numerically computed by the AP using the subgradient method. The subgradient

with respect toλ is given by
∑M

i=1X
i − 1

1−α
, whereXi = E

[∑+∞
t=0 α

txit | s
i
0

]
is the ith user’s expected discounted

accumulated resource consumption, which can be calculatedas described in [10]. Importantly,Xi can be computed

locally by theith user in the uplink scenario and by the AP in the downlink scenario. Using the subgradient method,

the resource price is updated as

λk+1 =

[
λk + µk

(
M∑

i=1

Xi −
1

1− α

)]+
, (IV.10)

whereµk is a diminishing step size. Since the focus of this paper is onthe interaction between the multiuser video

transmission and the cooperative PHY layer, we refer the interested reader to [10] for complete details on the dual

decomposition outlined in this subsection, and the derivation of the subgradient with respect toλ.

We note that a similar decomposition has recently been proposed for energy-efficient uplink scheduling with delay

constraints in multiuser wireless networks using a different MU-MDP framework [19]. Besides the fact that [19] does

not consider physical layer cooperation or heterogeneous traffic characteristics, there is one significant difference

between the decomposition in [19] and the one adopted in thispaper. Specifically, the TDMA-like protocol in [19]

assumes that only one user can transmit in each time slot, whereas we consider a TDMA-like protocol in which each
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time slot is divided into different length transmission opportunities for each user. Moreover, in [19], every user has

a unique Lagrange multiplier associated with its average buffer delay constraint. In contrast, in our decomposition,

all users have the same Lagrange multiplier, which regulates the resource division among the users, rather than

their individual delay constraints. Note that, in this paper, delay constraints are included in the application model.

Importantly, Theorem 1 applies to the MU-MDP formulation in[19] and therefore the recruitment protocol proposed

in Section V can be used to integrate cooperation into [19]. In other words, the novelty and technical contributions

of this paper are independent of the dual decomposition in [10], which we only use for illustrative purposes.

V. RECRUITMENT PROTOCOL

With reference to the uplink scenario, we define our opportunistic cooperative strategy to select distributively the

set of cooperative relaysCi
t and make the decisionzit at the AP. The downlink case is a minor variation.

Importantly, the AP can exactly evaluateβi,2
t in (III.6) because it can estimatehi0t and Rh

i,2
t via training as

mentioned in Section III. However, the trouble in recruiting relays on-the-fly is that the AP and the relays cannot

directly computeβi,1
t given by (III.4), since they cannot estimate the channel coefficients hiℓt , for all ℓ ∈ Ci

t. Some

MAC randomized protocols have recently been proposed [22],[23], which get around the problem that the AP and

the relays do not have the necessary channel state information to determineβi,1
t . However, such protocols require

the exchange and/or the tracking of a large amount of networkparameters that may incur unacceptable delays in a

wireless video network. In particular, the first- and second-hop data rates are computed in [23] by the source node

using the average PER evaluated by simulations. To quickly setup the cooperative transmission and, thus, reduce the

delays, we propose a much simpler recruitment scheme that isbased on the closed-form formulas (III.4) and (III.6).

The proposed four-way protocol is reminiscent of the request-to-send (RTS) and clear-to-send (CTS) handshaking

used in carrier sense multiple access with collision avoidance (CSMA/CA), which is extended to include a helper-

ready to send (HTS) control message that is cooperatively transmitted by the relays using randomized STBC and a

cooperative recruitment signal (CRS) that is sent by the AP to recruit relays. The idea of sending the HTS frame in

cooperative mode has been originally proposed in [23]. However, apart from the use of the HTS control message,

the proposed protocol is different from that of [23] becausewe use a completely different recruitment policy.

All the control frames are transmitted at the base rateβ0 such that they can be decoded correctly, and the thresholds

BEP1 andBEP2, as well asL andRc, are fixed parameters that are known at all the nodes. Fig. 3 illustrates the

signaling protocol for time slott, which consists of the nine steps detailed in Table I. We would like to highlight
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that, similar to the data transmitted in Phase II, the HTS message is a cooperative signal, i.e., all relays jointly deliver

the HTS frame using randomized STBC at the same time and, hence, simultaneous transmissions do not cause a

collision. With reference to Table I, the key observation isthat the selection of the setCi
t by virtue of (VII.4) is

done in a distributed way and, moreover, by simply having access to the channel state from the sourcei to itself,

i.e., hiℓt , the ℓth candidate cooperative node canautonomouslydetermine if, by cooperating, it can improve the data

rate of nodei. Another important observation is that the recruitment of the cooperative nodes and the assignment of

the data rates requires only four control messages for each source. In particular, the control information exchange is

independent of the number of recruited relays thanks to the randomization of the cooperative transmission. Moreover,

the two parametersξt andL need to be chosen appropriately. The best choice forξt andL requires global network

information. A learning framework would be very appropriate for their selection but we defer the treatment of this

aspect to future work. Finally, as for the impact ofL on the network performance, it should evidenced that randomized

channels tend to behave statistically like their non-randomized counterparts [16], with deep-fade events that become

as frequent as those ofL independent channels, as long as the number of cooperative nodesN i
t ≥ L+ 1.

VI. N UMERICAL RESULTS

We consider a network with 50 potential relay nodes placed randomly and uniformly throughout the 100 m coverage

range of a single AP as illustrated in Fig. 4. We specify the placement of the video source(s) separately for each

experiment. Letηiℓt denote the distance in meters between theith andℓth nodes. The fading coefficienthiℓt over the

i → ℓ link is modeled as an i.i.d.CN (0, (ηiℓt )
−δ) random variable, whereδ is the path-loss exponent. Additionally, we

assume that the entries ofR, defined in Section III, are i.i.d.CN (0, 1
L
) random variables, whereL is the length of the

STBC. If an error occurs in the packet transmission, then thepacket remains in the frame buffer to be retransmitted

in a future time slot (assuming the packet’s deadline has notpassed).

Due to space constraints, and because cooperation has the same impact in both uplink and downlink scenarios, we

only present results for cooperative uplink video transmission. In particular, we consider four uplink scenarios:

1) Single source: In this scenario, we assume that a single source node is placed between 10 and 100 m directly to

the right of the AP in Fig. 4. We use this scenario to evaluate the transmission rates in the direct and cooperative

transmission modes at different distances from the AP, and to determine a good self-selection parameterξ.

2) Homogeneous video sources: This scenario mimics a surveillance application in which three cameras capture

correlated video content in an outdoor environment and transmit it to the AP. The video sources are placed to the
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right of the AP as illustrated in Fig. 7. To simulate correlated content, we assume that each of the three cameras

stream the Foreman sequence (CIF resolution, 30 Hz framerate, encoded at 1.5 Mb/s) offset by several frames.

Using homogeneous sources allows us to isolate the impact ofcooperation on the video streaming performance

by removing the additional layer of complexity introduced by heterogeneous video sources (e.g. different packet

priorities and bit-rates among the video users).

3) Heterogeneous video sources 1: This scenario mimics a network in which users deploy entertainment appli-

cations such as video sharing or video conferencing. To simulate this, we assume that the three video sources

illustrated in Fig. 7 transmit heterogeneous video contentto the AP. Specifically, we assume that video user 1

streams the Coastguard sequence (CIF, 30 Hz, 1.5 Mb/s), video user 2 streams the Mobile sequence (CIF, 30

Hz, 2.0 Mb/s), and video user 3 streams the Foreman sequence (CIF, 30 Hz, 1.5 Mb/s).

4) Heterogeneous video sources 2: This is the same as the previous scenario, but with video user 2 streaming the

Foreman sequence and video user 3 streaming the Mobile sequence.

We note that the proposed framework can be applied using any video coder to compress the video data. However,

for illustration, we use a scalable video coding scheme [25], which is attractive for wireless streaming applications

because it provides on-the-fly application adaptation to channel conditions, support for a variety of wireless receivers

with different resource and power constraints, and easy prioritization of video packets.

In our results, we deploy the proposed randomized STBC cooperation protocol outlined in Table I and determine

the optimal resource allocation and scheduling decisions using the distributed optimization introduced in Section IV-B.

The relevant simulation parameters are given in Table II. Note that, in the homogeneous and heterogeneous scenarios

described above, we simulate a network with a “high” transmission rate, using the symbol rate1
Ts

= 1250000, and

a network with a “low” transmission rate, using the symbol rate 1
Ts

= 625000 symbols/second.

A. Transmission rates and energy consumption

In this subsection, we consider the single source scenario described above. Fig. 5 illustrates the performance of

the proposed cooperation protocol for time-invariant self-selection parameter valuesξt = ξ ∈ {0.1, 0.2, . . . , 0.5}, and

the performance of direct transmission, given a single source transmitting to the AP. Note that these results hold

regardless of the symbol rate. In particular, the “transmission rate” in Fig. 5(a) is presented in terms of the spectral

efficiency (bits/second/Hz); the probability of cooperation in Fig. 5(b) and the average number of recruited relays in

Fig. 5(c) only depend on the spectral efficiency; and the energy results reported in Figs. 5(d-f) are normalized by
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setting the symbol energyEs = Ts

P
(or, equivalently,Ps =

1
P

) in (III.3), (III.11), and (III.12).

From Fig. 5(a), it is clear that nodes further from the AP utilize cooperation more frequently than nodes closer

to the AP. This is because, on average, distant nodes have thefeeblest direct signals to the AP due to path-loss and,

therefore, have the most to gain from the channel diversity afforded to them by cooperation. It is also clear from

Fig. 5(a) that cooperation is utilized more frequently as the self-selection parameterξ increases. This is because, as

illustrated in Fig. 5(c), more relays satisfy the self-selection condition in step 5 of Table I for larger values ofξ.

However, larger values ofξ yield relay nodes for whichβ
i0
t

βiℓ
t

is large, which leads to a bad transmission rate over

the bottleneck hop-1 cooperative link. Due to this poor bottleneck rate and the large number of recruited relays, the

average transmission rate shown in Fig. 5(b) declines forξ > 0.2 even while the total energy consumption increases

as illustrated in Fig. 5(d). In contrast, lower values of theself-selection parameter (e.g.ξ < 0.2) lead to too few

nodes being recruited to achieve large cooperative gains, but yield lower energy consumption. Interestingly, the same

properties of relay nodes that are desirable for achieving the best transmission rate – a balance between the number

and quality of relays – is also important for achieving a highthroughput-to-energy ratio. For example, Fig. 5(e) shows

us that at 100 m from the AP, the average throughput-to-energy ratio for cooperative transmission withξ = 0.2 is a

little less than 0.8, which is close to the throughput-to-energy ratio of a direct transmission, which is 1 at 100 m.

Although the average network energy required to support a cooperative transmission is larger than that required for a

direct transmission, this increase is moderate compared tothe amount of energy the source node would have to expend

in order to achieve the same transmission rate as the cooperative transmission, i.e., to attainβi0
t = β

i,coop
t requires a

large increase in the transmission power with respect to thecooperative case. This is illustrated in Fig. 5(f), where,

for example, it is shown that transmitting in the direct modeat the rate attainable under cooperative transmission

with ξ = 0.2 requires approximately 13.5 normalized Joules/Packet compared to approximately 3.5 normalized

Joules/Packet in the cooperative case shown in Fig. 5(d).8

In the remainder of our experiments, we let the self-selection parameterξt = ξ = 0.2 because, as illustrated in

Figs. 5(b,e), this value provides a large average transmission rate over the AP’s entire coverage range and a high

throughput-to-energy ratio. Withξ = 0.2, Fig. 7 illustrates the activation frequencies for different relays and Fig. 6

8The results in Fig. 5(f) were obtained by fixing the transmission rate and adapting the symbol energy, which is in contrastto the current
problem formulation in which we fix the symbol energy and adapt the transmission rate. Specifically, we calculated the symbol energyẼs

required to setβiℓ
t = βi,coop

t by rearranging (III.2). Note that we could also forceβi,coop
t = βi0

t to achieve lower energy consumption at the
same transmission rate as the direct mode.
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illustrates the average energy consumed by the source and relay nodes. Notice that, under a cooperative transmission,

the source node actually uses less power than under a direct transmission, which partially compensates for the extra

energy it may expend acting as a relay for other nodes.

B. Transmission rate, resource price, and resource utilization

Fig. 8 illustrates the average transmission rates achievedby the video users in the homogeneous and heterogeneous

scenarios in networks that support high and low transmission rates. Recall that the resource costxit incurred by user

i is inversely proportional to the transmission rate [see (IV.5)], which decreases as the distance to the AP increases

due to path loss. Hence, when only direct transmission is available, user 3 tends to resign itself to a low average

transmission rate because the cost of using resources is toohigh. Cooperation increases the average transmission

rate, thereby providing user 3 lower cost access to the channel to transmit more data.

In the homogeneous scenario illustrated in Fig. 8(a), cooperation tends to equalize the resource allocations to the

three users (this is especially evident in the cooperative case with a high transmission rate). This is because the

homogeneous users have identical utility functions; thus,when sufficient resources are available, it is optimal for

them to all operate at the same point of their resource-utility curves. In contrast, when heterogeneous users with

different utility functions are introduced, the transmission rates change to reflect the priorities of the different users’

video data. Observing Fig. 8(b,c), it is clear that the additional resources afforded by cooperation tend to go to the

highest priority video user, who, in our simulations, is theuser streaming the Mobile sequence.

Recall that users autonomously optimize their resource allocation and scheduling actions given the resource priceλ

announced by the AP. Table III illustrates the optimal resource prices in the homogeneous and heterogeneous scenarios

along with the average network resource utilization, i.e. the average of
∑M

i=1 x
i
t. There are several interesting results

in Table III. First, the average network resource utilization is often considerably less than the total available resources.

This is due to the distributed nature of the resource allocation and scheduling algorithm, which requires users to

be conservative in their resource usage to ensure feasible allocations. Second, in the cooperative transmission mode,

the resource price tends to increase and the utilization tends to decrease when going from a high rate to a low rate

network, regardless of the streaming scenario. The resource price increases because the network supports lower rates,

but the demand stays the same, which increases congestion. The utilization decreases because lower rates yield a

coarser set of feasible resource allocations for each user (see (IV.5)). Third, in the high rate network, the resource price

tends to decrease and the utilization tends to increase whengoing from the direct to the cooperative transmission
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mode, regardless of the streaming scenario. The resource price decreases because cooperation floods the network

with resources without significantly impacting demand, which reduces congestion. The utilization increases because

the cooperative transmission mode supports higher transmission rates, which yield a finer set of feasible resource

allocations for each user (see (IV.5)). Finally, in the low rate network, the resource price and utilization tend to

increase when going from the direct to the cooperative transmission mode. In contrast to the high rate network, the

resource priceincreasesbecause users that resigned themselves to very low transmission rates in the direct scenario

suddenly demand resources when cooperation is enabled. Theresource price increases in our simulations because the

enlarged demand pool exceeds the additional supply of resources that is introduced by cooperation. In other words,

users that would like to transmit video, but are too far from the AP for a direct transmission, are essentially absent

from the network when only direct transmission is available, and therefore do not significantly impact the resource

price and resource utilization; however, when cooperationis enabled, these users are suddenly within range of the

AP, and will therefore demand resources, which increases congestion. As in the other cases, the utilization increases

because the transmission rate increases.

C. Discounted utility and video quality comparison

Table IV compares the expected value of the objective function in (IV.9) (with respect to the stationary distribution

over the states) obtained in the homogeneous and heterogeneous scenarios. Because the objective function includes a

Lagrangian cost term, it is not always indicative of the corresponding video quality. For this reason, we also include

Table V to compare the video quality obtained in the homogeneous and heterogeneous scenarios, where video quality

is measured in terms of peak-signal-to-noise ratio (PSNR indB) of the luminance channel. In the network that

supports a high transmission rate, the user furthest from the AP (user 3) benefits on the order of 5-10 dB PSNR

from cooperation, while the video user closest to the AP (user 1) is penalized by less than 0.4 dB PSNR. In the

network that only supports low transmission rates, user 3 goes from transmitting too little data to decode the video

(denoted by “− − −”) to transmitting enough data to decode at low quality, while penalizing user 1 by less than

0.8 dB PSNR. Note that these PSNR results implicitly reflect the end-to-end delay from the source, through the

relays, to the destination. This is because the sophisticated traffic model in subsection II-B accounts for the fact that

frames that are not entirely received before their deadlines, and frames that depend on them, cannot be decoded and

therefore do not contribute to the received video quality.
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VII. C ONCLUSION

We introduced a cooperative multiple access strategy that enables nodes with high priority video data to be

serviced while simultaneously exploiting the diversity ofchannel fading states in the network using a randomized

STBC cooperation protocol. We formulated the dynamic multi-user video transmission problem with cooperation as

an MU-MDP and we used Lagrangian relaxation with a uniform resource price to decompose the MU-MDP into

local MDPs at each user. We analytically proved that opportunistic (myopic) cooperation strategies are optimal, and

therefore the users’ local MDPs only need to determine theiroptimal resource allocation and scheduling policies

based on their experienced cooperative transmission rates. Subsequently, we proposed a randomized STBC cooperation

protocol that enables nodes to opportunistically and distributively self-select themselves as cooperative relays. Finally,

we experimentally showed that the proposed cooperation strategy significantly improves the video quality of nodes

with feeble direct links to the AP, without significantly penalizing other users, and with only moderate increases in

total network energy consumption.

APPENDIX I: PROOF OFTHEOREM 1

The transmission rateβi is a function of the cooperation decisionzi and the channel stateH, i.e., we can write

βi = βi
(
H, zi

)
. Thus, the cooperation decision impacts the immediate utility because it constrains the set of feasible

scheduling actionsPi
(
T i, βi

)
through the packet constraint‖yi‖1 ≤ Rβi

P
.

Let zi∗opp = argmaxzi

{
βi
(
H, zi

)}
andβi∗

opp = maxzi

{
βi
(
H, zi

)}
denote the optimal opportunistic cooperation

decision and the maximum transmission rate, respectively.Selecting the cooperation decision that maximizes the

immediate transmission rate enlarges the set of feasible scheduling actions, i.e.,Pi
(
T i, βi

)
⊆ Pi

(
T i, βi∗

opp

)
, for all

βi ≤ βi∗
opp. We now show that the optimal opportunistic cooperation decision enables a user to maximize its long-term

utility for any α ≥ 0. Let uiλ
(
T i, βi,yi

)
=
∑

j∈F i qijy
i
j − λ

(
xi − 1

M

)
denote the utility less the cost, wherexi is

given by (IV.5). Under the optimal opportunistic cooperation decision, we have

U i,∗
λ

(
si
)

= max
yi∈Pi(T i,βi∗

opp)

{
uiλ
(
T i, βi∗

opp,y
i
)
+ α

∑

si′

p
(
si′|si,yi

)
U i,∗
λ

(
si′
)
}

(VII.1)

≥ max
yi∈Pi(T i,βi)

{
uiλ
(
T i, βi,yi

)
+ α

∑

si′

p
(
si′|si,yi

)
Ū i,∗
λ

(
si′
)
}

= Ū i
λ

(
si
)
, (VII.2)

where the inequality is due to the fact thatPi
(
T i, βi

)
⊆ Pi

(
T i, βi∗

opp

)
for all βi ≤ βi∗

opp. Thus, the optimal

opportunistic cooperative decision maximizes the long-term utility.
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Fig. 1. An uplink wireless video network with cooperation. Adownlink wireless video network with cooperation can be visualized by

switching the positions of node 1 and the access point.
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Fig. 2. (a) Illustrative DAG dependencies and scheduling time window using IBPB GOP structure. The schedulable frame sets defined by

the scheduling time windowW areFt = {1, 2, 3}, Ft+1 = {2, 3, 4, 1}, Ft+2 = {4, 1, 2, 3}, Ft+3 = {2, 3, 4, 1}, etc. Clearly,Ft is periodic

with period T = 3 excluding the initial timet, and each GOP containsN = 4 frames. (b) Traffic state detail for schedulable frame set

Ft = {1, 2, 3}. bj denotes the state of thejth frame’s buffer, wherej ∈ Ft = {1, 2, 3}.
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Fig. 3. Signaling protocol for randomized STBC cooperation.
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TABLE I

THE PROPOSED PROTOCOL FOR RANDOMIZEDSTBCCOOPERATION.

Step 1) Theith source initiates the handshaking by transmitting the RTSframe, which announces its desire to transmit data

symbols and also includes training symbols that are used by the other nodes to estimate the link gains.

Step 2) From the RTS message, the AP estimates the channel coefficientshi0
t and, hence, determinesβi0

t . At the same time, by

passively listening to all the RTS messages occurring in thenetwork, the other nodes estimate their respective channel

parametershiℓ
t , for ℓ ∈ {1, 2, . . . ,M} − {i}, and, thus, determineβ iℓ

t .

Step 3) The AP responds with the CRS message that provides feedback onβi0
t to all the candidate cooperative nodes and the

source, as well as a second parameter0 < ξt < 1, which is used to recruit relays.

Step 4) From the CRS message, theith source learns that a cooperative transmission may take place and, if such a communication

mode will be subsequently confirmed by the AP, the data rate tobe used in Phase I is given by

βi,1
t =

βi0
t

ξt
. (VII.3)

Step 5) After receiving the CRS frame, the candidate cooperative nodes can self-select themselves according to the rule:

Ci
t =

{

ℓ :
βi0
t

β iℓ
t

≤ ξt

}

, (VII.4)

whereβ iℓ
t is defined using (III.2) by replacingBEP with BEP1. The nodes belonging to the formed groupCi

t send

in unison the HTS message using randomized STBC of sizeL as described in Section III, which piggybacks training

symbols that are used by the AP to estimate the cooperative channel vectorRh
i,2
t .

Step 6) After estimating the channel of the cooperative link, the AP computes the data rateβi,2
t by resorting to (III.6) and

verifies the fulfillment of the following condition

1

Rc β
i,2
t

<
1− ξt
βi0
t

. (VII.5)

If (III.7) holds, then, accounting also for (VII.3), it can be inferred that cooperation is better than direct transmission,

i.e., condition (III.10) is satisfied: in this case,zit = 1. Otherwise, cooperation is useless: in this case,zit = 0. Therefore,

the AP responds with a CTS frame, which conveys the followinginformation: (i) the cooperation decisionzit; (ii) if

zit = 1, the data rateβi,2
t in Phase II given by (III.6); (iii) the resource priceλ computed as explained in Section IV.

Step 7) If zit = 1 in the CTS frame, the source proceeds with sending in Phase I its data frame at rate (VII.3); otherwise, if

zit = 0, it transmits in direct mode at the data rateβi0
t .

Step 8) Ifzit = 1 in the CTS frame, along with the source, the self-recruited relays cooperatively transmit in Phase II the data

frame at rateβi,2
t ; otherwise, ifzit = 0, they remain silent.

Step 9) The AP finishes the procedure by sending back to the source an acknowledgement (ACK) message.
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TABLE II

SIMULATION PARAMETERS.

 

Parameter Description Value 

!  Length of the STBC 2 

"#  Rate of orthogonal STBC rule 1 

!  Self-selection parameter 

0.1, 0.2, 

0.3, 0.4, 

0.5 

$  Packet size 8000 bits 

%&$  
Bit error probability target 

(uncoded) 
!"#!  

"  Path loss exponent 3 

$%&&#  
WLAN coverage radius 

(5 dB SNR at boundary) 
100 m 

'  
Number of nodes 

(excluding the AP) 
50 

#  Discount factor 0.80 

"' ()  
Symbol rate 

(symbols per second) 

625000 or 

1250000 

(
!  

Symbol energy 

(normalized) 
(
)

$
 Joules 

Fig. 4. Network topology used for numerical results. There are 50 nodes placed randomly and uniformly throughout the AP’s 100 m coverage

range.
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Fig. 5. Cooperative transmission statistics for differentvalues of the self-selection parameterξ and for different distances from the AP. (a)

Average transmission rate. (b) Probability of cooperationbeing optimal. (c) Average number of recruited relays. (d) Average energy consumed

in the network per packet transmission. (e) Throughput per unit energy. (f) Average energy required by the source to transmit one packet at

the rateβi0
t = βi,coop

t .
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Fig. 6. Average energy consumed by source (Src) during direct and cooperative transmission, and average energy consumed by a relay (Rly)

during cooperative transmission. A self-selection parameter ξ = 0.2 is used for cooperative transmission.

Fig. 7. Video source placement for homogeneous and heterogeneous streaming scenarios. Three video sources are placed 20 m, 45 m, and

80 m from the AP at angles25◦, −30◦, and0◦, respectively. (a,b,c) Relay activation frequencies for video source 1, 2, and 3, respectively,

with self-selection parameterξ = 0.2. The size of the relay is proportional to the frequency with which it is activated as a helper for the

corresponding source.
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Fig. 8. Average transmission rates in different scenarios.(a) Homogeneous video sources. (b,c) Heterogeneous video sources.
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TABLE III

RESOURCE PRICES AND RESOURCE UTILIZATION IN DIFFERENT SCENARIOS.

 

Streaming 

Scenario 

Transmission 

Mode 

Resource Price 

(High / Low) 

Utilization 

(High / Low) 

Homogeneous 

Direct 45.79 / 42.97 0.73 / 0.67 

Cooperative 38.72 / 52.56 0.88 / 0.75 

Change -6.93 / 9.59 0.15 / 0.08 

Heterogeneous 

1 

Direct 51.01 / 53.17 0.66 / 0.68 

Cooperative 48.02 / 71.94 0.89 / 0.77 

Change -2.99 / 18.77 0.23 / 0.09 

Heterogeneous 

2 

Direct 68.24 / 41.48 0.65 / 0.56 

Cooperative 62.61 / 72.86 0.89 / 0.67 

Change -5.63 / 31.38 0.24 / 0.11 

 

TABLE IV

EXPECTED DISCOUNTED AVERAGE UTILITY IN DIFFERENT SCENARIOS.

Streaming 

Scenario 

Transmission 

Mode 

Video User 1 @ 20 m 

(High / Low) 

Video User 2 @ 45 m 

(High / Low) 

Video User 3 @ 80 m 

(High / Low) 

Homogeneous 

 Foreman Foreman Foreman 

Direct 199.1 / 149.6 138.0 / 72.2 35.63 / 5.5 

Cooperative 195.7 / 138.3 179.0 / 90.2 143.5 / 30.7 

Heterogeneous 

1 

 Coastguard Mobile Foreman 

Direct 85.6 / 57.2 306.6 / 176.8 17.6 / 0.3 

Cooperative 94.9 / 40.6 386.1 / 187.4 124.7 / 8.7 

Heterogeneous 

2 

 Coastguard Foreman Mobile 

Direct 76.0 / 67.7 95.8 / 76.4 69.5 / 29.5 

Cooperative 81.7 / 40.2 138.4 / 54.6 257.0 / 81.0 
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TABLE V

AVERAGE VIDEO QUALITY (PSNR)IN DIFFERENT SCENARIOS.

 

Streaming 

Scenario 

Transmission 

Mode 

Video User 1 @ 20 m 

(High / Low) 

Video User 2 @ 45 m 

(High / Low) 

Video User 3 @ 80 m 

(High / Low) 

Homogeneous 

 Foreman Foreman Foreman 

Direct 36.82 dB / 36.51 dB 35.85 dB / 30.20 dB 29.89 dB / --- dB 

Cooperative 36.69 dB / 35.82 dB 36.58 dB / 34.83 dB 36.04 dB / 27.12 dB 

Change -0.13 dB / -0.69 dB 0.73 dB / 4.63 dB 6.15 dB / --- dB 

Heterogeneous 

1 

 Coastguard Mobile Foreman 

Direct 32.30 dB / 31.09 dB 26.74 dB / 24.53 dB 25.94 dB / --- dB 

Cooperative 31.94 dB / 30.89 dB 27.14 dB / 25.8 dB 35.69 dB / 27.12 dB 

Change -0.36 dB / -0.20 dB 0.4 dB / 1.27 dB 9.75 dB / --- dB 

Heterogeneous 

2 

 Coastguard Foreman Mobile 

Direct 31.91 dB / 31.72 dB 35.16 dB / 32.75 dB 21.85 dB / --- dB 

Cooperative 31.56 dB / 30.97 dB 35.72 dB / 32.39 dB 26.53 dB / 22.03 dB 

Change 0.35 dB / -0.75 dB 0.56 dB / -0.36 dB 4.68 dB / --- dB 
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